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Abstract

Using I'-convergence arguments, we construct a nonlinear membrane-like Cosserat shell model on a curvy
reference configuration starting from a geometrically nonlinear, physically linear three-dimensional isotropic
Cosserat model. Even if the theory is of order O(h) in the shell thickness h, by comparison to the mem-
brane shell models proposed in classical nonlinear elasticity, beside the change of metric, the membrane-like
Cosserat shell model is still capable to capture the transverse shear deformation and the Cosserat-curvature
due to remaining Cosserat effects. We formulate the limit problem by scaling both unknowns, the deforma-
tion and the microrotation tensor, and by expressing the parental three-dimensional Cosserat energy with
respect to a fictitious flat configuration. The model obtained via I'-convergence is similar to the membrane
(no O(Rh®) flexural terms, but still depending on the Cosserat-curvature) Cosserat shell model derived via
a derivation approach but these two models do not coincide. Comparisons to other shell models are also
included.
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1 Introduction

If a three-dimensional elastic body is very thin in one direction, it has special load-bearing capacities. Due to
the geometry, it is always tempting to try to come up with simplified equations for this situation. The ensuing
theory is subsumed under the name shell theory. We speak of a flat shell problem if the reference configuration
is flat, i.e., the undeformed configuration is given by 0 = w x [f %, g], with w C R? and h < 1, and of a shell
(or curvy shell) if the reference configuration is curvy, in the sense that the undeformed configuration is given
by Q¢ = ©(Q), with © a C'-diffeomorphism ©: R? — R3.

There are many different ways to mathematically describe the response of shells and of obtaining two-
dimensional field equations. One method is called the derivation approach. The idea of this method is reducing
the dimension of a given 3 dimensional model to 2 dimensions through physically reasonable constitution
assumptions on the kinematics |[46]. The last author has introduced this derivation procedure based on the
geometrically nonlinear Cosserat model in his habilitation thesis |50} [51|. The other approach is the intrinsic
approach which from the beginning views the shell as a two-dimensional surface and refers to methods from
differential geometry [3| |5, [44]. The asymptotic method seeks, by using the formal expansion of the three-
dimensional solution in power series in terms of a small thickness parameter to establish two-dimensional
equations. Moreover, the direct approach [43| assumes that the shell is a two-dimensional medium which has
additional extrinsic directors in the concept of a restricted Cosserat surface (|11} |14} [15] |21} [22] 23| {26}, 29, |44}
59]). Of course, the intrinsic approach is related to the direct approach. More information regarding to this
method can be found in [50} |52} |53} |54].

One of the most famous shell theories is the Reissner-Mindlin membrane-bending model which is an extension
of the Kirchhoff-Love membrane-bending model [10] (the Koiter model |9]). The kinematic assumptions in this
theory are that straight lines normal to the reference mid-surface remain straight and normal to the mid-surface
after deformation. The Reissner-Mindlin theory can be applied for thick plates and it does not require the
cross-section to be perpendicular to the axial axes after deformation, i.e. it includes transverse shear. A serious



drawback of both these theories is that a geometrically nonlinear, physically linear membrane-bending model is
typically not well-posed (]42]) and needs specific modifications |8}, |9] to re-establish well-posedness.

There is another powerful tool that one can use to perform the dimensional reduction namely I'- convergence.
In this case, a given 3D model is dimensionally reduced via physically reasonable assumptions on the scaling of
the energy.

In this regard, one of the first advances in finite elasticity was the derivation of a nonlinear membrane model
(energy scaling with h) which is given in [47]. After that, the idea of I'-convergence was developed in |30, |31,
32, 33|, where different scalings on the applied forces are considered, see also |16l [60].

A notorious property of the I'-limit model based on classical elasticity is its de-coupling of the limit into
either a membrane-like (scaling with h) or bending-like problem (scaling with h%), see e.g. |12} 45].

In this paper we will use the idea of I'-convergence to deduce our two-dimensional curvy shell model from
a 3-dimensional geometrically nonlinear Cosserat model ([56]). This work is a challenging extension of the
Cosserat membrane I-limit for flat shells, which was previously obtained by Neff and Chelminski in [55], to the
situation of shells with initial curvature.

The Cosserat model was introduced in 1909 by the Cosserat brothers |24} 25, 26]. They imposed a prin-
cipal of least action, combining the classical deformation ¢: Q& C R® — R? and an independent triad of
orthogonal directors, the microrotation R:  C R?® — SO(3). Invariance of the energy under superposed
rigid body motions (left-invariance under SO(3)) allowed them to conclude the suitable form of the energy as
W = W(ETD@,ET%IE, ET&QE, ET(%BE). The balance of force equation appears by taking variations w.r.t
¢ and balance of angular momentum follows from taking variations of R € SO(3). Here, as additional structural
assumption we will assume material isotropy, i.e., right-invariance of the energy under SO(3). In addition we
will only consider a physically linear version of the model (quadratic energy in suitable strains) which allows a
complete and definite representation of the energy, see eq. (3.5)).

In the geometric description of shells the normal to the midsurface and the tangent plane appear naturally
and the Darboux-Frenet-frame can be used. The underlying Cosserat model immediately generalizes this concept
in that the additional microrotation field R can replace the Darboux-Frenet frame. The third column of the
microrotation matrix R generalizes the normal in a Kirchhoff-Love model and the director in a Reissner-Mindlin
model. Note that the Cosserat model allows for global minimizers [51].

Concerning now the thin shell I'-limit, we choose the nonlinear scaling and concentrate on a O(h)-model, i.e.
the membrane response. Since, however, the 3-D Cosserat model already features curvature terms (derivatives
of the microrotations), these terms "survive" the I'-limit procedure and scale with h, while dedicated bending-
like terms scaling with k3 do not appealﬂ

The major difficulty compared to the flat shell T-limit in [55] is therefore the incorporation of the curved
reference configuration. This problem is solved by introducing a multiplicative decomposition of the appearing
fields into elastic and (compatible) permanent parts. The permanent parts encode the geometry of the curved
surface given by ©. In this way, we are able to avoid completely the use of the intrinsic geometry of the curved
shell.

The related Cosserat shell model in [35| 36| is obtained by the derivation approach. There, the 2-dimensional
model depends on the deformation of the midsurface m: w — R3 and the microrotation of the shell @&S: w —
SO(3) for w C R?, the same as here. The resulting reduced energy contains a membrane part, membrane-
bending part and bending-curvature part, while the Cosserat I'-limit model obtained in this paper contains
only the membrane energy and the curvature energy separately. The membrane part is a combination of the
shell energy and transverse shear energy and the curvature part includes the 2-dimensional Cosserat-curvature
energy of the shell.

The present paper consists of 6 sections. After some notations in Section [2] we start by introducing the three
dimensional isotropic nonlinear Cosserat model on the curved reference configuration ¢ formulated in terms
of the deformation ¢, and microrotation Eg. Then we transfer the problem to a variational problem defined
on the fictitious flat configuration . For this goal, the diffeomorphism ©: R? — R? will help us to transfer
the deformation from €y, to Q. (the deformed configuration), © encodes the geometry of the curved reference
configuration. For applying I'-convergence arguments we need to transform our problem from €2, to a domain
with fixed thickness ;. This action depends on the type of scaling of the variables, which is introduced in

1Observe that the surviving Cosserat curvature is not related to the change of curvature tensor, which measures the change of
mean curvature and Gauf8 curvature of the surface, see Acharya [1], Anicic and Legér [10] as well as the recent work by Silhavy [61]
and |37} 138l 39, [41]).
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Figure 1: The mapping m: w C R? — R3 describes the deformation of a flat midsurface w C R2. The Frenet-Darboux frame
(in blue, triedre caché) is tangent to the midsurface m. The independent orthogonal frame mapped by R € SO(3) is the triedre
mobile (in red, not necessary tangent to the midsurface). Both fields m and R are coupled in the variational problem. This picture
describes the situation of a flat Cosserat shell.

Section Next, we propose the admissible sets on which the I'-convergence will be studied. We also obtain
the family of functionals which are depending on the thickness h. From Section [f] on, we start to discuss the
construction of the I'-limit for the family of functionals I},. After lengthy calculations, in Subsections and [6.3]
we get the homogenized membrane and curvature energies. The main result of this work is presented in Section
[7l where we prove Theorem on the I'-limit. In Section [§] we extend the I'-limit theorem to the situation
when external loads are present. Finally, in Section [0] we compare our model with other models: a Cosserat
flat shell model obtained via I'-convergence, a Cosserat shell model obtained via the derivation approach, a
6-parameter shell model, a Cosserat shell model up to O(h%), the Reissner-Mindlin membrane bending model
and Aganovic and Neff’s model.

2 Notation

Let a,b € R3. We denote the scalar product on R*® with (a,b)gs and the associated vector norm with [a|[2; =
{a,a)gs. The set of real-valued 3 x 3 second order tensors is denoted by R3*3, where the elements are shown
in capital letters. The standard Eucliden scalar product on R3*? is given by (X, Y )gsxs = tr(XYT), and the
associated norm is || X||? = (X, X)gsxs. If 13 denotes the identity matrix in R3*3, then we have tr(X) = (X, 13).
For an arbitrary matrix X € R3*3, we define sym(X) = 1(X+XT) and skew(X) = 3(X —XT) as the symmetric
and skew-symmetric parts, respectively and the deviatoric part is defined as dev X = X — %tr(X )1, for
all X € R™". We let Sym(n) and Sym'(n) denote the symmetric and positive definite symmetric tensors,
respectively. We consider the decomposition X = sym(X) + skew(X) and the spaces

GL(3) := {X € R¥*? | det X # 0}, GLT(3) := {X e R®*® | det X > 0},
SO(3) :={X e R¥3 | XTX =13, det X =1}, s0(3) := {AcR¥3 | AT = — A},
sl(n) == {X € R™*"| tr(X) =0}, 0(3):={X € GL(3) | XTX =13}.

The canonical identification of s0(3) and R? is denoted by axl A € R3, for A € s0(3). We have the following
identities

0 a p —y
axl|—a 0 ~|:=18], | Al|2sxs = 2[|laxl A3 . (2.1)
-8 -y 0 -«
=4



We use the orthogonal Cartan-decomposition of the Lie-algebra gl(3) of all three by three matrices with real
components

gl(3) = {sl(3) N Sym(3)} ®s0(3) P R-1, X =devsym X + skewX + %tr(X)l VX egl(3). (2.2)

A matrix having the three column vectors Aj, Az, A3 € R3 will be written as (A | Az | A3).

Let © C R? be a bounded domain with Lipschitz boundary 9Q and I' C dQ be a smooth subset of the
boundary of 2. In the two dimensional case, we assume that w C R? with Lipschitz boundary dw and 7 is also
a smooth subset of dw.

Assume that ¢ € C1(2,R?), then for the vector x = (x1,x2,23) € R? one can write V,¢ = (9z,0|02,9|0x,%)-
The standard volume element is dzdydz = dV = dwdz. The mapping m: w C R? — R? is the deformation of
the midsurface and Vim := V(,, ,,ym, is its gradient. We may write m(z1,z2) = (21, 22,0) + v(z1, 22), where
v: R? — R3 is the displacement of the midsurface.

For 1 < p < oo, we consider the Lebesgue spaces LP(Q) = {f : @ = R | || f||lLr() < 0o} and their corresponding

1
norms | f|lre() = (fsz |f|pdx> " For p € [1,00], we define the Sobolev spaces WHP(Q) = {u € LP(Q) | Du €
LP(Q)}, ||u||€v1,p(m = ||u||zﬁp(ﬂ) + ||DuH€p(Q), where Du is the weak derivative of u. In the case p = 2, we set

HY(Q) = WH2(Q), where HL(Q) = {p € L%(Q) | Vy € L%(Q)}. For the energy function W we define DW as
the Fréchet derivative of W and D2W (F).(H, H) denotes the bilinear form of second derivatives.

3 The geometrically nonlinear three dimensional Cosserat model

3.1 The variational problem defined on the thin curved reference configuration

Let us consider an elastic material which in its reference configuration fills the three dimensional shell-like thin
domain Q¢ C R3, i.e., we assume that there exists a C!-diffeomorphism ©: R?® — R3? with O(xy, 29, 23) :=
(&1, &2, &3) such that ©(€),) = Q¢ and we = O(w x {0}), where @, C R® with Q) =w x [- %, 2] andw C R? a
bounded domain with Lipschitz boundary dw. The scalar 0 < h < 1 is called thickness of the shell, while the
domain Qy, is called fictitious flat Cartesian configuration of the body. We consider the following diffeomorphism
©: R3 — R? which is used to describe the curved surface of the shell

O(x1, 2, 3) = Yo(z1,x2) + 23 N0 (71, 22), (3.1)

81:1 Yo Xaacg Yo

her : R3 i 2(w)-function an =
where yo: w = R? is a C%(w)-function and ng = 77520

is the unit normal vector on wg. Remark that

h h

va@(ng) = (Vy0|n0) +$3(Vﬂ0‘0) Vl‘3 S (—2,2>, VLG(O) = (Vy0|n0), [Vl@(O)]_T €3 = Ny, (32)

and det V,;0(0) = det(Vyo|no) = v/det[(Vyo)T Vyo| represents the surface element.

In the following we identify the Weingarten map (or shape operator) on yo(w) with its associated matrix by
Ly, = L I, where I, == [Vyo]" Vyo € R**? and I, := —[Vyo]" Vng € R**? are the matrix representations
of the first fundamental form (metric) and the second fundamental form of the surface yo(w), respectively. Then,
the Gauf$ curvature K of the surface yo(w) is determined by K = detL,, and the mean curvature H through
2H :=tr(Ly,). We denote the principal curvatures of the surface by x; and k.

We note that det VO (z3) = 1 —2Hxs + K2% = (1 — k1 23)(1 — ko 23) > 0. Therefore, 1 —2Hxs +Kz3 > 0,
Vag € [—h/2,h/2] if and only if 1 > k1 23 and 1 > Ky a3, for all x5 € [—h/2,7/2]. These conditions are equivalent
with |k1| 2% <1 and |ka| & < 1, ie., equivalent with

hmax{ sup |ki1|, sup |ka|} <2. (3.3)

(z1,72)€EW (z1,T2)€EW

We assume that after a deformation process given by the function ¢ : Q¢ — R3, the curvy reference
configuration ¢ is mapped to the deformed configuration Q. = p¢(Q¢).

In the Cosserat theory, each point of the reference body is endowed with three independent orthogonal
directors, i.e., with a matrix R : Q¢ — SO(3) called the microrotation tensor. Let us remark that while the



VO (0) = (Vyo|no)
0, Qo = polar(VO(0))

Figure 2: Kinematics of the 3D-Cosserat model. In each point & € Q¢ of the curvy reference configuration, there is the deformation
¢e: Q¢ — R3 and the microrotation Re: Q¢ — SO(3). We introduce a fictitious flat configuration €2}, and refer all fields to that
configuration. This introduces a multiplicative split of the total deformation o: Q) — R3 and total rotation R: ©j, — SO(3) into
“elastic" parts (pg: Q¢ — R® and Re: Q¢ — SO(3)) and compatible “plastic" parts (given by © : Qj, — Q¢ and Qo : Qp, — SO(3)).
The "intermediate" configuration ¢ is compatible by construction.

tensor polar(Veype) € SO(3) of the polar decomposition of F¢ := Vepe = polar(Vewe)\/(Vepe )T Ve is not
independent of ¢, the tensor R¢ in the Cosserat theory is independent of V¢e. In other words, in general,

Re # polar(Vege).
In a geometrical nonlinear and physically linear Cosserat elastic 3D model, the deformation ¢¢ and the
microrotation R¢ are the solutions of the following nonlinear minimization problem on ¢:

I(pe, Fe, Re, ag) = /Q (W (Te) + Weurv(ag)| dVe = Tl(we, Re) = min. wart (pe,Re),  (34)
¢
where
Fe :=Vepe € R?3 (the deformation gradient),
Ue ::EgFg e R3*3 (the non-symmetric Biot-type stretch tensor),
Qg :zﬁg Curlg R € R¥*3 (the second order dislocation density tensor [49]), (3.5)

— — — K — . .
Winp(Ue) : = p||dev sym(Ug — 13) || + pic ||lskew(Ue — 13)[|* + 5 [tr(sym(U¢ — 13))]* (physically linear),

Weurv (ag) 1= p LZ (aq [|dev sym ag||® + az [|skew ag||? + ag [tr(ae)]?) (quadratic curvature energy),

and dV(€) denotes the volume element in the Q¢-configuration. The total stored energy can be seen by W =
Winp +Weurv, with Wiy, as strain energy and Wey,y as curvature energy. Clearly, W depends on the deformation

gradient Fy = V¢, and the microrotation R¢. The parameters i and A are the Lamé constants of classical

2 A
Zut34 is the infinitesimal bulk modulus, p. > 0 is the Cosserat couple modulus and

isotropic elasticity, k =
L. > 0 is the internal length and responsible for size effects in the sense that smaller samples are relatively
stiffer than larger samples. If not stated otherwise, we assume that u > 0, k > 0, uc > 0. We also assume that
ay > 0,a9 > 0 and a3z > 0, which assures the coercivity and convezity of the curvature energy [55].

The external loading potential I1(p¢, Re) is given by

(e, Re) = Mg (0e) + Me(Re),



where

IIf(pe) == /Q (f,ug¢) dVe = potential of external applied body forces f,
¢

II.(Re) := / (¢, R¢) dS¢ = potential of external applied boundary couple forces c,
D¢

with ue = @¢ — & the displacement vector. We will assume that the external loads satisfy in regularity condition:
feL?(Qe,R?), c € L2 (T¢,R?), Re € 12(¢,R%). (3.6)

For simplicity, we consider only Dirichlet-type boundary conditions on I'c = ¢ x [— %, %], e C Owg, i.e., we
assume that p¢ = @? on I'¢, where gag is a given function on I'¢.

In [50] existence of minimizers is shown for positive Cosserat couple modulus p. > 0. The case p. = 0 can
be handled as well with a slight modification of the curvature energy. The form of the curvature energy Wy, is
not that originally considered in [48]. Indeed, Neff [48] used a curvature energy expressed in terms of the third

—T _ — —=T_ — —T_ —
order curvature tensor e = (R V(Re.e1) | Re V(Re.e2) | Re V(Re.e3)). The new form of the energy based on
the second order dislocation density tensor o simplifies considerably the representation by allowing to use the
orthogonal decomposition

— — 1
RgT Curle Re = o = dev sym ag + skew ae + 3 tr(ag)ls. (3.7)

Moreover, it yields an equivalent control of spatial derivatives of rotations [49] and allows us to write the
curvature energy in a fictitious Cartesian configuration in terms of the so-called wryness tensor |27}, 49|

—T ., = —T ., = —T , =
Te = (axl(R5 Oc, Re) | ax(Rg O, Re) | axl(Rg a&,Rf)) € R3%3, (3.8)

since (see [49]) the following close relationship between the wryness tensor and the dislocation density tensor
holds

1
e = —F? +tr(Ce) 13, or equivalently, e = —ag + 3 tr(ae) 1s . (3.9)

For infinitesimal strains this formula is well-known under the name Nye’s formula, and —TI is also called Nye’s
curvature tensor [57]. Our choice of the second order dislocation density tensor a¢ has some further implications,
e.g., the coupling between the membrane part, the membrane-bending part, the bending-curvature part and
the curvature part of the energy of the shell model is transparent and will coincide with shell-bending curvature
tensors elsewhere considered [28].

Within our assumptions on the constitutive coefficients, together with the orthogonal Cartan-decomposition
of the Lie-algebra gl(3) and with the definition

Winp(X) =W (sym X) + pic[skew X||? VX € R**3, (3.10)
- A
Win () =p[ISI° + S [ex(S))? VS € Sym(3),

it follows that there exist positive constants ci,cy,Ci" and CF such that for all X € R3*3 the following
inequalities hold

CEIS|* > Wes,(S) > ¢ [IS|” VS € Sym(3),
O llsym X|* + pie [lskew X[[* > Winp(X) > ¢f [lsym X||* + pc [|skew X | VX e R,
CH X% > Weure(X) > o | X|)? VX € R3S, (3.11)

Here, ¢ and O} denote respectively the smallest and the largest eigenvalues of the quadratic form Wao (X).

Hence, they are independent of p.. Both Wy,, and Wey, are quadratic, convex and coercive functions of Ug
and ag, respectively.



The regularity condition of the external loads allows us to conclude that

Mool =1 | A Vel < e sz (3.12)
which implies that

(el =1 | (v < Wiz el (3.13)
Similarly we have

(Rl = | | (e Tease] < lelharg Feluaco.- (3.14)

Note that ||Re¢||?> = 3. By using the fact that ||E§H%2(r§) = (3areals), we get

— 1
(e, Be)l < [1fllL2 o) luella o) + llellLz ey (BareaTe)= . (3.15)

This boundedness will be later used in the subject of I'-convergence.

3.2 Transformation of the problem from () to the fictitious flat configuration (2,

The first step in our shell model is to transform the problem to a variational problem defined on the fictitious

flat configuration Q) = w X [f %, %] This process is going to be done with the help of the diffeomorphism ©.

To this aim, we define the mapping
01 U = Qe (21,72, 73) = pe(O(a1, 22, 73)) -

The function ¢ maps €, (fictitious flat Cartesian configuration) into Q. (deformed current configuration).
Moreover, we consider the elastic microrotation Q,: Qn, — SO(3) similarly defined by

Q. (1, 70,13) = E€(®($1,$2,$3)), (3.16)
and the elastic Biot-type stretch tensor U,: Qp, — R3*3 is then given by
Ue(w1, 79, 23) = Ue(O(x1, 2, 23)) . (3.17)
We also have the polar decomposition V.0 = Qo Uy, where
Qo = polar(V,0) = polar([V,0]"T) € SO(3) and U, € Sym™(3). (3.18)
Now by using , we define the total microrotation tensor
R: Qp — SO(3), R(x1, 12, 23) = Q. (71,22, 73) Qo(71, 2, 73) . (3.19)
By applying the chain rule for ¢ one obtains
Vaeo(x1, T2, 23) = Vepe(O(z1, 2, 23)) V4O (21, 22, T3) , (3.20)
or equivalently the multiplicative decomposition
Fe(O(21, 2, 23)) = F(w1, 19, 23) [V O (21, 22, 23)] . (3.21)

Finally the elastic non-symmetric stretch tensor expressed on €2;, can now be expressed as

U.=0Q. FIV,0]"! = QR F|V,0]". (3.22)



Note that 33%@6 = Z?:l 857.R§ 83;,65“ 35k§5 = Z?:l 8@,@8 85,9562‘ and

3 3
EZ afkﬁf = Z(@Zaﬂﬂlée) 8§kxi = Z (@Z 817;@6) ([vxe]il)lk ) (323)
i=1 i—1
3
axl(Re 0, Fe) = > axl(Q 9:,Q,)([V20] Vi
i=1

Thus, we have from the chain rule

3 3 3
Pe = (Do (@7 9:.Q.) (V201 | Yot Q0 0 Qu)([V:0) 2 | Dol (@ 9:,Q0) (V4] )ia)

= (ax1(@7 9,Q.) |axI(@; 0,,Q.)|ax1(Q! 9,Q.) )[V.0] " (3.24)
We recall again Nye’s formula
ag =—T{ +tr(Te)ls,  or  De=—of + %tr(ag)lg. (3.25)
Define
L= (4@ 0,Q0)1ax1@; 0,,Q0) |ax1(Q: 9,,Q.) ), e = Q; Curl, Q,. (3.26)

Using Nye’s formula for o, and I, we deduce (see [35])
1 1
ae = [V.0] Ta, — 3 tr(a.) [V.0]" 7 —tr([V.0] Ta.) 13 + 5 tr(ae) tr([V.0]71) 13
1
= V0] Ta. — tr(af [V,0] 1) 15 — 5 trae) (IV.0) 7 = tx([V.0] ) 15). (3.27)

However, we will not use this formula to rewrite the curvature energy in the fictitious Cartesian configuration
Oy, since it is easier to use (from (3.9))

sym og = —sym I'e +tr(T'¢) 13 = —sym(T, [Vx@]fl) + tr(Te [V:,;@]*l) 13,
1

dev sym ag = —dev sym I'e = —dev sym(I, [V,0]77), (3.28)

skew ag = —skew 'y = —skew (T, [V,0] 1),
tr(ag) = —tr(le) + 3 tr(Te) = 2 tr(Te) = 2 tr(TL [V,.O] 1),

for expressing the curvature energy in terms of I, [V,0]7! as
Weurv(ag) = p LZ (a1 [|dev sym(T. [V20] ™) |1* + az [|skew (L. [Vo0] ™) |* + 4 as [tr(Le [V.0]71)]%) . (3.29)
Note that using
Q. 0:.Q, = QR 0,(RQY) = QR 0, B)QF - Q(Q10.,Q)QF. =123, (330
and the invariance (|35], relation (3.12))
axl(QAQT) = Qaxl(A) VQ e SO(3) and VA€ so(3), (3.31)
we obtain the following form of the wryness tensor defined on €,
[(z1,29,73) 1= Te(O(21, 72, 73)) = T, [V,0] !
- Qo [(m(ET 00, R) | axl(R" 0,,R) | axl(R" 0., R) ) (3.32)
— (ax1(QF 02, Qo) | ax(QF 02, Q0) | ax1(QF 0.,Q0) )| [V.0]



Now the minimization problem on the curved reference configuration ()¢ is transformed to the fictitious flat
Cartesian configuration €2, as follows

= / (W (T) + Weane ()] det(V,0) dV ~Ti(p, @) > min.  wrt (5,@),  (333)
Qp
where

_ _ _ A _
Winp(Ue) = pllsym(Ue — 13)|1* + pc [|skew (Ue — 13) |1 + 5 [tr(sym(Ue — 13)))?

— — K .
= plldevsym(Te = L5)[[* + pre [skew(Te = L3) || + 3 [tr(sym(Te — 13))]%,

Weurv(I) = p L2 (a1 ||dev symT||* + as ||skew I'||? + 4 a3 [tr(T')]?) (3.34)
= pLZ (by [[sym I||* + b ||skew I[|* + bs [tr(I)]?) ,

where by = a1, by = as, b3 = 12‘“‘%‘“ and ﬁ(go,@e) = ﬁf(<p) + ﬁc(@e), with the following forms

mww:mwazlgﬂ%mw:[gﬂmma

m@g:mmaa/

13

(¢, Re) dSe / (©0.)ds, (3.35)

Iy

with @(z;) = p(;) — O(z;) the displacement vector, R = Q, Qq the total microrotation, the vector fields f and
¢ can be determined in terms of f and ¢, respectively, for instance (see |20, Theorem 1.3.-1 |)

f(@) = f(6(x)) det(V,0), ¢(z) = c(O(x)) det(V,.0). (3.36)
Note that regarding to the regularity condition (3.6)), the following regularity conditions will hold as well
feL* (2, R?), ce L3Iy, R, Q. € L*(Th,R%). (3.37)

The Dirichlet-type boundary conditions (in the sense of the traces) on I's = ¢ X [f %, ﬁ] Ve C Owg, read on

21
the boundary T, = x [— &, 4], v = ©7(7¢) C Ow, as ¢ = ¢ on T, where ¢fj = O~ (o).

4 Construction of the family of functionals I,

4.1 Nonlinear scaling for the deformation gradient and the microrotation

In order to apply the methods of I'-convergence, the first step is to transform our problem further from 2,
to a domain with fixed thickness Q; = w x [-%,3] C R®, w C R?. For this goal, scaling of the variables
(dependent/independent) would be the first step. However, it is important to know which kind of scaling is
suitable for our variables. In this paper we introduce only the nonlinear scaling, although in linear models, a
concept of linear scaling is used as well (|55, [56]). For a vector field z: Q; — R?® we consider the nonlinear

scaling z%: Q; — R3, where only the independent variables will be scaled
xr1 =M, xg = 12, x3 = hns,

1
P (zl, Z2, El‘g) = z(x1, 22, 23) , nonlinear scaling . (4.1)

Consequently, the gradient of z(z) = (z1(x), 22(x), 2z3(x)) with respect to x = (x1,22,23) can be expressed in
terms of the derivative of 2% with respect to 7 = (11,72, 13)

1
Vez(w1, 22, 73) = (amzh(mvnz,ﬁs) | Oy 2" (m1,m2,m3) | Eanazh(nlvn%%‘)) = V12i(n). (4.2)

For more details about scaling of the variable we refer to [56]. In all our computations the mark -# indicates the
nonlinear scaling.

10



11
In a first step we will apply the nonlinear scaling to the deformation. For ; = w x [— 3 5} C R?, wC R?,
we define the scaling transformations

CGne R, Cln,mzms) = (n1,m2,hns),

_ _ x
Lz e, = RS CHxy, w0, 23) := (ml,xg,f), (4.3)

with ((Q1) = Q. By using the relation (4.1) and above transformations we obtain the formula for the trans-
formed deformation ¢ as

P(z1,22,23) = (T (21,22, 23)) Yz € Uy O (n) = (((n) Vn €,

1
O Ai(n) Ol () 4 0n,01 ()

1
Vaop(ar, g, a5) = | On @) On,03(n)  +0,03(0) | = Vhh(y) = Ff. (4.4)

1
O 5(0) O, pf(n) 4 0n, 03 (n)

Now we will do the same process for the microrotation tensor @i Q; — SO(3

Qular,aa,w5) = QUC (@r,v2,w)) Vo € Qs Qeln) = Qo). Vn e,
as well as for V,0(x), the matrices of its polar decomposition V,0(x) = Qo(x)Up(z), in the sense that

)
(

(Va©): () = (Va©)(Cm),  Qbn) = Qo(C(n),  Udn) = Uo(¢(n))- (4.5)
We also define B : Q1 — SO(3)
R(a1,a2,23) = B (C Y1, 20,23)) Yo eQ,: R =R(CH), Yne.
With this, the non-symmetric stretch tensor expressed in a point of € is given by
T = Q2 Fi(V.0) ! = QX Wik (n)[(V.0)7] . (4.6)

Since for 73 = 0 their values expressed in terms of (11,72,0) and (x1,22,0) coincide, we will omit the sign -
and we will understand from the context the variables into discussion, i.e.,

(V20)(0) := (Vyo [no) = (V2©)*(n1,m2,0) = (V.0)(21,72,0),
Qo(0) := Qg(mﬂhao) = Qo(z1,72,0), Up(0) := Ug(ﬁlﬂ?zao) = Up(z1,x2,0).

Therefore, we have
7h7T

Q) =Fm@m)", Tin =0

and

MEL(V20) " = QEmE" () Fim(V.0)1™", (4.7

T4 = (axI(@E 90, Q0) |axI(QE T 00,Q%) | 3 axl(@0 0, @1 ) ) [(V0)] (4.8)

4.2 Transformation of the problem from (2, to a fixed domain ),

The next step, in order to apply the I'-convergence technique, is to transform the minimization problem onto
the fized domain 1, which is independent from the thickness h. According to the results from the previous
subsection, we have the following minimization problem on {24

HERGENR R / (Wanp (T + Weurs (7)) det(V,,¢ (n)) det (V2 ©)F) dVy — T (%, Q7

1

_ /Q h [(me@h) + ﬁ/’cm(ri)) det((vw@)h)} dV, ~IT (¢, Q%) = min w.r.t (0% Q)), (4.9)

=T (98, Vot Q0 TY)

11



where
T = T — 1|2 T — 12 4+ 2 T _ 112
Winp (Un') = pllsym(Un’ = L3)II° + e [|skew (Up' — 13)[|" + S [tr(sym(Uy' — 13))]%,
WCHW(FEL) = pL? (al ||dev syml"ElH2 + as ||skewl"ELH2 + as [tr(FEL)]Q) , (4.10)

with T (o8, Q) = IT% (%) + +ITE(Q)),

b T _ o — £1 38 de - i3
T (o) = Hf(w)/ﬂh<f,U>dV/Ql<f7 ) det(V,C(n)) dV h/ (P av,

(o5
M4(Q2) == T1.(Q,) = / (@Q.)dS = | (@,Q0) det(V,C()dS, =h [ @Q)dS,, (411

Fl I—‘1

with f%(n) = F(C(n)), @(n) = a({(n)), @(n) = &¢(n)) and Qo () = Q. (((n)). Here we recall that regarding to
the regularity condition , it holds

7 e L2, RY), &F e 12, RY), Q' e L2(I',R?). (4.12)
Therefore, we may write
[T ()| = \h/Q (5 a0V, | < B FEllee i @ L2 ) »
1
Q0 = I [ Q0S| < hP e[ (113)
1
and consequently

—4 . —4
52, @D < A 1P leq@ Ny + [ e 1@ o)) (414)

VO(0) = (Vyo|no)
0, Qo = polar(VO(0))

Figure 3: The complete picture of the involved domains. ; is the fictitious flat domain with unit thickness, Q¢ denotes the
curved reference configuration, €2 is the current deformed configuration. Again, the reference configuration ¢ takes on the role
of a compatible intermediate configuration in the multiplicative decomposition.

The Dirichlet-type boundary conditions (in the scnsc of the trace) on T, =y x [— &, 2] v =071 () C dw,

read on the boundary I'y = x [ — 1, 1] as ¢f = god on I'y, where goz = 1( ).
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5 Equi-coercivity and compactness of the family of energy functionals

5.1 The set of admissible solutions

Due to the scaling, we have obtained a family of functionals
7h J— —
JE(F, Tt QL TE) = /Q B (W (TF) + Weure (7)) det(V,0)%)| ., (5.1)

depending on the thickness h. The next step is to prepare a suitable space X on which the existence of I'-
convergence will be studied. As already mentioned, for applying the I'-limit techniques we need to work with
a separable and metrizable space X. Since working in H!(Q,R3) x H!(Q,SO(3)) means to consider the weak
topology, which does not give rise to a metric space, we introduce the following spaces:

(9%, @0) € L2(Q, R%) x L2(2,,50(3))} ,
X' = {(¢5, Q) € H'(Q, R?) x H'(24,50(3))} ,
( @ ) € L2(w ]R?’) X L2(w SO(3))}, (5.2)
7)€H (w, R?’)XH (w,SO(3))}.

We also consider the following admissible sets

= {(».Q.) € H'(2.R%) le(ﬂl,so )| ele.(m) = @50}
= {(¢,Q.) € H'(w,R?) x H'(w,80(3)) | ¢low (1, 112) = @i (m1,712,0)} - (5.3)
By the embedding theorem (|19], Theorem 6.1-3), the embedding X’ C X is true and clearlyﬂ X, C X,

X, cX'.
The functionals in our analysis are obtained by extending the functionals Jj, (respectively Ij,) to the entire
space X and to take their averages over the thickness, through

1 — _

he b wh b A b . B Al ,

T —hr I (%, Vo, Qg1 if (¢%,Q.) €S’

}hy,(sohvv:;@thev EL) = h h( n h) ( ) (54)

400 else in X.

L A 1 =iy A
_ ) g I VIR QLT - ST Q0) i (£1.Q0) €S,
+o0 else in X.

The main aim of the current paper is to find the I'-limit of the family of functional 7" (gz)h thoh,@h ), ie.,

to obtain an energy functional expressed only in terms of the weak limit of a subsequence of (cph ,Q(, h; )e X,
when h; goes to zero. In other words, as we will see, to construct an energy function dependmg only on
quantities defined on the midsurface of the shell-like domain, see Figure [4] .

As a first step we consider the functionals

1 by —
b b wh i A phy y A ,
_ — T, VR QR T i (08,00 e S,
TV QLTS =< (0%, Voo 5 i (05, Q1)

+00 else in X.

(5.5)

5.2 Equi-coercivity and compactness of the family j,f

Theorem 5.1. Assume that the initial configuration is defined by a continuous injective mapping yo : w C
R? — R3 which admits an extension to @ into C%(w;R3) such that det[V,O(0)] > ag > 0 on @, where ag is a
positive constant, and assume that the boundary data satisfies the conditions

(pz = <pd|F1 (in the sense of traces) for pg € H' (9, R3). (5.6)

2Since 0o > [ [p|?dzdy = [, f1§32 lp|? dz dx dy = ffh |p|? dV, which means any element from X, belongs to X as well.
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V@(O) = (Vyo|n())
0, Qo = polar(VO(0))

—_— — — —
-

s
/ Yo

Figure 4: Kinematics of the dimensionally reduced Cosserat shell model. All fields are referred to two-dimensional surfaces. The
geometry of the curved surface we is fully encoded by the map ©. Instead of the elastic deformation starting from we, the total
deformation m from the fictitious flat midsurface w is considered, likewise for the total rotation R.

Consider a sequence (@ij,@ihj) € X, such that the energy functionals j}i(@ija@i,hj) are bounded as h; — 0.
Let the constitutive parameters satisfy

w >0, k>0, e >0, ai; > 0, as > 0, as > 0. (5.7)
Then the sequence (apij,@i’hj) admits a subsequence which is weakly convergent to (gp&@i’o) € X,.

Proof. Consider the sequence (‘pi,-’@i,hj) € X, such that the energy functionals j,fj (apij,@ihj) are bounded
as h; — 0. Obviously this implies that (wij,@i’hj) € &' for all hj. We have

— — — —=h,T ) —
2([T,— L2 + 12612) > (1T — L + 18102 = [T = @5 hh, (7.0 ()~ (5.8)

S S 1 =0T, _ , _
= (QF Vi) (Va0 ()] ™, Q07 Vi [(Va0) ()] ™) = |V [(V20) (m] ||
Thus, we deduce with (5.8]);

— 1 . _
1T — 15 > §||VZJ wij[(vx@))“(n)] 1?2 - 3. (5.9)
But
IVhs 7, || = 1928, (V@) ]~ (Vo) Il < IIVE 7, [(V©) i) M| - [(V20): ()] (5.10)
and we obtain
1
V! (VL) )] > IV f | 5.11
Ve o, ( VI = 1V eg, |l V0 )] (5.11)
From the formula [(V.©0)%(n)] = (Vyo|no) + h;n3(Vno|0) we get
1(V20) )| < |(Vyolno)ll + hj [ns] [(Vnol0)]| < |(Vyolno) |l + hj [|(Vro|0)|
< [[(Vyolno) |l + [[(Vnol0) |- (5.12)
since h; < 1. Thus
! ! (5.13)

(V.07 = TVgolno) + 1(Vrol0)]

14



Moreover, since yo € C?(w; R3), it follows for h; small enough that there exists ¢; > 0 such that m > 1.
Therefore, from (5.9) and (5.11)), we get that there exist ¢1,co > 0 such that

_ ¢ ,
1T~ 13l = IV i, I = o (5.14)
From the hypothesis we have

oo > j}i (LPELJ 7©i,hj) > / (me(Uhhj) + Wcurv(rij)> det((vx@)h) dvn (515)

1

z/ Winp (O4h) det((V20)%) dV, zmin(cf,uc)/ [T — 15| det((V,0)?)d V4,
Ql Q1

where ¢ denotes the smallest eigenvalue of the quadratic form Weo (X).
Let us recall that det(V,0(z3)) = det(Vyo|no) [172 r3H+a23 K} = det(Vyo|no)(1—k1 z3)(1—k2 z3), where

H , K are the mean curvature and Gauf} curvature, respectively. But (1—k; 23)(1—ko x3) > 0, Vg € [—hi/2, hi/2]
if and only if h; satisfies the hypothesis (3.3). Therefore, there exists a constant ¢ > 0 such that

det(V;0(z3)) > cdet(Vyglng) V z3 € [—h/2,h/2]. (5.16)
Due to the hypothesis det[V,©(0)] > ap > 0 this implies that there exists a constant ¢ > 0 such that
det(V,O(z3)) > ¢ YV xg € [—hi/2,hi/2], (5.17)
which means that det(V,0(x3)%) >c¢ Va3 € [~1/2,1/2].

Hence, from (5.15)), (5.14) and (5.17)), it follows that for small enough h; there exist constants ¢; > 0 and
co > 0 such that

—4 )
00 > Jf (¢, Qen,) > 1 /Q IV 05, [IPdV;, — 2 (5.18)
1

1
=2 (namsoij I+ 19068, I + 119053, |2> dv,, — cs.
Q1 g
Furthermore, due to the hypothesis on h;, it is clear that there exists ¢ > 0 such that
1
190,03, 12+ 19008, 12 + 519028, 12 2 € (190,08, 2 + 19908, 12 + 19003, 1) (5.19)
J
which implies the existence of ¢y, cy > 0 such that

—=h
00 > Ji (95 . Q) = 01 / (10, 5, 12 + 10008, 12 + 190,25, 112) AV = 2. (5.20)

Q

=:I|V,7 05, 112
We also obtain, applying the Poincaré—inequality [58], that there exists a constant C' > 0 such that
HVZ"SDL 1F200) = ||VZ’<P?LJ — V1ioa+ Vi odllfa
> (||VZ”(<P5U —0d)llL2@w) — Vi eallL2w))?
IV3e (¢h, = eallRay — 20V (0h, = ea)llzo) IV @allzc) + IV @allEa (5.21)
Cligh, — ¢allfin(w) — 21195, — allm @) Ve Callew) + [V @alPa ()

Vol

v

1 _ .
c ||SOEL]. - ‘PdH2H1(w) 3z ||<PEU - ‘Pd|\2H1(w) - 5||VZ"<Pd||i2(w) + ||V21¢d||i2(w) Ve >0,
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where we have used Young’s and Poincaré’s inequality. Therefore, by choosing ¢ > 0 small enough, (5.21)
ensures the existence of constants ¢; > 0 and ¢3 € R such that

Y

] C1
V3o, IR2) > eilleh, = allfi ) — e > 5216, I @) = ledlmn)? - ez

Y

C1 C1

S, @) + 5 lallfn ) — e (5.22)
Thus, there exists ¢; > 0 and ¢y € R such that

[V <Ph [F2(0) = ||90h [ (o) — (5.23)

which implies the uniform bound for (pij in &’. On the other hand, since

10m, 25, 117 + 19,25, 12 + 25 100525, 17 > 51005, 112, (5.24)

1
7l >l

from (5.18) it results that ;% |0y, <pEl, |? is bounded, i.e., there is ¢ > 0, such that
7 J
10n, 25, lIL2() < chy. (5.25)

This means that 9, wi -0 strongly in L?(Q2), when h; — 0.

Hence, con51der1ng (<ph 7Qe n;) € X, such that the energy functionals T} h (gph ,Qe n,;) are bounded, it follows

that any limit point cpo of aph for the weak topology of L?(£2;,R?) (which exists due to its uniform boundedness
in H!(w,R3)) satisfies

B0l =0 = ¢ e H(w,R?). (5.26)

Similar arguments for the curvature energy imply that there exists ¢ > 0 such that

7h —~
00 > Ty (95, Qeny) = /Q Weury (T}, ) det((V.©)") dV;, > / ¢ |0, |? det((V.©)%) dV,, (5.27)

1
:c/
1951

In the next step, as in the deduction of (5.8)—(5.18]), it will be shown that for a1, a2, as > 0 there exists ¢ > 0
such that

2
Qi det((V,©)%) dV

] 1 ] |
(axI@ED, @) | 4X1@20, 0 Qen,) | 1-a¥I(@2, O Q2n,) ) (V20) ()]

J

00 > C/Q (”a‘Xl(th aﬂlth )H2 + Ha’ 1( e, h aﬁzQe h; )”2 h2 ||a'X1(Qe h; 8773Qe h; )”2)

c

= 5/ (”Q aerh I+ ||Q aaneh I + QHQ 3773th |2> (5.28)

¢ oL —t 1 —4
—QK;O%@Mﬁ+é%%MW+MW%@MW>W

J

With the same argument as in the strain part, we deduce
O Qe |12+ 10 Q0 |2 + 100 @0 12 dV 5.29
o>l 100, Qe 7+ 100, Qe i, 117 + 100, Qe s (5.29)
1

where ¢ > 0. Hence, it follows that 8ni§i’hj is bounded in L2(2;,R3*3), for i = 1,2,3. Since @i,hj € SO(3),
we have ||@ihJ |2 = 3 and therefore @i,hj is bounded in L2(2;, R3*3). Hence, we can infer that the sequence

Q% ), is bounded in H(€;,50(3)), independently from ;.
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Therefore, there is a subsequence from @i n, which is weakly convergent (without relabeling) to @io. That
is

Qiy —Qhy in HY(Q,50(3)). (5.30)

In addition, from (5.28]), we also obtain that there exists ¢ > 0 such that ch; > ||8773Qi’hj lL2(0,,80(3))- This
means that 8,]3@2,17, — 0 strongly in L?(€21,S0(3)), when h; — 0. Hence, considering (goij,@iyhj) € X, such

that the energy functionals j,fj (‘Pijv@i,hj) are bounded, it follows that any limit point @i,o of @i n, for the
weak topology of X satisfies

00, Qi =0 = Q. ,cH (wS0(3)). (5.31)

From (5.26)), (5.31)) and due to the continuity of the trace operator we obtain that considering (goij , @i n,) € X,

such that the energy functionals j,fj (@ij7@i,hj) are bounded, it follows that any limit point (¢g7@i’(]) for the
weak topology of X belongs to S/, ('since actually, such a sequence belongs to S’). ]

Since the embedding X’ C X is compact, it follows that the set of the sequence of energies due to the scaling
is a subset of X’, and hence, we have obtained that the family of energy functionals J,i is equi-coercive with
respect to X.

6 The construction of the I'-limit J; of the rescaled energies

In this section we construct the I'-limit of the rescaled energies

1 =t . =
LA VI QLT i (61Q)) €8,

=h
TH(H VheE QLT =
+o00 else in X,

(6.1)

with

—1f
THEREN0S /

h [(me (T + Weurs (Fi)) det((V,0)9)] av,,. (6.2)
(951

6.1 Auxiliary optimization problem

For ¢f : Q1 — R? and @i : Q1 — SO(3) we associate the non fully dimensional reduced elastic shell stretch
tensor

_ T -
U@”,ai = Qe (V(m’m)(phw)[(vw@)h] 1a (63)

and the non fully dimensional reduced elastic shell strain tensor
€. =@V F = (Vi) [0O(Ve®) ] =T, 5 — (Vyo)*|0)[(V20)F] (6.4)
LP”in : e (m,m2) ¥ Yo T @h»Qi Yo x . .

Here, "non-fully" means that the introduced quantities still depend on 73 and h, because the elements V(mm)goh

still depend on 73 and @h’T depends on h.

For reaching our goal we need to solve the following optimization problem: for ¢ : Q; — R3 and @i 0 =
SO(3), we determine a vector d* € R? through

om 7th % — . *th —
WA o ge) = W (@0 (Vi @1 (Vo)) 1= inf Wang (@2 (Vg 1) (V2 O) 7). (65)

The motivation for this optimization problem is to minimize the effect of the derivative in the n3-direction in the
local energy Wip,. Due to the coercivity and continuity of the energy Wiy, it is clear that this function is well

17



defined and the infimum is attained. Note that ¢ and @i depend on 73 and h. Hence Wr}r’l%m’“(é'wn 5¢) depends

on 13 and h. While it is not immediately clear why W, (QE’T(V(mmz)(ph|d*)[(Vx®)h]*1> can be expressed as
a function of E@h ok this aspect will be clarified in the rest of this subsection.
We do some lecngthy but straightforward calculations in Appendix [A.]] and after using the fact that

V0] Tes = ng and [(V,0)!] Tes = ng, as well, we obtain the minimizer d* from as

. A —h He — B =t or
d _(1—2M+A<5@h@i,13>)c)eno+ucﬂt QIET, gemo. (6.6)

In terms of @i = Eth’T we obtain the following expression for d*

* h*th — —i b, T
@ = (1= 5, 3 QR Vi — (Voo 0)I(V20)] 7 1) ) B Q5 o

H i 4T b T b b m-1)"
o PO ((QER™ Vi et — (Vi) 0)[(V20) ) . (67)

Inserting d* in the strain energy Wi, (UF) = 1 [|sym(Uyf —13) |12+ pee [|skew (T5f — 13)[|2+ 3 [tr(sym (T — 15))]?
and using (A.36)), (A.41) and (A.42)), we obtain the explicit form of the homogenized energy for the membrane
part

hom, N 2. M (pe —p)? 2 4 (e — 1) 2
me (gwh}Qi) _H‘Hsymgtph’QiH + = 2 ( +M)2” Qh OH ( +M) Hg u’ﬂo“
/J’AQ g 2 ki 0T b C._.) g1—1y12
MECIES\E tr(E,: =)+ he lIskew(Qe™ (V iy o) 97 10)[(V2O) ) (6.8)
pre (e —p)? o He(pe —p) 2, 22\ 2
He e 1) )T He e — 1) g7 A (e, )
2 (,uc _|_u)2 || th (H (u ) || Qh 0” ( +)\) ( Soh:Qi)
and finally
hom,f _ (:u ) 2
me (ggah,ai) - WShell(‘gtpuyai) 2( ) || Qh nOH (69)
where
Ap

2
Wshell(X) :/L”SmeHz_'_:U’C ||Sk€WX||2+ [tI‘X] .

A42p
Using the orthogonal decomposition in the tangential plane and in the normal direction, gives
X =xl+x+ xlh=a, X, Xt =(13-A,)X, (6.10)

and we deduce that for all X = (x| *|0) - [V,0(0)]~! we have the following split in the expression of the
considered quadratic forms

+ pe A 2
Wanen(X) = o llsym XV o g skeow X 4 S5 X2 4 200 ()] (6.11)

Moreover, using that for all X = (x| * |0) [V,©(0)]7}, it holds that

tr(X ) = tr (13 — Ayy)X) = tr(X) — tr(Ay X) = tr(X) — tr(X Ay,) =0, (6.12)
we obtain
Ap Iz + He
Wnat (€, ) = pllsym €, o P e lskew €1, I + 5255 [or(E], )] + €% eI (6:13)

Ap u+uc
=polsym €], 1P+ e skew €1, P+ T [or(E], 0] + F €L, e ol

A+2p ©",Q0
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Therefore, the homogenized energy for the membrane part is

W™ (& s 2

A 2
pllsym E], o ll® + prellskew €1, o * + Yr2s [bx(E], o))

0 +uc o (e —p)? 2
T ngﬂ Qb O” 2( )” o, thOH
Ap 2 2M He
= it sym s“ I A QuH? s rEL g + R ET ool (6.14)
_ I QM e 2
= Wapen (€ nQ”) H o, Qu|| .

6.2 Homogenized membrane energy

Now, we will be able to propose the form of the homogenized membrane energy. To each pair (m, @e,O)? where
m:w— R Qe,o :w — SO(3), we associate the elastic shell strain tensor

Ems = (QugVim — Vyol0)[V.O(0)] 7", (6.15)

and we define the homogenized energy

WEO™ (Epn,s) := inf me(@zo(vmlcﬂ[(vme)w)]‘l) = inf Wiy (Sm,s — (0|0|c7)[(vm@)(0)]—1). (6.16)

deR3 deR3

Direct calculations as in the previous subsection (6.1)) show us that the infimum is attained for

e A -~ He — 0 = T
d*:(l— Emss 1 ) oo+ oL g, 6.17
2M+>\< 5513) ) Qe o0 uc+uQ’0 570 (6.17)
and
om Ap 2 | 24 fic
er;llp (Em.s) = p|lsym 51U1,s|\2 + pic [[skew EJL,SHQ + N2 [tr(grun,s)] + m“gﬁsnow (6.18)
21 e
= Wanen (€1, ) + m”gnﬁ ;
where
I g2 |2 K R
Wshell (gm,s) = M||sym 5m,SH +,LLC Hskew gm,s” + m [tr(é’mys)] . (619)

Note that W;%m’“(é’w’ai ) constructed in l) depends on 73 and h, while WEo™(&,, ;) in ) does not
depend on 73 and h, since @, , and [(V,0)(0)] do not depend on 73 and h.

6.3 Homogenized curvature energy

We define the homogenized curvature energy as
| —4,T ] N _
WESA(KE) = Weurs (ax1(Q2 " 9,,@2) | ax1(Q aanh>|ax1<A>)[<vx@>“1l
= inf Weun (4@ 0,,Q0) |2x1(@2 9,,Q0) | ax1(4) ) (V.07 (6.20)

A€so(3)

where
K= (ax1(@ 9,02 1ax1(@ 9,,Q0)10) [(7,0)7] !

represents a not fully reduced elastic shell bending-curvature tensor, in the sense that it still depends on 73 and
h, since @i = @i(m, 72,73). Therefore, 1/ bom, £(K8) given by the above definitions still depends on 13 and h.

curv
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As in the case of the homogenized membrane part in (4.10]), from which we obtained the unknown d*, one
can explicitly determine the infinitesimal microrotation A* € so0(3) as well. Ghiba et. al, in [40] obtained the
homogenized quadratic curvature energy (see Appendix for its explicit form). Presently, it is enough to

see that ngr‘f} is uniquely defined and has the other requirements like remaining convex in its argument and

having the same growth as WCMV. Therefore,

curv

Weury (ri) > hom k) (6.21)

ie.,

AT o Al =0T 5 =t _
e (@2 00, 0% ) | I(@E, 0, Q) | 1 axI(@E S, 9,00 ) (V201 (6:22)
om AT o A =0T 5 =t -
> Whi ((axl(Qe 0, @0) |ax1(@; " 0,,Q0)10)[(V.0)7) |
where this relation will help us in Subsection to show the liminf condition for the curvature energy.

In order to construct the I'-limit, we have to define a homogenized curvature energy. This energy will be
expressed in terms of the elastic shell bending-curvature tensor

Kes:= (axl(@zo 02, Q. 0) |axl(@£0 02,Qc0) |0) [V.O(0)]7 € Sym(3) elastic shell bending-curvature tensor,

which will be defined for any @, : w — SO(3). For @, : w — SO(3), we set

WA (Kes) = Wy (1@ 00, Qe ) | ax1(Qc 0 02,Qe ) | ax1(A") ) [(V.0)* (0)] ! (6.23)
= 0 Weare (031(@20 00, Qo) | 0X1(@00 90,Qe0) | ax1(4) ) [(V0)(0)]!

Again note that while Whom’h(

curv E
(

depend on 73 and h, since @, o and [(V©)(0)] do not depend on 73 and h.

) (previously constructed) depends on 73 and h, Whom(lC s) does not

curv

7 T'-convergence of 7,

We are now ready to formulate the main result of this paper

Theorem 7.1. Assume that the initial configuration of the curved shell is defined by a continuous injective
mapping yo : w C R? — R3 which admits an extension to w into C?(w;R3) such that for

O(x1, 2, 23) = Yyo(x1, x2) + T3 N0 (21, T2)

we have det[V,0(0)] > ag > 0 on W, where ag is a constant, and assume that the boundary data satisfy the
conditions

<pg = ‘Pd‘rl (in the sense of traces) for ¢4 € H'(Q1;R?). (7.1)

Let the constitutive parameters satisfy

©w >0, k>0, e >0, a; >0, as >0, az > 0. (7.2)

Then, for any sequence (@ij’@i,hj) € X such that ((pij,@i,h]_) — (8007@e£) as hj — 0, the sequence of
functionals Jy,;: X — R T'-converges to the limit energy functional Jo: X — R defined by

o g, ) TR det(Vanlno) dw i (T 0) € S

400 else in X,

(7.3)
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where

. — .= 1
m(x1,x2) := po(T1,22) = hljlglo @ELJ. (21,22, EI3)7 Qe o(r1,72) = hl_,»lglo Qi,hj (w1, 22, h7jx3)7
—T _
£, , = (@coVm — Vyol0)[V,0(0)] 7, (7.4)
Kess = (ax1(@00 00, Qe0) | x1(@1 0 02, Q.0) 10) V2 0(0) | & Sym(3),
and
homie N\ _ I 2 I 2 Ap I 2 2p pc 2
W Eng,,) = wlvm &) o 7+ pelskew ) o 74 520 [ix(E), 5 )+ EENEL 5 ol
2 e 2
= Wanen (€] : 7.5
hll(mQ )+M+ H H (7.5)
W KCes) = inf Woars (a31(@L0 90, Q)| 931@L0 91, Q.) | 931(4) ) [(V20)*(0)]

b1b 2010
= L2 2 ki 2 193 I \2 102 L _
pL2 (balsym KL 2 + ballskew UL + 25 (KDL + =S I

Proof. The first part of the proof is represented by the proof of equi-coercivity and compactness of the family
of energy functionals which are already done. The rest of the proof will be divided into two parts which make
the subjects of the following two subsections. |
7.1 Step 1 of the proof: The lim-inf condition

In this section we prove the following lemma

Lemma 7.2. In the hypothesis of Theorem. for any sequence (<ph ,th ) € X such that (<ph ,th ) —
(‘POaQeo) for hj — 0, i.e.,

G b in LAQRY), Qi Qi in L2(4,50(3)), (7.6)
we have
— - —
Folely Qo) < Hminf T3 (7, Qo) (7.7)

Proof. It is clear that we may restrict our proof to sequences (cpij,@ihj) e 8 C X', ie., to sequences in
which the functionals thj(goij,@ihj) are finite, since otherwise the statement is satisfied. In addition, any

(cpij >@i,hj) such that jﬁj (Wija@i,h,») < 00 is uniformly bounded in X’. Therefore, there exists a subsequence
(not relabeled) which is weakly convergent in X’. Due to the strong convergence of the original sequence, the

considered subsequence is weakly convergent to (cph,@ivo), ie.,

G i LAQURY), QL. Qe in L2(2,50(3)). (7.8)

Therefore, we have the weak convergence (goi,@i n,) (without relabeling it) to (@B,@io) in H'(w, R3) x
H'(w,SO(3)). For Ui = Q Vh ©'(V:0)"~! we have

_ _ _ A _
Wanp (U3f) = o [lsym (T3 — 13)II” + pre [Iskew (T3 — 1) * + 5 [tr(sym Ty — 13)))*, (7.9)
. . =T —
while for gw”@i = gl”@i + 8;7@3 with 5¢h7@i = (Q." Vim )@  — [V1o]?0)[(V20)f] ! we have
hom, j I 2 [ 2y Ap I 2 2 pe 9
W€ ) = mllsym €1, o 17 4 e sk €1, 4 20— [n(el, )"+ A e 2.
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Hence, for the sequence (@Elj,@ihj) € HY(Q1,R3) x HY(Q1,S0(3)) where (@E}j,@im) — (@E,@ivo) with
Jﬁj(wijﬂi,hj) < 00, we have

Wap (@21, Vi 5, (V2 0) 1) = W (vamwu Onaith I(V20) ) (7.10)

> Wi (6, o, ), (7.11)

‘Ph >
=T _
where we recall that £ o @, (Qe’hjv(mm)goij — (Vy0)?|0)[(V,0)4] !
Then by taking the mtegral over §2; on both sides and taking the liminf for h;, we obtain

Jim inf / W (@5, V165, [(V,0)771) det[V,0]1() dV; > lim in / Whema (e, o ) det[V,OF () v,

h;—0 h;—0 j Qe,hj

In the expression of € o , the quantity [V,©]! is evaluated in (z1, 22, 23) = (71,72, hn3). Therefore, we

@i,
have to study its behav10ur for hj — 0. In addition, we recall the convergence results [47, Lemma 1|:

1
lim det[VZG]h(nhng,ng) = lim det[Vx(a]h(xl,mg, —x3) = det[VzG)]h(m,ng,O)
h;—0 h;j—0 hj

= det(Vyo|no) in C%Q),

. — 3 - 1
hljlgl()[(V:;@) 1]“(7717772,773)=h1j1§0[(vm@) 1]“(90179627,7],1’3)

=[(V20) ¥ (m,m2,0) = (Vo0)'(0)  in C°(9).

(7.12)

Due to (7.12]), the weak convergence of the sequence @Elj and the strong convergence of the sequence @i hyo

we have the weak convergence

—,T _
£ @, = Qi Vo #h, = (Vi OIV-0)]!
— (@20 V inane) 96 = (Vo) 0 [(V2O) 7 (0) = € s e . (7.13)
Using again , the convexity of the energy function W}‘O""h with respect to £ o Q” , the Fatou’s
Lemma, the characterization of liminf and the weak convergence we get
. hom b hom h _
12Ti%f/ Wi (€ @t ) det[V,0]%(n) dV,, >/ wh ,Qi,o) det(Vyo|no) dV . (7.14)
Since both <pE) and @i,o are independent of the transverse variable 73, we also obtain
hhmi%f/ Winp (Q vhuph [(V.0)171) det[V,0)%(n) dV,, >/ /Whom“ — )det(Vyo|n0) dv,
i _1

/ W;;m(gm@,o) det(Vyolno) dw.  (7.15)

We do the same process for the curvature energy, by using 1' the convexity of ngu‘}‘;l,‘ in its argument
and the weak convergence

(1@, 00, @) | 4X1@2, 0022, )10) (V20 ()]
— (ax1(@f g 90, Q2.0 |ax1(@20 01,01 0) 0) [V20(0)] " (7.16)

22



Using also (7.12)), we arrive at

hmmf/ Weure (T )det[v 0% (n) dv, > hH}lLIIlf/ Whomb(xh) det[V,0)%(n) dV; '
o j

curv

>hm_mf Whom(ic &) det[V,0)(n) dV,, > / whom (i, ) det(Vyo|no) dV,

curv CUI‘V
J

/ whom (i, ) det(Vyo|ng) dVy, = / whem(c, ) det(Vyo|no) dw . (7.17)

-

2

Since, me(@iﬂ; Vf,j cpELj [(V:0)%~1) > 0 and Wcurv(Fi) > 0, by combining (7.15|) and (7.17) we deduce

.. —4,T ) _ -~
timint | (W (@0, V3, (VO ™) + Weury (T)] det (V208 () dV, (7.18)

> [ (WhenEg, )+ WA (K...)) det(Tyolno) do = To(m. Gr).
where we have used that @i,o = Qe,o and m = pg. Hence, the lim-inf inequality (|7.7)) is proven. |

7.2 Step 2 of the proof: The lim-sup condition - recovery sequence

Now we show the following lemma

Lemma 7.3. In the hypothesis of Theorem for all (@%,@i’o) € L2() x L2(Q1,S0(3)) there ewists
(9}, Q2,) € L2(Q1) x L2(21,50(3)) with (g, , Q. p,) — (5, @i o) such that

- : i
Jo(, Qo) > lim sup Ti (@5, Qen,)- (7.19)
Lj—>

Proof. Similar to the case of the lim-inf inequality, we can restrict our attention to sequences (@%j ,@i hj) eX

such that jh (<ph ,Qe ,h,;) < 00. Therefore, the sequence (cph ,Qe ,h;) € X has a weakly convergent subsequence

in X', and we can focus on the space H!(Q;,R?) x H* (€, SO( ))-

One of the requirements for I'-convergence, is the existence of a recovery sequence. Thus, the idea is to
define an expansion for the deformation and the microrotation through the thickness. In reality, the minimizers
of the energy model can be a good candidate for constructing the recovery sequence. To do so, we look at the
first order Taylor expansion of the nonlinear deformation @ELJ_ in thickness direction 73

@Ezj (11, m2,m3) = (pij (m1,m2,0) + 13 8,73905” (m1,72,0). (7.20)
With the formula
" A b fre — J b
&= (1 24+ )\<5m73’13>)Q60 0o+ e + 1 Qe,ogﬁ,sno, (7.21)

and replacing hijam@f” (n1,m2,0) with d*(n1,72), which means replacing 8,734,05” (m,m2,0) by h;d*(m,n2), we
make an ansatz for our recovery sequence as following

O, (M, 12,m3) = 2 (11,m2) + hymad” (1, o). (7.22)

Since V(mm)cph € L?(w,R?) and @e,o € SO(3), we obtain that d* belongs to L?(w,R3) and by letting h; — 0,
it can be seen that for this ansatz cpEL]_ — gog.

The reconstruction for the rotation Qe,o is not obvious, since on the one hand we have to maintain the rotation
constraint along the sequence and on the other hand we must approach the lower bound, which excludes the

simple reconstruction @i h, (m,1n2,m3) = @eyo(m, 72). In order to meet both requirements we consider therefore

— = .
Qe,n,; (M1,m2,m3) 1= Qe o(M1,m2) - exp(hyns A" (11,7m2)), (7.23)
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where A* € 50(3) is the term obtained in (6.20), depending on the given Q.0, and we note that A* € L?(w, s0(3))

by the coercivity of Weuy. Since exp : s0(3) — SO(3), we obtain that Qi,h,- € SO(3) and for hj — 0, we have

Q8 = Qug € L2(91,50(3)).

Since d* need not to be differentiable, we should consider another modified recovery sequence. For fixed
e > 0, we select d. € H'(w,R?) such that ||d. — d*||r2(w,r3) < €. Therefore, accordingly we define the final
recovery sequence for the deformation as following

i < (m1,m2,m3) == (1, 12) + hym3de(n1, mo). (7.24)

The same argument holds for A* | i.e., for fixed ¢ > 0 we may choose A. € H'(w,s0(3)) such that ||A. —
A*||L2(w,s0(3)) < €. Hence, the final recovery sequence for the microrotation is

7h J—

Qe,nye(M15M2,M3) 1= Qe (1, m2) - exp(hyng A= (11, 7m2))- (7.25)

The gradient of the new recovery sequence of deformation is

Vi, 712,713) = (Vgm0 (1, 712)10) + 1 0]de (1, m2)) + hms (Y 3, o) e (1, 712)[0)
= (Vb (m,m2)|hjd=(n1,m2)) + hyns(Vde (111, m2)|0), (7.26)

and the different terms in the curvature energy are

Q2 <0 Qi = = xp(hyms A) Q. ol0 Qg exp(hyms Ac) + Qo D explynaAc).lhymsdy, ALl
Qe,hj,sf)er,hj,s — exp(hyn3A2) Qe 010, Qe exp(hyms Ac) + Qo oD exp(hyns Ac).[hj 300, Acl, (7.27)
@i:z;],san?,@i,hj,e = exp(hj773As)T@Z,O[an3@e70 exp(hjnzAe) + QoD exp(hynsAc).[hj Ac]]
= hj exp(hnz Ac(m1,12))" D exp(hynz Ac (1, m2))-[Ac],
with 0,, Ac € s0(3). Now we introduce the quantities

Uo = Qe o (Vo (n1,m2)|d" (m,112)) (V2 ©) (0)] "

Ui, = Qe (Voo me) e (11, 12)) + hyma(Vle(1,12)[0) ) (V2 ©)3 )],

U = Qe.o(Tpo (1, m2)lde (1, 72)) [(V0) (0)] 7, (7.28)
1
FELJ',E = (aXl <Qe }’LJ,68771 Qe Jhje ) | axl (Qe hj,e 8772Qe hj e) ‘ hi axl (Qe hJ,sa’flaQe hj E) )[(vxe)h(n)}il’
J
=T)E, =Tk, =T3H

Ty := (axl (@Zoﬁmae,o) | axl (@20‘%2660) |O) [(V.©0)(0)]~!

=K1, =K2,
Note that
Fi’f,e = axl (exp(hjnsAs(m, 12))" D exp(h;ns Ac (i, nz))~[As]) : (7.29)
It holds
U5, = U5 =0, as h;—0, U5, = Uoll =0, as h; —0,e =0,
Ty =Kl =0, as  hj—=0,e—0, i=1,2, |TpF —axlA| =0, as h;—0.
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We also have
105 — Doll> = Qs o(Veoolde) [V20(0)]~F — @y o(Vepold") [V O(0)] 1)
= Q1 (0/0]d- — d*)[V.O(0)] "
= (Q..0(0[0]d: — d*)[V.O(0)] 71, Q. (0[0]d= — d*)[V,0(0)] )
= (@..0Qe.0(0[0]d: — d*), (0[0]d. — d*)[V.©(0)] [V, 0(0)] ") (7.30)
(0[0]d= — d*), (0[0]d= — d*)(T,,) ") = {(0[0]d — d*)7 (0[0)dz — d7). (I,,) ")
(0[0](d. — d*)T(d. —d*)), (T,,) ") = (do — d*,de —d") = ||d. —d"|> =0 as =—0.

We may write
TE G Qo) = [ WanlTF,) det((900) )V,
- / W (T5,) = Waap(To) + Wanp (T) | det (V. 0)%)(m) dV,
Ql -

= /Q :me(ﬁ;;j + Uy — Up) — Wanp(Up) + me(ﬁo)} det((V.0)))(n)dV,  (7.31)

< /Q [ Waap(T, + To = To) = Wanp(To) | + Wi (To) | det(V,:0)°)(n) Vs,

where we used that Wy, is positive. The exact quadratic expansion in the neighborhood of the point U Zj =
(70 +U ,‘ij — (70 for Wiy, is given by

W (T + 0, — To) = Wanp(T) + (D Wan (T0), T, — To) + 5 D*Wang (00 (T, — U, T, ~ Tv).

Therefore, with the assumption that |5 — Up|| < 1, we have the following relations

T (e Qi) < /Q 1 [Woao(T0) + 11D W @155, — Tl + 710" Wawg (@) 11T, — Toll? | det((V.0)%)(m)
< [ [Wonl) + CITONNTE, ~ Dol + Co10F, ~ ] aek((9.00) )
= /Q [me(ffo) + (CToll + CITE, - z70||} det((V,0)%)(n) dVy, (7.32)

where C' and C; are upper bounds for ||Dme((~]0)H and ||D2me(ﬁ0)||, respectively. Now we consider the
terms of Weury

T (D, L) = /Q 1 Weury (P08 TR I(V20) )] ) de( (n) AV,
< [ [P (b TR TR VO ) - curv(FO,F%, A)(V.0) ()] ™)
o+ Weury (T8, T3, A)[(V.0)"(n)] ) Weur (T8, T3, A (V.0 ()] 1) (7.33)
+ Wears (T, T8, A7) [(V0)(m)] ") | det(V.0)%) () aV,
S/Ql [|Weurs (T E)Fi“E,Fi’.”,s)[%@)h(n)]‘l) W (04,13, AV 0) ()] )|
[ Weurs (05,73, 40) ) - m( ra,ra,A*n(vze)h(n)rl)\
+WCUW((FO,FO,A*)[ ] )] det(( () dVy,
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where we have used the triangle inequality.
Note that beside the boundedness of det[V,©]%(0), due to the hypothesis that det[V,0(0)] > ao > 0, it
follows that there exits a constant C' > 0 such that

Veewm:  |[V.0(0)]} <. (7.34)

We notice that both energy parts are positive and det[V,0](0) is bounded. Also Wcurv is continuous and

|Ac — A*l12(w,s0(3)) < €. By using G) and (7.12)), and applying limsupy,,_,o on both sides of ll and
:7.33) with h; — 0 and € — 0 we get

limsup 7, (5, o @i, o) < / (Winp(To) + Weurs (T, T3, A")[(V20)(0)] 1) det[V,0](0) aV,

hj— Q1

_ / (Wanp(To) + Weuey (T8, T3,0)[(7.0)(0)] ) det[V,0](0) V. (7.35)

However, me(ﬁo) and Weury ((F(l), rZ O)[(Vm@)(O)]ﬂ) are already independent of the third variable 73, hence
we deduce

, = ol A
limsup Jf (95, . Qin,c) < o(m Q) ¢F =9,  Qig=Qey and  m=gy. |

h]‘ —0 ’

8 The Gamma-limit including external loads

The main result of this paper is the following theorem

Theorem 8.1. Assume that the initial configuration is defined by a continuous injective mapping yo : w C
R? — R? which admits an extension to @ into C%(w;R3) such that det[V,O(0)] > ag > 0 on @, where aq is a
constant, and assume that the boundary data satisfy the conditions

<p5 = (pd‘rl (in the sense of traces) for ¢4 € H'(Q1;R?). (8.1)
Let the constitutive parameters satisfy

w >0, Kk >0, e >0, a; >0, as > 0, asz >0, (8.2)

Then, for any sequence (@ij,@i’hj) € X such that (wij,@i,hj) — (0, Qo) as h; — 0, the sequence of
Junctionals Ip,, : X — R

1 Ch At 1 —fy . —t
I (LI QT ) - ST (6. Q0) i (#1.Q0) €S,

. A
T (95, Vi h, Q0TS ) =4 By (8.3)
400 else in X ,
T-converges to the limit energy functional Io: X — R defined by
— Q..)—I(m. O ; 0 /
IO (m, Qe 0) _ Jo(m, Qe,O) (m; Qe,o) Zf (m7 Qe,O) S Sw? (84)
' +00 else in X,
where
_ whomg )L whomic, I det(Vyolng) dw  if (m,Q,4) €S,

D) = 4 [ IV €, )+ TR ] et Taoln) o if - (m. Q) .

)

400 else in X,

and IL(m, Q, o) = Iz (o) + 1z, (Qe0) defined by the external loads.

26



Remark 1. Before proving the above theorem, we will give the expression of the external loads potential in 2.
We have

I (0%, Q) = T (1) + TEA(QL),  IE(e) =h Q<ﬁ,ah>dvn, MA(Q8) = h @, LQ0ydS,,  (3.6)

with J2(n) = F(¢(n)). @(n) = @(¢(n)). E(C) = &ACn)). Q) = Qu(¢(n)) and T () = @*(5;) — O (1;). We use

the following expressions

©%(n) = yi(m, 1) + himsno(m,ms) , %0?” (n) = (1, m2) + hymsd (11, ms)
() = ¢ (n;) — O (my) = (@5(771,772) - yé(m,nz)) +h;ns (d*(mﬂh) —no (11, 772)) . (8.7)
o (n1,Mm2)

We calculate the work due to the loads separately. We have

H?c(@ij) =hj <Javﬂh>dvn = hj/ <J?h7170(771,772)>dvn + h?%/g <J?hv (d*(m1,m2) — no(n1,m2)))dVy

1951

=h; / (5, 0( 771,772)>d773dw+h2// s (f%, (d* (1, m2) — no(n1,m2)))dns dew

-

For applying the same method for the potential of external applied boundary surface couple, we need to have
an approximation for the exponential function which is already used in the expression of the recovery sequence

for the microrotation @i,hjv ie., exp(X) =1+ X + L X%+ .-, which implies

[SIES w\»a

([ P (@ = o)) doo =7 (@) (8:9)

1
2

JEdns, o (n1,m2)) duw + h?/

w

[NIE

Qe7h,- = Qo0 -exp(hnz A" (n1,m2)) = Qe+ Qeohjns A (71, m2) + §Qe,0h?7732,14 (771>H2)2 o (8.9)

Hence,
h Al _ ~+ A = * 1~ 2 92 4% 2
IR(Qc,n,) = hy g (€%, Qe,o + Qe ohjms A™ (M, m2) + 5 Qeohjns A (M1, m2)" + -+ +) dSy
1
_ . 1 S
=y [ @ QehdS, i | @ Qo)) a5, + 313 [ QoA ) dS, -
1 1 1

hj/( - D<Eﬂ,Qe,o>dSn+h§n3/ (@, Qoo A" (n1,m2)) dS, + O(h2)
Y1X|—35,5

33 (mx[-3.3])
= hj </
Y1 —

d’I]gdS—Fh 773/ /1 771,7]2)>d7]3d5+0(h3) (8.10)

[N M\»—A

Eﬂdng,@e70>ds+hf/ </ 0 ds, Qo o A (1, m2)) ds + O(RY)..

Nl

Y1 %
=1z Y1 (Qe 0)
Therefore,
—4 . — — _
I, (9%, Q2) = Tf, (W) + ey (Qe o) + O(hS) = T(m, Q) + O(h,), o =m —yo, (8.11)

which regularity condition confirm the boundedness and continuity of external loads.
Now we come back to the proof of Theorem

Proof of Theorem[8.1} As a first step we have considered the functionals

Lo hot Al pEy s —h
—f — TP VR QLT if (08, Q)) e S,
T Vi Qe T) =4 h n (@7 Vo', Qe, I) if (0%, Qc)

(8.12)
+00 else in X.
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In subsections [7.1] and [7.2] we have shown that the following inequality holds

. —=h - L. —=h
limsup J; (¢5, o @, <) < Jolpo, Qe o) < liminf T (o7, . Qe ) (8.13)
h;—0 i—0

which implies that Jo(40, @, ) is the I-lim of the sequence «7}57- (wij’s,@ihhs), ie.,

To(po, Q) = T-Mm(TF (9, . Qhn ) m=gpp. (8.14)

Remark shows that the family (\7,5] (90“,@2) — HELJ (<ph,§i)) ;j is T-convergent (because the external load po-

tential is continuous). This guarantees the existence of I-convergence for the family (Iij )j. Therefore, we may
write

To(m, Qo) = T-Im T} (¢}, ., Qcn,c) = Jo(m, Qo) = (00, Qe) s M=o, (8.15)

which is the desired formula. |

9 Consistency with related shell and plate models

9.1 A comparison to the Cosserat flat shell I'-limit

In this part we check whether our model is consistent with the Cosserat flat shell model obtained in [55|. In the
case of the plate model (flat initial configuration) we can assume that ©(z1,x2,z3) = (21, z2,23) which gives
V.0 = 13 and yo(z1,72) = (21, 72) = id(x1,2). Also Qo = 13, ng = e3 and Q, (1, 72) = R(x1,72).

The family of functionals |17} (18] coincide with that considered in the analysis of I'- convergence for a flat
referential configuration, while its descaled I'-limit is

—=hom

_ / B [Whom (£plete) L TR (kplate)] @y if (m, ) € S,

Jo(m, R) = (9.1)
+0o0 else in X,
where
5},’3?6 = ET(Vm|O) -1 = RT(Vm\O) — 13+ e3 ® es,
e = (ax1(Qp0 0, Qe0) |0¥1(@Qr 0 02,Qe ) 0) & Sym(3), (9.2)
and

A 2
W (€04) = pulsym [ER N + e skew (€820 + 20— [ex(iERaeIN]” + = EE Jienae] e

At2p Pe +p 0
2pp
=W, gplatc I + c 5platc € 2’ 9.3
hell([ m,s ] ) Lhe +M ||[ m,s ] || ( )
W (K22 = inf W, (ax1(R' 0, F) [axI(R' 0,,R) | axl(4) ),
? A€so(3)
together with

[En ]l = (15 — e3 @ e3) [ERA), [ERE)T = (e3 @ e3) [ER], (9-4)

where Wenen(X) = pllsym X |2 + pe||skew X ||2 + Ai’;ﬂ [tr(X)]?. Let us denote by R; the columns of the matrix

R, ie., R = (Ri|R2|R3), R; = Re;. Since (13 — e3 ® eg)ET = (Ri| R |0)T7 it follows that [E},’Jf";e]” =
(R1|R210)" (Vm|0) — 15 = ((By | Ra)" Vim)® — 15, while

0 0 0
(€2t = (010 | Rs) " (Vmf0) = 0 0 o). (9:5)
’ <R378:clm> <R378932m) 0
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Hence, in the Cosserat flat shell model we have

Waom(ERae) = p |lsym ((Ry 1 Ro)” Vim — 1) 1% + prellskew ((Ry | Ra)" Vim — 1,)||?

Ap
A+2p

[tr((Ry | Ra)” Vim — 15))2 + %((Eg, Bz, m)? + (B3, 05,m)?) (9.6)

+

which agrees with the I'-limit found in [55].

9.2 A comparison with the nonlinear derivation Cosserat shell model

In [35], under assumptions ([3.3]) upon the thickness by using the derivation approach, the authors have obtained
the following two-dimensional minimization problem for the deformation of the midsurface m : w— R3 and the
microrotation of the shell @, , : w—SO(3) solving on w C R?: minimize with respect to (m, @, ,) the functional

Im@Q..)=[

w

|:Wmemb (gm,s) + Wmemb,bend (gm,57 K:e,s) + Wbend,curv (ICe,s)] det(vy0|n0) dw ) (97)
detVO

where the membrane part Wiemp (Em,s) , the membrane-bending part Wmemb,bend (5m,57 iCe,s) and the bending—
curvature part Wyend,curv (IC&S) of the shell energy density are given by

hS
Wmcmb (5m,s) = (h +K E) Wshcll (gm,s);
h? h?

Wmemb,bend (gm,sv ICe,s) = (E -K %) Wshell (gm,s Byo + Cyolce,s) (98)
h3 h3
- ?H Wshell (gm,sa gm,sByg + Cyo ]Ce,s) + F Wshell (gm,sa (gm,sByg + Cyo ]Ce,s)Byo)
h5
+ 30 me((é’m,s By, + CyoKes)By, ),
h3 B3 e ho )
Wbend,curv (Ice,s) - (h - K E) Wcurv (K:e,s) + (E - K %) Wcurv (ICe,sByo ) + % Wcurv (K:e,sByO)7
where
Wanen (X) = g flsym X[+ peskew X2 4+ -2 [ix(x)]?,
A4+2u
21 (2
= pu||dev sym X || + pic]|skew X || + W [tr(X))?, (9.9)
A
Winen(X,Y) = p(sym X, sym Y) + pic(skew X, skew V) + 3 +/;/J tr(X) tr(Y),
Wiy (X) = pellsym X[+ peclskeow X[ + 2 [66(X) ]2 = Wapn (X) + 5o [ix(X)]?
P 2 2(A+2p) ’

Weure (X) = p L2 (b1 ||dev sym X ||? + by [[skew X |2 + 4b3 [tr(X)]?), VX,V € R¥*3.

In the formulation of the minimization problem, the Weingarten map (or shape operator) is defined by
Ly, = LI, € R?*? where I, := [Vyo]” Vyo € R**? and II,,, : = —[Vyo]” Vng € R**? are the matrix repre-
sentations of the first fundamental form (metric) and the second fundamental form of the surface, respectively.
In that paper, the authors have also introduced the tensors defined by

Ay, = (Vyol0) [VOL(0)]F € R**?, By, = —(Vng|0) [VO,(0)] " € R3*3, (9.10)
and the so-called alternator tensor C,, of the surface 62|

Cyy = det(VO,(0)) [V, (0) ]~ (01

O O

8) [VOe.(0)] . (9.11)
0 0
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Comparing with the I'-limit obtained in the present paper, the internal energy density obtained via the
derivation approach depends also on

0
0

R — G Ly,
T Ly,

Em.sByy + CyoKes = — [VO,(0)]7T < > Ve.(0)], (9.12)

where the nonsymmetric quantity R — G Ly, represents the change of curvature tensor. The choice of this name
is justified subsequently in the framework of the linearized theory, see [38] [39]. Let us notice that the elastic
shell bending—curvature tensor K. ; appearing in the Cosserat I'-limit is not capable to measure the change of
curvature, see |37, (38,39} 141], and that sometimes a confusion is made between bending and change of curvature
measures, see also |1} |6, |7, [LOL |61]

If we ignore the effect of the change of curvature tensor in the model obtained via the derivation
approach, there exists no coupling terms in &,, s and K. s and we obtain a particular form of the energy, i.e.,

K3 K3
Wour (£m787 ICe,s) = (h +K E) thell (gm,s) + (h -K E) Wcurv (’Ce,s)7 (913)
where
Ap I
2 2 12
Wenen (5m,s) = p[[sym 57&,3” + pc |[skew 57|L,SH + m [tr(&l,s)] + 9 ||5m,s|| (9.14)
A c
= ullsym £, + g skow £, 2+ 555 for(Eh )7 + B LT ol
and

12b3 — by

bi+b
Wonrs(0C2.) =0 22 (b lsym KL P + b2 skew KL |2 -+ (L + S IEL ). 015)

Skipping now all bending related h3-terms we note that there is only one difference between the membrane
energy obtained via the derivation approach and the membrane energy obtained via I'-convergence, i.e., the
weight of the energy term [|E], , nol|*:

e derivation approach: the algebraic mean of p and pue, i.e., a —;MC ;
e ['-convergence: the harmonic mean of y and p., i.e., Ble
B pe

This difference has already been observed for the Cosserat flat shell T-limit |56].
We recall again the obtained curvature energy in [40] as

b1bs 2b1bo
WA (KCe) = L2 (ballsym KL I + baskew Kl 12 + =228 el )2 + 2222 2, |2) 9.16
curv( €7<) Hlie 1HSyH1 e,s” + QHS ew e,s” + (bl +b3) I‘( e,s) + by + by || e,sH ( )
A comparison between (9.15) and (9.16) shows that, like in the case for the membrane part, the weight of the
energy term [|[KL||I> = |[|[K ;no||? are different as following
o . . b1 +b
e derivation approach: the algebraic mean of b; and by, i.e., 5
. . 2b1bo
e ['-convergence: the harmonic mean of b; and b, i.e., b by
1+ 02

In the model obtained via the derivation approach [35], the constitutive coefficients in the shell model depend
on both the Gaufl curvature K and the mean curvature H. In the approach presented in the current paper this
does not occur. However, we will consider this aspect in forthcoming works, by considering the I'-limit method
in order to obtain higher order terms in terms of the thickness in the membrane energy, see |30, 31} 32, [33].
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9.3 A comparison with the general 6-parameter shell model

In the resultant 6-parameter theory of shells, the strain energy density for isotropic shells has been presented
in various forms. The simplest expression Wp(&,, s, Ke s) has been proposed in the papers |17, [18] in the form

2Wp(Ems, Kes) = Clv(tréll )2+ (1= v)tr((El, )7EL O] + as CA = v) |EL nol?
+ D[v(tr k! )+ (1 —v) (K] )TKN )] + 0 DA = v) | KT mol? (9.17)
with the Poisson ratio v = 2(7/:_/\)

In [28], Eremeyev and Pietraszkiewicz have proposed a more general form of the strain energy density,
namely

2 Wb (Emsr Kes) = a1 (tr&] )2+ astr(El)* + astr((E] )TEL ) + aq |ET o
2 2
+ 81 (tr K™+ Batr (K1) + Bstr (KL )TKL ) + Ba IKE mo 2. (9.18)
Already, note the absence of coupling terms involving ICQS and &uq, s The eight coefficients oy, , B; (k= 1,2,3,4)
can depend in general on the structure of the curvature tensor K° = Qo (ax1(QZ 0., Qo) | ax1(QZ 9.,Q0) | 0)[VO(0)]~*

of the curved reference configuration. We can decompose the strain energy density (9.18) in the in-plane part
Wolane—EP (Em,s) and the curvature part Weuv—up (Ke,s) and write their expressions in the form

WEP (gm,s; K:e,s) = WplanefEP (gm,s) + WcurvaP (K:e,s) ) (919)
2 Witane—Ep (Em o) = (02+0a3) [lsym E), |2+ (a5 —a) [skew ], [+ a1 (t2(E), 1))” + au [ EX noll?,
2 Weurs—p (Ke,s) = (B2+85) lsym KU+ (83— B2) llskew KL |2+ 81 (6L ))* + Ba KT mo1>

By comparing our membrane energy

Ap 2 24 pe
Whome ) = sym E |12 + pe [|skew E |12 + —ZE— [tr(&) + L ET ng|? 9.20
mp (Em,s) = pllsym Ep (|7 + pe | s Nt [tr(Ep.s)] o +MH m,sT00| (9.20)
4
_ I HHe ol 12
— shell 5m s + 8 s )
(6ho) + e e
with Wgp (zf'm’57 ICS,S) we deduce the following identification of the constitutive coefficients o , ..., a4
2pA 2 phe
o) = , as =h(u — pe), as=h(pu + pe), as=h )
1 50 1 2 =h(p — pic) 3="h(u + pe) =

We observe that u&'l! := a3 — as = 2h ., which means that the in-plane rotational couple modulus pd™!

of the Cosserat shell model is determined by the Cosserat couple modulus p. of the 3D Cosserat material. An
analogous conclusion is given in |4] where linear deformations are considered.
Now a comparison between our curvature energy

b1bs

% 202 e
(b1 +b3) |

Whom(’CG,S) = ML? <b1HSymK! s”2 + b2HSkeWK:£ SH2 + e,s
) ) bl +b2 s

curv

tr(KC) )2 +

2) . (9.21)

and Weyrv—gp(Ke ), leads us to the identification of the constitutive coefficients 51, -, B4

2 b1b3
by +bg’

5 bibs
by + by

B1=2pL By = nL2by, Bs = puL2 (b + bo), Ba=4pL

9.4 A comparison to another O(h®)-Cosserat shell model

In [13], by using a method which extends the reduction procedure from classical elasticity to the case of Cosserat
shells, Birsan has obtained a minimization problem, which for the particular case of a quadratic ansatz for the
deformation map and skipping higher order terms is based on the following energy

I(mvée,s) :/ |: Wéiﬁg?bend (gm,sa Ke,s) + Wbend,curv (Ice,s):| det(vy0|n0) dw s (922)

w
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with W(quad) (Em,sy ICe,s) = hWCoss (6m,s) and Wbend,curv (ICe,s) = thurv (Ice,s); where

memb,bend

2 A 2
Weoss (X) = Weoss(X, X) = o [lsym X2 + e [Jskew X112+ —FE< x42 4 22 16(x))?,

Weoss(X,Y) = u(sme“ sme”> + fe <SkewXH skeWY”> + 2hhte. <XL YL> + Ltr(X)tr(Y)
) ) ) 1 +/4Lc ) )\_'_2,” )
A 2 2
Winp(X) = p|lsym X |2 + pee||skew X || + 5 [tr(X)] = Wanen (X, X) + m [tr(X)]?,

Weurv(X) = p LZ (by [|dev sym X || + by [|skew X ||* + 4b3 [tr(X)]?), VX,Y € R®*3.

As it can be seen, in the obtained model by Birsan, there are some coupled terms of stress tensor and
bending-curvature tensor, too. This is not surprising, since Birsan has obtained the starting example from the
model in [35]. The main difference, in comparison to the model obtained in [35] is that

2

20 e Ap
Weoss(X) = Weoss(X, X) = p|lsym X 1|2 + pe [|skew X |12 + 2522 1 x+H)12 + 22— [er(X)]7,
Coss(X) Coss )= p|lsy ° + ke ||Iskew X1l H+MCII | /\+2u[ (X)]

from [35] is replaced by

2 .
Weoss(X,Y) = Wanen (X1, Y1) 4 ZEE (bt (9.23)

M fhe

for all tensors X, Y € R3*3 of the form (x| x |0) - [V,.©(0)]~!. Note that
Waen(X,Y) i= Wagen (X1, Y1) + L2 Ee (30 vty (9:24)
holds true for all tensors X, Y € R3*3 of the form (x| *]0)-[V,0(0)]~. Hence, for this type of tensors we have
(& 2 (&

Wooss(X,Y) i= Wanan(X,¥) = L0 (0 ) o e (xt v, (9.25)

The main point of the comparison presented in this subsection is that the membrane term of order O(h)
coincide with the homogenized membrane energy determined by us in the present paper, i.e.,

errllc}))m(gM,s) = WCoss(gm,s)- (926)

With a small comparison between the obtained membrane energy via I'-convergence and the one obtained
via the derivation approach model by Birsan, obviously we see that for a O(h)-Cosserat shell theory, there is
no difference between the coefficients, i.e.,

2

e special derivation approach: the harmonic mean of p and p; % ,
KT He
2

e I'-limit approach: the harmonic mean of p and p; ,iﬂc .
o+ fe

10 Linearisation of the I'-limit Cosserat membrane shell model

10.1 The linearised model

In this section we develop the linearization of the I'-limit functional for the elastic Cosserat shell model, i.e., for
situations of small midsurface deformations and small Cosserat-curvature change. Let us consider

m(z1,z2) = yo(z1,22) + v(z1, 22), (10.1)

where v : w — R? is the infinitesimal shell-midsurface displacement. For the rotation tensor @, , € SO(3) there
exists a skew-symmetric matrix

_ 0 —93 )
Ay = Anti(91,99,93) := < 93 0 191) € 50(3), Anti: R — 50(3), (10.2)
—i2 Y1 0
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where ¢ = axl(Ay) denotes the axial vector of Ay, such that @, o := exp(Ay) = 77 Zf; = 134+ Ay+ho.t.
The tensor field Ay is the infinitesimal microrotation. Here, “h.0.t” stands for terms of higher order than linear
with respect to v and Ay.

Using these linearisations of the kinematic variables, we find the linearisations of the strain tensors. Indeed,

since
@ZOVm —Vyo = (13 + Zg +h.0.t.) (Vv + Vo) — Vyo = Vv — AyVyo + h.o.t., (10.3)

we get for the non-symmetric shell strain tensor (which characterises both the in-plane deformation and the
transverse shear deformation)

Ems = (Qr oV — Vyo | 0) [VO] Y,

the linearization
ety = (Vo —AyVyy | 0) [VO] ' = (0p,u— 0 x a1 | 8pyu— 0 x az | 0) [VO] ™" & Sym(3).

And for the shell bending-curvature tensor

—T — —T — _
Kess 1= (ax1(@c 002, Qe ) | 2¥1(Qr 02, @) [0) [VO] (10.4)
we calculate

Qo002 Qe = (15 — Ag) 0y, Ag +hoot. = B, Ay + hoot. = Ay, +ho.t. , (10.5)

= Anti 0y, 9= 0z, Anti¥

ie.,

ax1(Q¢ o0r. Qe o) = O,V +hoot, (10.6)
and we deduce . B B
/Clelg = (ax1(0,, Ay) | ax1(9,,44) |0) [VO] ', (10.7)
together with '
K = (0,,0]0:,910) [VO] ™ = (Vo |0) [VO] " (10.8)

The form of the energy density remains unchanged upon linearization, since the model is physically linear.
Thus, the linearization of the I'-limits reads: for a midsurface displacement vector field v : w C R2 — R3 and
the micro-rotation vector field 9 : w C R? — R3:

— hom hom lm
Fom Q)= [ 1[IV (E12) + TWEars (1) |det(Vnlno) o — T (,0)
where
hom in in, in )\,LL in 2 2 M e in,
W (E02) = pllsym ERNNIZ + e [[skew XM + Nt2n [tr( &)™ + —— P ||(Sl Tno?
2 C in,
- shell (gi;n;‘l) + 'U’—:L || 71n sl||27 (109)

hom b1b3 . 2b1b2

IChn L2 (b IChn 2 b ki ’Clm 2 NI LR ,Clm.,H 2 lm 1 )
e ) = L (balsym BT -+ bflskew KEBIP + 22 (2 P it

and T (u, ¥) is the linearization of the continuous external loading potential II.

10.2 Comparison with the linear Reissner-Mindlin membrane-bending model

The following model

K 0 A
/h(Mllsymv(vl,vz)l2+“IIW?J‘<9;>II2+ B2 tr(sym V(0n,v2))?)

2p 4+ A
+ h—(,uHsymV(Hl 0)II2 + — (v (0 92))2)dw — min w.r.t.(v, 0) (10.10)
’ 21+ A ’ B
U"Yo = ud(x,y, 0), _el’vo = (uil,za ug,za O)Ta
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is the linear Reissner-Mindlin membrane-bending model which has five degree of freedom, three from the
midsurface displacement v: w C R? — R3 and the other two are from the out-of-plane rotation parameter
0: w — R2 that describes the infinitesimal increment of the director and 0 < x < 1 is the so called shear
correction factor. In this model the drill rotations (rotations about the normal) are absent.

As derived in [54], the Reissner-Mindlin membrane-bending model can be obtained as I-limit of the linear
Cosserat elasticity model. Neff et al. in [56] applied the nonlinear scaling for the displacement and linear scaling
for the infinitesimal microrotation for the minimization problem with respect to (u, A):

I(u, A) = /Q Winp (B) + Weury(Vaxl A) dV +— min -~ wrt  (u, A), (10.11)
h

where € = Vu — A, and

_ _ _ A
Winp(E) = p [[symE]* + pe [[skew 2[|* + T [tr(Z)]?,

W _ E%(h) T2 T2 L 93 V12
curv (A) = -5 (a1 lsym V axl A||* + as||skew V axl A||* + T[tr(v axl A)] ) ) (10.12)
for a1, ag, 3 > 0. Then, they obtained the following minimization problem:

Ihem(y, 4) = / WEO™ (Vv axl A) + WA (V axl 4) dw (10.13)

with respect to (v,), where v: w C R? — R? is the deformation of the midsurface and A: w C R? — s0(3) as
the infinitesimal microrotation of the plate on w with the boundary condition v|,, = uq(z,y,0),v C Ow and

om W e —0 BA
WI}:‘lp (VU, 9) = ”Sym V(mmz)(vhv?)”Q + 2'u T ||v(7717772)v3 - ( 0, )”2 + 20 + A tr[V(mm)(vl, UQ)]27
L2,(h) ajag
hom c
Wh(VE) = (189m0 V311 (00,01 522 019 3 (01,0 (10.14)

Comparing the Reissner-Mindlin membrane-bending model with the linearisation of the I'-model obtained in
the present paper, it can be seen that the Reissner-Mindlin model is obtained by I'-convergence, upon selecting
a1 = p,az = A in our model and by neglecting the drilling (the third component of the director).

In this formula one can recognize the harmonic mean H

2 pe 1 a3z,  Qiog

A WA
= ) H sHe ) = ) 77_[ v ) T .
20 4+ A (s pe) W+ e 2 (041 2) 201 + a3

(10.15)

In our paper we used the nonlinear scaling for both deformation and microrotation, while in [56], they applied
linear scaling for microrotation and nonlinear scaling for deformation. The other comparison is regarding the
th elastic shell strain tensor and elastic shell bending curvature tensor which in our model are not de-coupled,
and in the in-plane deflections vy, v9 are not decoupled from 63 as well.

10.3 Aganovic and Neff’s flat shell model

Aganovié et al.|2] proposed a linear Cosserat flat shell model based on asymptotic analysis of the linear isotropic
micropolar Cosserat model. They used the nonlinear scaling for both the displacement and infinitesimal micro-
rotations. Therefore, their minimization problem reads:

0 -6 0 -0 2 1 fhe -
/ h(u ||sym (V(Ul,l}g) — (03 03) )H2 + p ||skew (V(Uhvz) _ (93 O3> )”2 o o HV ( 9?2) ”2

tr(sym (V(vy,v2) — (903 _093> )2) (10.16)

20&10[2 103

201 + a3

/\
(a1||symV (01, 62)]* + azllskow V (61, 62) |7 + 25965 + tr((01,62))?) do

— min w.r.t.(v, 0),
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where it is assumed that as,x > 0, otherwise this model with the assumption ay = 0 will give the Reissner-
Mindlin model. This means that we can not ignore the in-plane drill component 63 here and in the case of ag > 0
one does not obtain the Reissner-Mindlin model. The asymptotic model coincides with the assumptions of Neff
et al. in [55], where their assumption was about scaling the nonlinear Cosserat plate model with nonlinear scaling
for both deformation and microrotation. The membrane part of this energy coincides with the homogenized
membrane energy of our model with the same coefficients.

11 Conclusion

In this paper we have considered the I'-limit procedure in order to derive a Cosserat thin shell model having a
curved reference configuration. The paper is based on the development in [55]|, where the I-limit was obtained
for a flat reference configuration of the shell. Here, the major complication arises from the curvy shell reference
configuration. By introducing suitable mappings, we can encode the "curvy" information on a fictitious flat
reference configuration. There, we use the nonlinear scaling for both the nonlinear deformation and the microro-
tation. This leads to a Cosserat membrane model, in which the effect of Cosserat-curvature survive the I'-limit
procedure. The homogenized membrane and curvature energy expressions are made explicit after some lengthy
technical calculations. This is only possible because we use a physically linear, isotropic Cosserat model. Since
the limit equations are obtained by I'- convergence, they are automatically well-posed. We finally compare the
Cosserat membrane shell model with some other dimensionally reduced proposals and linearizations. The full
regularity of weak solutions for this Cosserat shell model (for some choice of constitutive parameters) will be
established in [34].
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A Appendix

A.1 An auxiliary optimization problem

In this section we solve the auxiliary optimization problem ([6.5). We calculate the variation of the energy (6.5) at equilibrium to
be minimized over ¢ € R3 in order to determine the minimizer d*. For arbitrary increment §d* € R3, we have

V od* €RY: (DWanp(@5 (Vs mmy @' 1) [(V2©)1 1), @27 (0]0]6d*)[(V.©)1 1) = 0. (A.1)
By applying DWpp we obtain
@ (sym@E" (Vg @14 [(Va©)F] ™! = 13) ), Q57 (01084 [(V©)F] 1) s
+ (2pte (skew(@2 " (V gy e @14 [(V20)1 7).

Q'
At (sym(@2 T (V (g @ d7)[(720)1) 7 — 13)) (13, @27 (0]016d) [(V20)] ) gsxs = 0.

0[0[6d*)[(V=©)*] ™" paxa (A-2)

This is equivalent to

2@k (sym(@E" (Vg o) @14 [(V2©)7) ! = 13)) [(V20)7] T g, 6"
(2 e Q2 (skew (@2 (V (5 s #F1d)[(V2©) ™) ) (V2 ©)F] ~Tes, 8" )y (A.3)

e (sym(@F 7 (V2 d)(V2©)F] 7 — 15) ) (@[(V20)") s, 6" = 0,
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and it gives
@@ (sym@E T (Vg o) @14 [(Va©)] 1 = 13) )0, 6"
+ (2110 Q2 (skew(@2 " (V iy ) 1) [(V2 )] 7)o, 0" ), (A4)
+x b (sym@ET (Vg iy #*14) (V20)7) 1 = 13)) @ino, 6" )ga = 0.

Recall that the first Piola-Kirchhoff stress tensor in the reference configuration Q¢ is given by Sy (Fg, Re) = Dp, Wnp (Fe, Re),
while the Biot-type stress tensor is Tgiot (UE) = Dﬁg me(Ug). Since ng Ug X = EZX and

(Dr Winp (Fe, Re), X) = (Dg, Winp(Ue), D UeX), VX € R3*3,
we obtain
D e Winp (Fg, Re) = Re Dz, Wanp (Us) - (A.5)
Therefore, Sl(Fg,ﬁg) = Eg TBiot (Ug) and TRiot (ﬁg) = ﬁg S1(F5,§§). Here, we have
Tiot (Ug) = 2 sym(Ug — 13) + 2 pe skew(Ug — 13) + Atr(sym(Ug — 13))13, (A.6)
where U¢ (©(z1,72,73)) = Ue(z1, 22, 23). Thus, we can express the first Piola Kirchhoff stress tensor
Sy (Fe, Re) = Re [m sym(Rg Fe — 13) + 2 pe skew(Re Fe — 13) + A tr(sym(R; Fe — 13))13] , (A7)

with Re(0(z1,22,23)) = Q. (%1, 72, x3) for the elastic microrotation Q. : Q5 — SO(3). Hence, we must have

VoA E R (S1((V (e #2147 (V201 ™, Q% Ino, 60 s = 0, (A8)
implying
S B q* 0)i-1 ot = 11
LV (01 #° 14V @0 =0 Vs € =, (4.9)

In shell theories, the usual assumption is that the normal stress on the transverse boundaries are vanishing, that is

St (F§,§5)|w§i (£no) =0, (normal stress on lower and upper faces is zero) . (A.10)

We notice that the condition is for all n3 € [—%, %], while the condition (A.10) is only for n3 = :I:%. Therefore, it is possible
that the Cosserat-membrane type I'-limit underestimates the real stresses (e.g., the transverse shear stresses). From the relation
between the first Piola-Kirchhoff tensor and the Biot-stress tensor we obtain

Tiior (O (Va1 14 (Va )] Yo =0, ¥ng €[5, 21, (A1)
or, equivalently,
Thiot (th’@,é’d* Yng =0, (A12)
where
TBiot (ﬁvhﬁi»d*) =2p Sym(Uq,n@g,d* —13) 4+ 2 e Skew(Ucph,ai,d* —13)+ Atr(sym(UW’@’d* —13))13, (A.13)

and we have introduced the notation U T(V(nbnz)‘ﬂoh |[d*)[(V+©)4]~1. With the help of the following decomposition

— Al
on,Q%dx T Qe

U — 13 = (@2 Yy #" — (Vy0)E10)[(V2©)f] 1 + (0[0[Q5 T d* — no)[(V.©)1) !

o8, Q1 ,ax

AT % _
=&, gi + O d" = no)(V20)7] 7, (A.14)

with SW o1 = (QE’TV(mmZ)(ph — (Vy0)?0)[(V=©)%] 1, and relations lH) the relation 1i can be expressed as

TT AT 5% — AT s
TBiOt(wa,Gi,d*)nO:M<g§h,§5n0+(Qe d* —no) + [(V2©0)"~T(0j0|Q2" d —no)Tno>

*7T * — *7T *
tpe (= €7, Zumo+ @27 d" = mo) — [(V2©)1] (00 Q%" d* — no) o)

+ )\<<€¢h,§i’ 13)no + (Qi’Td* —no)no ® n0>
AT % —0,T % _
= (u + 1)@ d" =m0} + (1 = e )ET, Zymo - (u = e )((OIO[QE™ " = mo)[(V2©)7) 1) Tmo
+ )\tr(gwh’ai)no + )\(@ede* — no)no ® no, (A.15)
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and the condition (A.12)) on Tgjot reads
—0,T % =0T« AT %
(1 +pe)(@F T d" = o) + (1 — 1 ) (@2 d* = no)no @ no + M@ d* = no)no @ no

= =[x — )€, gemo + Atr(E g m),

(A.16)

where ((0|0|@i’Td* —n0)[(V20)8]=)Tng = (@E’Td* — no)no ® ng. Before continuing the calculations, we introduce the tensor

Ay = (V40[0) [(V2©)(0)] ™" = 13 — no ®no € Sym(3),
and we notice that, identically as in the proof of Lemma 4.3 in , we can show that

gw“@i Ayo = 8«3“,55
Actually, for an arbitrary matrix X = (*| x |0) [Vo©(0)] !, since AZO = Ay, € Sym(3) and XAy, = X, we have

<(13 7Ay0)X7AyO X> = <(Ayo 7A§O)Xv X> =0,

< Skﬂh,aino ®ng = 0.

but also
(13 - Ayo)XT = (X(l3 - Ayo))T = (X - XAyo)T =0,
and consequently
(XT(15 = Ayy), Ayo X) =0  aswellas (X7 (15— Ay,), (13 — Ayg) X) =0.

In addition, since Ay, = 13 — (0]0|ng) (0|0|no)T = 13 — ng ® no, the following equalities holds

125 — Ayo) X1 = (X, (La — Ayg)® X) = (X, (13 — Ayg) X) = (X, (00[no) (0/0[n0)” X)

= ((0l0lno)™ X, (0[0[no)™ X) = [|X (0l0no) " [|* = IXT (0]0[no)I> = [| X nol|*.
We have the following decomposition
(@7 d* —no) = 13(Q5 7 d* — 1) = (Ay + 10 @ 10) (@2 d* — o)

=0T g« =0T 5«

:Ayo(QE, d* = no) + no @no(QL" d* — no).

By using that
=0T 5« =0T 5« =0T g« =0T 5«
no ®no(QF " d* —no) = no(no, (@57 d* —no)) = (@57 d" —no),no)no = (@47 d* —no)no ® no,
and with (A.16)), we get
—0,T 4 =0T « ALT %
(1 + pe ) Ayo @ETd" = 10) + (1 + pre Jno @ o (Q2 T d* = 10) + (1 — pe Jno @ 1o(@2 d* = mo)
=0T % _ T

+Ano ®@no(Q, d* —ng) = —[(,u — e )g(ph,éino + Atr(gw”,éi)no]'

Therefore,

*th *
(0 + 1) Ao + 214+ Xm0 @10 ) (@27 = o) = — (1 — e )ET, o + Atr(€ e o]

Direct calculation shows
1

1
Ayo + ———
poApe 0T 2p 42

-1
((u + pe)Ayy + (20 +X)no ® no) = ( no ® no) .
Next, by using

Ayono = (13 — ng ® ng)ng = ng — no{no,ng) =no —no = 0,

—4,T _ T
n0®n05;’6ino:(0|0\n0)(0|0\n0)T5;@Zno:(0|0\n0)((Qe Y im ey @ = (V40)#0)[(V©)"] 1(0\0|n0)) n

—n,T T
= (0101n0) (@ V5, o) %" = (V10)?10) (010]es)) " 10 =0,
eq. (A.24) can be written as

ST _ 1 1 .
i o= [+ ] x [l el g2 o]
B~ He T B — e T A
= [u — A€, 5amo+ a0 ®no €l gamo+ ™ (€ y ) Ayoo

H = He
B+ pe

+
Simplifying (A.27)) we obtain

tr(€

by
o TE gy @ noyno] = -

<5¢u,§5’ 13>)Q2"0 + #27 Qigghyan no.

A
d*:<1—7
20+ A +n

In terms of @i = ﬁth‘T we obtain the following expression for d*

* A i T -1 B AT
@ = (1= 5 5 QAR Vi = (T00)* 0)(V20)] ", 1) ) B Qf o
He — B == -, 4,7 -1\T
+ e R QT (@R Y iaynay#® — (Vi) H10)(V2©) ") " mo.
e +p
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(A.18)
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A.2 Calculations for the Ty, stress
Here we present the lengthy calculation related to the Tgjot stress tensor in expression (A.13). We have

7T =0T % —1
25ym(U ; 5o 4. — La)no = <25ym(€vh7ag) +25ym((010[Q% " d* — no)[(V2©)"] ))no
T ALT % -1 -T LT % T
= (Q,u,ag +6¢h@5)no + ((I0[@E " d* = n0) (Vo)) + [(V2©)*] T (0/0]QE " d* — o)™ )no
= €, gm0 +E7, omo + (0]0[Q2 " d" —n0)[(V2©))'no + [(V2€)%) " (0/0/Q2 " d* — no)"no
=0
= &7, sumo+ (00027 d" —noes + [(V+©)7 7 (0/0[@E " @ = no)Tmo (A29)
= &7, om0+ @7 d o) + [(V20)! T (010/QE T d" — no)Tmo,
and
_ —0,T s _
2skew(U, o . = La)no = (2skew(5¢h@5) + 2skew((010[Q% " d* — n0) (Vo)1) ) o
AT g% — — =0T ,x
= (€00 — &L e Jmo + ((OI0IQE" d* —no)[(V20)") ™ — [(V2©)*] = (010Q% " d* —n0)" ) mo
= —€7, semo+ @27 d" o) = [(V20) T (00[QZ " d* — mo)"mo. (A.30)
Calculating the trace of Tgjot gives
_ — —0,T 4 _
tr(Sym(U(pu@i,d* —13))no = (Sym(Uwu@i’d* —13),13)n0 = <<5¥,u,§5713> + (00T d* = no)[(V2©)7] 1713>>n0

— (€ 13)n0 + (@7 d* — no)no ® no, (A.31)

8,01

where we have used that ((0|O\§i'Td* —10)[(V20)!]71, 13)paxs no = <(65’Td* —ng),no)r3 No = (@i’Td* —no)no ® ng.

A.3 Calculations for the homogenized membrane energy
In this part we do the calculations for obtaining the minimizer separately. By inserting d* in the membrane part of the relation
(4.10), we have
77 Ll -
lsym (T — 13)|1” = llsym(Q&™ (V 5y o) #*1d)[(V2©)*]~F = 13)||
LT - =47 _
= llsym (@27 (Vo) #° — [0l *10)[(V2©)] " +(010[@5 T d" — no)[(V2©)1] )|

=£ .
w”;QE

AT g _
= lsyme€ s I? + sym((O10[Q%T d” — o) (V€)1

+2 (symE , 52, sym((00]Q7 " d* = no)[(V20)3) 7))

_ 2 Be — P o7 _ A ) 2
= |lsym gw”,ai [|“ + ||sym (ﬂe ) gwh’aino ® no YA tr(Ewh’ai)ng ®mno )|
+2(symé& , —y,sym (,uc et —_yno ®ng — A tr(€ , =4)no ® no) . (A.32)
©h,Q% Le + »9,Q3 20 + A »1,Q
We have
He — [ o7 A ) 9
llsym (pc +p gtp”,aino ® 7o 2u + A tr(gw”@tl)no @no |

(e 2B om(ET, _ino @ no)|2 4+ = (€, —¢)2llmo ® o2
e+ @i 0TI (g e Qn RO

Be —p A T
—2 tr(€ , ~ sym(E-, _,no ®np),no @n
pe +u 2p + A ( <P“VQE)< ym( o, 0 0),mo0 0>

2

(pe —p)? A
= (MZ s sym(gzh Q"o ® no),sym(é‘; gi"o ®mno) ) + EYESSE tr(gw”@iy

Pe — 1 A
7#Z+M QH+)\tr(5wu)§i)<5;@ino®n0,n0®n0>

He — 1 A
e BT (€, — &
e + 0 2p + A x( w”7Q5)<n°®n0

qu@E,no ® TLO> (A.33)
(pe —p)? (€T

e TP _(eT . no ®@no,no ®no €,
Ae +p)2 “orgit0 E OO0 o)

= M(E‘T Mo ®TL0,£T Mo ®n0> +
Ape +p)2 " 0Q0 #",Qe
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—u)? — )2
(e — 1) €7, o ®no + Py pnge, im0 @ o€, )

- (np®no & , =4, _
4(pe +u)2< QL ot Ape +p)?
A2 (pe *l")z 2
N (e )2 = e TR T 22 (€, =)
+ (2u + )2 r( w”,Qi) 2(pe +p)? I w“,Qinoll + (2p + )2 r( whyQi)

. . A T
Since, using (A.18) we have <£<P”’§5 no®no,no®@ng) =

(no®no, € b 5 no®ng) = 0, and since we have used the matrix expression
gw” ot = (*] ¥ [0)[(V2©)1]~! and ng ® no = (0|0|no)[(V=0)2(0)] 1, we deduce

(€24 2 (O0In0) (V@) ()], €7, 2 (010In0)[(V2©)*(0)] ")

(ETn Quno ®no, ET of ano ®no) =
= ((0j0le7, funo)T(O\Ols 2270 [(V2©)8(0)]~ 1[(vz@)h 0)]~T)

= ((0|0\5 fMO)T(O\OIS hfWO) (Tyo) ™) (A.34)

o 0 o0 s % 0

=(|0 0 01 (0jole™, _ 0] )Y=(&T _ng,&T _ =T _, nol?.

< e g W@ (vn V) )= Egnof o) = 1 gl
©h,Q7

On the other hand,

He — K o1 A
2(symé& , —y,sym EY _np®ng — ————
<y PR A (Hc + u 1.Q! 0 0 2u + A

tr(gwhyai)no ® n0)>
2

tr(é‘w@g)no ® n0>

_1 <gw” o ten, ot Zc ;Zg o ge70 © o+ Zc _Zm@no £ @ ™ Th
= ‘z(u;fc _+IL) <‘gw g Ep gm0 ® ”°> N Z(MMCC :L) (€m0 @m0 € ) (A39)
- ﬁ tr(€ o gt (€ gt - M0 @ o) + ﬁ <SZtl @5,55 Qim0 ® no>
+ % <5§u g0 @m0 5¢h,§5> - ﬁ tr(%g@ﬁ)@; Qim0 ® no) = Z ||5wh Qunol|2,
due to (A.20). Therefore, can be reduced to
Isym(@57 (Y gy ) 1) [(V2©)7] 71— 15)]12 (A.36)
A2 2y e TH T o2,

(#c *N)Q T 2
= E P+ ==L et — (€, = eT _
v €oe @i+ e 02 1Cen @™l e ") ¥ G o

Now we continue the calculations for the skew symmetric part,

Iskew (@2 (V (g, o) #1d") (V2 ©)F] ™12 = [lskew (@2 (V (1, nay 5 10)[(V2©)F] ™12 + [[skew((010]QE " d*)[(V+©)F] 1) |2

=4, - -7 _
+2(skew(QF (V5,00 #* 10) (V2 ©)7] 1), skew((010]Q2 " d*)[(V2©)F] ). (A.37)
In a similar manner, we calculate the terms separately. Since ng ® ng is symmetric, we obtain
_ — A
Hskew((0|0\Q d*)[(VxG)h} H)1? = |jskew(no @ no + £ o + p 5; gt o ® ng — CYS tr(gzh ai) no @ no)||?
(pe — )2 T 2
= —=||skew(E7, .
(e T 102 1PV Ee gz o @ ol
But, we have
1 1
HSkGW(gZhyaino ® no)H2 = Z <gzh ,aino ® n07gTh au no Q TLO> — Z <8Th au ng ® ng,ng @ ng € e ah > (A.38)
. no ®@no & , =y 5 np ®mng ) + — <no®n05 —t,10 ®no & u> T _ynol?
4 ©i,Q%’ Qh 5,Q% oh,Q ny@i ’

where we used the fact that (ng ® no)? = (no ® ng). The difficulty in the skew symmetric part of (A.37) is solved in the following

calculation
2(skew(@5T (V (g may #10) (V2 0)71 1), skew (0]0QET ) (V. 0)7] )
=2 ﬁ <skew(Q (V1 1)@ |o)[(vz@)hr1),skew(s;@gno ® no)>
- %( TV 1.y POV 7L, €T, im0 @ o) (A.39)
— e @ (7 0y DT 0] 0 @10 £ )
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_ (e — ) <(@i,

T _
2(pe + 1) (V<m,n2)¢h|0)[(vz(9)h] 1)T7‘€ En0®n0>

T J—
#f,Q

(Be —p) =0T b B—1\T _ (e =)y or 2
2(pte +M)<(Qe (V1 ) 10[(Ve®©)*]77) ", no ®no Ewﬂ@? = —7(/% ) ||5¢h@gno|| .
Therefore,
AbT - AT % — He — K
2 skew( @ (V gy ) P IO(V20)F] 1), skew((0/0[QET a) (Vo ©)7) 1)) = — L =B e 2 (A.40)
(Be +p) " @5 Qe
and we obtain
2
=0T by g% B —1y2 _ =0T i B1—1y2 (Be — 1) T 2
llskew(Qe™ (V (ny,12) @ [d)[(Va©) ] )| = llskew(Qe™ (V(y ,10) @ [0)[(V2©)] )] +72(Nc FRE ||5¢n@5"0\\
(Be = 1) ot 2
- )&, . A.41
(,uc +u)H ‘thQinOH ( )
The last requirement for our calculations, is
T . B 2
[tr (sym(@ET (Vg1 ) @ 14)[(V20)F) 7 — 1))
=T - ST - 2
= (o (sym(@E" Vmy )@ = [V [0)[(T20) 7)) + tr (sym((O]0[QZ " d* — o) [(V2©)"] 7)) ) (A42)
_ (pe — 1) T A 2
= (€ g8) + ey (€l g0 @0 La) + (0 @10 €, e, 1)) — =5 (€ ga) (0 Do, 1))
(ng,ng)=1
24 (e — 1), op 2 4p? 2
(2u 3 ) T gy (€L gm0 @ o) + (€ s gamo ®no))) = T )

A.4 Homogenized quadratic curvature energy

In [40], the authors obtained the homogenized curvature energy for the following curvature energy

Wenry (D¥[(V2©)7] 71) = uL2 (by[lsym D#[(V2©)%] =12 + b [|skew T4 (V2 ©)5] 7|2 + by tr(T¥[(V.©)771)?) , (A.43)
as
b1 — b2)? b1b3
whom e, ) = uL? (b Ke.s||? + bal|sk 16552—(7/@ 24 2 tr(Kes)?
B (Ke) = 2 (b lsymn Koo | + Ballskew Koo 2 = 0= 2 I ol + 255 (K )?)
— L2 INE o2 (br=b2)? \p o bibs o bidbe
= 1L (bllsym L 2+ ballskew KL | = 55— IKE nol* + =5 tr(KL)? + =22 KT ml )
= 2 (balsym KL o2 + ballskewe Kl o2 + 22— en(el 92 4+ 2202 et ) (A.44)
¢ ’ ’ (b1 +b3) ' by +bg ©°
where Ke s = (I'1|T'2|0)[(V©)!]~! with the decomposition
X =xl 4+ x+ xl=a, X, Xti= (13— Ay X, (A.45)

for every matrix X.
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