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Abstract. The internal state of a cell in a coupled cell network is often described by
an element of a vector space. Synchrony or anti-synchrony occurs when some of the
cells are in the same or the opposite state. Subspaces of the state space containing
cells in synchrony or anti-synchrony are called polydiagonal subspaces. We study the
properties of several types of polydiagonal subspaces of weighted coupled cell networks.
In particular, we count the number of such subspaces and study when they are dy-
namically invariant. Of special interest are the evenly tagged anti-synchrony subspaces
in which the number of cells in a certain state is equal to the number of cells in the
opposite state. Our main theorem shows that the dynamically invariant polydiago-
nal subspaces determined by certain types of couplings are either synchrony subspaces
or evenly tagged anti-synchrony subspaces. A special case of this result confirms a
conjecture about difference-coupled graph network systems.

1. Introduction

Networks are widely used as models throughout science and engineering. Examples
include such diverse topics as flocking behavior in animals [28], power grids, and neural
connectomes [34]. A central theme is the observation that complex networks have the
remarkable capability of spontaneous self-organization. This is most often explored in
the form of synchronization: the phenomenon where multiple cells in a network start
displaying identical or highly related dynamical behavior. Synchronization has been
linked to gene regulatory networks [23], the workings of the brain [12], and opinion
dynamics [15], among many other examples [5].

Recently, another form of self-organization has received increasing attention, namely
that of anti-synchronization. This occurs when two or more cells in the network show
opposite behavior. It has applications in the context of multi-agent systems [16], chaotic
oscillators [19, 20], Chua’s oscillators [22], optically coupled semiconductor lasers [35],
and neural networks [21].

In its most elementary form, synchrony means that two or more cells in the system
have identical behavior. This can be modeled by assuming a flow-invariant subspace of
the state space defined by one or more equalities of the form xi = xj, with xi describing
the internal state of cell i. Similarly, anti-synchrony is often viewed as the presence of
a flow-invariant subspace determined by the aforementioned conditions, as well as those
of the form xi = −xj or xk = 0. We will refer to any of these subspaces as polydiagonal
subspaces. If only equalities of the form xi = xj are needed to describe the subspace,
then we will speak of a synchrony subspace. In all other cases, when at least one relation
of the form xi = −xj or xk = 0 is in effect, we will speak of an anti-synchrony subspace.
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To account for models with uncertain or tunable details, one is often interested in
polydiagonal subspaces that are invariant for entire families of network ODEs at once.
The structure of a coupled cell network is modeled by a weighted digraph. We are inter-
ested in classifying the subspaces that are invariant for all systems with a given digraph
[3, 25, 32]. These are often referred to as robust invariant subspaces. Surprisingly, there
are many results showing that robust polydiagonal subspaces, while required to be in-
variant for all network ODEs, can be characterized as those that are robust for all linear
network ODEs. This characterization allows one to use results from linear algebra to
classify robust polydiagonal subspaces or to identify rules of implication or exclusion
[3, 4, 14, 25].

For instance, Golubitsky, Stewart and collaborators have developed the so-called
groupoid formalism to define admissible vector fields, which may be seen as the most
general class of ODEs that are compatible with a given network structure [32]. It is later
shown that a synchrony space is invariant under the flow of all admissible vector fields,
if and only it is invariant for all linear admissible vector fields [14, 4].

In [25], the authors consider instead so-called difference-coupled vector fields with
respect to a graph, which have the component-wise description

fi(x) = g(xi) +
∑

j∈N(i)

h(xj − xi) .(1)

Here each component corresponds to a node i in the graph, which is given a variable xi

in some phase space V that is the same for each of the n nodes, and N(i) denotes the
neighbors of i. Correspondingly, the full ODE is defined on the total phase space V n,
with x = (x1, . . . , xn) ∈ V n denoting the combined variable of the system. The functions
g, h : V → V may in general be non-linear.

Multiple classes of difference-coupled vector fields are considered, by imposing vari-
ous natural restrictions on f and g in Equation (1). The authors then classify those
polydiagonal subspaces that are invariant for all vector fields in a given class. Again, in
many cases the result is that these polydiagonal subspaces are precisely those that are
invariant under a given linear map.

These results are generalized in [3] by considering systems of the form

fi(x) = g(xi) +
n∑

j=1

wijh(xi, xj) .(2)

Here the coupling strength wij ∈ R is the weight of the directed edge from cell j to cell i,
and h : V ×V → V now takes two inputs. As in [25], different classes of vector fields are
considered by imposing constraints on f and g, and invariant polydiagonal subspaces are
considered for each of these classes. In many cases a polydiagonal subspace is invariant
under all vector fields in a given class, if and only if it is invariant under the weight
matrix W = (wij) or the Laplacian matrix associated to it.

For instance, the authors of [3] consider all systems of the form Equation (2) with
g odd, and h even in its first argument and odd in its second (the so-called even-odd-
input-additive coupled cell systems). They then show that a polydiagonal subspace is
invariant under the flow of all such systems, if and only if it is kept invariant by the
weight matrix W , where we assume V = R for convenience.

These results illustrate the importance of determining polydiagonal subspaces that
are invariant under certain linear maps, as in many cases this equates to invariance
under a broad class of generally non-linear systems. Guided by the importance of linear
network ODEs, we study a class of coupled cell networks with identical cells and linear
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coupling. Two examples, coupled van der Pol oscillators, and coupled Lorenz attractors,
are used to illustrate results about dynamically invariant polydiagonal subspaces. The
anti-synchrony of coupled Lorenz attractors observed in [19] is explained by our results.
We also demonstrate a new mechanism for anti-synchrony in this system.

A major motivation for this paper is [25, Conjecture 5.3]. It states that in an anti-
synchrony subspace that is invariant under the graph Laplacian of an unweighted graph,
the number of cells in a common state must be the same as the number of cells in the
opposite state. This allows, for example, the subspaces with typical elements of the
form (a,−a, b,−b, 0) or (a,−a, a,−a) but not of the form (a, a,−a). This conjecture
is proved here as Theorem 6.17 as a corollary of our main theorems. One interesting
consequence is that such networks with an odd number of cells always have at least one
node with vanishing dynamics in any anti-synchrony subspace. We also point out that
the aforementioned condition rules out the vast majority of the anti-synchrony subspaces.
This can make it significantly easier to find all such subspaces in a systematic way.

To explore the different implications on polydiagonal subspaces imposed by a linear
map, we introduce various types of polydiagonal subspaces. An anti-synchrony subspace
satisfying the conclusion of Theorem 6.17 is called evenly tagged. Slightly less restrictive
is the concept of a fully tagged anti-synchrony subspace. Here every node has at least
one node with opposite dynamics. If this is the same node, then it necessarily has
vanishing dynamics. Examples are given by the aforementioned evenly tagged subspaces,
as well as those with typical element (a, a,−a). At the other extreme within the set of
anti-synchrony subspaces sit the minimally tagged subspaces. Here we do not have any
relations of the form xi = −xj, unless we have i = j which implies xi = 0. Examples
include those with typical elements (a, a, 0, 0) and (a, b, a, 0, c, a). Note that the only
anti-synchrony subspace that is both minimally tagged and fully tagged is the trivial
subspace {0}.

This paper is organized as follows. In Section 2 we introduce the basics of weighted
digraphs and linearly coupled cell networks used in subsequent sections. Section 3 then
focuses on the different types of polydiagonal subspaces and their relation to so-called
tagged partitions of sets. Next, Section 4 investigates dynamically invariant subspaces
for linearly coupled cell networks. Having thus established our main motivation for
looking at polydiagonal subspaces, we next look at structural implications of connection
matrices on corresponding subspaces. In Section 5 we formulate and prove the main
technical result of this paper in the form of Lemma 5.1. It shows how certain properties
of a matrix have important implications on its invariant subspaces. Section 6 further
builds on this result, by showing how the property of having constant column sums has
strong implications on the anti-synchrony subspaces of a matrix. Important examples of
matrices with this property include the Laplacian of a graph and the adjacency matrix
of a weighted digraph obtained from the Cayley color digraph of a group. Here we
also prove and generalize [25, Conjecture 5.3]. Finally, in Section 7 we investigate the
number of polydiagonal subspaces in Rn belonging to each of our classes. We find that
some of the relevant number sequences establish surprising connections to other areas of
mathematics, whereas other sequences seem to have been previously unknown.

2. Preliminaries

2.1. Weighted digraphs. A digraph G is a pair (VG, EG), where V is a finite set of
vertices and EG ⊆ V ×V is the set of arrows. We usually let V = {1, . . . , n}. The arrow
(i, j) ∈ EG connects the tail i to the head j. Note that our digraphs can have loops and
do not have multiple arrows from one vertex to another. A weighted digraph is a pair
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(G,w), where G is a digraph and w : EG → R \ {0} is a weight function. The underlying
digraph of the weighted digraph (G,w) is the digraph G. Every digraph can be treated
as a weighted digraph with a default weight function whose value is 1 for every edge.

Consider a weighted digraph (G,w) with vertex set {1, . . . , n}. The adjacency matrix
of the weighted digraph is the n× n matrix A defined by

Ai,j :=

{
w(j, i) if (j, i) ∈ EG

0 otherwise.

Note that Ai,j is the weight of the arrow to vertex i from vertex j. So our adjacency
matrix is an in-adjacency matrix, which is the standard for coupled cell networks [3].
The adjacency matrix provides a bijection from the set of weighted digraphs with vertex
set {1, . . . , n} to Rn×n. The Laplacian matrix of the weighted digraph is the n×n matrix
L defined by

(3) Li,j :=

(
n∑

k=1

Ai,k

)
δi,j − Ai,j =

{
−Ai,j if i ̸= j∑

k ̸=i Ai,k if i = j,

where δ is the Kronecker delta function.
For a vertex i of a weighted digraph (G,w), the in-neighborhood of i is N−(i) := {j |

(j, i) ∈ EG} and the out-neighborhood of i is N+(i) := {j | (i, j) ∈ EG}. The in-degree
and out-degree of i are

d−(i) :=
∑

j∈N−(i)

w(j, i), d+(i) :=
∑

j∈N+(i)

w(i, j).

These values can be computed as the row and column sums

d−(i) =
n∑

j=1

Ai,j, d+(j) =
n∑

i=1

Ai,j

of the adjacency matrix A.
Generalizing [30], the imbalance of i is b(i) := d+(i) − d−(i). The weighted digraph

is called weight-balanced if the imbalance of every vertex is 0. To avoid cluttered ter-
minology, we will often refer to a weight-balanced weighted digraph as simply a weight-
balanced digraph. For connected unweighted digraphs, the notion of weight-balanced
(using the default weight function) is equivalent to the existence of an Euler circuit.
Note that a weighted digraph is weight-balanced if and only if the i-th row sum of the
adjacency matrix is equal to the i-th column sum for all i.

A graph is a pair (V,E), where V is a finite set of vertices and E is the set of edges,
where each edge is a set of two vertices.

The underlying graph of a digraph G is the graph with vertex set V = VG and edge
set E = {{i, j} | (i, j) ∈ EG}. A digraph is weakly connected if its underlying graph is
connected. A digraph is strongly connected if there is a directed path from any vertex to
any other vertex. A weighted digraph is weakly (strongly) connected if the underlying
digraph is weakly (strongly) connected. A square matrix is called irreducible if it is the
adjacency matrix of a strongly connected weighted digraph.

Given a graph, the corresponding digraph is built from the graph by replacing every
edge by a pair of arrows. An edge {i, j} is replaced by the arrows (i, j) and (j, i). The
Laplacian matrix of a graph is the Laplacian matrix of its corresponding digraph.

An automorphism of a weighted digraph (G,w) is a bijection ϕ : VG → VG such that
(ϕ(i), ϕ(j)) ∈ EG if and only if (i, j) ∈ EG, and w(ϕ(i), ϕ(j)) = w(i, j) for all (i, j) ∈ EG.
The set of automorphisms under composition is the automorphism group of the weighted



ANTI-SYNCHRONY SUBSPACES OF WEIGHTED NETWORKS 5

digraph (G,w). In other words, the automorphism group of a weighted digraph is the
subgroup of the automorphism group of the underlying digraph consisting of the weight
preserving automorphisms.

2.2. Coupled cell networks. Polydiagonal subspaces are of interest in the study of
coupled cell networks. The dynamics of a coupled cell network is modeled by a system
of ordinary differential equations (ODEs) with cells in C := {1, . . . , n} with a state
variable xi ∈ Rk for i ∈ C. The state of the system is x = (x1, . . . , xn) ∈ (Rk)n. We
consider the case where each cell has identical internal dynamics governed by ẋi = f(xi)
for a given function f : Rk → Rk. We assume that the function f is smooth so that
the initial value problem has a unique solution. A coupled cell network is represented
by a weighted digraph (G,w) with vertices for the cells and arrows corresponding to the
coupling.

In this paper, we restrict our attention to linearly coupled cell networks defined by
the internal dynamics, the adjacency matrix A ∈ Rn×n for (G,w), and a coupling matrix
H ∈ Rk×k. The system of ODEs is

(4) ẋi = f(xi) +
∑

j∈N−(i)

w(j, i)Hxj = f(xi) +
n∑

j=1

Ai,jHxj.

This system is a special case of [3, Equation (1.1)], with Hxj = h(xi, xj). Another
common system, especially in the physics literature, is

(5) ẋi = f(xi) +
n∑

j=1

Ai,jH(xi − xj) = f(xi) +
n∑

j=1

Li,jHxj.

This is often called diffusive coupling, since L is the Laplacian matrix of the weighted
digraph, defined in Equation (3). See for example [9, Equation(1)], where Ĥ is used for
our H.

Note that the Laplacian matrix of a weighted digraph G is the adjacency matrix for a
different weighted digraph GL, so the distinction between A and L is somewhat arbitrary
for linear coupling. That being said, the row sums of a Laplacian matrix are all zero,
and consequently 1 := (1, 1, . . . , 1) is an eigenvector of L with eigenvalue 0.

Note that Systems (4) and (5) can each be written as ẋ = F (x), for a function
F : (Rk)n → (Rk)n defined by

(6) ẋi = Fi(x) := f(xi) +H

n∑
j=1

Mi,jxj.

The adjacency matrix M is arbitrary, and we typically use A as a general adjacency
matrix, or L if the row sums are all 0. The matrix H has been moved to multiply the
sum rather than each term.

Example 2.1. A system of n linearly coupled van der Pol oscillators is described by

(7) üi = −ε(1− u2
i )u̇i − ui + (Mu)i

for a function u : R → Rn. This can be put in the form of System (6) with k = 2. The
internal dynamics and coupling matrix are f(u, v) = (v,−ε(1−u2)v−u) and H = [ 0 0

1 0 ].

Example 2.2. A system of n coupled Lorenz attractors can be written as System (6)
with k = 3 and internal dynamics f(u, v, w) = (10(v−u), u(28−w)−v, uv− 8

3
w). These

systems have attracted significant interest, see for example [29, 19, 9]. The 9 possible H
matrices with exactly one non-zero entry are considered in [17].
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3. Tagged Partitions and Polydiagonal Subspaces

Consider a cell network in which the internal state of every cell can be described by
an element of a vector space. Some of these cells can be in the same state, while others
can be in the opposite state. To describe this situation, we want to group all the cells
that are in the same state into a single class. These classes partition the set of cells. We
also want to indicate the pairs of classes that are in the opposite state. This requires
a mapping of some of the classes to other classes. These goals motivate the use of the
following mathematical tools.

A partial function between the sets X and Y is a function f : X̃ → Y , where X̃ is a
subset of X. We do allow X̃ to be the empty set in which case the partial function is the
empty function. We also allow X̃ = X in which case we say that the partial function
is fully defined. A partial involution on X is a partial function x 7→ x∗ : X̃ → X̃ on X
that is its own inverse.

Definition 3.1. A tagged partition of a finite set C is a partition P of C together with
a partial involution P 7→ P ∗ : P̃ → P̃ on P that has at most one fixed point.

Note that P ∗∗ = P follows from the definition of a partial involution. We denote the
fixed point of the partial involution, if it exists, by P0 = P ∗

0 .
Recall that a partition P of a set C determines an equivalence relation on C. This

relation is sometimes denoted by ▷◁ in the literature. The equivalence class of i ∈ C in
this relation is denoted by [i].

Definition 3.2. If P is a tagged partition of C = {1, . . . , n}, then
∆P := {x ∈ Rn | xi = xj if [i] = [j] and xi = −xj if [i]∗ = [j]}

is the polydiagonal subspace for P . A subspace ∆ of Rn is called a polydiagonal subspace
if ∆ = ∆P for some tagged partition P .

Note that xi = 0 if x ∈ ∆P and [i]∗ = [i] in P . Also note that every polydiagonal
subspace corresponds to a unique tagged partition. The uniqueness is guaranteed because
the partial involution has at most one fixed point. So P 7→ ∆P is a bijection between
the tagged partitions of C and the polydiagonal subspaces of Rn.

Example 3.3. The polydiagonal subspace of the tagged partition
P = {{1}, {2, 4}, {3}, {5, 6}}

with {1}∗ = {2, 4} and {5, 6}∗ = {5, 6} is ∆P = {(a,−a, b,−a, 0, 0) | a, b ∈ R}. We say
that (a,−a, b,−a, 0, 0) is the typical element of ∆P .

This subspace can also be written as {x ∈ R6 | x1 = −x2 = −x4, x5 = x6 = 0} or as
the null space of [

1 0 0 1 0 0
0 1 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

]
or as span{(1,−1, 0,−1, 0, 0), (0, 0, 1, 0, 0, 0)}. Each of these representations have advan-
tages and disadvantages with respect to categorization, information density, simplicity,
ease of use, uniqueness, and computational efficiency.

Although a tagged partition is a simple and well-behaved mathematical object that
efficiently and uniquely encodes a polydiagonal subspace, the notation for describing
specific examples of tagged partitions can be cumbersome. As the previous example
shows, the typical element can provide a concise notation for a concrete polydiagonal
subspace.

We are interested in several special types of polydiagonal subspaces.
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Definition 3.4. Let P be a tagged partition of C = {1, . . . , n}. We say that the
polydiagonal subspace ∆P is a

(1) synchrony subspace if the partial involution is the empty function;
(2) anti-synchrony subspace if the partial involution is not the empty function.

We say that ∆P is
• minimally tagged if the domain of the partial involution is a singleton set;
• fully tagged if the partial involution is fully defined;
• evenly tagged if it is fully tagged and #P = #P ∗ for all P ∈ P .

Remark 3.5. The following table shows examples of typical elements of different types of
polydiagonal subspaces. We follow a convention that the first a precedes both −a and
b, and the first b precedes both −b and c, etc.

Synchrony subspace (a, b, a, c)
Anti-synchrony subspaces

minimally tagged (a, b, 0)
fully tagged (a, a,−a, 0, b,−b)
evenly tagged (a, a,−a, 0, b,−b,−a)

The typical element of a synchrony subspace has no 0’s and no negative signs, and the
typical element of an anti-synchrony subspace has at least one 0 or at least one negative
sign.

The typical element of a minimally tagged polydiagonal subspace has at least one 0
component, and no negative signs. The typical element of a fully tagged polydiagonal
subspace has a component equal to −a whenever there is a component equal to a, and
the same for b, c, etc. There can be any number of 0s, including all 0s or no 0s at all.
Finally, the typical element of an evenly tagged polydiagonal subspace has the same
number of −a’s as there are a’s, and the same for b, c, etc.

Remark 3.6. Definition 3.1 of a tagged partition is equivalent to [3, Definition 3.1], which
is given in terms of integers p, q and r with 0 ≤ q ≤ p and r ∈ {0, 1}. Their tagged
partition

P = {Pk | 1 ≤ k ≤ p} ∪ {Pl | 1 ≤ l ≤ q} ∪ {Pm | 0 ≤ m ≤ r − 1}
contains p + q + r classes. The connection with our definition is that P ∗

l = Pl and
Pl

∗
= Pl for 1 ≤ l ≤ q, Pk ̸∈ P̃ for k > q, and P ∗

0 = P0 if r = 1.
Definition 3.4 can be written in terms of the notation in [3] as follows: A synchrony

subspace has q = 0 and r = 0, an anti-synchrony subspace has q > 0 or r = 1, a
minimally tagged subspace has q = 0 and r = 1, a fully tagged subspace has p = q, and
an evenly tagged subspace has p = q and #Pk = #P ∗

k for all k.

Remark 3.7. The reader familiar with [3, 32] will know that they use the word “polydiag-
onal” differently. We have chosen our convention to better distinguish the different types
of subspaces that will play a role throughout this paper. We summarize the differences
below:

our terminology terminology of [3]
polydiagonal subspace generalized polydiagonal subspace
synchrony subspace polydiagonal subspace
anti-synchrony subspace generalized polydiagonal subspace for a

non-standard tagged partition



8 EDDIE NIJHOLT, NÁNDOR SIEBEN, AND JAMES W. SWIFT

minimally
tagged

evenly
tagged

fully
tagged

synchrony

anti-synchrony

•
{0}

•

•
Rn

span(1)

Figure 1. Classification of the polydiagonal subspaces of Rn, with n ∈ N.

i Pi ∆Pi
type of subspace

0 {{1, 2}∗ = {1, 2}} {(0, 0)} trivial
1 {{1}, {1}∗ = {2}} {(a,−a) | a ∈ R} evenly tagged anti-synchrony
2 {{1}∗ = {1}, {2}} {(0, a) | a ∈ R} minimally tagged anti-synchrony
3 {{1}, {2}∗ = {2}} {(a, 0) | a ∈ R} minimally tagged anti-synchrony
4 {{1, 2}} {(a, a) | a ∈ R} synchrony
5 {{1}, {2}} {(a, b) | a, b ∈ R} synchrony

∆P5

∆P1 ∆P2 ∆P3 ∆P4

∆P0

(a, b)

(a,−a) (0, a) (a, 0) (a, a)

(0, 0)

Figure 2. The polydiagonal subspaces of R2. Subspaces are indicated by their
typical elements in the second Hasse diagram of the lattice.

Example 3.8. For n ∈ N, Rn and span(1) are synchrony subspaces, and the trivial
subspace {0} is an evenly and minimally tagged anti-synchrony subspace of Rn. The
fully synchronous subspace span(1) plays an important role in the theory of coupled
cell networks. The trivial subspace is the only anti-synchrony subspace that is both
minimally and fully tagged. The subsets of polydiagonal subspaces are shown in Figure 1.

Example 3.9. The only polydiagonal subspace of R0 = {()} is R0 = ∆P , where P = ∅
is the empty partition of C = ∅. Hence the partial involution is the empty function. So
R0 is an evenly, and fully tagged synchrony subspace but not an anti-synchrony subspace
and not minimally tagged.

Note that the set of polydiagonal subspaces is partitioned into synchrony subspaces
and anti-synchrony subspaces.

The set of polydiagonal subspaces of Rn ordered by reverse inclusion is a lattice, as
shown in [4, 3]. Recall that a lattice is a partially ordered set in which every two elements
have a unique least upper bound and a unique greatest lower bound. Code to compute
the lattice of polydiagonal subspaces is provided at [27].

Example 3.10. There are six polydiagonal subspaces of R2, as shown with their char-
acterizations in Figure 2. The lattice of these subspaces is also shown.

Example 3.11. There are 24 polydiagonal subspaces of R3, divided into 5 synchrony
subspaces and 19 anti-synchrony subspaces as shown in Figure 3.
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5 synchrony: (a, a, a), (a, b, b), (a, b, a), (a, a, b), (a, b, c)
9 nontrivial minimally tagged: (a, 0, 0), (0, a, 0), (0, 0, a)

(0, a, a), (a, 0, a), (a, a, 0)
(0, a, b), (a, 0, b), (a, b, 0)

4 evenly tagged: (0, 0, 0), (0, a,−a), (a, 0,−a), (a,−a, 0)
3 fully but not evenly tagged: (a,−a,−a), (a,−a, a), (a, a,−a)
3 other anti-synchrony: (a, b,−b), (a, b,−a), (a,−a, b)

Figure 3. Typical elements of the 24 polydiagonal subspaces of R3.

Proposition 3.12. A polydiagonal subspace ∆P is an evenly tagged anti-synchrony sub-
space if and only if 1 ∈ ∆⊥

P .

Proof. The forward direction of the statement follows from the observation that 1 · x =∑
xi. Now assume 1 ∈ ∆⊥

P . First, suppose that ∆P is not fully tagged. Then [k] ∈ P is
untagged for some k. Define

xi :=

{
1 if i ∈ [k]

0 otherwise.
Then x ∈ ∆P but 1 · x = #[k] ̸= 0, which is a contradiction. Next, suppose that ∆P is
fully but not evenly tagged. Then #[k] ̸= #[l] for some [k], [l] ∈ P satisfying [k]∗ = [l].
Define

xi :=


1 if i ∈ [k]

−1 if i ∈ [l]

0 otherwise.
Then x ∈ ∆P but 1 · x = #[k]−#[l] ̸= 0, which is a contradiction. □

Remark 3.13. Proposition 3.12 shows that evenly tagged anti-synchrony subspaces are
characterized as polydiagonal subspaces that are orthodiagonal, meaning they are or-
thogonal to 1. These orthodiagonal subspaces are the main subject of this paper.

4. Dynamically Invariant Subspaces

A linear subspace W ⊆ (Rk)n is dynamically invariant for System (6), or simply
dynamically invariant, provided that the solution to the ODE with any initial condition
in W stays in W on the interval of existence of that solution.

Let P be a tagged partition of C = {1, . . . , n}. Recall that the tensor product of Rk

with ∆P is

Rk ⊗∆P := {x ∈ (Rk)n | xi = xj if [i] = [j] and xi = −xj if [i]∗ = [j]}.
Note that if ∆P is an M -invariant polydiagonal subspace of Rn, then

(8)

(
H

n∑
j=1

M1,jxj, . . . , H

n∑
j=1

Mn,jxj

)
∈ Rk ⊗∆P

for all (x1, . . . , xn) ∈ Rk⊗∆P . It follows that if ∆P is an M -invariant synchrony subspace
of Rn, then Rk ⊗ ∆P is dynamically invariant for any choice of f : Rk → Rk. These
dynamically invariant subspaces are defined by equations of the form xi = xj.

However, Rk ⊗ ∆P is not dynamically invariant for System (6) for all f if ∆P is an
M -invariant anti-synchrony subspace of Rn. There are two restrictions to the functions
f that are important given this fact.
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If f : Rk → Rk satisfies f(0) = 0 and ∆P is an M -invariant synchrony subspace
or minimally tagged anti-synchrony subspace, then Rk ⊗ ∆P is dynamically invariant.
These dynamically invariant subspaces are defined by equations of the form xi = xj and
xi = 0, but not xi = −xj for i ̸= j.

A stronger restriction is that f is odd, meaning that f(−xi) = −f(xi) for all xi ∈ Rk.
If f is odd and ∆P is M -invariant, then Rk ⊗∆P is dynamically invariant.

The last few paragraphs have described the obvious consequences of Equation (8).
The next theorem says that the converse statements are also true.

Proposition 4.1. Let W be a subspace of (Rk)n, and consider the dynamics of Sys-
tem (6) for fixed M ∈ Rn×n and fixed nonzero H ∈ Rk×k.

(1) W is dynamically invariant for all odd f if and only if W = Rk ⊗∆P for some
M-invariant polydiagonal subspace ∆P .

(2) W is dynamically invariant for all f that satisfy f(0) = 0 if and only if W =
Rk ⊗ ∆P for some M-invariant synchrony subspace or minimally tagged anti-
synchrony subspace ∆P .

(3) W is dynamically invariant for all f if and only if W = Rk ⊗ ∆P for some
M-invariant synchrony subspace ∆P .

Proof. In all three cases, if ∆P is a polydiagonal subspace satisfying the given conditions
(e.g. synchrony or minimally tagged anti-synchrony) then it is clear that Rk ⊗ ∆P is
invariant under the dynamics of System (6) with the given class of f .

Conversely, assume first that W is invariant under the dynamics of System (6) for all
odd functions f . It follows that W is also invariant under the dynamics of all differences
of systems of the form (6), which is all ODEs of the form ẋi = f(xi) with f odd.

Let Rk ⊗ ∆P equal the intersection of all subspaces of the form Rk ⊗ ∆Q with ∆Q
a polydiagonal subspace, that contain W . We claim that W contains an element w
satisfying wi = wj if and only if [i] = [j], and wi = −wj if and only if [i]∗ = [j] in P . To
see why, pick a pair (i, j) for which [i] ̸= [j]. It follows that there is an element w ∈ W
for which wi ̸= wj, as this would otherwise contradict minimality of Rk ⊗∆P . The same
argument shows that for any pair (i, j) for which [i]∗ ̸= [j] an element w ∈ W exists for
which wi ̸= −wj. We conclude that the set of w ∈ W satisfying wi ̸= (−)wj for all pairs
(i, j) with [i](∗) ̸= [j] is given by W with a finite number of strict subspaces cut out, and
is therefore non-empty. In what follows we fix such an element w = (w1, . . . , wn) ∈ W .

Next, we pick an element u ∈ Rk ⊗ ∆P . Let g : Rk → Rk be a function (odd or
otherwise) satisfying g(wi) = ui and g(−wi) = −ui for all i. This is well-defined as
wi = wj implies [i] = [j] and so ui = uj. Likewise wi = −wj implies [i]∗ = [j] and
so ui = −uj. We now define the odd function f by f(x) := (g(x) − g(−x))/2. It
follows that f(wi) = (g(wi) − g(−wi))/2 = (ui + ui)/2 = ui for all i, so that the map
(x1, . . . , xn) 7→ (f(x1), . . . , f(xn)) sends w to u. As this latter map sends elements of W
into W , and because w ∈ W , we conclude that u ∈ W . The element u ∈ Rk ⊗∆P was
chosen freely, from which it follows that Rk ⊗∆P ⊆ W and so W = Rk ⊗∆P . To show
that ∆P is M -invariant, we pick nonzero x, y ∈ Rk such that Hx = y. Setting f = 0,
invariance of W = Rk ⊗∆P implies that

n∑
j=1

Mi,jsjy = H

n∑
j=1

Mi,jsjx = H

n∑
j=1

Mk,jsjx =
n∑

j=1

Mk,jsjy
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for all s = (sj) ∈ ∆P and i, k such that [i] = [k]. Likewise, we have
n∑

j=1

Mi,jsjy = H

n∑
j=1

Mi,jsjx = −H

n∑
j=1

Mk,jsjx = −
n∑

j=1

Mk,jsjy

for all s = (sj) ∈ ∆P and i, k such that [i]∗ = [k]. As y is nonzero, we conclude that ∆P
is indeed M -invariant.

If W is dynamically invariant for all f with f(0) = 0, then it is invariant for all
odd f . It follows that W = Rk ⊗ ∆P for some polydiagonal subspace ∆P . The choice
f(x) = ∥x∥2 1 shows that ∆P is a synchrony subspace or a minimally tagged anti-
synchrony subspace.

When there are no conditions on f , the constant map f(x) = 1 excludes anti-synchrony
subspaces. □

Remark 4.2. The concept of a balanced partition of a coupled cell network is central to
the seminal work of [32]. The notion has been generalized in several ways by several
papers. Suppose G is a weighted cell network with cells C, then [3] defines four types of
tagged partitions in terms of their invariance under the adjacency matrix A or Laplacian
matrix L as follows. Note that a partition of the set of cells is essentially a tagged
partition for which the partial involution is the empty function.

• A partition P of C is balanced for G if ∆P is an A-invariant synchrony subspace.
• A partition P of C is exo-balanced for G if ∆P is an L-invariant synchrony

subspace.
• A tagged partition P of C is even-odd-balanced for G if ∆P is an A-invariant

anti-synchrony subspace.
• A tagged partition P of C is linear-balanced for G if ∆P is an L-invariant anti-

synchrony subspace.
We have decided to use terminology such as “L-invariant anti-synchrony subspace” in-
stead, as we deem it more transparent for the goals of this paper.

Remark 4.3. It is interesting that the class of odd-balanced subspaces defined in [25] is
the only type of invariant subspaces for networks that does not have a characterization in
terms of M -invariance for some matrix or set of matrices, as far as we know. Nevertheless,
the odd-balanced subspaces are proved to be evenly tagged in [25].

Example 4.4. Consider the digraph with 2 vertices and no arrows. All of the polydiag-
onal subspaces in Example 3.10 are A-invariant, and L-invariant, since both are the 2×2
zero matrix. System (6) is thus two uncoupled identical ODEs ẋi = f(xi) for i ∈ {1, 2}.
One direction of the statements in Proposition 4.1 is obvious. Subspaces Rk ⊗∆P4 and
Rk ⊗ ∆P5 are dynamically invariant for all f . If f(0) = 0 and j ∈ {0, 2, 3, 4, 5}, then
Rk ⊗ ∆Pj

is dynamically invariant. If f is odd, then Rk ⊗ ∆Pj
for all j ∈ {0, . . . , 5}.

Proposition 4.1 also says that no other subspaces are dynamically invariant for all func-
tions f in each of the three classes.

Remark 4.5. Proposition 4.1 shows that k = 1 is the only case we need to consider to
understand the dynamically invariant subspaces of System (6). While the restriction of
linear coupling seems very restrictive, the dynamically invariant subspaces of a coupled
cell network with more general coupling are often characterized as A or L-invariant
generalized polydiagonal subspaces. For example, the balanced subspaces of [32] are A-
invariant synchrony subspaces, and these are dynamically invariant for all the admissible
vector fields. See also [3, 25].



12 EDDIE NIJHOLT, NÁNDOR SIEBEN, AND JAMES W. SWIFT

502 504 506 508 510

-2

-1

1

2

502 504 506 508 510

-2

-1

1

2

M = 0.5A M = 0.5L

502 504 506 508 510

-2

-1

1

2

502 504 506 508 510

-2

-1

1

2

M = −0.5A M = −0.5L

Figure 4. Numerical solutions of System (7) for 2 coupled van der Pol oscil-
lators with ε = 2, and M couplings defined in Example 4.6. The red curves are
graphs of u1 vs. t, and the dashed blue curves are graphs of u2 vs. t.

Example 4.6. Proposition 4.1(1) applies to the coupled van der Pol oscillators in Ex-
ample 2.1. Consider this system with the weighted digraph shown below, along with
its adjacency matrix A and Laplacian matrix L. The lattices of A- and L-invariant
subspaces for the two cases are also shown.

1

2

A =

[
0 0
1 1

] (0, 0)

(0, a) (a,−a)

(a, b)

L =

[
0 0
−1 1

] (0, 0)

(0, a) (a, a)

(a, b)

Note that cell 1 is uncoupled. The question is whether cell 2 synchronizes with cell
1, anti-synchronizes, or neither. Four numerical solutions to System (7) are shown in
Figure 4. Mathematica notebooks for creating Figures 4 and 5, as well as all of the
lattices of invariant subspaces shown in this paper, are available at [27]. For M = 0.5A
the stable solution is in the anti-synchrony subspace, and the synchrony subspace is not
A-invariant. Similarly, for M = 0.5L the stable solution is in the synchrony subspace, and
the anti-synchrony subspace is not L-invariant. For both M = −0.5A and M = −0.5L
the stable solution is neither synchronized nor anti-synchronized, and the amplitude of
cell 2 is slightly larger than the amplitude of cell 1. The solutions all have the same
random initial condition at t = 0, so the u1 curves are the same. However, the attractor
in each case appears to be independent of initial conditions.

Proposition 4.1(1) assumes that f is odd. The proposition applies to the coupled
chaotic oscillators of [20]. However, it does not explain the anti-synchrony of the coupled
Lorenz attractors of Example 2.2 observed in [19]. Even though f is not odd, it does
satisfy the condition f(Nxi) = Nf(xi) for the matrix N = diag(−1,−1, 1).

For coupled cell networks in general, the symmetry of the internal dynamics interacts
with the symmetry of the network in a nontrivial way. It is natural to ask what invari-
ant subspaces of System (6) are present for a given network for all functions f with a
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prescribed symmetry. This is a topic of great complexity [10, 11], and we do not attempt
to answer this question in general. However, we extend Proposition 4.1 with two results
that apply to the coupled Lorenz equations. The first result assumes a symmetry of the
internal dynamics f , which need not be an involution.

Proposition 4.7. Let F : (Rk)n → (Rk)n be defined in terms of f : Rk → Rk, H ∈
Rk×k, and M ∈ Rn×n as in System (6). Assume that the matrix N ∈ Rk×k satisfies
f(Nxi) = Nf(xi) for all xi ∈ Rk, and HN = NH = H. For each ℓ ∈ {1, . . . , n}, define
γℓ : (Rk)n → (Rk)n by γℓ(x) := (x1, . . . , Nxℓ, . . . , xn). Then F (γℓ(x)) = γℓ(F (x)).

Proof. Note that

H

n∑
j=1

Mi,j(γℓ(x))j = HMi,ℓNxℓ +H
∑
j ̸=ℓ

Mi,jxj = H

n∑
j=1

Mi,jxj

since HN = H. If i ̸= ℓ, then

Fi(γl(x)) = f(xi) +H

n∑
j=1

Mi,jxj = Fi(x).

Furthermore, since H = NH it follows that

Fℓ(γℓ(x)) = f(Nxℓ) +H
n∑

j=1

Mℓ,jxj = Nf(xℓ) +NH
n∑

j=1

Mℓ,jxj = NFℓ(x). □

Remark 4.8. If the hypotheses of Proposition 4.7 hold for System (6), and a subspace
W ⊆ (Rk)n is dynamically invariant, then both γℓ(W ) and the fixed-point subspace
{x ∈ W | γℓ(x) = x} are dynamically invariant subspaces. See [13] for background
about equivariant dynamical systems.

Example 4.9. Assume the hypotheses of Proposition 4.7 hold, with N2 = I and N ̸= I.
Then the involutions γℓ commute, and for each subset S of {1, . . . , n} we define the
involution γS in the obvious way. These involutions form the image of a Zn

2 action on
(Rk)n. The proposition implies that F (γS(x)) = γS(F (x)) for every S ⊆ {1, . . . , n}. We
say that F has Zn

2 symmetry. Of course, F can have more symmetry.
Let ∆P be an M -invariant synchrony subspace of Rn with p classes in P of sizes

n1, . . . , np, where n1 + · · · + np = n. Then W := Rk ⊗ ∆P is dynamically invariant
for System (6) by Proposition 4.1 and γS(W ) is also dynamically invariant. There are
2n1−1 · · · 2np−1 = 2n−p distinct invariant subspaces in the group orbit of W . The exponent
of ni − 1 avoids double counting by not acting on the first cell in each equivalence class
of P . In addition to these invariant subspaces in the group orbit of W , the intersection
of any invariant subspace with the fixed point subspace {x ∈ (Rk)n | γS(x) = x} is an
invariant subspace for each subset S. For example, the choice S = {1, . . . , n} yields the
dynamically invariant subspace {x ∈ W | xi = Nxi for all i}.

The following proposition does not require that f is odd but in some cases describes a
dynamically invariant subspace of (Rk)n corresponding to an M -invariant anti-synchrony
subspace of Rn.

Proposition 4.10. Let f : Rk → Rk, H ∈ Rk×k, and M ∈ Rn×n define System (6),
and let ∆P be an M-invariant polydiagonal subspace of Rn. Assume that the matrix
N ∈ Rk×k satisfies N2 = I, f(Nxi) = Nf(xi) for all xi ∈ Rk, and HN = NH = −H.
Then the subspace

∆N
P := {(x1, . . . , xn) ∈ (Rk)n | xi = xj if [i] = [j], and xi = Nxj if [i] = [j]∗}
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is dynamically invariant for System (6).

Proof. Let x = (x1, . . . , xn) ∈ ∆N
P be given. We will first show that (Hx1, . . . , Hxn) ∈

Rk ⊗∆P . To this end, let i, j ∈ {1, . . . , n} be such that [i] = [j]. It follows that xi = xj

and so Hxi = Hxj. If on the other hand we have [i] = [j]∗, then xi = Nxj. It follows
that Hxi = HNxj = −Hxj, and we conclude that indeed (Hx1, . . . , Hxn) ∈ Rk ⊗∆P .
Because of this, we see that likewise(

H
n∑

k=1

M1,kxk, . . . , H
n∑

j=1

Mn,kxk

)
=

( n∑
k=1

M1,kHxk, . . . ,

n∑
j=1

Mn,kHxk

)
∈ Rk ⊗∆P .

Therefore, if we have [i] = [j] then also H
∑n

k=1Mi,kxk = H
∑n

k=1Mj,kxk. If [i] = [j]∗

then H
∑n

k=1Mi,kxk = −H
∑n

k=1 Mj,kxk = NH
∑n

k=1Mj,kxk. We conclude that(
H

n∑
k=1

M1,kxk, . . . , H
n∑

j=1

Mn,kxk

)
∈ ∆N

P .(9)

Of course xi = xj implies f(xi) = f(xj) and xi = Nxj gives f(xi) = f(Nxj) = Nf(xj).
From this we see that likewise

(f(x1), . . . , f(xn)) ∈ ∆N
P .(10)

The result follows from Equations (9) and (10). □

Note that ∆N
P = Rk ⊗∆P if N = −I or ∆P is a synchrony subspace.

Example 4.11. Two different coupling matrices illustrate Propositions 4.7 and 4.10 for
the Lorenz equation f defined in Example 2.2. Let

H+ =
[
0 0 0
0 0 0
0 0 1

]
, H− =

[
0 0 0
0 1 0
0 0 0

]
, and N =

[ −1 0 0
0 −1 0
0 0 1

]
.

Note that f(Nxi) = Nf(xi) and H+N = NH+ = H+, so the hypotheses of Propo-
sition 4.7 applies if H = H+. Furthermore N2 = I and H−N = NH− = H−, so
Proposition 4.10 applies if H = H−. System (6) in the two cases H = H+ and H = H−
respectively, is

u̇i = 10(vi − ui), v̇i = ui(28− wi)− vi, ẇi = uivi − 8
3
wi +

n∑
j=1

Mi,jwj,(11)

u̇i = 10(vi − ui), v̇i = ui(28− wi)− vi +
n∑

j=1

Mi,jvj, ẇi = uivi − 8
3
wi.(12)

Note that we use xi = (ui, vi, wi) ∈ R3 in place of the traditional (xi, yi, zi) ∈ R3 to
respect our notation of xi ∈ Rk.

Figure 5 shows solutions to these systems with two-way symmetric Laplacian coupling.
The digraph for this coupling is shown below, along with the Laplacian matrix L and
the lattice of L-invariant polydiagonal subspaces:

21 L =

[
1 −1
−1 1

] (0, 0)

(a,−a) (a, a)

(a, b)
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Figure 5. Numerical solutions with random initial conditions for System (11)
on the left with M = −2L, and System (12) on the right with M = 2L, where
L is defined in Example (4.11). The red curves are graphs of u1 vs. t, and the
dashed blue curves are graphs of u2 vs. t.

Since L has zero row sums, the diagonal subspace of R2 is L-invariant, and Proposi-
tion 4.1 part (3) says that the subspace with typical element

(
(u1, v1, w1), (u1, v1, w1)

)
is

dynamically invariant for both System (11) and (12) with the network coupling matrix
M = κL. The synchronous solution in this subspace is two copies of the uncoupled
Lorenz attractor since the coupling terms vanish. This synchronized solution is observed
to be stable if κ = −2 and unstable if κ = 2 for both System (11) and (12). The Master
Stability Function [17] is an efficient way to compute the stability of the synchronous
solution for any network with Laplacian coupling.

Both of the solutions shown in Figure 5 are anti-synchronous solutions in the dynam-
ically invariant subspace with typical element

(
(u1, v1, w1), (−u1,−v1, w1)

)
. In the left

figure, the anti-synchronous solution is related to the synchronous solution by the sym-
metry (x1, x2) 7→ (x1, Nx2) of System (11), as described in Proposition 4.7. Both the
synchronous solution (not shown) and the anti-synchronous solution (shown in the left
of Figure 5) are observed to be stable for System (11) with M = −2L. This is exactly
the anti-synchrony reported in [19].

The anti-synchronous solution shown at the right of Figure 5 is in the same dynamically
invariant subspace, but for a different reason. The subspace is dynamically invariant for
System (12), as predicted by Proposition 4.10 when ∆P is the L-invariant anti-synchrony
subspace of R2 with typical element (a,−a). This anti-synchronous solution is apparently
stable, and coexists with the unstable synchronous solution of System (12) when M = 2L.
This type of anti-synchronous solution has not been reported before, to our knowledge.

5. A Lemma about M-Invariant Subspaces

Let W be a subspace of Rn and M ∈ Rn×n. We say that W is M-invariant if
MW ⊆ W . Note that we are using the left action of M .

To generalize the results and techniques from the previous section to non-symmetric
matrices, we will look at both M and MT . Note that M and MT are similar, see [18],
hence they have the same eigenvalues, with the same geometric and algebraic multiplic-
ities.

The key Lemma in this section is the following.

Lemma 5.1. Assume λ is a real eigenvalue of M ∈ Rn×n with geometric multiplicity 1.
Let vL and vR be eigenvectors of MT and M , respectively, with eigenvalue λ. If W is an
M-invariant subspace, then vR ∈ W or vL ∈ W⊥.
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Proof. If u ∈ Rn, then

vL · (M − λI)u = (M − λI)TvL · u = 0 · u = 0.

As W is an M -invariant subspace, we also see that (M − λI)W ⊆ W . The restriction
(M − λI)|W : W → W either has a non-trivial kernel, or is bijective by the rank-nullity
theorem. In the former case, we have vR ∈ W since λ is simple. In the latter case,
vL ∈ W⊥ since vL ∈ Im(M − λI)⊥ by the displayed equation above. □

Remark 5.2. The subscript on vL indicates that vTL is a left eigenvector of M . That is,
vTLM = λvTL .

In the case that M = MT , Lemma 5.1 says that every simple eigenvector is either
contained in a given M -invariant subspace, or orthogonal to that subspace. If the eigen-
values of a symmetric matrix are all simple, the invariant subspaces are particularly easy
to compute, as shown in the next example.

Example 5.3. Consider the weighted digraph with its adjacency matrix A and lattice
of A-invariant polydiagonal subspaces shown below:

1 2 3

3 32

−1

−1

−1

−1 A =

 3 −1 0
−1 2 −1
0 −1 3


(0, 0, 0)

(a,−a, a) (a, 0,−a)

(a, b, a)

(a, b, c)

The eigenvalues and eigenvectors of A = AT are

λ1 = 1, v(1) = (1, 2, 1) λ2 = 3, v(2) = (1, 0,−1) λ3 = 4, v(3) = (1,−1, 1).

Since all of the eigenvalues are simple, W is an A-invariant subspace if and only if W is
spanned by a subset of the eigenvectors. The following table shows that exactly 5 of the
8 A-invariant subspaces are polydiagonal subspaces, and justifies the Hasse diagram of
A-invariant polydiagonal subspaces shown above.

A-invariant W {i | v(i) ∈ W} {i | v(i) ∈ W⊥} type of subspace
(0, 0, 0) ∅ {1, 2, 3} trivial
(a, 2a, a) {1} {2, 3} not polydiagonal
(a, 0,−a) {2} {1, 3} evenly tagged
(a,−a, a) {3} {1, 2} fully tagged
(a, b,−a− 2b) {2, 3} {1} not polydiagonal
(a, b, a) {1, 3} {2} synchrony
(a, b,−a+ b) {1, 2} {3} not polydiagonal
(a, b, c) {1, 2, 3} ∅ synchrony

For the symmetric matrix A, Lemma 5.1 states that v(i) ∈ W or v(i) ∈ W⊥ for each i,
as this table illustrates. Note that (a,−a, a) is the typical element of an anti-synchrony
subspace that is fully but not evenly tagged.

This example also illustrates that any matrix is the adjacency matrix of some weighted
digraph. The complicated digraph was constructed to have the adjacency matrix A,
which is of interest in the context of numerical differential equations. We can approxi-
mate a function u : [0, 1] → R by the values of u at the midpoints of n subintervals. For
n = 3, we approximate u by the vector û = (u

(
1
6

)
, u
(
1
2

)
, u
(
5
6

)
). The map u 7→ −u′′ for
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functions with boundary conditions u(0) = u(1) = 0 is approximated by û 7→ 9Aû. The
factor of 9 is 1/h2, where h = 1/3 is the length of each subinterval [24].

Note that M -invariant subspaces that are not polydiagonal subspaces do not have any
relevance for coupled cell networks. In the remainder of the paper we will only consider
the M -invariant polydiagonal subspaces. Furthermore, it is not always possible to list all
of the M -invariant subspaces, as we did in Example 5.3 because there are uncountably
many if an eigenvalue of M has geometric multiplicity greater than one. Instead, we
consider all of the polydiagonal subspaces in Rn, and do a simple calculation to see
which are M -invariant. This is feasible for n ≤ 8. The algorithm of [4], modified for
weighted cell networks in [3] handles the multiple eigenvalues, and is feasible up to about
n = 15.

In the next example we consider a non-symmetric adjacency matrix.

Example 5.4. Consider the digraph of Network 3 in [8, Figure 5] with its adjacency
matrix A and lattice of A-invariant polydiagonal subspaces shown below:

1 2 3 A =

1 0 0
1 0 0
0 1 0


(0, 0, 0)

(0, 0, a) (a, a, a)

(0, a, b) (a, a, b)

(a, b, c)

The eigenvalues of A are λ0 = 0 with algebraic multiplicity 2 and geometric multiplicity
1, and λ1 = 1, with algebraic and geometric multiplicity 1. The eigenvectors of A and
AT are

λ0 = 0, v
(0)
R = (0, 0, 1), v

(0)
L = (1,−1, 0) λ1 = 1, v

(1)
R = (1, 1, 1), v

(1)
L = (1, 0, 0),

respectively. The compliance with Lemma 5.1 is shown in the table below:
A-invariant ∆ {i | v(i)R ∈ ∆} {i | v(i)L ∈ ∆⊥} type of subspace
(0, 0, 0) ∅ {0, 1} trivial
(0, 0, a) {0} {0, 1} minimally tagged
(a, a, a) {1} {0} synchrony
(0, a, b) {0} {1} minimally tagged
(a, a, b) {0, 1} {0} synchrony
(a, b, c) {0, 1} ∅ synchrony

Lemma 5.1 says that vR ∈ ∆ or vL ∈ ∆⊥. This example shows that both might be true,
since the second and fifth rows of the table tell us that v

(0)
R ∈ ∆ and v

(0)
L ∈ ∆⊥.

Remark 5.5. If A is an irreducible matrix with non-negative entries, then the Frobenius-
Perron Theorem for irreducible non-negative matrices tells us that A has a simple eigen-
value λ and a corresponding eigenvector with only positive entries. See for instance
Chapter 2, in particular Theorems 1.4 and 2.7, of [6]. Note that the transpose of an
irreducible matrix is again irreducible, from which we see that positive left- and right-
eigenvectors vL and vR exist for λ. Lemma 5.1 then tells us that any A-invariant subspace
W satisfies vR ∈ W or vL ∈ W⊥. However, a synchrony subspace cannot be orthogonal
to a positive vector, whereas an anti-synchrony subspace cannot contain a positive vec-
tor. Hence, we conclude that any synchrony subspace of A has to contain vR, while any
anti-synchrony subspace has to be orthogonal to vL. Note that this holds in the special
case where A is the adjacency matrix of an unweighted, strongly connected network.
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Example 5.6. Consider the digraph of Network 15 in [8, Figure 5] with its adjacency
matrix A and lattice of A-invariant polydiagonal subspaces shown below:

1 2 3

1

2

1

2
A =

0 2 0
1 0 1
0 2 0


(0, 0, 0)

(a, a, a) (a,−a, a) (a, 0,−a)

(a, b, a)

(a, b, c)

The eigenvalues of A are ±2 and 0. Remark 5.5 applies to this weighted, strongly
connected digraph with non-negative weights. The Frobenius-Perron eigenvalue is λ = 2
and the associated eigenvectors are vR = (1, 1, 1) and vL = (1, 2, 1). As predicted, each
of the A-invariant synchrony subspaces contains (1, 1, 1) and each of the A-invariant
anti-synchrony subspaces is orthogonal to (1, 2, 1).

6. Results for Matrices with Constant Column Sums

The most general definition of a regular network is a weighted digraph where the row
sums of the weighted adjacency matrix A are all the same, see [3]. This means that the
sum of the weights of all the arrows coming into each vertex is the same for any vertex.
As a result, the synchrony subspace span(1) is A-invariant.

Our main applications of Lemma 5.1 concern what we might call output-regular net-
works. In this case the adjacency matrix has constant column sums. This means that
the sum of the weights of all the arrows with tails at each vertex is the same. In an
unweighted digraph, this just means that the number of arrows leaving each vertex is
the same.

Note that if M has constant column sums, then 1 is an eigenvector of MT and the
following is an immediate corollary of Lemma 5.1.

Corollary 6.1. Let M ∈ Rn×n have constant column sums λ, so 1 is an eigenvector
of MT with eigenvalue λ. Assume the geometric multiplicity of λ is 1, and let v be
an eigenvector of M with eigenvalue λ. Then every M-invariant subspace W satisfies
v ∈ W or 1 ∈ W⊥.

Example 6.2. Consider the weighted digraph with its adjacency matrix A and lattice
of A-invariant polydiagonal subspaces shown below:

1 2 3

1 −1 1

−1
1

−1 A =

 1 0 0
−1 −1 −1
0 1 1


(0, 0, 0)

(0, a,−a) (a, 0,−a)

(0, a, b)

(a, b, c)

The column sums of A are all 0, and the eigenvalue λ = 0 has geometric multiplicity
1 with eigenvector v = (0, 1,−1). As stated in Corollary 6.1, every A-invariant poly-
diagonal subspace ∆ has v ∈ ∆ or 1 ∈ ∆⊥. Note that v ⊥ 1, so both are true for
∆ = span(v) = {(0, a,−a) | a ∈ R}.
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Our main application of Corollary 6.1 is to polydiagonal subspaces. We get a stronger
conclusion if we assume W is a polydiagonal subspace and make an additional assumption
on the eigenvector v.

Theorem 6.3. Let M ∈ Rn×n have constant column sums λ, so that λ is an eigenvalue
of M . Assume the geometric multiplicity of λ is 1, and a corresponding eigenvector v
satisfies vi + vj ̸= 0 for all i and j, including i = j. Then an M-invariant polydiagonal
subspace ∆P is either a synchrony subspace that contains v or an evenly tagged anti-
synchrony subspace that does not contain v.

Proof. Note that 1 is an eigenvector of MT with eigenvalue λ.
If v ∈ ∆P , then the assumptions on v imply that [i]∗ ̸= [j] for all i and j. Hence the

partial involution of P is the empty function and ∆P is a synchrony subspace.
If v ̸∈ ∆P , then Lemma 5.1 implies that 1 ∈ ∆⊥

P . In this case, Proposition 3.12 implies
that ∆P is an evenly tagged anti-synchrony subspace. □

Remark 6.4. One interesting consequence of Theorem 6.3 pertains to (weighted) net-
works with an odd number of cells. To elaborate, if the matrix M ∈ Rn×n satisfies the
conditions of Theorem 6.3 and if n is odd, then any polydiagonal subspace is either a
synchrony subspace, or has at least one cell with vanishing internal state. This follows
from the fact that an evenly tagged anti-synchrony subspace of an odd-dimensional sub-
space has to correspond to an involution with a fixed point. In particular, suppose we
have a possibly non-linear dynamical system on a network with n cells for which invari-
ant subspaces are precisely the polydiagonal subspaces of the matrix M . This could for
instance be the case if M is the adjacency matrix or Laplacian of the network, see [3]. If
we have reason to assume the state of our system is in a polydiagonal subspace, though
not in a synchrony subspace (for instance by finding two cells with equal but opposing
states), then we know for a fact that there has to be a cell with vanishing dynamics
in the system. Note that we may not have any idea where this cell is situated in the
network, nor does it have to be close to the two cells we have observed.

Remark 6.5. If M and v satisfy the hypotheses of Theorem 6.3, then every M -invariant
synchrony subspace contains v. The lowest dimensional M -invariant synchrony subspace
is the polydiagonal subspace for the coarsest M -invariant partition, as described in [26].
At one extreme, if v = 1, then span(1) is a one-dimensional M -invariant synchrony
subspace. At the other extreme, if all n components of v are distinct, then the only
M -invariant synchrony subspace is Rn. Examples with each of these extremes follow.

Example 6.6. Consider the digraph with its adjacency matrix A and lattice of A-
invariant polydiagonal subspaces shown below:

3 2

1

A =

0 0 1
1 0 0
0 1 0


(0, 0, 0)

(a, a, a)

(a, b, c)

The column sums of A are all 1, and v = 1 is an eigenvector of A with the simple eigen-
value 1. Thus, Theorem 6.3 applies. The only evenly tagged anti-synchrony subspace
is {0}, and the other two A-invariant polydiagonal subspaces are synchrony subspaces
that contain v.

Example 6.7. Consider the weighted digraph with its adjacency matrix A and lattice
of A-invariant polydiagonal subspaces shown below:
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3 2

1

2
1

2

2

1
1 A =

0 1 1
2 0 2
1 2 0


(0, 0, 0)

(0, a,−a) (a, 0,−a)

(a, b, c)

The column sums of A are all 3, and an eigenvector of A with the simple eigenvalue λ = 3
is v = (5, 8, 7). Theorem 6.3 applies, and as discussed in Remark 6.5 the only A-invariant
synchrony subspace is R3 since all of the components of v are distinct. The other three
A-invariant polydiagonal subspaces are evenly tagged anti-synchrony subspaces.

Recall that a weighted digraph is called weight-balanced if for each vertex the indegree
equals the outdegree.

Theorem 6.8. Let L be the Laplacian matrix of a weight-balanced digraph. Assume
that the eigenvalue 0 of L has geometric multiplicity one. Then every L-invariant anti-
synchrony subspace is evenly tagged.

Proof. The Laplacian matrix L is weight-balanced as the difference of the weight-balanced
matrix A and the weight-balanced diagonal degree matrix. Since the row sums of any
Laplacian matrix are 0, we conclude that the column sums of L are all 0 too. Hence,
Theorem 6.3 applies with λ = 0 and v = 1. The result follows, since every L-invariant
anti-synchrony subspace is evenly tagged. □

Remark 6.9. If A is an irreducible matrix with non-negative off-diagonal entries, then the
corresponding Laplacian L has a simple eigenvalue 0. This result is known, but less so
in our general setting. To see that it still holds, note that for some large enough positive
scalar µ ∈ R the matrix µ Id−L has positive diagonal entries. Moreover, µ Id−L agrees
with A on the off-diagonal entries, so that µ Id−L equals the non-negative adjacency
matrix of a strongly connected weighted digraph. As in Remark 5.5, it follows from
the Frobenius-Perron theorem that µ Id−L has a simple eigenvalue λ with a positive
eigenvector v. Moreover, any non-negative eigenvector is necessarily a multiple of v, see
[6, Theorem 1.4]. As µ Id−L has an eigenvalue µ with eigenvector 1, we conclude that
1 is a multiple of v and that µ = λ. In particular, the eigenvalue µ of µ Id−L is simple,
so that the eigenvalue 0 of L is as well.

The following proposition, combined with Remark 6.9 above, can be very useful for
showing that the Laplacian of a weight-balanced digraph satisfies the conditions of The-
orem 6.8. The proof is only a small adaptation of the one commonly used for Eulerian
digraphs, so we will not include it here. See for example [38, Theorem 23.1] or [37,
Theorem 1.4.24].

Proposition 6.10. If a weight-balanced digraph is weakly connected with positive weights
for all arrows that are not self-loops, then it is strongly connected.

Example 6.11. Consider the weighted digraph with its Laplacian matrix L and lattice
of L-invariant polydiagonal subspaces shown below:
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3 2

1

1

1

2
1 L =

 2 0 −2
−1 1 0
−1 −1 2


(0, 0, 0)

(a, a, a) (a,−a, 0)

(a, b, b)

(a, b, c)

The adjacency matrix of the weighted digraph is

A =
[
0 0 2
1 0 0
1 1 0

]
.

The second row sum and second column sum of A are both 1. All other row sums and
column sums are 2. Thus the weighted digraph is weight-balanced. Note that the L-
invariant anti-synchrony subspaces are all evenly tagged, as described by Theorem 6.8.
The A-invariant polydiagonal subspaces are only {(0, 0, 0)} and R3. These are invariant
for every 3× 3 matrix.

Example 6.12. Consider the weight-balanced digraph of Example 5.3. The A-invariant
subspace with typical element (a,−a, a) is not evenly tagged, but this is not an L-
invariant subspace. The lattice of L-invariant subspaces is similar to the lattice of
A-invariant subspaces, but with (a,−a, a) replaced by (a, a, a). The L-invariant anti-
synchrony subspaces {(0, 0, 0)} and span{(1, 0,−1)} are both evenly tagged.

A weighted digraph is vertex transitive if each vertex can be mapped to any other
vertex by an automorphism of the weighted digraph.

The following result provides more examples of weight-balanced digraphs.

Lemma 6.13. A vertex transitive weighted digraph is weight-balanced.

Proof. The transitivity ensures that the imbalance of every vertex is the same. The sum∑
i∈V

b(i) = 0

of the imbalances of the vertices is zero since every weight is counted twice with opposite
sign. Thus the imbalance of every vertex must be 0. □

Remark 6.14. If the indegree is the same for each vertex of a weighted digraph, then the
adjacency matrix and the Laplacian add up to a multiple of the identity. Hence, both
matrices have the same invariant subspaces. This is, for instance, the case for vertex
transitive weighted digraphs.

A vertex transitive weighted Cayley digraph can be constructed from a Cayley color di-
graph of a group by replacing the arrow-labels with weights. The automorphism group of
the resulting weighted digraph is isomorphic to the original group if the arrow relabeling
function is injective. Otherwise the relabeling can introduce additional automorphisms.
We give two examples.

Example 6.15. Consider the group ⟨σ | σ7 = 1⟩ ∼= Z7. The weighted Cayley digraph
using the generating set {σ, σ−1} and the arrow relabeling σ 7→ s, σ−1 7→ t is shown
on the left. The lattice of A-invariant polydiagonal subspaces when the weights satisfy
s ̸= t is shown in the middle. In this case, the automorphism group of the weighted
Cayley digraph is isomorphic to the original group Z7.
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If s = t, the automorphism group of the weighted Cayley digraph is isomorphic to D7

due to the additional reflection symmetries. The lattice for this case is shown on the
right. The boxes indicate group orbits of polydiagonal subspaces. One representative is
shown, and the size of the group orbit (in this case, 7) is shown.

The result of Theorem 6.8 holds for equal or unequal weights. Since the number of
vertices is odd and every anti-synchrony subspace is evenly tagged, the presence of any
anti-synchronous pair implies at least one cell is in the 0 state, as seen in the subspace
(a, b, c, 0,−c,−b,−a). See Remark 6.4.

1

2
3

4

5
6

7

s

t

s

t
s

t

s
t

s

t

s

t

st

(0, 0, 0, 0, 0, 0, 0)

(a, a, a, a, a, a, a)

(a, b, c, d, e, f, g)

(0, 0, 0, 0, 0, 0, 0)

(a, a, a, a, a, a, a)

(a, b, c, 0,−c,−b,−a)
7

(a, b, c, d, c, b, a)
7

(a, b, c, d, e, f, g)

s ̸= t s = t

Example 6.16. Consider the 2k-element group ⟨σ, τ | σ2 = τ 2 = (στ)k = 1⟩ ∼= Dk.
This is the symmetry group of a regular k-gon if k > 2. The weighted Cayley digraph
for D3 using the generating set {σ, τ} and the arrow relabeling σ 7→ s, τ 7→ t is shown
on the left. For s ̸= t the automorphism group of this weighted Cayley digraph is D3,
and the lattice of A-invariant polydiagonal subspaces is shown on the right. If s = t
the automorphism group of the weighted Cayley digraph is D6, but we do not show
the lattice of A-invariant polydiagonal subspaces in this case because it is so large. A
straightforward but lengthy calculation shows that there are 31 A-invariant polydiagonal
subspaces in 15 group orbits. Among these, there are 18 A-invariant anti-synchrony
subspaces in 8 group orbits, which are all evenly tagged following Theorem 6.8.

1

2

3

4

5

6

s

s

tts s

t

t

s

s

t

t

(0, 0, 0, 0, 0, 0)

(a, a, a, a, a, a) (a,−a, a,−a, a,−a)

(a, b, a, b, a, b)

(a, b, c, c, b, a)
3

(a, b, c,−c,−b,−a)
3

(a, b, c, d, e, f)

s ̸= t

It was shown in [25, Proposition 5.1] that every L-invariant polydiagonal subspace
for the Laplacian matrix L of a graph is either a synchrony subspace or a fully tagged
anti-synchrony subspace. Furthermore, it was conjectured that every L-invariant anti-
synchrony subspace is not just fully tagged, but is evenly tagged.
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Theorem 6.17 ([25, Conjecture 5.3]). Let L be the Laplacian matrix of a connected
graph. Then every L-invariant anti-synchrony subspace is evenly tagged.

Proof. The digraph corresponding to a graph is trivially weight-balanced. It is well
known, and follows from Remark 6.9, that the eigenvalue 0 of the Laplacian matrix of a
connected graph is simple. The result now follows from Theorem 6.8. □

Remark 6.18. Recall that a graph is undirected (also called bidirectional) and unweighted
by our definition. Consider System (5), where f is odd and L is the Laplacian matrix of
a connected graph. Propsition 4.1 and Theorem 6.17 state that a subspace W ⊆ (Rk)n is
dynamically invariant for any such coupled cell network if and only if W is an L-invariant
synchrony subspace or W is an L-invariant evenly tagged subspace.

Example 6.19. Let L be the Laplacian matrix of the complete graph with n vertices.
The eigenvalues of L are λ = 0, with algebraic multiplicity 1 and eigenvector 1, and
λ = n with geometric and algebraic multiplicity n − 1, and eigenspace span(1)⊥. It is
easy to show that a polydiagonal subspace ∆ ⊆ Rn is L-invariant if and only if ∆ is a
synchrony subspace or ∆ is an evenly tagged anti-synchrony subspace.

The following “non-example” demonstrates the necessity of the hypothesis that the
graph is connected.

Example 6.20. Consider the graph, represented as a digraph, with its Laplacian matrix
L and lattice of L-invariant polydiagonal subspaces shown below:

1

3

2

1 1

L =

0 0 0
0 1 −1
0 −1 1


(0, 0, 0)

(a, a, a) (a, 0, 0) (a,−a,−a) (0, a, a) (0, a,−a)

(a, b, b) (a, b,−b) (0, a, b)

(a, b, c)

Theorem 6.17 does not apply to this disconnected graph. Note that the eigenvalue 0 of
L has multiplicity 2 since the graph has 2 connected components.

Five of the ten L-invariant polydiagonal subspaces are anti-synchrony subspaces that
are not evenly tagged. These could not be present for a connected graph.

Note that every region in Figure 1 is represented in this example. The three syn-
chrony subspaces have typical elements (a, a, a), (a, b, b) and (a, b, c). The four mini-
mally tagged anti-synchrony subspaces have typical elements (0, 0, 0), (a, 0, 0), (0, a, a)
and (0, a, b). The two evenly tagged anti-synchrony subspaces have typical elements
(0, 0, 0) and (0, a,−a). The anti-synchrony subspace with typical element (a,−a,−a) is
fully but not evenly tagged. The anti-synchrony subspace with typical element (a, b,−b)
is neither minimally nor fully tagged.

7. Counting Polydiagonal Subspaces

In this section, we count the number of polydiagonal subspaces in Rn of a given type. It
turns out many of the corresponding sequences are known in a different context, showing
some surprising links to other areas of mathematics.

We define the following sequences:
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n 0 1 2 3 4 5 6 7 8
polydiagonal pn 1 2 6 24 116 648 4 088 28 640 219 920
synchrony sn 1 1 2 5 15 52 203 877 4 140
anti-synchrony an 0 1 4 19 101 596 3 885 27 763 215 780
minimally tagged mn 0 1 3 10 37 151 674 3 263 17 007
fully tagged fn 1 1 2 7 29 136 737 4 537 30 914
evenly tagged en 1 1 2 4 13 41 176 722 3 774

Figure 6. The number of various types of polydiagonal subspaces of Rn.

• pn, the number of polydiagonal subspaces of Rn, is a Dowling number [31,
A007405], as shown in Proposition 7.5 or Proposition 7.19.

• sn, the number of synchrony subspaces of Rn, is the Bell number Bn [31, A000110],
which counts the partitions of a set with n elements.

• an = pn − sn is the number of anti-synchrony subspaces of Rn.
• mn, the number of minimally tagged anti-synchrony subspaces of Rn, is the 2-

Bell number Bn−1,2 [31, A005493], which counts the number of partitions of the
set with n elements and one distinguished block. In our case, the distinguished
block is P0.

• fn, the number of fully tagged polydiagonal subspaces of Rn, is element n of the
sequence [31, A307389], as shown in Proposition 7.18.

• en, the number of evenly tagged polydiagonal subspaces of Rn [31, A355194], is
computed using Proposition 7.16 or 7.20.

The number of each type of polydiagonal subspace is shown in Figure 6. These are
computed by the code at [27], using the results of Subsections 7.3 and 7.4.

Remark 7.1. It is easy to see that mn = Bn+1 −Bn since minimally tagged partitions of
{1, . . . , n} are in one-to-one correspondence with partitions of {1, . . . , n + 1} for which
{1, . . . , n} ∩ [n+ 1] is not empty. Note that there are Bn partitions of {1, . . . , n+ 1} for
which {n+ 1} is a class, as it remains to partition {1, . . . , n}.

Remark 7.2. Figure 6 shows how small en is compared to an. This greatly strengthens the
result of Theorem 6.3 and its corollaries: instead of checking all possible anti-synchrony
subspaces for invariance, only the smaller subset of the evenly tagged ones has to be
considered.

7.1. Polydiagonal subspaces. To show that the number of polydiagonal subspaces
are the Dowling numbers, we start by giving an alternative way of characterizing poly-
diagonal subspaces. As in [2], we define the following.

Definition 7.3. A B-type partition of {−n, . . . , n} is a partition Q of this set satisfying
(1) If Q = {j1, . . . , jk} is a class in Q, then so is −Q := {−j1, . . . ,−jk}.
(2) There is precisely one class Q0 ∈ Q for which Q0 = −Q0.

Note that Q0 is necessarily the class containing the element 0.
The reason for introducing B-type partitions is as follows. Given a tagged partition P

of {1, . . . , n}, we may create a B-type partition Φ(P) of {−n, . . . , n} with classes given
by

• P and −P for each P ∈ P on which ∗ is not defined;
• P ∪ −P ∗ for each P ∈ P for which P ∗ ̸= P ;

https://oeis.org/A007405
https://oeis.org/A000110
https://oeis.org/A005493
https://oeis.org/A307389
https://oeis.org/A355194
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• P ∪ {0} ∪ −P if P exists such that P ∗ = P , and {0} otherwise.
One can verify that Φ(P) is indeed a B-type partition of {−n, . . . , n}.

The number of B-type partitions of {−n, . . . , n} is given by the so-called Dowling
numbers, see for instance [2].

Example 7.4. We return to the tagged partition of Example 3.3, given by

P = {{1}, {2, 4}, {3}, {5, 6}}
with {1}∗ = {2, 4} and {5, 6}∗ = {5, 6}. The corresponding B-type partition of {−6, . . . , 6}
is

Φ(P) = {{−4,−2, 1}, {−1, 2, 4}, {3}, {−3}, {−6,−5, 0, 5, 6}} .
Given a B-type partition Q of {−n, . . . , n}, we construct a tagged partition Ψ(Q) as

follows. Given Q ∈ Q we define

Q+ := {k ∈ Q | k > 0}
to be the set of positive elements of Q. We then set

Ψ(Q) = {Q+ | Q ∈ Q and Q+ ̸= ∅} .
Note that this clearly gives a partition of {1, . . . , n}. The involution ∗ is defined on those
classes Q+ ∈ Ψ(Q) for which (−Q)+ ̸= ∅, in which case we set (Q+)∗ = (−Q)+. It not
hard to see that this indeed gives a partial involution.

One can verify that Φ and Ψ are inverses, so we have the following result.

Proposition 7.5. The tagged partitions of {1, . . . , n} are in one-to-one correspondence
with the B-type partitions of {−n, . . . , n}. Thus the number of polydiagonal subspaces of
Rn are the Dowling numbers.

7.2. Freely tagged polydiagonal subspaces. The following definition will be useful
for counting various types of polydiagonal subspaces in Subsection 7.3. Freely tagged
subspaces are also interesting in their own right.

Definition 7.6. Let P be a tagged partition of C = {1, . . . , n}. The polydiagonal
subspace ∆P is called freely tagged if the partial involution has no fixed point.

The typical element of a freely tagged subspace has no zero component. For example,
(a, b, a,−a) is the typical element of a freely tagged subspace, but (a, b, 0,−a) is not.

Example 7.7. All of the nontrivial A-invariant subspaces shown in Example 6.16 are
freely tagged.

Another class of coupled cell networks where freely tagged subspaces are important is
when the domain of f does not contain 0 ∈ Rk. Given a subset D ⊆ Rk and a tagged
partition P , we define the subset

DP := {x ∈ Dn | xi = xj if [i] = [j] and xi = −xj if [i]∗ = [j]} ⊆ Rk ⊗∆P .

Note that DP is not a vector space if D is not a vector space, and it might be empty.
For example, if P has a non-trivial involution, and −D ∩ D = ∅, then DP is empty.
Likewise, if the involution has a non-empty fixed point P0, and 0 ̸∈ D, then the set DP
is empty.

We can give a version of the easy direction of Proposition 4.1. Note that the domain
of an odd function f : D → V satisfies D = −D.
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Proposition 7.8. Let f : D → Rk with ∅ ̸= D ⊆ Rk, and let ∆P be an M-invariant
polydiagonal subspace of Rn. Then DP is a non-empty dynamically invariant subset of
System (6) if one of the following conditions holds:

(1) ∆P is freely tagged and f is odd with 0 ̸∈ D;
(2) ∆P is a synchrony subspace.

Proof. The result follows from Equation (8), using the local existence of solutions. The
assumptions on D guarantee that DP is non-empty. □

Example 7.9. Consider n coupled cells with the dynamics

üi = −u̇i − ui +
1

ui

+ (Au)i.

This can be put into the form of System (6) with the same H matrix defined in Exam-
ple 2.1 but with modified internal dynamics. The domain of f : D → R2 defined by
f(u, v) = (v,−v − u+ 1/u) is D = {(u, v) ∈ R2 | u ̸= 0}. While f is odd, 0 ̸∈ D. If ∆P
is a freely tagged A-invariant subspace, then DP is a dynamically invariant set that is
not a subspace of (R2)n.

7.3. Exponential generating functions. Polydiagonal subspaces correspond to par-
titions. So the natural way to count them is to compute their exponential generating
functions. Recall that the Exponential Generating Function (EGF) of a sequence (an) is
the formal power series

A(x) :=
∞∑
n=0

an
xn

n!
.

The sequence (an) can be easily found from A(x) using Taylor expansion. Most computer
algebra systems have a built in command for this. For example, the following code
computes the first few terms of the sequence (1, 1, . . .) whose EGF is ex:

Sage:
p=taylor(exp(x),x,0 ,10)
[p.coefficient(x,n)* factorial(n) for n in (0..10)]

Mathematica:
CoefficientList[Series[E^x,{x,0,10}],x]*Range [0 ,10]!

We are going to use the following fundamental EGF results.

Theorem 7.10. [7, Theorem 8.21] (Product formula) Let an be the number of ways to
build a certain structure on an n-element set, and let bn be the number of way to build
another structure on an n-element set. Let cn be the number of ways to split {1, . . . , n}
into the disjoint union of the subsets S and T , and then build a structure of the first
kind on S, and a structure of the second kind on T . If A(x), B(x), and C(x) are the
respective EGFs of the sequences (an), (bn), and (cn), then C(x) = A(x)B(x).

Theorem 7.11. [7, Theorem 8.25] (Exponential formula) Let an be the number of ways
to build a certain structure on an n-element set, satisfying a0 = 0. Let hn be the number
of ways to partition the set {1, . . . , n} into an unspecified number of non-empty subsets,
and then build a structure of the given kind on each of these subsets. Set h0 = 1. If A(x)
and H(x) are the respective EGFs of sequences (an) and (hn), then H(x) = eA(t).

We also need a few more facts. Recall that the Stirling number Sn,k of the second kind
counts the number of ways to partition a set with n elements into k nonempty subsets.
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Proposition 7.12. [7, Example 8.23] The EGF of the Stirling numbers (Sn,k)n≥0 is
Sk(x) =

(ex−1)k

k!
.

Proposition 7.13. [7, Example 8.24] The EGF of the Bell numbers is B(x) = ee
x−1.

The EGF of (en) will involve the so-called modified Bessel functions, which are solu-
tions to certain differential equations. We will not give a precise definition here, but see
for instance [1].

The following is a slight modification of a formula of [36]. See also [31, A000984].

Proposition 7.14. The modified Bessel function of the first kind I0 satisfies the identity∑∞
n=0

(
2n
n

)
x2n

(2n)!
= I0(2x).

Let ẽn be the number of freely and evenly tagged polydiagonal subspaces of Rn.

Proposition 7.15. The EGF of (ẽn) is Ẽ(x) = eI0(2x)/2−1/2.

Proof. To build a freely and evenly tagged polydiagonal subspace ∆P , we partition C =
{1, . . . , n} into an unspecified number of nonempty subsets and then further divide each
subset into two nonempty classes of equal sizes. These two classes are mapped to each
other by the involution. The number of ways this further division can be done is

an =

{
1
2

(
n

n/2

)
, n is positive and even

0, n is odd.

The EGF of (an) is I0(2x)/2−1/2. The result now follows from the Exponential formula.
□

Proposition 7.16. The EGF of (en) is E(x) = eI0(2x)/2−1/2+x.

Proof. To build an evenly tagged polydiagonal subspace ∆P , we split C = {1, . . . , n}
into the disjoint union of two subsets and then we create a freely and evenly tagged
polydiagonal subspace on one of these subsets and use the other subset to create the
fixed point P0 of the involution. The creation of the fixed point set can be done in
un = 1 way. The EGF of (un) is U(x) = ex. The Product formula now implies that
E(x) = Ẽ(x)U(x) = eI0(2x)/2−1/2+x. □

Let f̃n be the number of freely and fully tagged polydiagonal subspaces of Rn.

Proposition 7.17. The EGF of (f̃n) is F̃ (x) = e(e
2x−2ex+1)/2.

Proof. To build a freely and fully tagged polydiagonal subspace ∆P , we partition C =
{1, . . . , n} into an unspecified number of nonempty subsets and then further divide each
subset into two nonempty classes. These two classes are mapped to each other by the
involution. The number of ways this further division can be done is the Stirling number
Sn,2 = 2n−1 − 1. The Exponential formula, using Proposition 7.12, now implies that
F̃ (x) = eS2(x) = e(e

2x−2ex+1)/2. □

The sequence (f̃n) is listed as [31, A060311].

Proposition 7.18. The EGF of (fn) is F (x) = e(e
2x−2ex+2x+1)/2.

Proof. To build a fully tagged polydiagonal subspace ∆P , we split C = {1, . . . , n} into
the disjoint union of two subsets and then we create a freely and fully tagged polydiagonal
subspace on one of these subsets and use the other subset to create the fixed point P0 of
the involution. The Product formula now implies that F (x) = F̃ (x)ex = e(e

2x−2ex+2x+1)/2.
□

https://oeis.org/A000984
https://oeis.org/A060311
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The EGF of (fn) coincides with the one in [31, A307389], proving that both sequences
are indeed the same. This latter sequence counts the number of elements in the so-called
species of orbit polytopes in dimension n, see [33].

Proposition 7.19. The EGF of (pn) is P (x) = e(e
2x−1+2x)/2.

Proof. To build a polydiagonal subspace ∆P , we split C = {1, . . . , n} into the disjoint
union of two subsets and then we further partition the first subset into classes and create
a fully tagged polydiagonal subspace on the second subset. The number of ways the first
subset can be partitioned is the Bell number Bn. The Product formula now implies that
P (x) = B(x)F (x) = e(e

2x−1+2x)/2. □

This provides an alternate proof for the fact that the pn are the Dowling numbers.

7.4. Recursion formulas. The following recurrence relations can be used to find the
numbers of some types of polydiagonal subspaces. The initial values are p0 = s0 =
f0 = e0 = 1 as discussed in Example 3.9. Some of these recurrence relations are already
known [31], but we include them for completeness.

Recall that the multinomial coefficient
(

n
k1,k2,...,kr

)
is the number of ways to label n

elements of a set with r labels such that the i-th label is used exactly ki times. If
k1 + · · ·+ kr = n and ki is nonnegative for all i, then we can use the alternate notation(

n

k1 k2 . . . kr−1

)
:=

(
n

k1, k2, . . . , kr

)
=

n!

k1!k2! · · · kr!
.

This is the binomial coefficient when r = 2.

Proposition 7.20. If n ≥ 0, then

• pn+1 = pn +
∑

k+ℓ<n

(
n

k ℓ

)
pk +

n∑
k=0

(
n

k

)
pk

• sn+1 =
n∑

k=0

(
n

k

)
sk

• fn+1 = fn +
∑

k+ℓ<n

(
n

k ℓ

)
fk

• en+1 = en +
∑

k+2ℓ+1=n

(
n

k ℓ

)
ek.

Proof. Let Tn be the set of tagged partitions of Cn := {1, . . . , n}. We derive the recur-
rence relation for pn+1 = #Tn+1 by counting the size of each set of the disjoint union
Tn+1 = A ·∪B ·∪ C, where

A = {P ∈ Tn+1 | [n+ 1]∗ = [n+ 1]}
B = {P ∈ Tn+1 | [n+ 1]∗ ̸= [n+ 1]}
C = {P ∈ Tn+1 | [n+ 1]∗ is not defined}.

The size of A is pn since the removal of n + 1 from [n + 1] is a bijection from A to Tn.
This gives the first term in the recurrence relation.

To count B, we first count the elements in B for which [n + 1] ∩ Cn has size ℓ and
[n+1]∗ ∩Cn has size m, and then sum the counts. We can partition Cn into 3 blocks of
size k, ℓ and m, with k + ℓ+m = n, in

(
n
k ℓ

)
ways. Note that m ≥ 1, so k + ℓ < n. The

classes and partial involutions on the k vertices in Cn \ ([n+1]∪ [n+1]∗) can be chosen
in pk ways. Thus, the size of B is the second term in the recurrence relation for pn+1

https://oeis.org/A307389
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Next we count C by summing the number of elements in C for which Cn \ [n+ 1] has
size 0 ≤ k ≤ n. We can choose these k elements from Cn in

(
n
k

)
ways. There are pk ways

to choose the classes and partial involutions on these k elements. Thus, the size of C is
the third term in the recurrence relation for pn+1.

The other recurrence relations are derived by similar arguments. □

Remark 7.21. The sums in Proposition 7.20 can be evaluated explicitly using

∑
k+ℓ<n

xk,ℓ,n =
n−1∑
k=0

n−k−1∑
ℓ=0

xk,ℓ,n and
∑

k+2ℓ+1=n

xk,ℓ,n =

⌊n−1
2

⌋∑
ℓ=0

xn−2ℓ−1,ℓ,n.

8. Conclusion

Polydiagonal spaces capture some of the most striking phenomena observed in network
dynamical systems. They correspond to multiple cells behaving in unison (synchrony)
or opposition (anti-synchrony). Polydiagonal subspaces are partitioned into synchrony
subspaces and anti-synchrony subspaces. Synchrony subspaces can be described in terms
of equalities of the form xi = xj, meaning that cell i is synchronized with cell j. Anti-
synchrony subspaces have at least one equality of the form xi = −xj, including xi = 0.

We have focused on linearly coupled cell networks of System (6), but there are many
results stating that a polydiagonal subspace is invariant for nonlinear networks with the
coupling of Equation (2) if the subspace is M -invariant. The matrix M is the weighted
adjacency matrix, or the weighted Laplacian matrix, of the network.

Proposition 4.1 describes the consequences of M -invariance for coupled cell networks.
An M -invariant synchrony subspace is dynamically invariant for System (6) with any
internal dynamics function f . An M -invariant anti-synchrony subspace is dynamically
invariant for System (6) with any odd internal dynamics function f .

We define several different types of anti-synchrony subspaces shown in Figure 1, and
identify which types can be M -invariant for several classes of coupled cell networks. We
focus on evenly tagged subspaces, where every cluster of synchronized cells has the same
size as the corresponding cluster of anti-synchronized cells. Evenly tagged subspaces are
precisely the polydiagonal subspaces which are orthogonal to the diagonal vector 1.

It is well-known that if each row sum of M is the same, then the synchrony subspace
span(1) is M -invariant. For example, the Laplacian matrix of any weighted digraph has
each row sum equal to 0, so there is no coupling between cells of System (5) if all the
cells are synchronized. We focus on the implications of the matrix M having constant
column sums. Theorem 6.3 states that if M has constant column sums, and certain non-
degeneracy conditions hold, then every M -invariant anti-synchrony subspace is evenly
tagged. This has practical importance since the number of evenly tagged subspaces is
much smaller than the number of all anti-synchrony subspaces. This greatly simplifies
the search for M -invariant subspaces if M has constant column sums. For example, the
algorithm in [26] which finds M -invariant synchrony subspaces can be generalized to find
M -invariant evenly tagged subspaces efficiently.

We find conditions on a weighted digraph so that the adjacency matrix, or the Lapla-
cian matrix, has constant column sums. Theorem 6.8 says that the Laplacian matrix of a
weight-balanced digraph also has constant column sums. Lemma 6.13 says that a vertex
transitive weighted digraph is weight-balanced. Furthermore, the Laplacian matrix of
a graph (as opposed to a weighted digraph) is weight-balanced. In summary, we have
identified several classes of coupled cell networks where all of the dynamically invariant
subspaces are either synchrony subspaces or evenly tagged anti-synchrony subspaces.
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