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Abstract

In this work, we analyze the Kuramoto model (KM) with inertia on a convergent family of graphs.
It is assumed that the intrinsic frequencies of the individual oscillators are sampled from a probability
distribution. In addition, a given graph, which may also be random, assigns network connectivity. As in
the original KM, in the model with inertia, the weak coupling regime features mixing, the state of the
network when the phases (but not velocities) of all oscillators are distributed uniformly around the unit
circle. We study patterns, which emerge when mixing loses stability under the variation of the strength
of coupling. We identify a pitchfork (PF) and an Andronov-Hopf (AH) bifurcations in the model with
multimodal intrinsic frequency distributions. To this effect, we use a combination of the linear stability
analysis and Penrose diagrams, a geometric technique for studying stability of mixing. We show that
the type of a bifurcation and a nascent spatiotemporal pattern depend on the interplay of the qualitative
properties of the intrinsic frequency distribution and network connectivity.

1 Introduction

In this paper, we study the following system of coupled second order damped oscillators on a convergent
sequence of graphs tΓnu:

:θi ` γ 9θi “ ωi `
2K

n

n
ÿ

j“1

anij sin pθj ´ θiq , i P rns :“ t1, 2, . . . , nu, (1.1)

where θi : R` Ñ T :“ R{2πZ denotes the phase of the ith oscillator, γ ą 0 is a damping constant, K is the
coupling strength and anij is the adjacency matrix of Γn. Intrinsic frequencies ωi, i P rns, are independent
identically distributed random variables drawn from the probability distribution with density g. By rescaling
time, intrinsic frequencies, and K, one can make γ “ 1, which will be assumed without loss of generality
throughout this paper.
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Figure 1: A collection of patterns generated by (1.1) with unimodal and bimodal frequency distributions on
complete and nonlocal nearest–neighbor graphs: a) mixing, b) synchronization, c) clusters, d) chimeras,
e) twisted states, f) two sets of twisted states traveling in opposite directions, g) a two-cluster partially
locked state, h) a two-cluster twisted partially locked state. In g) and h) yellow stars correspond stationary
clusters superimposed onto irregularly moving oscillators. Patterns in a)-f) can also be generated using a
classical (first order) Kuramoto model using the same settings (cf. [18]). Patterns in g) and h) are new.
Unless otherwise stated, all simulations of (1.1) were performed with n “ 103 and γ “ 1. The snapshots
b-h are representative for the dynamical states bifurcating from the incoherent state shown in a. The
range of K and the network connectivity corresponding to these patterns are explained in the text and in
the bifurcation diagrams below.
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The system of equations (1.1) is a generalization of the KM of coupled phase oscillators, which provides
an important framework for studying collective dynamics in coupled networks [15, 20]. This is also an
established model of a power network [10, 21, 25]. The second order derivatives are used to incorporate
inertial effects into the system’s dynamics. Thus, the name - the KM with inertia. Compared to the original
KM, it is a more flexible model with more degrees of freedom and richer dynamics. It features a range of
spatiotemporal patterns found in the original KM [7,18] as well as a few new ones that have not been studied
before (Figure 1).

The KM is best known for the phase transition from a highly irregular mixing behavior in the weak
coupling regime to a gradual buildup of coherence leading to synchronization [15,23]. In the first order KM
with intrinsic frequencies sampled from a symmetric unimodal distribution, the transition to synchrony lies
through the pitchfork (PF) bifurcation of mixing [2, 8]. A similar mechanism is involved in the transition
to synchronization in the KM on graphs [4, 6]. In the KM with more general coupling functions or with
multimodal frequency distribution mixing may lose stability through the Andronov-Hopf (AH) bifurcation
[3,7,18]. Qualitative properties of the intrinsic frequency distribution and the properties of network topology
translate into a variety of spatiotemporal patterns replacing mixing when it loses stability [7,18]. Following
[7,18], we use a combination of the linear stability analysis [5] and Penrose diagrams [8,18,19] to describe
bifurcations leading to the loss of stability of mixing as well as emerging patterns in the KM with inertia.
We find many parallels in pattern formation mechanisms involved in both the ordinary KM and the KM with
inertia, but we also find patterns that are not present in the former model. For instance, we identified a class
of partially locked states (PLS) based on stationary antiphase clusters (cf. [17]) (see Fig. 1 g, h). We show
that the KM with inertia with symmetric bimodal (with well separated peaks) frequency distribution and
nonlocal nearest neighbor coupling has four distinct bifurcation scenarios (cf. (5.3)), compared to a single
one for the ordinary KM in a similar setting (see Section 5). Overall, the KM with inertia offers a richer
repertoire of patterns.

The loss of stability of the incoherent state in the KM with inertia on with all-to-all coupling was studied
in [1,12,13,24]. The results in these papers are based on self-consistent analysis and numerical simulations.
Our approach relies on a rigorous linear stability analysis and applies to the KM with multimodal frequency
distributions on convergent graph sequences. We show that the loss of stability of the incoherent state may
lead to a variety of interesting spatiotemporal patterns, which can be related to the qualitative properties of
the intrinsic frequency distribution and network topology.

The paper is organized as follows. The next section presents necessary information about stability of
mixing adapted from [5]. In Section 3, we analyze the loss of stability of mixing in the model with a uni-
modal intrinsic frequency distribution. We use this problem as a convenient setting to introduce Penrose
diagrams. The full power of this technique is revealed when we apply it to study bifurcations in the model
with a family of bimodal intrinsic frequency distributions in Section 4. Here, in addition, to the PF bifur-
cation of mixing which already appeared in the unimodal case, we encounter an AH bifurcation. The latter
is responsible for formation of traveling clusters. Furthermore, we describe another PF bifurcation, which
occurs at a negative value of K. In contrast to the PF in the model with unimodal distribution, this time the
PF bifurcation supports stationary antiphase clusters superimposed onto irregularly moving oscillators. This
pattern was not present in the ordinary KM in (cf [18]). In Section 5, we describe the role of the network
topology on patterns emerging when mixing loses stability. We end this paper with concluding remarks in
Section 6.
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2 The linear stability of mixing

2.1 The mean field limit

The first step in the analysis of mixing is the derivation of the mean field limit for (1.1). To this end, we
rewrite (1.1) as follows

9θi “ ψi ` ωi,

9ψi “ ´ψi `
2K

n

n
ÿ

j“1

anij sinpθj ´ θiq,

9ωi “ 0, i P rns.

(2.1)

Equation (2.1) shows that the phase space of each (uncoupled) oscillator is TˆRˆR. With (2.1) at hand, it
is straightforward to write down the Vlasov equation describing the dynamics of (2.1) in the limit as n Ñ 8

(cf. [11])
Btf ` Bθ ppψ ` ωqfq ` Bψ pp´ψ ` Nrf sqfq “ 0, (2.2)

where
Nrf spt, θ, xq “

K

i

´

e´iθhpt, xq ´ eiθhpt, xq

¯

and
hpt, xq “

ż

TˆR2ˆI
W px, yqeiθfpt, θ, ψ, ω, yqdθdψdωdy, (2.3)

is the local order parameter. Here, I “ r0, 1s and fpt, θ, ψ, ω, xqdθdψdω stands for the probability that the
state of the oscillator at the ‘spatial’ location x P I and time t ě 0 is in rθ, θ`dθqˆrψ,ψ`dψqˆrω, ω`dωq.
W is a square integrable function on I2, which describes the limit of the graph sequence tΓnu1.

A distribution–valued solution fpt, θ, ψ, ω, xq of the initial value problem for the Vlasov equation (2.2)
yields the probability distribution of particles in the phase space TˆR2 for each pt, xq P R` ˆI (cf. [9,14]).
By mixing we mean the following steady state solution of (2.2)

fmix “
gpωq

2π
δpψq, (2.4)

where δ stands for Dirac’s delta function. fmix corresponds to the stationary regime, which is characterized
by the uniform distribution of the phases θi, i P rns.

2.2 The linearized equation

In this section, we present the key steps in the stability analysis and refer the reader to [5] for more details.

Throughout this paper, we will assume the following.
1Such functions are called graphons in the graph theory. For the details on graphons, graph limits, and their applications to the

continuum description of the dynamical networks, we refer the interested reader to [4, 16].
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Assumption 2.1. Let g be a real analytic function. In addition, we assume that ĝpηq :“
ş

R e
iηωgpωqdω is a

continuous function such that
lim
ηÑ8

|ĝpηq|eaη “ 0 (2.5)

for some 0 ă a ă 1.

Remark 2.2. By the Paley-Wiener theorem, (2.5) implies that gpωq has an analytic continuation to the
region 0 ď Impzq ă a.

Since ω does not change in time, f satisfies the following constraint

gpωq “

ż

TˆR
fpt, θ, ψ, ω, xqdθdψ, @pt, xq P R` ˆ I. (2.6)

Next, we recast (2.2) in Fourier variables

Btuj “ pj ´ ζqBζuj ` jBηuj `Kζphpt, xquj´1 ´ hpt, xquj`1q, j P Z, (2.7)

where we used

ujpt, ζ, η, xq “

ż

R2ˆT
eipjθ`ζψ`ηωqfpt, θ, ψ, ω, xqdθdψdω, j P Z (2.8)

and integration by parts. Note that the expression for the local parameter can be rewritten as

hpt, xq “

ż

I
W px, yqu1pt, 0, 0, yqdy.

In addition, we have the following constraints

u0pt, 0, 0, xq “ 1, (2.9)

u´jpt,´ζ,´η, xq “ ujpt, ζ, η, xq, j P N. (2.10)

Equation (2.9) follows from (2.6). Equation (2.10) follows from the fact that f is real. Thus, it is sufficient
to restrict to j P N

Ť

t0u in (2.7).

By changing from ζ to ξ given by the following relations:
"

ζ ´ j “ ´e´ξj , ζ ´ j ă 0,
ζ ´ j “ e´ξj , ζ ´ j ě 0,

(2.11)

and setting

vjpt, ξj , η, xq :“

#

ujpt, j ´ e´ξj , η, xq, ζ ´ j ă 0,

ujpt, j ` e´ξj , η, xq, ζ ´ j ě 0,
(2.12)

we obtain

Btvj “ Bξjvj ` jBηvj `Kpj ´ e´ξj q

´

hpt, xqvj´1 ´ hpt, xqvj`1

¯

, j P Z (2.13)

hpt, xq “

ż

I
W px, yqv1pt, 0, 0, yqdy, (2.14)
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subject to the constraint limξÑ8 v0pt, ξ, η, xq “ ĝpηq. For j ě 0, we adopt the first line of (2.11) because in
the definition of the local order parameter, we need u1pt, 0, 0, xq, for which ζ ´ j “ ´1 ă 0. By the same
reason, we use the second line for j ď ´1.

The steady state of the Vlasov equation, fmix, in the Fourier space has the following form

v0 “ ĝpηq, vj “ 0, j P N. (2.15)

To investigate the stability of (2.15), let w0 “ v0 ´ ĝpηq and wj “ vj for j ‰ 0. Then we obtain the
system

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Btw1 “ Bξ1w1 ` Bηw1 `Kp1 ´ e´ξ1q

´

hpt, xqĝpηq ` hpt, xqw0 ´ hpt, xqw2

¯

,

Btwj “ Bξjwj ` jBηwj `Kpj ´ e´ξj q

´

hpt, xqwj´1 ´ hpt, xqwj`1

¯

, j ě 0 and j ‰ 1.

hpt, xq “

ż

I
W px, yqw1pt, 0, 0, yqdy,

(2.16)

and limξÑ8 w0pt, ξ, η, xq “ 0. Our goal is to investigate the stability and bifurcations of the steady state
(mixing) wj “ 0, j P Z of this system.

The linearized system has the following form

Btw1 “ L1rw1s `KBrw1s “: Srw1s, (2.17)

Btwj “ Ljrwjs, j ě 0 and j ‰ 1, (2.18)

where

Ljrϕspξ, η, xq “ pBξ ` jBηqϕpξ, η, xq, j P Z (2.19)

Brϕspξ, η, xq “ p1 ´ e´ξqĝpηqW rϕp0, 0, ¨qspxq, (2.20)

and
W rf spxq “

ż

R
W px, yqfpyqdy. (2.21)

The self-adjoint operator W reflects the impact of connectivity on stability of mixing.

2.3 The spaces

To proceed with the linear stability analysis of the mixing state, we need to introduce the following Banach
spaces.

Recall a P p0, 1q defined in Assumption 2.1. For α P t0, 1u, let

β`
1 pηq “ maxt1, eαηu, β´

1 pηq “ mint1, eαηu, and β2pξq “ minteξ, 1u, (2.22)
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and define

X˘
α “ tϕ : continuous on R, }ϕ}X˘

α
“ sup

η
β˘
1 pηq|ϕpηq| ă 8u,

Y˘
α “ tϕ : continuous on R2, }ϕ}Y˘

α
“ sup

ξ,η
β˘
1 pηqβ2pξq|ϕpξ, ηq| ă 8u,

H˘
α “ L2pI;Y˘

α q.

(2.23)

Recall that I stands for r0, 1s. The norms on H˘
α are defined by

}ϕ}2H˘
α

“

ż

I

˜

sup
ξ,η

β˘
1 pηqβ2pξq|ϕpξ, η, xq|

¸2

dx. (2.24)

Note that the spaces
H`
a Ă H`

0 “ H´
0 Ă H´

a

form a Gelfand triplet. Since the linear operators defined above have essential spectra on the imaginary axis,
we need the generalized spectral theory based on the Gelfand triplet to detect bifurcations of mixing [5].

2.4 The spectrum of S

Recall the definition of W (2.21) and note that it is a compact self-adjoint operator on L2pIq. Therefore,
the eigenvalues of W are real with the only accumulation point at 0. We denote the set of eigenvalues of
W by σppW q.

Operators Lj , j P Z and B are densely defined on H`
0 (see (2.19), (2.20)) and B is a bounded operator

(cf. [5]). The resolvent of Lj is given by

pλ´ Ljq
´1rvspξ, η, xq “

$

’

’

&

’

’

%

ż 8

0
e´λtvpξ ` t, η ` jt, xqdt, ℜ λ ą 0,

´

ż 0

´8

e´λtvpξ ` t, η ` jt, xqdt ℜ λ ă 0.
(2.25)

The right–hand side of (2.25) belongs to H`
0 for any v P H`

0 only if ℜ λ ă ´1 or ℜ λ ą 0. For
´1 ď ℜ λ ď 0, the set of v such that the right-hand side exists is not dense in H`

0 . Thus, the residual
spectrum of Lj is the region S1 :“ tz P C : ´1 ď ℜz ď 0u. S1 contains no eigenvalues of Lj , j P Z.
The essential spectrum of S is given by S1, because S “ L1 ` KB is the bounded perturbation of L1.
However, S1 may still contain eigenvalues of S, as one can see from the following lemma.

Lemma 2.3. (cf. [5]) Let ν be a nonzero eigenvalue of W and let Vν P L2pIq be a corresponding eigen-
function. Define

Dpλ, ξ, ηq “

ż

R

ˆ

1

λ´ iω
´

e´ξ

λ` 1 ´ iω

˙

eiηωgpωqdω, (2.26)

and

Gpλq :“ Dpλ, 0, 0q “

ż

R

ˆ

1

λ´ iω
´

1

λ` 1 ´ iω

˙

gpωqdω. (2.27)
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Then the root λ “ λpνq of the following equation

Gpλq “
1

Kν
, (2.28)

not belonging to BσpL1q “ tz P C : ℜ z “ ´1 or ℜ z “ 0u, is an eigenvalue of S on H`
0 . For each such

root λ “ λpνq the corresponding eigenfunction is given by

vλpξ, η, xq “ Dpλ, ξ, ηqVνpxq. (2.29)

To study patterns arising at the bifurcations of mixing we define the function

Υλpω, ξq “

ˆ

1

λ´ iω
´

e´ξ

λ` 1 ´ iω

˙

gpωq. (2.30)

Then, the following equality holds:

vλpξ, η, xq “ FηrΥλspξ, ηqVνpxq, (2.31)

where Fη is the Fourier transform with respect to ω ÞÑ η.

Let
Ha :“ tz P C : ℜz ą ´au. (2.32)

For ℜ λ ą 0,Υλpω, ξq is an integrable function in ω as can be seen from (2.30). For λ “ iu P iR, Υλpω, ξq

is no longer an integrable function, but it can be interpreted as a tempered distribution, as the following
argument shows. By Sokhotski–Plemelj formula (cf. [22]), we have

lim
xÑ0`

xΥx`iy, ϕy “ lim
xÑ0`

ż 8

´8

gpωqϕpωq

x` iy ´ iω
dω ´

ż 8

´8

e´ξgpωqϕpωq

1 ` ipy ´ ωq
dω

“ πgpyqϕpyq ` i p.v.

ż 8

´8

gpω ` yqϕpω ` yq

ω
dω ´

ż 8

´8

e´ξgpωqϕpωq

1 ` ipy ´ ωq
dω,

for any ϕ from the Schwartz class SpRq. Thus, Υiy :“ limxÑ0` Υx`iy P S 1pRq for each ξ and

Υiy “ πgpyqδy ` iPyrgs ´
e´ξgpωq

1 ` ipy ´ ωq
, (2.33)

where δy stands for the Dirac’s delta function supported at y and

xPyrgs, ϕy “ p.v.

ż 8

´8

gpω ` yqϕpω ` yq

ω
dω. (2.34)

Indeed, limλÑ0` vλpξ, η, xq is an element of the space H´
a , the dual space of H`

a . This fact was used to
apply the center manifold reduction on H´

a in [5].

The formulae for eigenfunctions of S (2.31)-(2.33) corresponding to bifurcating eigenvalues will be
used below to explain spatiotemporal patterns arising at the loss of stability of mixing.
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3 The method of Penrose

Having reviewed the linear stability analysis, we next focus on the instability of mixing. To this end, we use
a geometric method for locating and identifying bifurcations in the Vlasov equation, which was invented by
Penrose in the context of Landau damping [19]. This method was adapted to the analysis of the classical
Kuramoto model in [8] and the Kuramoto model on graphs in [7, 18].

In this section, we explain Penrose’s method by applying it to the second order model (1.1) with a uni-
modal density (see Fig. 2a). In the next section, we apply this method to unfold a codimension-2 bifurcation
of mixing in the model with a bimodal density. In these two sections, we restrict to W ” 1, which corre-
sponds to the all–to–all connectivity. The bifurcation scenarios discussed below will also hold for the KM
on any graph sequence with a constant graph limit, e.g., Erdős-Rényi or Paley graphs [6].

For W ” 1, the only nonzero eigenvalue of W is ν “ 1 of multiplicity 1. Thus, the equation for the
eigenvalues of S (2.28) takes the following form

Gpλq “ K´1, (3.1)

where G is defined in (2.27).

Our goal is to locate the roots of (3.1) in H0 “ tλ P C : ℜλ ą 0u and find a bifurcation value K “ Kc

at which the root disappears from H0. To this end, we introduce

Gpiyq “ lim
xÑ0`

Gpx` iyq

and denote C “ tGpitq P C : t P Ru. The Sokhotski-Plemelj formula [22] gives

Gpitq “ πgptq ´

ż 8

´8

gpωq

1 ` pω ´ tq2
dω

` i

"
ż 8

0

gpt` ωq ´ gpt´ ωq

ω
dω ´

ż 8

´8

pω ´ tqgpωq

1 ` pω ´ tq2
dω

*

.

(3.2)

This yields the following parametric equations for C:

x “ πgptq ´

ż 8

´8

gpωq

1 ` pω ´ tq2
dω,

y “

ż 8

0

gpt` ωq ´ gpt´ ωq

ω
dω ´

ż 8

0

ω pgpt` ωq ´ gpt´ ωqq

1 ` ω2
dω

“

ż 8

0

gpt` ωq ´ gpt´ ωq

ωp1 ` ω2q
dω

(3.3)

for t P R. Note that px, yq Ñ 0 as t P ˘8. Thus, C is a bounded closed curve.

Next, suppose g is an even unimodal density (see Fig. 2a). The even symmetry of g implies that C
is symmetric about the x–axis (cf. (3.3)). It intersects the positive real semiaxis at a unique point P0 “

px0, 0q, x0 ą 0. Further, note that Gp0q “ x0 (Figure 2a, b). From the x–equation in (3.3) we find

x0 “ πgp0q ´

ż 8

´8

gpωq

1 ` ω2
dω “

ż 8

´8

gp0q ´ gpωq

1 ` ω2
dω ą 0. (3.4)
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Define
Kc :“ px0q´1. (3.5)

By the Argument Principle, the number of roots of (3.1) in H0 is equal to the winding number of C about
K´1 [19]. Since for K ă Kc, K´1 lies outside C (Fig. 2b), and the winding number is 0. We conclude that
for K ă Kc, S has no eigenvalues with positive real parts. Thus, for K ă Kc, mixing is linearly stable2.
For K ą Kc, on the other hand, the winding number is 1. Because of eigenvalues with positive real parts,
mixing is unstable for K ą Kc. As K Ñ Kc ` 0, λ Ñ 0`, and at K “ Kc, mixing undergoes a pitchfork
(PF) bifurcation.

Using (2.31) and (2.33), we compute the eigenfunction (written in ω-variable) corresponding to λ “ 0:

Υ0 “ πgp0qδ0 ` iP0rgs ´
e´ξ

1 ´ iω
gpωq. (3.6)

The first two terms on the right–hand side of (3.6) have singularities at ω “ 0. The second term also has
a regular component, that is smooth in ω ‰ 0. This determines the structure of the PLS bifurcating from
the mixing state (Fig. 2c). The delta function on the right–hand side of (3.6) implies that the coherent
cluster within the PLS is stationary. The regular component of iP0rgs and the third term yield the velocity
distribution within the incoherent group. The combination of these two terms yields the velocity distribution
within the PLS (Fig. 2d). K “ 0.29 and n “ 5000 were used in d.

4 A bimodal distribution

In this section, we study (1.1) with bimodal frequency distribution. In this setting we find new bifurcations
of mixing: an AH bifurcation and a second PF bifurcation. They result in new patterns that are not present
in the unimodal case. In the end of this section, we show that breaking symmetry in a family of bimodal
distributions leads to formation of chimera states as in a similar scenario for the classical KM identified in
our earlier work [7, 18]. In the numerical experiments presented in this section we use the following family
of probability density functions

gµσ1,σ2pxq “
1

2
?
2π

$

’

&

’

%

e
´px`µq2

2σ2
1

σ1
`
e

´px´µq2

2σ2
2

σ2

,

/

.

/

-

. (4.1)

When σ1 “ σ2 “: σ, we collapse indices into one gµσ :“ gµσ,σ.

4.1 An Andronov-Hopf bifurcation

First, we keep σ1 “ σ2 “: σ and increase µ from zero. We want to understand how the critical curve
changes as µ is varied. The key events in the metamorphosis of C are shown in Fig. 3e-h. For small µ ą 0,
Cµ 3 is diffeomorphic to C0 (cf. Fig. 2b) in a neighborhood of P0, the point the intersection of C0 with the

2In fact, it is asymptotically stable with respect to a suitable weak topology [5].
3From this point on, we explicitly indicate the dependence of C, x, and P on µ.
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Figure 2: a) A graph of an even unimodal probability density function g. We take a Gaussian centered at
0 with σ “ 0.3. b) The corresponding critical curve C intersects postive real semiaxis at a unique point P0

indicated by a green star. The preimage of P0 underG is indicated by the green star in (a). c) P0 corresponds
to the PF bifurcation of mixing resulting in a PLS, which is then gradually transformed into synchronous
state. d) The velocity distribution within the PLS near PF bifurcation is determined by the eigenfunction
(3.6).
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Figure 3: Continuous deformation of the unimodal symmetric density g with σ “ 0.3 into a bimodal
symmetric one (a-d) and the plots of the corresponding critical curves (e-h). At the critical value µ “

µ˚ « 0.413, Cµ˚ develops a cusp (e). This corresponds to the codimension–2 bifurcation of mixing.
The preimages of points of the intersection of the critical curve with the real axis P0 and Pµ in (e-h) are
indicated by stars in the corresponding plots in (a-d). From left to right, µ increases from µ˚ to 0.5, 0.555,
and 1.

real axis. At a critical value µ˚ ą 0, Cµ˚ develops a cusp at Pµ˚ (see Fig. 3e). To identify the condition for
the cusp, we look for the value of µ, at which the condition of the Inverse Function Theorem fails for G. By
(3.3) this occurs when dy{dt|t“0 “ 0, i.e.,

Jrgµ
˚

σ s :“
dy

dt

ˇ

ˇ

ˇ

t“0
“ 2

ż 8

0

pgµ
‹

σ q1psq

sp1 ` s2q
ds “ 0 (4.2)

(see Fig. 4a).

For µ ą µ˚ there is a point on the real axis Pµ, which has two preimages under G denoted by ˘iν
(Fig. 3b, f). Thus, for µ ą µ˚ mixing loses stability through the Andronov-Hopf (AH) bifurcation at
K “ K`

c pµq, µ ą µ˚, giving rise to a two-cluster pattern shown in Figure 1 c. At the AH bifurcation, S
has a pair of complex conjugate eigenvalues ˘iν. The corresponding eigenfunctions written in ω-variable
are given by (2.33)

Υ˘iν “ πgp˘νqδ˘ν ` iP˘νrgs ´
e´ξ

1 ` ip˘ν ´ ωq
gpωq. (4.3)

Tempered distributions Υiν and Υ´iν have singularities at iν and ´iν respectively due to δ¨ and P¨ on
the right–side of (4.3). This implies the existence of two groups of phase-locked oscillators moving with
velocities approximately equal to ˘ν. Moreover, Fig. 4b shows that outside a small neighborhood of µ˚,
ν « µ and so the group velocities correspond to the peaks of the density gµσ . The regular part of P¨ results
in a cloud of irregularly moving oscillators. This explains the salient features of the two-clusters patterns in
the pattern replacing mixing after it loses stability (see Fig. 5a). Note that µ “ µ˚ separates the regions of
the PF and AH bifurcations. At this value of µ and the corresponding critical value of K mixing undergoes
a codim-2 bifurcation. Unfolding of this bifurcation contains a range of spatiotemporal patterns bifurcating
from mixing including one- and (traveling) two- cluster states and chimera states (see Section 4.3).
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4.2 A second pitchfork bifurcation

For increasing values of µ ą µ˚, the loop formed by the critical curve grows while remaining in the right
half-plane (Fig. 3f). At a certain value µ0 ą µ˚ it hits the origin (Fig. 3g). For µ ą µ0 the point of simple
intersection of C with the real axis moves into the negative semiaxis. This corresponds to the creation of the
new pitchfork bifurcation at a negative value:

K´
c “

ˆ

πgp0q ´

ż 8

´8

gpωq

1 ` ω2
dω

˙´1

ă 0, (4.4)

which leads to a pattern shown in Figure 1 g. Thus, for µ ą µ0 mixing is stable for K P pK´
c ,K

`
c q with

K´
c ă 0 ă K`

c . The corresponding unstable mode at the PF bifurcation at K´
c is still given by (3.6) albeit

with a bimodal g. In the present case, Equation (3.6) implies that there is a group of stationary phase-locked
oscillators due to δ0 and the singularity of P0rgs on the right–hand side of (3.6). In addition, there is a group
of moving oscillators whose velocities are determined by the regular part of P0rgs and the last term on the
right–hand side of (3.6).

Equation (3.6) accounts for the velocity distribution of the pattern replacing mixing but it does not
explain why the phase-locked oscillators are organized in two antiphase coherent groups whereas for the PF
at positive KPF analyzed in Section 3 there is a single coherent group. The splitting into two groups can be
understood with the help of the method used in [18] for studying cluster dynamics. We outline the argument
from [18] to the extent needed for present purposes. To this end, let

J´ :“ tj P rns : ωj ă 0u and J` :“ tj P rns : ωj ě 0u

and
U1 “ |J´|´1

ÿ

iPJ´

θi and U2 “ |J`|´1
ÿ

iPJ`

θi.

Here, |J | denotes the cardinality of J . U1,2 describe the evolution of the two macroscopic clusters of phase-
locked oscillators. In [17] it is shown that in the limit n Ñ 8, U1 and U2 satisfy the following system of
ODEs

:U1 ` 9U1 “ ´µ`K sin pU2 ´ U1q ,

:U2 ` 9U2 “ µ`K sin pU1 ´ U2q ,

From this, we derive an ODE for X “ U2 ´ U1

9X “ Y,

9Y “ 2µ´ Y ´K sinX.
(4.5)

A standard calculation shows that parcsin
´

2µ
K , 0

¯

and
´

π ´ arcsin
´

2µ
K

¯

, 0
¯

are two equilibria of (4.5).
Furthermore, the former is stable for K ą 0 and the latter is stable for K ă 0.

4.3 Chimera states

We now fix µ P pµ˚, µ0q and break the even symmetry of gµσ by increasing σ1 and decreasing σ2 (see
Fig. 6a). This affects the critical curve Cµ,σ1,σ2 in the following way. The point of double intersection Pµ

13
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Figure 4: a) The plot of Jrgµσ s vs µ (cf. (4.2)) when σ “ 0.3. The zero of Jrgµσ s determines the critical
value µ˚. b) The plot of the absolute value of the two preimages G´1pPµq. Note that for µ ą µ˚ outside a
small neighborhood of µ˚,

ˇ

ˇG´1pPµq
ˇ

ˇ « µ, i.e., the two preimages of Pµ lie near the peaks of the density
gµσ . (cf. (4.6)).
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Figure 5: The bifurcation diagrams corresponding to the symmetric and asymmetric bimodal distributions
for all–to–all (a and b, respectively). Colored dots indicate the value of the order parameter computed
for each cluster separately for different values of K and different realizations of ωi’s. To improve visu-
alization, oscillators are rearranged into two groups depending on the sign of their intrinsic frequencies.
In (a), the loss of stability of mixing at K`

c results from the AH bifurcation and so creates a traveling
cluster state. In (b), a chimera is born at the loss of stability of mixing at K1

c . It bifurcates into a moving
traveling cluster at K2

c . Note that the bifurcations at K1
c and K2

c affect clusters practically separately. In
both cases there is an additional PF bifurcation at K´

c ă 0 resulting in stationary, anti-phase clusters. To
better visualize this state, all oscillators whose average velocity is sufficient small are colored in yellow
stars. The following parameters were used for the distributions of the intrinsic frequencies a) σ “ 0.3,
µ “ 1; b) σ1 “ 0.4, σ2 “ 0.2, µ “ 1.
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Figure 6: a) Asymmetric bimodal distribution with σ1 “ 0.4, σ2 “ 0.2, and µ “ 1; b) its corresponding
critical curve. c) The histogram of the velocity distribution within a chimera is fully determined by the
singular distribution vitµ`0. The histogram was generated by simulating (1.1) with n “ 5000,K “ 0.75.

splits into two points of intersection with the real axis: P 1
µ “ px1µ, 0q and P 2

µ “ px2µ, 0q with 0 ă x2µ ă x1µ
(see Fig. 6b). Note that the preimages of these points under G are still very close to the maxima of gµσ1,σ2
(see Fig. 6a). In particular, the preimage of P 1

µ is approximately iµ, the center of the more localized
peak of gµσ1,σ2 . This implies that mixing loses stability at K1

c « Gpiµq´1 The bifurcating eigenvalue
λ “ iν1pν1 « µq and the corresponding eigenfunction

Υiν1 “ πgµσ1,σ2pν1qδν1 ` iPν1rgµσ1,σ2s ´
e´ξgµσ1,σ2pωq

1 ` ipν1 ´ ωq
. (4.6)

Note that the first term on the right hand side of (4.6) is a singular distribution localized at ν1. The second
term has a singularity at ν1, but its regular part has some ‘weight’ near ν2 « ´µ. These features translate
into the velocity distribution within a chimera: there is a tightly localized peak around µ (the coherent group)
and a broader peak near ´µ (the incoherent group) (Figs. 6c and 5b).

5 The role of connectivity: nearest–neighbor coupling

We have seen above that a PF bifurcation of mixing results in the formation of one or a pair of stationary
coherent clusters depending on the distribution type and the sign of K, while the AH bifurcation leads to a
pair of travelling coherent structures. All these patterns are spatially homogeneous if the coupling is all-to-
all, because the only nonzero eigenvalue of W is positive and the corresponding eigenfunction is constant.
In general, W may have eigenvalues of both signs [4]. In this case, the interval of stability of mixing is
bounded from both sides pK´

c ,K
`
c q, K´

c ă 0 ă K`
c . The values of K´

c and K`
c , as well as the types

of the bifurcations at these values of K, depend on the interplay between the type of the distribution of ωi
and the spectral properties of W . Furthermore, the bifurcation at one of these points results in a pattern
with nontrivial spatial structure. In this section, we illustrate some of possible bifurcation scenarios by
considering (1.1) with a nonlocal nearest-neighbor coupling.

Let W px, yq “ Upx´ yq, which is defined by

Upxq “ 1p´r,rqpxq, on p´1{2, 1{2q

and extended to R by periodicity. Here, 1A stands for the indicator function, and r P p0, 1{2q is a fixed
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Figure 7: Bifurcation diagrams for (1.1) with unimodal and bimodal intrinsic frequency distributions and
nearest neighbor coupling with range r “ 0.35. For this coupling type, W has eigenvalues of both signs,
i.e., ν´ ă 0 ă ν`. (a) For the unimodal distribution (σ “ 0.3) the critical curve has a (simple) intersection
with the real axis at x` ą 0 resulting in bifurcations K´

c “ ´ 1
|ν´x`|

(stationary twisted states) and

K`
c “ 1

ν`x` (synchronization). (b) For the bimodal distribution pσ1 “ σ2 “ 0.3, µ “ 1) the critical
curve has two intersections with the real axis, x´ ă 0 ă x` (where x´ results in a PF and x` in an
AH bifurcation). In this case K´

c “ ´ 1
|ν`x´|

(stationary, anti-phase clusters) and K`
c “ 1

ν`x` (moving
homogeneous clusters). (c) Varying the bimodal distribution pσ1 “ σ2 “ 0.3, µ “ 2) changes the roots
of the critical curve. In this case K´

c “ ´ 1
|ν´x`|

(moving twisted clusters) and K`
c “ 1

ν`x` (moving
homogeneous clusters).

parameter. Then

W rf spxq “

ż 1{2

´1{2
Upx´ yqfpyqdy.

The eigenvalues of W can be computed explicitly

νk “

ż 1{2

´1{2
Upxqe˘2πikxdx “

ż 1{2

´1{2
Upxq cos p2πkxq dx, k “ 0, 1, 2, . . . .

The corresponding eigenfunctions are wk “ e˘2πikx. The largest positive eigenvalue is ν` :“ ν0 “ 2r
(cf. [4, Lemma 5.3]). Since k “ 0, the corresponding eigenspace is 1-dimensional consisting of constant
functions. By k˚ ą 0 denote the value of k corresponding to the smallest negative eigenvalue of W ,
ν´ :“ νk˚ . The corresponding eigenfunctions are e2πik

˚x and e´2πik˚x.

To explain the implications of the presence of the eigenvalues of both signs in the spectrum of W , we
first turn to the unimodal distribution. If g is even and unimodal then the region of stability of mixing is a
bounded interval pK´

c ,K
`
c q with K´

c “ pπgp0qν´q´1 and K`
c “ pπgp0qν`q´1 [4]. At K`

c we observe a
familiar scenario of transition to synchronization (Figure 7a). At K´

c the situation is different. The center
subspace of the linearized problem in the Fourier space is spanned by

v
p1q

ν´ “ Υ0pω, ξqe2πik
˚x and v

p2q

ν´ “ Υ0pω, ξqe´2πik˚x.

In the solution space, we therefore expect that

fpt, θ, ψ, ω, xq „ Re

"
ż

R
eipθ´ζq

´

c1v
p1q

ν´ ` c2v
p2q

ν´

¯

dζ,

*

“ Re
!´

c1e
ip2πk˚x`θq ` c2e

ip´2πk˚x`θq
¯

Υ̃0pω, ψq

)

, c1, c2 P C,
(5.1)
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and
Υ̃0pω, ψq “

ż

R
e´iζψΥ0 pω, ξpζqq dζ.

For the PLS emerging at the bifurcation, we see that the structure encoded in Υ̃0pω, ψq is now superimposed
onto a linear combination of ˘k˚–twisted states (Fig. 7a).

The same principle applies to the analysis of bifurcations in the bimodal case. Suppose µ and σ are
such that the critical curve has the form as shown in Figure 3h. Recall that x´ ă 0 ă x` denote the
x-coordinates of the points of intersection of the critical curve with real axis, P0 and Pµ. The former is
a simple intersection point and the latter is a double intersection point. The expression for x´ is known
explicitly

x´ “ πgp0q ´

ż 8

´8

gpωq

1 ` ω2
dω. (5.2)

As in the unimodal case, mixing is stable in a finite interval for K, pK´
c ,K

`
c q. The values of K´

c and K`
c

as well as the types of the bifurcations at these points depend on x´, x`, ν´, and ν`:

K´
c “ ´min

"

1

|ν`x´|
,

1

|ν´x`|

*

and K`
c “ min

"

1

ν`x`
,

1

ν´x´

*

. (5.3)

Here, the type of the intersection at x˘ (simple vs double) determines the type of the bifurcation, while the
eigenfunctions V ˘ corresponding to ν˘ determine the spatial organization of the emerging pattern (homo-
geneous vs twisted states). Note that each of the two possible values of K´

c and K`
c in (5.3) corresponds

to a distinct combination of the velocity distribution and the spatial profile of the emerging pattern. This
results in a four distinct bifurcation scenarios for the loss of stability of mixing in the KM with symmetric
bimodal intrinsic frequency distribution.

To illustrate different bifurcation scenarios, we use the following examples. Suppose |ν`x´| ą |ν´x`|

then K´
c “ pν`x´q´1. Because x´ is a simple intersection point, the corresponding bifurcation is PF. The

anti-phase solution bifurcating from mixing at K “ K´
c is shown in Fig. 7b (compare with the anti-phase

solution in Fig. 5b). Alternatively, if |ν`x´| ă |ν´x`| then K´
c “ pν´x`q´1. This time the bifurcation is

AH and the bifurcating pattern are two sets of traveling twisted states (Fig. 7c).

Likewise, there are two possible scenarios for the bifurcations at K “ K`
c . If ν`x` ą ν´x´ then

K`
c “ pν`x`q´1. Thus, we have an AH bifurcation producing two sets of traveling clusters (Fig. 7c). If,

on the other hand, ν`x` ă ν´x´ then K`
c “ pν´x´q´1. The corresponding bifurcation is PF producing a

set of stationary twisted states. To illustrate the last scenario, we take

Upxq “ 2ν cosp2πxq.

With this choice of U , the only nonzero eigenvalue of W is ν. Taking ν ă 0 we have ν´ “ ν and ν` does
not exist.

The bifurcation at K´
c “ ´ 1

|ν´x`|
generates moving twisted clusters, while that at K`

c “ 1
ν´x´ results

in a pair of stationary antiphase twisted states. These patterns are shown in Figure 8.
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Figure 8: Bifurcation diagram for the coupling Upxq “ ´6 cosp2πxq. Taking bimodal distribution pσ1 “

σ2 “ 0.3, µ “ 1) results in the bifurcations K´
c “ ´ 1

|ν´x`|
(moving twisted clusters) and K`

c “ 1
ν´x´

(stationary, anti-phase twisted states). To better visualize this latter state, the position of every oscillator
whose average velocity is sufficiently small is depicted by a yellow star.

6 Discussion

The instability of mixing in the original KM and in the model with inertia reveals a wealth of spatiotem-
poral patterns in these models. In our previous work [7, 18], we developed a method for studying these
patterns, which is based on the combination of the linear stability analysis of mixing (cf. [4]) and Penrose
diagrams [19] (see also [8]). In the present paper, we extend this approach to the KM with inertia. We show
that in addition to a PF and an AH bifurcations of mixing similar to those analyzed in [7, 18], the KM with
inertia features new bifurcation scenarios which were not present in the original model in similar settings.
In particular, for the model with symmetric bimodal frequency distribution we identify a new PF bifurcation
which follows the AH bifurcation of mixing. The new PF bifurcation results in a new PLS, which consists
of two stationary clusters superimposed onto a cloud of irregularly moving oscillators (Fig. 1 g). Note that
in the original KM clusters are born in an AH bifurcation and are automatically traveling (cf. [18]). The
same bifurcation in the model with inertia on nonlocal nearest neighbor graphs produces similar patterns
with coherent clusters organized as twisted states (Fig.1 f). These patterns were not present in the analy-
sis of the original KM. Furthermore, the presence of the second PF bifurcation enriches the repertoire of
possible bifurcation scenarios considerably. For instance, in the model with a family of symmetric bimodal
distributions we find four distinct bifurcation scenarios of mixing (cf. Section 5) versus a single bifurcation
scenario found for the original KM in a similar setting. This underscores the flexibility of pattern forming
mechanisms in the model with inertia.

In addition to applications to biological systems well-known for the ordinary KM, the model with inertia
is also known for its applications in modeling power grids [10]. In particular, the model with bimodal
frequency distribution comes up in the context of certain high-voltage power grids (cf. [25]). Therefore,
bifurcations of mixing identified in the present paper may be useful for understanding stability of these
technological systems.
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