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Abstract. We propose a one-dimensional (1D) model for the three-dimensional
(3D) incompressible ideal magnetohydrodynamics. We establish a regularity
criterion of the Beale-Kato-Majda type for this 1D model. Without the stretch-
ing effect, the model with only transport effect equipped with a proper sign
is shown to have global in time strong solution. Some numerical simulations
suggest that solutions of this model with smooth periodic initial data do not
tend to develop singularities at finite time.
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1. Introduction

The ideal incompressible magnetohydrodynamics (MHD) governed by the set of
partial differential equations

ut + (u · ∇)u− (B · ∇)B +∇Π = 0,

Bt + (u · ∇)B − (B · ∇)u = 0,

∇ · u = 0, ∇ ·B = 0,

(1.1)

is an important model in geophysics and astrophysics. In the system, the vector
fields u and B denote the fluid velocity and magnetic field respectively; the scalar
function Π is the pressure. We notice that (1.1) reduces to the incompressible Euler
equation if B ≡ 0,

ut + (u · ∇)u+∇Π = 0,

∇ · u = 0.
(1.2)

The mathematical question of whether or not a solution of the 3D Euler (1.2)
develops singularity at finite time remains open. So does it for the 3D MHD (1.1).

Denote the vorticity by ω = ∇× u. Taking a curl on (1.2) gives

ωt + (u · ∇)ω + (ω · ∇)u = 0, (1.3a)

u = ∇× (−∆)−1ω. (1.3b)

We note that u can be recovered from ω through the Biot-Savart law (1.3b) which
involves a nonlocal operator. In (1.3a), the quadratic term (u · ∇)ω is regarded
as the transport term, while (ω · ∇)u represents the stretching effect. The general
belief is that the stretching effect is responsible for dramatic wild behaviours of
solutions, for instance, the appearance of finite-time singularity.
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1.1. 1D models for Euler equation and related equations. To gain insights
towards understanding the properties of solutions to the Euler equation (1.2), ap-
proximating models and toy models have been proposed and studied in the litera-
ture. One type of 1D models for the vorticity form of Euler equation has attracted
a great deal of attention, which can be traced back to the work of Constantin, Lax
and Majda [1]. The authors of [1] proposed the following 1D model for system
(1.3a)-(1.3b),

ωt = ωHω, (1.4a)
ux = Hω, (1.4b)

with ω = ω(t, x) and u = u(t, x) for t ≥ 0 and x ∈ R. In the system, H denotes the
Hilbert transform defined by

Hf =
1

π
P.V.

∫ ∞
−∞

f(y)

x− y
dy. (1.5)

We note that equation (1.4b) is a 1D analogue of the Biot-Savart law (1.3b). With
only stretching effect in equation (1.4a), the authors solved system (1.4a)-(1.4b)
exactly and showed the formation of finite-time singularities for a class of initial
data. Since then, various generalisations of (1.4a)-(1.4b) have been studied both
analytically and numerically. The De Gregorio model [4, 5]

ωt + uωx − ωHω = 0, (1.6a)
ux = Hω, (1.6b)

includes both transport and stretching effects. Numerical results of [4, 5] provide ev-
idence that finite-time blow-up may not occur for system (1.6a)-(1.6b). It indicates
that the convection (transport) term has a regularization effect and it dominates
the stretching term. Later on, in order to understand the competing effects of con-
vection and stretching terms, Okamoto, Sakajo and Wunsch [13] suggested to study
the following family of models

ωt + auωx − ωHω = 0, (1.7a)
ux = Hω, (1.7b)

with a parameter a ∈ R. The authors also conjectured global in time existence
of solutions to (1.7a)-(1.7b) with a = 1 which is the De Gregorio model (1.6a)-
(1.6b). Indeed, Jia, Stewart and Šverák [11] proved that solutions of (1.6a)-(1.6b)
with initial data near a steady state are global and converge to this steady state.
In contrast, Elgindi and Jeong [7] showed singularity formation for (1.6a)-(1.6b)
in classes of Hölder continuous solutions. Moreover, the authors of [7] established
that, there exists smooth initial data such that solution of the Okamoto-Sakajo-
Wunsch model (1.7a)-(1.7b) with small |a| develops self-similar type of blow-up at
finite time. Later on, Elgindi, Ghoul and Masmoudi [6] further showed that such
self-similar blow-up is stable.

When a = −1, (1.7a)-(1.7b) is the Cordoba-Cordoba-Fontelos model introduced
in [2] for the 2D quasi-geostrophic equation. Cordoba, Cordoba and Fontelos [2, 3]
showed finite-time singularity formation for this model with a general class of initial
data.

For axisymmetric 3D incompressible Navier-Stokes equation with swirl, Hou, Li,
Shi, Wang and Yu [9] proposed a 1D nonlocal model for a simplified 3D nonlocal
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system [10]. For this 1D model, the authors proved finite-time singularity formation
rigorously and showed numerical evidences.

1.2. 1D models for MHD. Inspired by the works discussed above, we will pro-
pose a family of nonlocal nonlinear models for the MHD system (1.1) as an attempt
to understand the intricate structures involved in this system. In the context of
MHD, besides the convection and stretching effects, the coupling and interaction
between the fluid velocity and magnetic field also play crucial roles, which naturally
introduce additional challenges.

Denote the Elsässer variables by

p = u+B, m = u−B.

Equivalent to (1.1), (p,m) satisfies the system

pt + (m · ∇)p+∇Π = 0,

mt + (p · ∇)m+∇Π = 0,

∇ · p = 0, ∇ ·m = 0.

(1.8)

The structure of system (1.8) indicates that p and m are transported by each other.
We also note that (1.8) appears in a rather symmetric form. Denote the vorticity
of p and m by

Ω = ∇× p, ω = ∇×m.
It follows from the Biot-Savart law that

p = ∇× (−∆)−1Ω, m = ∇× (−∆)−1ω.

Taking the curl ∇× on the equations of (1.8) gives

Ωt + (m · ∇)Ω− (Ω · ∇)m+∇× (m∇p) = 0,

ωt + (p · ∇)ω − (ω · ∇)p+∇× (p∇m) = 0,

p = ∇× (−∆)−1Ω,

m = ∇× (−∆)−1ω,

(1.9)

where m∇p = (mi∂jpi)j and p∇m = (pi∂jmi)j . We propose the following 1D
model to mimic system (1.9),

Ωt +mΩx − Ωmx − ωpx +mΩx = 0,

ωt + pωx − ωpx − Ωmx + pωx = 0,

px = HΩ, mx = Hω.

(1.10)

In this paper, we will work with a simplified version of (1.10) by dropping the
stretching effects Ωmx and ωpx and focusing on the transport effects, namely

Ωt + amΩx − ωpx = 0,

ωt + apωx − Ωmx = 0,

px = HΩ, mx = Hω,

(1.11)

with a parameter a ∈ R. We will investigate (1.11) on the periodic interval S1 =
[−π, π]. Correspondingly, the Hilbert transform for periodic functions on S1 can
be defined as

Hf(x) =
1

2π
P.V.

∫ π

−π
f(y) cot

(
x− y

2

)
dy. (1.12)
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Indeed, the Cauchy kernel 1
x in definition (1.5) can be made periodic using the

following identity

1

2
cot

(
x− y

2

)
=

1

x
+

∞∑
n=1

(
1

x+ 2nπ
+

1

x− 2nπ

)
.

To uniquely determine p from Ω and m from ω, we make the choice of Gauge by
taking zero-mean value ∫ π

−π
p(t, x) dx =

∫ π

−π
m(t, x) dx = 0. (1.13)

We note that the mean value of Ω and ω is invariant for system (1.11) with
a = 1. Indeed, we have for a smooth solution (Ω, ω) that

d

dt

∫ π

−π
Ω(t, x) dx =

∫ π

−π
(−amΩx + ωpx) dx

=

∫ π

−π
(amxΩ + ωpx) dx

=

∫ π

−π
(aΩHω + ωHΩ) dx

=(1− a)

∫ π

−π
ωHΩ dx

where we have used integration by parts and the skew symmetry property of the
Hilbert transform. Similarly, we have

d

dt

∫ π

−π
ω(t, x) dx =

∫ π

−π
(−apωx + Ωmx) dx = (1− a)

∫ π

−π
ΩHω dx.

Obviously when a = 1, it follows
d

dt

∫ π

−π
Ω(t, x) dx =

d

dt

∫ π

−π
ω(t, x) dx = 0,

and this is not true in general for a 6= 1. Hence, it is not appropriate to consider
solutions of (1.11) in spaces of functions with zero mean for general value of a.

Consider the rescaled variables

Ω̃ = aΩ, ω̃ = aω

with corresponding p̃ and m̃ such that

p̃x = HΩ̃, m̃x = Hω̃.

We can verify that p̃ = ap and m̃ = am. In view of (1.11), (Ω̃, ω̃) satisfies the
system

Ω̃t + m̃Ω̃x − a−1ω̃p̃x = 0,

ω̃t + p̃ω̃x − a−1Ω̃m̃x = 0.
(1.14)

Formally, taking a → ∞, (1.14) turns to the system with only convection effect
(with the tilde sign suppressed),

Ωt +mΩx = 0,

ωt + pωx = 0,

px = HΩ, mx = Hω.

(1.15)
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We will investigate both systems (1.11) and (1.15) in the paper. We point
out that formulating the problem in Elsässer variables does not give us essential
advantage; rather it has the benefit of dealing with less nonlinear terms.

1.3. Main results. For general a ∈ R, we show the existence of local in time
solutions to (1.11) in the space H1(S1).

Theorem 1.1. Let a ∈ R and Ω0, ω0 ∈ H1(S1). There exists a time T which
depends on ‖Ω0,x‖L2 and ‖ω0,x‖L2 such that there exists a unique solution (Ω(t, x),
ω(t, x)) to (1.11) with initial data Ω(0, x) = Ω0 and ω(0, x) = ω0 on [0, T ), which
satisfies

Ω, ω ∈ C0
(
[0, T );H1(S1)

)
∩ C1

(
[0, T );L2(S1)

)
.

The following theorem provides a Beale-Kato-Majda type of regularity criterion.

Theorem 1.2. Let (Ω(t, x), ω(t, x)) be the solution of (1.11) on [0, T ) obtained in
Theorem 1.1. If ∫ T

0

(‖HΩ(t)‖L∞ + ‖Hω(t)‖L∞) dt <∞, (1.16)

the solution can be extended beyond T in the space H1(S1)×H1(S1).

Furthermore, if the initial data is in a space with higher regularity, the solution
obtained in Theorem 1.1 also has higher regularity. Specifically, we will show:

Theorem 1.3. Assume Ω0, ω0 ∈ Hn(S1) with n ≥ 2. Let (Ω, ω) be a solution of
(1.11) with initial data (Ω0, ω0) on [0, T ), satisfying Ω, ω ∈ C([0, T );H1). Then,
we have

sup
0≤t<T

(‖Ω(t)‖Hn + ‖ω(t)‖Hn) <∞.

With the absence of stretching effect, the solution of (1.15) can be shown to exist
in the space H1(S1) for all the time. Namely, we have

Theorem 1.4. Assume Ω0, ω0 ∈ H1(S1). Then there exists a unique solution
(Ω(t), ω(t)) of (1.15) with initial data (Ω0, ω0) on [0,∞).

Some numerical simulations will be provided in Section 6. The numerical results
suggest that starting from smooth periodic initial data, solutions of the model
(1.11) with a = 1 or a = −1 are unlikely to develop singularities at finite time.
This observation agrees with the numerical results done by De Gregorio [4, 5] and
Okamoto, Sakajo and Wunsch [13] for the De Gregorio model (1.6a)-(1.6b).

2. Notations and preliminaries

2.1. Functional setting. Denote

L2(S1) =
{
f |f ∈ L2(−π, π), f is periodic on[−π, π]

}
,

Hk(S1) =
{
f |f (s) ∈ L2(−π, π), f (s) is periodic on[−π, π], for all 0 ≤ s ≤ k

}
.

In particular, we consider the triplet of spaces

V =

{
f

∣∣∣∣f ∈ H2(S1),

∫ π

−π
f(x) dx = 0

}
W = H1(S1), X = L2(S1),
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with the obvious embedding V ⊂ W ⊂ X .
We denote (, ) by

(f, g) =

∫ π

−π
fg dx.

The space Hk(S1) is a Hilbert space endowed with the natural inner product

(f, g)Hk =

k∑
s=0

(
f (s), g(s)

)
for functions f, g ∈ Hk(S1),

and norm (f, f)
1
2

Hk .
A bilinear form 〈, 〉 : V × X → R is defined as

〈f, g〉 = −
∫ π

−π
fxxg dx.

Applying the integration by parts, we have for all f ∈ V and g ∈ W

〈f, g〉 = (fx, gx).

For a space Z, we denote Z2 = Z×Z by convention. In the context of a coupled
system, for instance (1.11), it is convenient to introduce the triplet {V2,W2,X 2}.
Naturally, the Hilbert space W2 is endowed with the inner product

(f, g)W2 = (f1, g1)W + (f2, g2)W ∀ f = (f1, f2) ∈ W2, g = (g1, g2) ∈ W2.

In an analogous way, inner product can be defined for V2 and X 2. A bilinear form
〈, 〉 : V2 ×X 2 → R is defined as

〈f, g〉 = −
∫ π

−π
f1,xxg1 dx−

∫ π

−π
f2,xxg2 dx. (2.1)

For all f = (f1, f2) ∈ V2 and g = (g1, g2) ∈ W2, we also have

〈f, g〉 = (f1,x, g1,x) + (f2,x, g2,x).

Definition 2.1. A family {Z,H,Y} of three real separable Banach spaces is called
an admissible triplet if the following conditions hold:
(i) The inclusions Z ⊂ H ⊂ Y are continuous and dense.
(ii) H is a Hilbert space endowed with inner product (, )H and norm ‖‖H = (, )

1
2

H.
(iii) There is a continuous non-degenerate bilinear form on Z × Y, denoted by 〈, 〉,
such that

〈v, u〉 = (v, u)H, for v ∈ V and u ∈ H. (2.2)

Denote Cw by the space of functions with weak continuity and C1
w the space of

functions with weak differentiability.
An abstract theorem of existence of Kato-Lai [12] is stated as follows.

Theorem 2.2. Let {Z,H,Y} be an admissible triplet. Let A : H → Y be a weakly
continuous map such that

〈v,A(v)〉 ≥ −β(‖v‖2H), ∀ v ∈ Z (2.3)

where β(r) ≥ 0 is a monotone increasing function of r ≥ 0. Then for any u0 ∈ H,
there exists a time T > 0 such that the Cauchy problem

ut +A(u) = 0, u(0, x) = u0
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has a solution u(t, x) on [0, T ] satisfying

u ∈ Cw([0, T ];H) ∩ C1
w([0, T ];Y).

Moreover, sup0<t<T ‖u(t)‖H depends only on T , β and ‖u0‖H.

In order to prove the existence part of Theorem 1.1, the Kato-Lai theorem will
be applied to system (1.11) with the admissible triplet {V2,W2,X 2}.

2.2. Properties of Hilbert transform. The Hilbert transform has the following
simple properties

H(cf) = cHf, for a constant c,

H sin(kx) =− cos(kx), H cos(kx) = sin(kx).

And more generally, we have

H sin(kx+ θ) = − cos(kx+ θ), H cos(kx+ θ) = sin(kx+ θ).

For any periodic function f , the mean value of its Hilbert transform is zero, that
is ∫ π

−π
Hf dx = 0. (2.4)

Lemma 2.3. [14] The Hilbert transform H is a bounded linear operator from space
Lp to Lp with 1 < p <∞ and

‖Hf‖Lp ≤ Cp‖f‖Lp (2.5)

for a constant Cp > 0 depending on p.

3. Local existence

This section is devoted to a proof of Theorem 1.1. The proof includes three
steps: (i) establishing the local existence of a solution by employing Theorem 2.2;
(ii) showing the uniqueness of solution by a rather standard argument; (iii) jus-
tifying the strong continuity which is a consequence of the uniqueness and the
time-reversible property of system (1.11).

Proof of Theorem 1.1: Denote u = (Ω, ω), q = (p,m), and naturally qx =
Hu = (HΩ, Hω). Denote A(u) = (A1(u), A2(u)) with

A1(u) = amΩx − ωpx, A2(u) = apωx − Ωmx.

Thus, system (1.11) can be written as

ut +A(u) = 0.

It is obvious that the family {V2,W2,X 2} is an admissible triplet associated with
the bilinear form 〈, 〉 defined in (2.1). To apply Theorem 2.2, we will need to show
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that the operator A maps W2 into X 2 continuously and it satisfies (2.3). Indeed,
for any u = (Ω, ω) ∈ W2 with q = (p,m) ∈ V2, we have

‖A(u)‖X 2 =
(
‖amΩx − ωpx‖2L2 + ‖apωx − Ωmx‖2L2

) 1
2

≤ ‖amΩx − ωpx‖L2 + ‖apωx − Ωmx‖L2

≤ |a|‖m‖L∞‖Ωx‖L2 + ‖ω‖L∞‖px‖L2

+ |a|‖p‖L∞‖ωx‖L2 + ‖Ω‖L∞‖mx‖L2

≤ c0 (|a|‖mx‖L2‖Ωx‖L2 + ‖ω‖H1‖px‖L2

+|a|‖px‖L2‖ωx‖L2 + ‖Ω‖H1‖mx‖L2)

≤ c0 (|a|+ 1) (‖Hω‖L2‖Ω‖H1 + ‖ω‖H1‖HΩ‖L2)

≤ c0 (|a|+ 1) (‖ω‖L2‖Ω‖H1 + ‖ω‖H1‖Ω‖L2)

where we have used the Hölder inequality, Sobolev inequality, the fact that p and
m have zero mean, and the property (2.5). It follows that A maps W2 into X 2.
On the other hand, for any u1 = (Ω1, ω1) ∈ W2 with q1 = (p1,m1) ∈ V2 and
u2 = (Ω2, ω2) ∈ W2 with q2 = (p2,m2) ∈ V2, we deduce

‖A(u1)−A(u2)‖X 2 =
(
‖(am1Ω1,x − ω1p1,x)− (am2Ω2,x − ω2p2,x)‖2L2

+‖(ap1ω1,x − Ω1m1,x)− (ap2ω2,x − Ω2m2,x)‖2L2

) 1
2

≤ ‖(am1Ω1,x − ω1p1,x)− (am2Ω2,x − ω2p2,x)‖L2

+ ‖(ap1ω1,x − Ω1m1,x)− (ap2ω2,x − Ω2m2,x)‖L2 .

(3.1)

Applying the Hölder inequality, Sobolev inequality, and (2.5) leads to

‖(am1Ω1,x − ω1p1,x)− (am2Ω2,x − ω2p2,x)‖L2

≤ |a|‖Ω1,x‖L2‖m1 −m2‖L∞ + |a|‖Ω1,x − Ω2,x‖L2‖m2‖L∞
+ ‖ω2‖L∞‖p2,x − p1,x‖L2 + |a|‖ω2 − ω1‖L∞‖p1,x‖L2

≤ c0|a|‖Ω1,x‖L2‖m1,x −m2,x‖L2 + c0|a|‖Ω1,x − Ω2,x‖L2‖m2,x‖L2

+ c0‖ω2‖H1‖p2,x − p1,x‖L2 + c0|a|‖ω2 − ω1‖H1‖p1,x‖L2

≤ c0(|a|+ 1) (‖Ω1‖H1 + ‖ω2‖H1) (‖Ω1 − Ω2‖H1 + ‖ω1 − ω2‖H1) ,

(3.2)

and similarly

‖(ap1ω1,x − Ω1m1,x)− (ap2ω2,x − Ω2m2,x)‖L2

≤ c0(|a|+ 1) (‖Ω1‖H1 + ‖ω2‖H1) (‖Ω1 − Ω2‖H1 + ‖ω1 − ω2‖H1) .
(3.3)

The estimates (3.1)-(3.3) together indicate that A :W2 → X 2 is strongly continu-
ous.

By the definition of the bilinear form in (2.1), we have for any u = (Ω, ω) ∈ V2

〈u,A(u)〉 =− (uxx, A(u)) = (ux, (A(u))x)

= (Ωx, (amΩx − ωpx)x) + (ωx, (apωx − Ωmx)x)

=

∫ π

−π
Ωx(amxΩx + amΩxx − ωxpx − ωpxx) dx

+

∫ π

−π
ωx(apxωx + apωxx − Ωxmx − Ωmxx) dx.

(3.4)
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Note that A(u) ∈ X 2 and (3.4) can be made rigorous through a standard approxi-
mating procedure. Applying integration by parts to the right hand side of (3.4), it
has

a

∫ π

−π
mΩxΩxx dx = −a

∫ π

−π
mxΩxΩx dx− a

∫ π

−π
mΩxxΩx dx.

Hence we conclude

a

∫ π

−π
mΩxΩxx dx = −a

2

∫ π

−π
mxΩ2

x dx, (3.5)

and similarly

a

∫ π

−π
pωxωxx dx = −a

2

∫ π

−π
pxω

2
x dx. (3.6)

Since px = HΩ and mx = Hω, combining (3.4)-(3.6) gives
〈u,A(u)〉 = (ux, (A(u))x)

=
a

2

∫ π

−π
(Hω)Ω2

x dx+
a

2

∫ π

−π
(HΩ)ω2

x dx

−
∫ π

−π
ΩxωxHΩ dx−

∫ π

−π
ωΩxHΩx dx

−
∫ π

−π
ΩxωxHω dx−

∫ π

−π
ΩωxHωx dx.

(3.7)

Applying Hölder’s inequality, Sobolev’s inequality, (2.4) and (2.5), we have∣∣∣∣∫ π

−π
HωΩ2

x dx

∣∣∣∣ ≤ ‖Hω‖L∞‖Ωx‖2L2

≤ c0‖Hωx‖L2‖Ωx‖2L2

≤ c0‖ωx‖L2‖Ωx‖2L2 ,

(3.8)

and similarly∣∣∣∣∫ π

−π
ΩxωxHΩ dx

∣∣∣∣+

∣∣∣∣∫ π

−π
ωΩxHΩx dx

∣∣∣∣ ≤ c0‖ω‖H1‖Ωx‖2L2 ,∣∣∣∣∫ π

−π
(HΩ)ω2

x dx

∣∣∣∣ ≤ c0‖ωx‖2L2‖Ωx‖L2 ,∣∣∣∣∫ π

−π
ωxΩxHω dx

∣∣∣∣+

∣∣∣∣∫ π

−π
ωxΩHωx dx

∣∣∣∣ ≤ c0‖ωx‖2L2‖Ω‖H1 .

(3.9)

Therefore, putting together (3.7)-(3.9), we deduce

|〈u,A(u)〉| ≤ c0(|a|+ 1)
(
‖ω‖H1‖Ωx‖2L2 + ‖ωx‖2L2‖Ω‖H1

)
≤ c0(|a|+ 1) (‖ω‖H1 + ‖Ω‖H1)

3
.

(3.10)

Hence, the operator A satisfies (2.3) with β(r) = c0(|a|+ 1)r
3
2 . As a consequence,

applying Theorem 2.2, we conclude that there exists a time T > 0 such that system
(1.11) has a solution (Ω(t, x), ω(t, x)) on [0, T ] satisfying

Ω, ω ∈ Cw([0, T ];W) ∩ C1
w([0, T ];X ).

Next we show the uniqueness of solution to (1.11). Let u1 = (Ω1, ω1) be a
solution to (1.11) with initial data u0 = (Ω0, ω0). Let q1 = (p1,m1) such that
p1,x = HΩ1 and m1,x = Hω1. Let u2 = (Ω2, ω2) be another solution to (1.11)
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with the same initial data (Ω0, ω0) and associated with q2 = (p2,m2). Since both
(Ω1, ω1) and (Ω2, ω2) satisfy (1.11), we are able to show that (details omitted)

1

2

d

dt

(
‖Ω1(t)− Ω2(t)‖2L2 + ‖ω1(t)− ω2(t)‖2L2

)
≤c0(|a|+ 1) max

0≤t≤T
(‖Ω1‖H1 + ‖Ω2‖H1 + ‖ω1‖H1 + ‖ω2‖H1)

·
(
‖Ω1(t)− Ω2(t)‖2L2 + ‖ω1(t)− ω2(t)‖2L2

)
.

(3.11)

Thus, uniqueness follows from (3.11) and Grönwall’s inequality.
Strong continuity in time follows from the uniqueness and the fact that system

(1.11) is time-reversible. Indeed, it follows from (3.10) that

‖Ωx(t)‖L2 + ‖ωx(t)‖L2 → ‖Ω0,x‖L2 + ‖ω0,x‖L2 as t→ 0.

Hence, we know

Ω(t)→ Ω0, ω(t)→ ω0 strongly in H1 as t→ 0.

As a consequence of uniqueness, Ω and ω are strongly right-continuous. In addition,
the property of time-reversibility implies that Ω and ω are strongly left-continuous
as well.

�

4. Regularity criterion

In this section, we prove Theorem 1.2 and the higher regularity result in Theorem
1.3.

Proof of Theorem 1.2: In view of the local existence theorem, we just need to
show that the H1 norm of Ω(t) and ω(t) remains bounded as t→ T under condition
(1.16).

Assume u = (Ω, ω) is a solution of (1.11) on [0, T ). We note that
1

2

d

dt

(
‖Ωx‖2L2 + ‖ωx‖2L2

)
= (Ωx,Ωtx) + (ωx, ωtx)

= (Ωx,−(amΩx − ωpx)x) + (ωx,−(apωx − Ωmx)x)

=− a

2

∫ π

−π
(Hω)Ω2

x dx−
a

2

∫ π

−π
(HΩ)ω2

x dx

+

∫ π

−π
ΩxωxHΩ dx+

∫ π

−π
ωΩxHΩx dx

+

∫ π

−π
ΩxωxHω dx+

∫ π

−π
ΩωxHωx dx

(4.1)

where we used (3.7) in the last step. Applying the identities

(v, u) = (Hv,Hu), H(vHv) =
1

2

(
(Hv)2 − v2

)
,

we infer ∫ π

−π
ωΩxHΩx dx =

∫ π

−π
(Hω)H(ΩxHΩx) dx

=
1

2

∫ π

−π
(Hω)

(
(HΩx)2 − (Ωx)2

)
dx,

(4.2)
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−π
ΩωxHωx dx =

∫ π

−π
(HΩ)H(ωxHωx) dx

=
1

2

∫ π

−π
(HΩ)

(
(Hωx)2 − (ωx)2

)
dx.

(4.3)

Combining (4.1)-(4.3), we have

1

2

d

dt

(
‖Ωx‖2L2 + ‖ωx‖2L2

)
=− a+ 1

2

∫ π

−π
(Hω)Ω2

x dx−
a+ 1

2

∫ π

−π
(HΩ)ω2

x dx

+
1

2

∫ π

−π
(Hω)(HΩx)2 dx+

1

2

∫ π

−π
(HΩ)(Hωx)2 dx

+

∫ π

−π
Ωxωx (HΩ +Hω) dx

≤|a+ 1|
2
‖Hω‖L∞‖Ωx‖2L2 +

|a+ 1|
2
‖HΩ‖L∞‖ωx‖2L2

+
1

2
‖Hω‖L∞‖Ωx‖2L2 +

1

2
‖HΩ‖L∞‖ωx‖2L2

+ ‖HΩ +Hω‖L∞‖Ωx‖L2‖ωx‖L2

≤ c0(|a|+ 1) (‖HΩ‖L∞ + ‖Hω‖L∞)
(
‖Ωx‖2L2 + ‖ωx‖2L2

)

(4.4)

for a constant c0 > 0. It follows from Grönwall’s inequality that(
‖Ωx(t)‖2L2 + ‖ωx(t)‖2L2

)
≤
(
‖Ωx(0)‖2L2 + ‖ωx(0)‖2L2

)
exp

{
2c0(|a|+ 1)

∫ t

0

(‖HΩ(τ)‖L∞ + ‖Hω(τ)‖L∞) dτ

}
.

Thus, the statement of the theorem is justified.
�

Proof of Theorem 1.3: The statement can be established through standard
energy method. We only deal with the case of n = 2 and obtain the a priori estimate
for ‖Ω(t)‖H2 and ‖ω(t)‖H2 . Formally, differentiating the equations of (1.11) twice
in space yields

Ωtxx =− 2amxΩxx + 2ωxpxx − amxxΩx

+ ωxxpx − amΩxxx + ωpxxx,

ωtxx =− 2apxωxx + 2Ωxmxx − apxxωx
+ Ωxxmx − apωxxx + Ωmxxx.

(4.5)

Taking the inner product of the first equation with Ωxx and the second one with
ωxx, we have

1

2

d

dt

(
‖Ωxx‖2L2 + ‖ωxx‖2L2

)
=− 2a(Ωxx,mxΩxx) + 2(Ωxx, ωxpxx)− a(Ωxx,mxxΩx)

+ (Ωxx, ωxxpx)− a(Ωxx,mΩxxx) + (Ωxx, ωpxxx)

− 2a(ωxx, pxωxx) + (ωxx,Ωxmxx)− a(ωxx, pxxωx)

+ (ωxx,Ωxxmx)− a(ωxx, pωxxx) + (ωxx,Ωmxxx).

(4.6)
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Notice that, by integration by parts,

− a(Ωxx,mΩxxx) = a(Ωxxx,mΩxx) + a(Ωxx,mxΩxx)

which implies

− a(Ωxx,mΩxxx) =
a

2
(Ωxx,mxΩxx).

Similarly, we have

− a(ωxx, pωxxx) =
a

2
(ωxx, pxωxx).

Applying Hölder’s inequality, the Hilbert transform boundedness on Lp, it follows

|(Ωxx,mxΩxx)| = |(Ωxx, (Hω)Ωxx)|
≤ c0‖Hω‖L∞‖Ωxx‖2L2

≤ c0‖ωx‖L2‖Ωxx‖2L2 ,

and similarly

|(ωxx, pxωxx)| = |(Ωxx, (Hω)Ωxx)| ≤ c0‖Ωx‖L2‖ωxx‖2L2 .

We estimate (Ωxx, ωxpxx) as

|(Ωxx, ωxpxx)| = |(Ωxx, ωxHΩx)|
≤ c0‖Ωxx‖L2‖ωx‖L4‖HΩx‖L4

≤ c0‖Ωxx‖L2‖ωx‖
3
4

L2‖ωxx‖
1
4

L2‖HΩx‖
3
4

L2‖HΩxx‖
1
4

L2

≤ c0‖Ωxx‖
5
4

L2‖HΩx‖
3
4

L2‖ωx‖
3
4

L2‖ωxx‖
1
4

L2

≤ c0‖Ωxx‖
15
8

L2‖HΩx‖
9
8

L2 + c0‖ωx‖
9
4

L2‖ωxx‖
3
4

L2

≤ c0‖Ωx‖L2‖Ωxx‖2L2 + c0‖ωx‖L2‖ωxx‖2L2 ,

where we used the inequalities of Hölder, Galiardo-Nirenberg and Young, and the
facts that ‖ωx‖L2 ≤ ‖ωxx‖L2 and ‖Ωx‖L2 ≤ ‖Ωxx‖L2 . Other terms on the right
hand side of (4.6) can be handled similarly as above. We conclude

1

2

d

dt

(
‖Ωxx‖2L2 + ‖ωxx‖2L2

)
≤ c0(1 + |a|) (‖Ωx‖L2 + ‖ωx‖L2)

(
‖Ωxx‖2L2 + ‖ωxx‖2L2

)
,

which immediately gives, by Grönwall’s inequality(
‖Ωxx(t)‖2L2 + ‖ωxx(t)‖2L2

)
≤
(
‖Ωxx(0)‖2L2 + ‖ωxx(0)‖2L2

)
e
∫ t
0

2c0(1+|a|)(‖Ωx(τ)‖L2+‖ωx(τ)‖L2) dτ .
(4.7)

Combining (4.7) with the assumption that Ω, ω ∈ C([0, T ];H1), it follows that

sup
0≤t≤T

(‖Ω(t)‖H2 + ‖ω(t)‖H2) <∞.

�
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5. Pure transport case

In this section we prove Theorem 1.4. According to Theorem 1.1, there exists a
unique solution (Ω(t), ω(t)) of (1.15) on [0, T ] for some T > 0. In view of Theorem
1.2, in order to show the global existence, it is sufficient to prove∫ T

0

(‖HΩ(t)‖L∞ + ‖Hω(t)‖L∞) dt <∞ for all T > 0.

On the other hand, due to the boundedness of Hilbert transform, we have

‖HΩ(t)‖L∞ ≤ c0‖HΩ(t)‖Cβ ≤ c0‖Ω(t)‖Cβ ,
‖Hω(t)‖L∞ ≤ c0‖Hω(t)‖Cβ ≤ c0‖ω(t)‖Cβ

for β ∈ (0, 1). As a consequence, we only need to prove:

Proposition 5.1. Assume Ω0, ω0 ∈ H1(S1). Let (Ω(t), ω(t)) be the solution of
(1.15) with initial data (Ω0, ω0) on [0, T ]. Then there exists β1, β2 ∈ (0, 1) such
that

sup
0≤t≤T

(‖ω(t)‖Cβ1 + ‖Ω(t)‖Cβ2 ) <∞. (5.1)

Proof: Recall the equations satisfied by (Ω, ω),

Ωt +mΩx = 0,

ωt + pωx = 0.

Consider the characteristics Xt(x) and Yt(x) satisfying

d

dt
Xt = p(t,Xt(ξ)), X0(ξ) = ξ, (5.2)

d

dt
Yt = m(t, Yt(ξ)), Y0(ξ) = ξ, (5.3)

such that
Ω(t, Yt(x)) = Ω0(x), ω(t,Xt(x)) = ω0(x). (5.4)

We notice that there exists a unique solution Xt(x) to the Cauchy problem (5.2)
and a unique solution Yt(x) to (5.3). Indeed, since Ω(t), ω(t) ∈ H1(S1) ⊂ C

1
2 (S1)

and the Hilbert transform is bounded on Cβ , we have

‖p(t)‖
C1, 1

2
≤ c0‖Ω(t)‖

C1, 1
2
<∞,

‖m(t)‖
C1, 1

2
≤ c0‖ω(t)‖

C1, 1
2
<∞.

Hence, p and m are Lipschitz in time. Thus, the standard ordinary differential
equation theory implies existence and uniqueness of solution to (5.2) and (5.3).

Denote the inverse (backward) trajectory of Xt(x) and Yt(x) by q1(t, x) =
X−1
t (x) and q2(t, x) = Y −1

t (x), respectively. Note that q1(t, x) and q2(t, x) sat-
isfy respectively,

∂tq1 = −p(t, q1(t, x)), q1(0, x) = x, (5.5)

∂tq2 = −m(t, q2(t, x)), q2(0, x) = x. (5.6)
We claim that p and m satisfy the estimate

|p(t, x)− p(t, y)| ≤ F (|x− y|), x, y ∈ [−π, π],

|m(t, x)−m(t, y)| ≤ G(|x− y|), x, y ∈ [−π, π],
(5.7)
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with

F (s) =

{
c0‖Ω0‖L∞s(1− log s), 0 ≤ s ≤ 1,

c0‖Ω0‖L∞ , s > 1,
(5.8)

and

G(s) =

{
c0‖ω0‖L∞s(1− log s), 0 ≤ s ≤ 1,

c0‖ω0‖L∞ , s > 1,
(5.9)

for a universal constant c0 > 0. We only need to show one of them, for instance,
the estimate for p. Recall that, by (1.12)

px(t, x) = HΩ =
1

2π
P.V.

∫ π

−π
Ω(t, y) cot

(
x− y

2

)
dy.

Hence, we have

p(t, x) =
1

π
P.V.

∫ π

−π
Ω(t, y) log

∣∣∣∣sin(x− y2

)∣∣∣∣ dy.
Without loss of generality, we take x, y ∈ (−π, π) such that −π < x < y < π and
δ = y − x. We split the interval [−π, π] into subintervals

I1 = [−π, x− δ

2
), I2 = [x− δ

2
, x+

δ

2
), I3 = [x+

δ

2
, y +

δ

2
), I4 = [y +

δ

2
, π].

In the case of x− δ
2 ≤ −π or y+ δ

2 > π, we treat I1 or I4 as an empty set. In order
to prove the estimate on p in (5.7), we proceed as

|p(t, x)− p(t, y)| =
∣∣∣∣ 1πP.V.

∫ π

−π
Ω(t, z)

(
log

∣∣∣∣sin(x− z2

)∣∣∣∣− log

∣∣∣∣sin(y − z2

)∣∣∣∣) dz

∣∣∣∣
≤
∣∣∣∣ 1πP.V.

∫
I1

Ω(t, z)

(
log

∣∣∣∣sin(x− z2

)∣∣∣∣− log

∣∣∣∣sin(y − z2

)∣∣∣∣) dz

∣∣∣∣
+

∣∣∣∣ 1πP.V.
∫
I2

· · · dz
∣∣∣∣+

∣∣∣∣ 1πP.V.
∫
I3

· · · dz
∣∣∣∣+

∣∣∣∣ 1πP.V.
∫
I4

· · · dz
∣∣∣∣ .

The second term on the right hand side can be estimated as∣∣∣∣ 1πP.V.
∫
I2

Ω(t, z)

(
log

∣∣∣∣sin(x− z2

)∣∣∣∣− log

∣∣∣∣sin(y − z2

)∣∣∣∣) dz

∣∣∣∣
≤c0‖Ω(t)‖L∞P.V.

∫ x− δ2

x− δ2
|log |x− z||+ |log |y − z|| dz

≤c0‖Ω(t)‖L∞δ (1 + | log δ|)

≤

{
c0‖Ω0‖L∞δ (1− log δ) , 0 < δ < 1

c0‖Ω0‖L∞ , δ ≥ 1.

The integrals on I1, I3 and I4 can be estimated similarly. The estimate for m in
(5.7) can be established in an analogous way.

In view of (5.2)-(5.3) and (5.7), we have

∂t |q1(t, x)− q1(t, y)| ≤ F (|q1(t, x)− q1(t, y)|),
∂t |q2(t, x)− q2(t, y)| ≤ G(|q2(t, x)− q2(t, y)|).

(5.10)
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Denote β1(t) = e−c0‖Ω0‖L∞ t and β2(t) = e−c0‖ω0‖L∞ t. For fixed x and y with
|x− y| < 1, define

z1(t) =

{
|x− y|β1(t)e1−β1(t), 0 ≤ t < t0,

1 + c0‖Ω0‖L∞(t− t0), t ≥ t0,

where t0 is such that |x − y|β1(t0)e1−β1(t0) = 1. Note that β1(0) = 1 and z1(0) =
|x− y| < 1. Hence, z1(t) is well-defined on [0,∞). One can verify that z1(t) is the
solution of the differential equation

∂tz = F (z), z(0) = |x− y|.

Combining with the first inequality of (5.10), we conclude

|q1(t, x)− q1(t, y)| ≤ z1(t). (5.11)

Similarly, we define

z2(t) =

{
|x− y|β2(t)e1−β2(t), 0 ≤ t < t0,

1 + c0‖ω0‖L∞(t− t0), t ≥ t0,

with t0 such that |x−y|β2(t0)e1−β2(t0) = 1. Analogously, using the second inequality
of (5.10), we infer

|q2(t, x)− q2(t, y)| ≤ z2(t). (5.12)
We are ready to show (5.1). Noticing that ω(t, x) = ω(0, X−1

t (x)), we deduce

|ω(t, x)− ω(t, y)| =
∣∣ω(0, X−1

t (x))− ω(0, X−1
t (y))

∣∣
=

∣∣∣∣∣
∫ X−1

t (x)

X−1
t (y)

ω0,x(ζ) dζ

∣∣∣∣∣
≤ c0‖ω0,x‖L2

∣∣X−1
t (x)−X−1

t (y)
∣∣ 12

≤ c0‖ω0,x‖L2 |q1(t, x)− q1(t, y)|
1
2

where mean value theorem and Hölder’s inequality were applied. As a consequence,
we conclude

sup
0≤t≤T

‖ω(t)‖Cβ1 <∞.

thanks to (5.11). Analogously, we can show

sup
0≤t≤T

‖Ω(t)‖Cβ2 <∞.

It completes the proof of the proposition.
�

6. Numerical simulations

In this section, we perform some numerical study for the 1D model (1.11) of
MHD. For convenience, we recall (1.11) here,

Ωt + amΩx − ωpx = 0,

ωt + apωx − Ωmx = 0,

px = HΩ, mx = Hω,

x ∈ [−π, π] (6.1)
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and the Hilbert transform for a periodic function

Hf =
1

2π
P.V.

∫ π

−π
f(y) cot

(
x− y

2

)
dy.

As mentioned earlier, in order for p and m to be uniquely defined, we can choose
the gauge and set them to have either zero mean over the interval [−π, π] or zero
point value at a fixed point, e.g., p(x0, t) = m(x0, t) = 0 for some x0, see [11].

We use a Fourier-collocation spectral method for the spatial approximation and
a five stage fourth order low storage Runge-Kutta method for time discretization.
An exponential type filter is used for stabilization of the spectral method, see [8].
For a periodic function f(x), its Hilbert transform can be approximated in spectral
method via the following formula:

Ĥf(k) = −isgn(k)f̂(k),

where f̂(k) are coefficients in Fourier series of f(x), see [9, 13]. Similarly, for
periodic functions p(x) and Ω(x), the equation px = HΩ can be approximated in
spectral method through the relation

ikp̂(k) = −isgn(k)Ω̂(k).

6.1. Numerical results for the 1D model of MHD. One can check that, for
arbitrary constants A1, A2, θ1, θ2 and k

Ω(x) = A1 sin(kx+ θ1), ω(x) = A2 sin(kx+ θ2)

and
Ω(x) = A1 cos(kx+ θ1), ω(x) = A2 cos(kx+ θ2)

are steady states of system (6.1). Thus, we choose to consider the initial condition

Ω0 = sin(x) + cos(4x) + 5, ω0 = sin(2x) + 2, (6.2)

such that there are two non-zero modes in the Fourier representation of Ω0.
We conduct simulations for (6.1) with initial data (6.2) under the following two

settings: (i) a = 1 and (ii) a = −1. In the computation, we take N = 12800 points
in the Fourier-collocation spectral method.

Figure 1 shows the numerical results for case (i). The time evolution of Ω(t, x)
and ω(t, x) are plotted in Figure 1(a) and Figure 1(b), respectively. One can see
that Ω(t, x) and ω(t, x) are rather smooth. The first order derivative Ωx shown in
Figure 1(c) seems smooth as well, while ωx illustrated in Figure 1 (d) develops some
mild spines at time t = 4. However, we observe spines for the second derivatives
Ωxx and ωxx at larger time in Figure 1(e) and (f). In particular, there is a notable
spine near x = 0 at t = 4. Notice that

u =
1

2
(p+m), B =

1

2
(p−m),

and hence

ux =
1

2
(px +mx) =

1

2
H(Ω + ω), Bx =

1

2
(px −mx) =

1

2
H(Ω− ω),

HΩ = ux +Bx, Hω = ux −Bx.
(6.3)

Figure 1(g) shows the time evolution of ‖HΩ‖L∞ + ‖Hω‖L∞ , while Figure 1(h)
shows ‖ux(t)‖L∞ and ‖Bx(t)‖L∞ . We observe oscillations in these graphs and
the amplitudes grow slowly in a linear manner. Combined with the regularity
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criterion (1.16), it seems that the solution starting with data (6.2) may not develop
singularities at finite time.

For case (ii) with a = −1 and p(t, 0) = m(t, 0) = 0, the results are illustrated
in Figure 2. One can see from Figure 2(a) and (b) that the solution is less smooth
compared to the solution in case (i) shown in Figure 1(a) and (b). This suggests
that the convection term with a negative sign causes the solution to behave more
singularly. Nevertheless, 2(c) and (d) show that the amplitudes of ‖HΩ‖L∞ +
‖Hω‖L∞ , ‖ux(t)‖L∞ and ‖Bx(t)‖L∞ grow faster than that of case (i), but remain
in a linear growth. Thus one may speculate that solutions of system (6.1) with
a = −1 starting from smooth initial data do not develop singularities in finite time.

6.2. Numerical results for the De Gregorio model revisited. Numerical
simulations for the De Gregorio model (1.6a)-(1.6b) have been performed in [4, 5, 13]
among others. The main information is that singularity formation for this model
with smooth initial data is unlikely to happen.

We apply our numerical scheme to (1.6a)-(1.6b) with the initial data

ω0(x) = sinx+ 0.1 sin(2x)

by taking N = 12800 points in the Fourier-collocation spectral method. The ob-
tained simulations are shown in Figure 3, which recover the numerical results done
by Okamoto, Sakajo, and Wunsch [13].

We note that ux = Hω for the De Gregorio model (1.6a)-(1.6b) and ux =
1
2H(Ω + ω) for our 1D MHD model (6.1), see (6.3). Comparing Figure 1(h) and
Figure 3(e), we observe oscillations of ‖ux‖L∞ for the 1D MHD model and absence
of such oscillations for the pure fluid model. It is reasonable to infer that the
interactions between fluid velocity and magnetic field cause such oscillations and
more complicated dynamics.
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Figure 1. a = 1
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(a) (b)

(c) (d)

Figure 2. a = −1
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Figure 3. The De Gregorio model.
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