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Abstract

We investigate the large time behaviour of solutions to a non-autonomous Fisher-KPP equation with
nonlocal diffusion, involving a thin-tailed kernel. In this paper, we are concerned with both compactly
supported and exponentially decaying initial data. As far as general time heterogeneities are concerned,
we provide upper and lower estimates for the location of the propagating front. As a special case, we
derive a definite spreading speed when the time varying coefficients satisfy some averaging properties.
This setting covers the cases of periodic, almost periodic and uniquely ergodic variations in time, in
particular. Our analysis is based on the derivation of suitable regularity estimates (of uniform continuity
type) for some particular solutions of a logistic equation with nonlocal diffusion. Such regularity estimates
are coupled with the construction of appropriated propagating paths to derive spreading speed estimates,
using ideas from the uniform persistence theory in dynamical systems.
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1 Introduction and main results

In this paper we study spreading properties for the solutions of the following non-autonomous and nonlocal
one-dimensional equation

∂tu(t, x) =

∫

R

K(y) [u(t, x− y)− u(t, x)] dy + u(t, x)f (t, u(t, x)) , (1.1)

posed for time t ≥ 0 and x ∈ R. This evolution problem is supplemented with an appropriated initial
data, that will be discussed below. Here K = K(y) is a nonnegative dispersal kernel with thin-tailed (see
Assumption 1.3 below). Let us set F (t, u) := uf(t, u). At the same time, F = F (t, u) stands for the nonlinear
growth term, which depends on time t and that will be assumed in this note to be of the Fisher-KPP type
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(see Assumption 1.5). The above problem typically describes the spatial invasion of a population (see for
instance [6, 34] and the references therein) with the following features:
1) individuals exhibit long distance dispersal according to the kernel K, in other words the quantity K(x−y)
corresponds to the probability for individuals to jump from y to x;
2) time varying birth and death processes modeled by the nonlinear Fisher-KPP type function F (t, u). The
time variations may stand for seasonality and/or external events (see [24]).

When local diffusion is considered, the Fisher-KPP equation posed in a time homogeneous medium reads
as

∂tu(t, x) = ∂xxu(t, x) + F (u(t, x)). (1.2)

As mentioned above, this problem arises as a basic model in many different fields, in biology and ecology in
particular. It can be used for instance to describe the spatio-temporal evolution of an invading species into
an empty environment. The above equation (1.2) was introduced separately by Fisher [20] and Kolmogorov,
Petrovsky and Piskunov [27], when the nonlinear function F satisfies the Fisher-KPP conditions. Recall that
a typical example of such Fisher-KPP nonlinearity is given by the logistic function F (u) = u(1− u).

There is a large amount of literature related to (1.2) and its generalizations. To study propagation
phenomena generated by reaction diffusion equations, in addition to the existence of travelling wave solution,
the asymptotic speed of spread (or spreading speed) was introduced and studied by Aronson and Weinberger
in [4]. Roughly speaking if u0 is a nontrival and nonnegative initial data with compact support, then the
solution of (1.2) associated with this initial data u0 spreads with the speed c∗ > 0 (the minimal wave speed
of the travelling waves) in the sense that

lim
t→∞

sup
|x|≤ct

|u(t, x)− 1| = 0, ∀ c ∈ [0, c∗) and lim
t→∞

sup
|x|≥ct

u(t, x) = 0, ∀ c > c∗.

This concept of spreading speed has been further developed by several researchers in the last decades from
different view points including PDE’s argument, dynamical systems theory, probability theory, mathematical
biology, etc. Spreading speeds of KPP-type reaction diffusion equations in homogeneous and periodic media
have been extensively studied (see [8, 17, 29, 30, 44, 45] and the references cited therein). There is also an
extensive literature on spreading phenomena for reaction diffusion systems. We refer for instance [3, 15, 22]
and the references cited therein.

Recently spreading properties for KPP-type reaction-diffusion equations in more general environments
have attracted a lot of attention, see [7, 9, 37, 40] and the references cited therein. In particular, Nadin and
Rossi [37] studied spreading properties for KPP equation with local diffusion and general time heterogeneities.
Furthermore, they obtained a definite spreading speed when the coefficients share some averaging properties.

The spreading properties of nonlocal diffusion equation as (1.1) has attracted a lot of interest in the
last decades. Since the semiflow generated by nonlocal diffusion equations does not enjoy any regularization
effects, this brings additional difficulties. Fisher-KPP equations or monostable problems in homogeneous
environments have been studied from various point of views: wave front propagation (see [12, 39] and the
references cited therein), hair trigger effect and spreading speed (see [2, 10, 13, 18, 34, 47] and the references
cited therein). For the thin-tailed kernel, we refer for instance to [34] and the recent work [47] where a
new sub-solution has been constructed to provide a lower bound of the spreading speed. Note also that
the aforementioned work deals with possibly non-symmetric kernel where the propagation speed on the left
and the right-hand side of the domain can be different. For the fat-tailed dispersion kernels the propagating
behaviour of the solutions can be very different from the one observed with thin-tailed kernel. Acceleration
may occur. We refer to [19, 21] for fat-tailed kernel and to [10] for fractional Laplace type dispersion.

Recently, wave propagation and spreading speeds for nonlocal diffusion problem with time and/or space
heterogeneities have been considered. Existence and nonexistence of generalized travelling wave solutions
have been discussed in [16, 25, 32, 41] and the references cited therein. For spreading speed results, we refer
the reader to [24, 25, 31, 42] and the references cited therein. We also refer to [5, 46, 48] for the analysis of
the spreading speed for systems with nonlocal diffusion.

As far as monotone problem is concerned, one may apply the well developed monotone semiflow method
to study the spreading speed for nonlocal diffusion problems. We refer the reader to [30, 44] and to [24, 25]
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for time periodic systems.
In this work, we provide a new approach which is based on the construction of suitable propagating paths
(namely, functions t 7→ X(t) with lim inft→∞ u(t,X(t)) > 0) coupled with what we call a persistence lemma
(see Lemma 2.6 below) for uniformly continuous solutions, to obtain lower estimate for the propagating set.
This lemma roughly states that controlling from below the solution at x = 0 and X(t) for t ≫ 1 implies
a control of the solution u = u(t, x) from below on the whole interval x ∈ [0, kX(t)] for some k ∈ (0, 1)
and t ≫ 1. The proof of this lemma does not make use of the properties of the tail of the kernel, so
that we expect our key persistence lemma to be applied for the study of acceleration phenomena for fat
tailed dispersal kernel. However, the uniform continuity property for the solutions is important for our proof
and this remains complicated to check. For the regularity results of some specific time global solutions to
nonlocal diffusion equations, we refer the reader to [11, 32] for spatial heterogeneous case and to [16, 41] for
time heterogeneous media. Here we are able to prove such a property for some specific initial data and
logistic type nonlinearities.

Note that in [28] the authors consider the regularity problem. They show that when the nonlinear term
satisfies Fu(u) < K for any u ≥ 0, where K =

∫

R
K(y)dy, then solutions of the homogeneous problem inherit

the Lipschitz continuity property from those of their initial data, with a control of the Lipschitz constant for
all time t ≫ 1. In this note, we prove the uniform continuity of some solutions when the above condition
fails (see Assumption 1.5 (f4)). This point is studied in Section 3.1, where we provide a class of initial data
for which the solutions (of the nonlocal logistic equation) are uniformly continuous on [0,∞)× R.

Now to state our results, we first introduce some notations and present our main assumptions. Let us
define the important notion of the least mean for a bounded function.

Definition 1.1 Along this work, for any given function h ∈ L∞(0,∞;R), we define

⌊h⌋ := lim
T→+∞

inf
s>0

1

T

∫ T

0

h(t+ s)dt. (1.3)

In that case the quantity ⌊h⌋ is called the least mean of the function h (over (0,∞)).

If h admits a mean value 〈h〉, that is, there exists

〈h〉 := lim
T→+∞

1

T

∫ T

0

h(t+ s)dt, uniformly with respect to s ≥ 0. (1.4)

Then ⌊h⌋ = 〈h〉. Particularly, the time periodic, almost periodic and uniquely ergodic coefficients have the
mean value. Here recall that a bounded and uniformly continuous function f : R → R is called uniquely

ergodic if, for any continuous map G : Hf → R, the following limit exists uniformly in s ∈ R:

lim
T→+∞

1

T

∫ s+T

s

G(f(·+ τ))dτ,

where Hf := cl{f(·+ τ), τ ∈ R} is the closure of the translation set of f under the local uniform topology.
Periodic, almost periodic and compactly supported functions are specific subclass of uniquely ergodic

functions. A celebrated example of uniquely ergodic function is constructed from the Penrose tiling. For
more examples and properties of almost periodic and uniquely ergodic functions, we refer the reader to
[9, 33, 36].

An equivalent and useful characterization for the least mean of the function, as above, is given in the next
lemma.

Lemma 1.2 [37, 38] Let h ∈ L∞(0,∞;R) be given. Then one has

⌊h⌋ = sup
a∈W 1,∞(0,∞)

inf
t>0

(a′ + h) (t).

We are now able to present the main assumptions that will be needed in this note. First we assume that
the kernel K = K(y) enjoys the following set of properties:
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Assumption 1.3 (Kernel K = K(y)) We assume that the kernel K : R → [0,∞) satisfies the following
set of assumptions:

(i) The function y 7→ K(y) is non-negative, continuous and integrable;

(ii) There exists α > 0 such that
∫

R

K(y)eαydy <∞.

(iii) We also assume that K(0) > 0.

Remark 1.4 Here we do not impose that the kernel function is symmetric. We focus on the propagation
to the right-hand side of the spatial domain. Thus in (ii), we only assume the kernel is thin-tailed on the
right-hand side.

Since K(y) is continuous and K(0) > 0, then there exist δ > 0 and k : R → [0,∞), continuous, even and
compactly supported such that

supp k = [−δ, δ], k(y) > 0, ∀y ∈ (−δ, δ),
k(y) ≤ K(y) and k(y) = k(−y), ∀y ∈ R.

(1.5)

This property will allow us to control the solution on bounded sets, around x = 0.

Now we discuss our Fisher-KPP assumptions for the nonlinear term F (t, u) = uf(t, u).

Assumption 1.5 (KPP nonlinearity) Assume that the function f : [0,∞) × [0, 1] → R satisfies the fol-
lowing set of hypotheses:

(f1) f(·, u) ∈ L∞(0,∞;R), for all u ∈ [0, 1], and f is Lipschitz continuous with respect to u ∈ [0, 1],
uniformly with respect to t ≥ 0;

(f2) Let f(t, 1) = 0 for a.e. t ≥ 0. Setting µ(t) := f(t, 0), we assume that µ(·) is bounded and uniformly
continuous. Also, we require that

h(u) := inf
t≥0

f(t, u) > 0 for all u ∈ [0, 1);

(f3) For almost every t ≥ 0, the function u 7→ f(t, u) is nonincreasing on [0, 1];

(f4) Set K :=
∫

R
K(y)dy. The least mean of the function µ satisfies

⌊µ⌋ > K.

Remark 1.6 Here we assume that the steady states are p− = 0 and p+ = 1. These assumptions can be
relaxed by the change of variables to take into account p− = p−(t) and p+ = p+(t). Indeed, under the
conditions inft≥0 p

+(t)− p−(t) > 0 and p+(t)− p−(t) is bounded, one can set

ũ(t, x) :=
u(t, x)− p−(t)

p+(t)− p−(t)
.

This can reduce the equation heterogeneous steady states into the equation with steady states 0 and 1 as long
as inft≥0 p

+(t)− p−(t) > 0 and p+(t)− p−(t) is bounded.

Remark 1.7 From the above assumption, one can note that

inf
t≥0

µ(t) = h(0) > 0.

Next this assumption also implies that there exists some constant C > 0 such that for all u ∈ [0, 1] and t ≥ 0
one has

µ(t) ≥ f(t, u) ≥ µ(t)− Cu ≥ µ(t)(1 −Hu), (1.6)

where we have set H := sup
t≥0

C
µ(t) =

C
h(0) .
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Let us now define some notations related to the speed function that will be used in the following. We
define σ(K), the abscissa of convergence of K, by

σ (K) := sup

{

γ > 0 :

∫

R

K(y)eγydy <∞
}

.

Assumption 1.3 (ii) yields that σ(K) ∈ (0,∞]. We set

L(λ) :=

∫

R

K(y)[eλy − 1]dy, λ ∈ [0, σ(K)) , (1.7)

as well for λ ∈ (0, σ(K)) and t ≥ 0,

c(λ)(t) := λ−1L(λ) + λ−1µ(t). (1.8)

For a given function a ∈W 1,∞(0,∞), denote cλ,a the function given by

cλ,a(t) := c(λ)(t) + a′(t), λ ∈ (0, σ(K)), t ≥ 0. (1.9)

Obviously, it follows from Definition 1.1 that ⌊cλ,a(·)⌋ = ⌊c(λ)(·)⌋ for each λ ∈ (0, σ(K)). Next note that

⌊c(λ)(·)⌋ = λ−1L(λ) + λ−1⌊µ⌋.

Now we state some properties of ⌊c(λ)(·)⌋ in the following proposition.

Proposition 1.8 Let Assumption 1.3 and 1.5 be satisfied. Then the following properties hold:

(i) The map λ 7→ ⌊c(λ)(·)⌋ from (0, σ(K)) to R is of class C1 from (0, σ(K)) into R.

(ii) Set c∗r := inf
λ∈(0,σ(K))

⌊c(λ)(·)⌋. There exists λ∗r ∈ (0, σ(K)] such that

lim
λ→(λ∗

r )
−

⌊c(λ)(·)⌋ = c∗r .

Moreover, one has c∗r > 0 and the map λ 7→ ⌊c(λ)(·)⌋ is decreasing on (0, λ∗r).

(iii) Assume that λ∗r < σ(K). One has

c∗r =

∫

R

K(y)eλ
∗

ryydy. (1.10)

The above Proposition 1.8 has been mostly proved in [16] (see Proposition 2.8 in [16]) with a more general
kernel which depends on t.

Here we only explain that c∗r > 0. To see this, note that for λ ∈ (0, σ(K)) one has

λc(λ)(t) =

∫

R

K(y)eλydy + µ(t)−K, ∀t ≥ 0.

Next due to Assumption 1.5 (f4) and Lemma 1.2, there exists some function a ∈ W 1,∞(0,∞) such that
µ(t)−K + a′(t) ≥ 0 for all t ≥ 0. This yields for all λ ∈ (0, σ(K)) and t ≥ 0,

λc(λ)(t) + a′(t) =

∫

R

K(y)eλydy + µ(t)−K + a′(t) ≥
∫

R

K(y)eλydy > 0,

that rewrites c∗r > 0 since ⌊a′⌋ = 0. The result follows.
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Remark 1.9 Let us point out that the assumption λ∗r < σ(K) needed for (iii) to hold is satisfied for instance
if we have

lim sup
λ→σ(K)−

L(λ)

λ
= +∞. (1.11)

Indeed, one can observe that

⌊c(λ)(·)⌋ ∼ ⌊µ⌋
λ

→ +∞ as λ→ 0+.

In addition, if (1.11) holds, then the decreasing property of the map λ 7→ ⌊c(λ)(·)⌋ on (0, λ∗r) as stated in
Proposition 1.8 (ii) ensures that λ∗r < σ(K).

To state our spreading result, we impose in the following that the condition discussed in the previous
remark is satisfied, that means λ∗r is different from the convergence abscissa.

Assumption 1.10 In addition to Assumption 1.3, we assume that λ∗r < σ(K).

Using the above properties for the speed function c(λ)(·) and its least mean value, we are now able to
state our main results.

Theorem 1.11 (Upper bounds) Let Assumption 1.3, 1.5 and 1.10 be satisfied. Let u = u(t, x) denote the
solution of (1.1) equipped with a continuous initial data u0, with 0 ≤ u0(·) ≤ 1 and u0(·) 6≡ 0.
Then the following upper estimates for the propagation set hold: if u0(x) = O(e−λx) as x → ∞ for some
λ > 0, then one has

lim
t→∞

sup
x≥

∫
t

0
c+(λ)(s)ds+ηt

u(t, x) = 0, ∀η > 0,

where the function c+(λ)(·) is defined by

c+(λ)(·) :=
{

c(λ∗r)(·) if λ ≥ λ∗r ,

c(λ)(·) if λ ∈ (0, λ∗r).

For the lower estimates of the propagation set, we first state our result for a specific function f = f(t, u)
of the form f(t, u) = µ(t)(1 − u). In other words, we are considering the following non-autonomous logistic
equation

∂tu(t, x) =

∫

R

K(y) [u(t, x− y)− u(t, x)] dy + µ(t)u(t, x) (1− u(t, x)) . (1.12)

To enter the framework of Assumption 1.5, we assume that the function µ satisfies following conditions:

t 7→ µ(t) is uniformly continuous and bounded with inf
t≥0

µ(t) > 0,

and the least mean of µ(·) satisfies ⌊µ⌋ > K.
(1.13)

For this problem, our lower estimate of propagation set reads as follows.

Theorem 1.12 (Lower bounds) Let Assumption 1.3, 1.10 be satisfied and assume furthermore that µ
satisfies (1.13). Let u = u(t, x) denote the solution of (1.12) equipped with a continuous initial data u0, with
0 ≤ u0(·) ≤ 1 and u0(·) 6≡ 0. Then the following propagation occurs:

(i) (Fast exponential decay case) If u0(x) = O(e−λx) as x→ ∞ for some λ ≥ λ∗r , then one has

lim
t→∞

sup
x∈[0,ct]

|1− u(t, x)| = 0, ∀c ∈ (0, c∗r);

(ii) (Slow exponential decay case) If lim inf
x→∞

eλxu0(x) > 0 for some λ ∈ (0, λ∗r), then it holds that

lim
t→∞

sup
x∈[0,ct]

|1− u(t, x)| = 0, ∀c ∈ (0, ⌊c(λ)⌋) .
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Next as a consequence of the comparison principle, one obtains the following lower estimates of the
propagation set to the right-hand side for more general nonlinearity satisfying Assumption 1.5.

Corollary 1.13 (Inner propagation) Let Assumption 1.3, 1.5 and 1.10 be satisfied. Let u = u(t, x) denote
the solution of (1.1) supplemented with a continuous initial data u0, with 0 ≤ u0(·) ≤ 1 and u0(·) 6≡ 0. Then
the following propagation result holds true:

(i) (Fast exponential decay case) If u0(x) = O(e−λx) as x→ ∞ for some λ ≥ λ∗r , then one has

lim inf
t→∞

inf
x∈[0,ct]

u(t, x) > 0, ∀c ∈ (0, c∗r);

(ii) (Slow exponential decay case) If lim inf
x→∞

eλxu0(x) > 0 for some λ ∈ (0, λ∗r), then one has

lim inf
t→∞

inf
x∈[0,ct]

u(t, x) > 0, ∀c ∈ (0, ⌊c(λ)⌋) .

Remark 1.14 When the coefficients are periodic functions with period T , from [25] one can note that
1
T

∫ T

0 c+(λ)(s)ds is the exact spreading speed for (1.1). In the periodic situation, our results are also sharp,
in the sense that

lim
t→∞

1

t

∫ t

0

c+(λ)(s)ds = ⌊c+(λ)⌋ = 1

T

∫ T

0

c+(λ)(s)ds.

The two quantities limt→∞
1
t

∫ t

0 c
+(λ)(s)ds and ⌊c+(λ)⌋ also coincide when c+(λ)(t) is a time almost periodic

function. Therefore our results provide the exact spreading speed for nonlocal KPP equations in a time almost
periodic environment.

In more general heterogeneous environment, for instance non-recurrent environment, one may have

⌊c+(λ)⌋ < lim inf
t→∞

1

t

∫ t

0

c+(λ)(s)ds, see Example 1 in [37]. Our results provide the upper and lower esti-

mates of the propagation set. For β ∈
(

⌊c+(λ)⌋, lim inf
t→∞

1
t

∫ t

0 c
+(λ)(s)ds

)

, the behaviour of u(t, βt) for t ≫ 1

is unknown. This open problem is similar to the non-autonomous Fisher-KPP equation with local diffusion
[37].

In the above result we only consider the propagation to the right-hand side of the real line and obtain a
propagation result on some interval of the form [0, ct] for suitable speed c and for t≫ 1. Note that the kernel
is not assumed to be even, so that the propagation behaviours on the right and the left-hand sides can be
different. For instance, different spreading speeds may arise at right and left-hand sides when the kernel is
thin-tailed on both sides. To study the propagation behaviour of the left-hand side, it is sufficient to change
x to −x in the above results.

The results stated in this section and more precisely the lower bounds for the propagation follows from
the derivation of suitable regularity estimates for the solution. Here we show that the solutions of (1.12) with
suitable initial data are uniformly continuous. Next Theorem 1.12 follows from the application of a general
persistence lemma (see Lemma 2.6) for uniformly continuous solutions. This key lemma roughly ensures that
if there is a uniformly continuous solution u = u(t, x) admitting a propagating path t 7→ X(t), then [0, kX(t)]
with any k ∈ (0, 1) is a propagating interval, that is u stays uniformly far from 0 on this interval, in the large
time. The idea of the proof of this lemma comes from the uniform persistence theory for dynamical systems
for which we refer the reader to [23, 35, 43, 49] and references cited therein.

This paper is organized as follows. In Section 2, we recall comparison principles and derive our general
key persistence Lemma. Section 3 is devoted to the derivation of some regularity estimates for the solutions
of (1.12) with suitable initial data. With all these materials, we conclude the proofs of theorems and the
corollary.
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2 Preliminary and Key Lemma

This section is devoted to the statement of the comparison principle and a key lemma that will be used to
prove the inner propagation theorem, namely Theorem 1.12.

2.1 Comparison principle and strong maximum principle

We start this section by recalling the following more general comparison principle.

Proposition 2.1 (See [16, Proposition 3.1])[Comparison principle] Let t0 ∈ R and T > 0 be given. Let
K : R → [0,∞) be an integrable kernel and let F = F (t, u) be a function defined in [t0, t0 + T ]× [0, 1] which
is Lipschitz continuous with respect to u ∈ [0, 1], uniformly with respect to t. Let u and u be two uniformly
continuous functions defined from [t0, t0 + T ]× R into the interval [0, 1] such that for each x ∈ R, the maps
u(·, x) and u(·, x) both belong to W 1,1(t0, t0 + T ), satisfying u(t0, ·) ≤ u(t0, ·), and for all x ∈ R and for
almost every t ∈ (t0, t0 + T ),

∂tu(t, x) ≥
∫

R

K(y) [u(t, x− y)− u(t, x)] dy + F (t, u(t, x)),

∂tu(t, x) ≤
∫

R

K(y) [u(t, x− y)− u(t, x)] dy + F (t, u(t, x)).

Then u ≤ u on [t0, t0 + T ]× R.

We also need some comparison principle on moving domain as follows (this can be proved similarly as
Lemma 5.4 in [1] and Lemma 4.7 in [48]).

Proposition 2.2 Assume that K : R → [0,∞) is integrable. Let t0 > 0 and T > 0 be given. Let b(t, x) be a
uniformly bounded function from [t0, t0 + T ]× R → R. Assume that u(t, x) is uniformly continuous defined
from [t0, t0 + T ]×R into the interval [0, 1] such that for each x ∈ R, u(·, x) ∈W 1,1(t0, t0 + T ). Assume that
X and Y are continuous functions on [t0, t0 + T ] with X < Y . If u satisfies











∂tu ≥
∫

R
K(y) [u(t, x− y)− u(t, x)] dy + b(t, x)u, ∀t ∈ [t0, t0 + T ], x ∈ (X(t), Y (t)),

u(t, x) ≥ 0, ∀t ∈ (t0, t0 + T ], x ∈ R \ (X(t), Y (t)),

u(t0, x) ≥ 0, ∀x ∈ (X(t0), Y (t0)).

Then
u(t, x) ≥ 0 for all t ∈ [t0, t0 + T ], x ∈ [X(t), Y (t)].

We continue this section by the following strong maximum principle. We refer the reader to [26] for the
proof of following proposition.

Proposition 2.3 (Strong maximum principle) Let Assumption 1.3, 1.5 be satisfied. Let u = u(t, x) be
the solution of (1.1) supplemented with some continuous initial data u0, such that 0 ≤ u0 ≤ 1 and u0 6≡ 0.
Then u(t, x) > 0 for all t > 0, x ∈ R.

2.2 Key lemma

In this section, we derive an important lemma that will be used in the next section to prove our main
inner propagation result, namely Theorem 1.12. In this section we only let Assumption 1.3 (i), (iii) and
Assumption 1.5 be satisfied.

Definition 2.4 (Limit orbits set) Let u = u(t, x) be a uniformly continuous function on [0,∞) × R into
[0, 1], solution of (1.1). We define ω(u), the set of the limit orbits, as the set of the bounded and uniformly

8



continuous functions ũ : R2 → R where exist sequences (xn)n ⊂ R and (tn)n ⊂ [0,∞) such that tn → ∞ as
n→ ∞ and

ũ(t, x) = lim
n→∞

u(t+ tn, x+ xn),

uniformly for (t, x) in bounded sets of R2.

Let us observe that since u is assumed to be bounded and uniformly continuous on [0,∞) × R, Arzelà-
Ascoli theorem ensures that ω(u) is not empty. Indeed, for each sequence (tn)n ⊂ [0,∞) with tn → ∞ and
(xn) ⊂ R the sequence of functions (t, x) 7→ u(t + tn, x + xn) is equi-continuous and thus has a converging
subsequence with respect to the local uniform topology. In addition, it is a compact set with respect to the
compact open topology, that is with respect to the local uniform topology.

Before going to our key lemma, we claim that the set ω(u) enjoys the following property:

Claim 2.5 Let u = u(t, x) be a uniformly continuous solution of (1.1). Let ũ ∈ ω(u) be given. Then one
has:

Either ũ(t, x) > 0 for all (t, x) ∈ R
2 or ũ(t, x) ≡ 0 on R

2.

Proof. Note that due to Assumption 1.5 (see Remark 1.7), the function u satisfies the following differential
inequality for all t ≥ 0 and x ∈ R

∂tu(t, x) ≥ K ∗ u(t, ·)(x)−Ku(t, x) + u(t, x)(µ(t)− Cu(t, x)).

Since the function µ(·) is bounded, for each ũ ∈ ω(u), there exists µ̃ = µ̃(t) ∈ L∞(R), a weak star limit of
some shifted function µ(tn + ·), for some suitable time sequence (tn), such that ũ satisfies

∂tũ(t, x) ≥ K ∗ ũ(t, ·)(x) −Kũ(t, x) + ũ(t, x)(µ̃(t)− Cũ(t, x))

≥ K ∗ ũ(t, ·)(x) +
(

−K + inf
t∈R

µ̃(t)− C

)

ũ(t, x), ∀(t, x) ∈ R
2.

Herein ∂tũ is a weak star limit of ∂tu(·+ tn, ·+ xn) for some suitable sub-sequence of (xn)n and (tn)n. This
is due to ∂tu ∈ L∞([0,∞)× R).

Next the claim follows from the same arguments as for the proof of the strong maximum principle, see
[26].

Using the above definition and its properties we are now able to state and prove the following key lemma.

Lemma 2.6 Let u = u(t, x) : [0,∞)× R → [0, 1] be a uniformly continuous solution of (1.1). Let t 7→ X(t)
from [0,∞) to [0,∞) be a given continuous function. Let the following set of hypothesis be satisfied:

(H1) Assume that lim inf
t→∞

u(t, 0) > 0;

(H2) There exists some constant ε̃0 > 0 such that for all ũ ∈ ω(u) \ {0}, one has

lim inf
t→∞

ũ(t, 0) > ε̃0;

(H3) The map t 7→ X(t) is a propagating path for u, in the sense that

lim inf
t→∞

u(t,X(t)) > 0.

Then for any k ∈ (0, 1), one has
lim inf
t→∞

inf
0≤x≤kX(t)

u(t, x) > 0.

Remark 2.7 The above result holds without assuming that the convolution kernel is exponential bounded.
We expect this key lemma may also be useful to study the spatial propagation for Fisher-KPP equation with
fat-tailed dispersion kernel, where the solution may accelerate, see [10, 19, 21].
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To prove the above lemma, we make use of ideas coming from uniform persistence theory, see[23, 35, 43].
This is somehow close to those developed in [14, 15].
Proof. To prove the lemma we argue by contradiction by assuming that there exists k ∈ (0, 1), a sequence
(tn)n ⊂ [0,∞) with tn → ∞ and a sequence (kn) with 0 ≤ kn ≤ k such that

u(tn, knX(tn)) → 0 as n→ ∞. (2.1)

First we claim that one has
lim
n→∞

knX(tn) = ∞. (2.2)

To prove this claim we argue by contradiction by assuming that {knX(tn)} has a bounded subsequence.
Hence there exists x∞ ∈ R such that possibly along a subsequence still denoted with the index n, one has
knX(tn) → x∞ as n→ ∞.

Now let us consider the sequence of functions un(t, x) := u(t + tn, x). Since u = u(t, x) is uniformly
continuous, possibly up to a sub-sequence still denoted with the same index n, there exists u∞ ∈ ω(u) such
that

un(t, x) → u∞(t, x) locally uniformly for (t, x) ∈ R
2.

Next since knX(tn) → x∞, then (2.1) ensures that

u∞(0, x∞) = lim
n→∞

u(tn, knX(tn)) = 0.

Since u∞ ∈ ω(u), Claim 2.5 ensures that u∞(t, x) ≡ 0. On the other hand, (H1) ensures that for all t ∈ R,
one has

u∞(t, 0) ≥ lim inf
t→∞

u(t, 0) > 0,

a contradiction, so that (2.2) holds.
Now due to (2.2), there exists N such that

X(0) < knX(tn), ∀n ≥ N.

Hence due to kn < 1 we have
X(0) < knX(tn) < X(tn), ∀n ≥ N.

And since t 7→ X(t) is continuous, then for each n ≥ N there exists t′n ∈ (0, tn) such that

X(t′n) = knX(tn), ∀n ≥ N.

Since knX(tn) → ∞ as n→ ∞ and t 7→ X(t) is continuous, then t′n → ∞ as n→ ∞.
From the above definition of t′n, one has

u(t′n, knX(tn)) = u(t′n, X(t′n)), ∀n ≥ N.

So that (H3) ensures that for all n large enough, there exists ε > 0 such that

u(t′n, knX(tn)) = u(t′n, X(t′n)) ≥ ε.

Recall that Assumption (H2). Now for all n large enough, we define

t′′n := inf

{

t ≤ tn; ∀s ∈ (t, tn), u(s, knX(tn)) ≤
min{ε̃0, ε}

2

}

∈ (t′n, tn).

Since u(tn, knX(tn)) → 0 as n→ ∞, then one may assume that, for all n large enough one has











u(t′′n, knX(tn)) =
min{ε̃0,ε}

2 ,

u(t, knX(tn)) ≤ min{ε̃0,ε}
2 , ∀t ∈ [t′′n, tn],

u(tn, knX(tn)) ≤ 1
n
.
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Next we claim that tn − t′′n → ∞ as n→ ∞. Indeed, if (a subsequence of) tn − t′′n converges to σ ∈ R, define
the sequence of functions ũn(t, x) := u(t + t′′n, x + knX(tn)), that converges, possibly along a subsequence,
locally uniformly to some function ũ∞ = ũ∞(t, x) ∈ ω(u) with

ũ∞(0, 0) =
min{ε̃0, ε}

2
> 0,

and
ũ∞(σ, 0) = lim

n→∞
ũn(tn − t′′n, 0) = lim

n→∞
u(tn, knX(tn)) = 0.

Since ũ∞ ∈ ω(u), then the above two values of ũ∞ contradict the dichotomy stated in Claim 2.5 and this
proves that tn − t′′n → ∞ as n→ ∞.

As a consequence one obtains that the function ũ∞ ∈ ω(u) satisfies

ũ∞(0, 0) =
min{ε̃0, ε}

2
> 0,

together with

ũ∞(t, 0) ≤ min{ε̃0, ε}
2

, ∀t ≥ 0. (2.3)

Due to Claim 2.5, the above equality yields ũ∞ ∈ ω(u) \ {0} and (2.3) contradicts (H2). The proof is
completed.

3 Proof of spreading properties

In this section, we shall make use of the key lemma (see Lemma 2.6) to prove Theorem 1.12. To do this, we
first derive some important regularity properties of the solutions of the Logistic equation (1.12) associated
with suitable initial data. Next we prove Theorem 1.11 by constructing suitable exponentially decaying
super-solutions for (1.1). Finally we turn to the proof of Theorem 1.12. As already mentioned we crucially
make use of Lemma 2.6 and construct a suitable propagating path t 7→ X(t), that depends on the decay rate
of the initial data u0 = u0(x) for x≫ 1. As a corollary, we conclude the propagation results for (1.1).

3.1 Uniform continuity estimate

This subsection is devoted to giving some regularity estimates for the solutions of the following Logistic
equation (recalling (1.12)) when endowed with suitable initial data,

∂tu(t, x) =

∫

R

K(y)u(t, x− y)dy −Ku(t, x) + µ(t)u(t, x) (1− u(t, x)) .

Here we focus on two types of initial data, that will be used to prove Theorem 1.12: initial data with a
compact support and initial data with support on a right semi-infinite interval and with some prescribed
exponential decay on this right-hand side (that is for x≫ 1).

Our first lemma is concerned with the compactly supported case.

Lemma 3.1 Let Assumption 1.3 and (1.13) be satisfied. Let u = u(t, x) be the solution of (1.12) equipped
with the initial data v0 = v0(x), where v0 is Lipschitz continuous in R, and 0 < v0(x) < 1 for all x ∈ (0, A),
for some constant A > 0 while v0 = 0 outside of (0, A). Then, the function (t, x) 7→ u(t, x) is uniformly
continuous on [0,∞)× R.

Proof. Firstly, since 0 ≤ u ≤ 1, then one has

‖∂tu‖L∞(R+×R) ≤M := 2K + ‖µ‖∞. (3.1)
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As a consequence, the map (t, x) 7→ u(t, x) is Lipchitz continuous for the variable t ∈ [0,∞), uniformly with
respect to x ∈ R, that is

|u(t, x)− u(s, x)| ≤M |t− s|, ∀(t, s) ∈ [0,∞)2, ∀x ∈ R. (3.2)

Next we investigate the regularity with respect to the spatial variable x ∈ R. To do so we claim that the
following holds true:

Claim 3.2 For all h > 0 sufficiently small, there exists 0 < σ(h) < 1 such that σ(h) → 1 as h→ 0 and

u(
√
h, x) ≥ σ(h)v0(x− h), ∀x ∈ R.

Proof of Claim 3.2. Let us first observe that since u(t, .) > 0 for all t > 0, it is sufficient to look at
x− h ∈ [0, A], that is h ≤ x ≤ A+ h.

Next to prove this claim, note that one has for all h > 0 and x ∈ R:

u(
√
h, x) = v0(x) +

∫

√
h

0

∂tu(l, x)dl

= v0(x) +

∫

√
h

0

{
∫

R

K(y) [u(l, x− y)− u(l, x)] dy + µ(l)u(l, x) (1− u(l, x))

}

dl

Now coupling (3.2) and 0 ≤ u ≤ 1, one gets, for all h > 0 small enough and uniformly for x ∈ R

u(
√
h, x) ≥ v0(x) +

∫

√
h

0

{
∫

R

K(y)v0(x − y)dy −Kv0(x)

}

dl + o(
√
h),

that is

u(
√
h, x) ≥ v0(x)

(

1−K
√
h

)

+
√
h

(
∫

R

K(y)v0(x− y)dy + o(1)

)

.

Now observing Assumption 1.3 (see (i) and (iii)), there exists ε > 0 such that

min
x∈[0,A]

∫

R

K(y)v0(x− y)dy ≥ 2ε,

so that for h > 0 small enough one has

min
x∈[h,A+h]

∫

R

K(y)v0(x − y)dy ≥ ε,

Now to prove the claim, it is sufficiently to reach, for all h > 0 small enough and x ∈ [h,A+ h],

v0(x)

(

1−K
√
h

)

+
√
h (o(1) + ε) ≥ σ(h)v0(x− h). (3.3)

Now set σ(h) = 1− 2K
√
h and let us show that Claim 3.2 follows.

Since v0 is Lipschitz continuous, then there exists some constant L > 0 such that

|v0(x) − v0(x− h)| ≤ Lh, ∀x ∈ R.

Hence to obtain (3.3), it is sufficient to reach for all x ∈ [h,A+ h] and all h > 0 small enough

K
√
hv0(x− h) +

√
h (o(1) + ε) ≥ Lh

(

1−K
√
h

)

. (3.4)
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Dividing by
√
h, the above inequality holds whenever

Kv0(x− h) + (o(1) + ε) ≥ L
√
h

(

1−K
√
h

)

, (3.5)

which holds true for all h > 0 small enough. So the claim is proved.

Now we come back to the proof of Lemma 3.1. For each h > 0 small enough, let us introduce the following
function

bh(t) = bh(0) exp

{
∫ t

0

[

µ(s+
√
h)− µ(s)

]

ds

}

, for all t ≥ 0, (3.6)

where bh(0) is some constant depending on h and that satisfies the following three conditions:

0 < bh(0) ≤ σ(h) < 1,

bh(0) → 1 as h→ 0 and for all h > 0 small enough

bh(0) ≤ inf
t≥0

µ(t)

µ(t+
√
h)

exp

{
∫ t

0

[

µ(s)− µ(s+
√
h)
]

ds

}

.

For the later condition, one can observe that it is feasible since one has

∣

∣

∣

∣

∫ t

0

[

µ(s+
√
h)− µ(s)

]

ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ t+
√
h

√
h

µ(s)ds−
∫ t

0

µ(s)ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ t+
√
h

t

µ(s)ds−
∫

√
h

0

µ(s)ds

∣

∣

∣

∣

∣

≤ 2‖µ‖∞
√
h.

As a consequence, recalling (1.13), µ(·) is uniformly continuous and we end-up with

µ(t)

µ(t+
√
h)

exp

{
∫ t

0

[

µ(s)− µ(s+
√
h)
]

ds

}

→ 1, as h→ 0, uniformly for t ≥ 0.

Hence bh(0) is well defined and bh(t) → 1 as h→ 0 uniformly for t ≥ 0.
Now, setting wh = wh(t, x) the function given by

wh(t, x) := u(t+
√
h, x)− bh(t)u(t, x − h),

one obtains that it becomes a solution of the following equation

∂twh(t, x) = K ∗ wh(t, x)−Kwh(t, x)

+ µ(t+
√
h) [wh(t, x) + bh(t)u(t, x− h)] [1− (wh(t, x) + bh(t)u(t, x− h))]

− µ(t)bh(t)u(t, x− h) [1− u(t, x− h)]− b′h(t)u(t, x− h)

= K ∗ wh(t, x)−Kwh(t, x) + µ(t+
√
h)wh(t, x)

(

1− wh(t, x) − 2bh(t)u(t, x− h)

)

+ bh(t)u(t, x− h)

(

µ(t+
√
h)− µ(t)− b′h(t)

bh(t)

)

+ bh(t)u
2(t, x − h)

(

µ(t)− bh(t)µ(t+
√
h)
)

.

It follows from the definition of bh(t) (see (3.6) above) that wh(t, x) satisfies

∂twh(t, x) ≥ K ∗ wh(t, x)−Kwh(t, x) + wh(t, x)µ(t+
√
h)

(

1− wh(t, x) − 2bh(t)u(t, x− h)

)

.
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The Claim 3.2 together with bh(0) < σ(h) ensure that wh(0, ·) ≥ 0. Then the comparison principle applies
and implies that wh(t, x) ≥ 0 for all t ≥ 0, x ∈ R, that rewrites as u(t +

√
h, x) ≥ bh(t)u(t, x − h) for all

t ≥ 0, x ∈ R, for h > 0 small enough. Recalling (3.2), for h > 0 sufficiently small, one has for all t ≥ 0 and
x ∈ R,

u(t, x− h)− u(t, x) ≤
(

1

bh(t)
− 1

)

u(t+
√
h, x) +M

√
h ≤

(

1

bh(t)
− 1

)

+M
√
h. (3.7)

Since for h > 0 small enough one has

min
x∈[−h,A−h]

∫

R

K(y)v0(x− y)dy ≥ ε,

then one can similarly prove that for sufficiently small h > 0, there exists σ(h) = 1− 2K
√
h such that

u(
√
h, x) ≥ σ(h)v0(x+ h), ∀x ∈ R.

This rewrites as
u(
√
h, x− h) ≥ σ(h)v0(x), ∀x ∈ R.

Then as above one can choose a suitable function bh(t) and obtain that

u(t+
√
h, x− h) ≥ bh(t)u(t, x), ∀t ≥ 0, x ∈ R.

Recalling (3.2), for h > 0 sufficiently small, one obtains for all t ≥ 0 and x ∈ R,

u(t, x)− u(t, x− h) ≤
(

1

bh(t)
− 1

)

u(t+
√
h, x− h) +M

√
h

≤
(

1

bh(t)
− 1

)

+M
√
h.

(3.8)

Since estimates (3.7) and (3.8) are uniform with respect to the spatial variable x ∈ R, one also obtains a
similar estimates for u(t, x)− u(t, x+ h) and u(t, x+ h)− u(t, x). From these estimates one has reached that
u = u(t, x) is uniformly continuous for all t ≥ 0, x ∈ R, which completes the proof of the lemma.

In the following we derive regularity estimates for the solutions to (1.12) coming from an initial data with
a prescribed exponential decay rate of the right, that for x ≫ 1. To do this, we show that such solutions to
(1.12) decay with the same rate as the initial data, at least in a short time.

Let us introduce some function spaces. Recalling that λ∗r is defined in Proposition 1.8, for λ ∈ (0, λ∗r) let
us define the space BCλ(R) by

BCλ(R) :=

{

φ ∈ C(R) : sup
x∈R

eλx|φ(x)| <∞
}

,

equipped with the weighted norm
‖φ‖BCλ

:= sup
x∈R

eλx|φ(x)|.

Recall that BCλ(R) is a Banach space when endowed with the above norm.
Define also the subset E by

E := {φ ∈ BCλ(R) : 0 ≤ φ ≤ 1} , (3.9)

and let us observe that it is a closed subset of BCλ(R).
Using these notations, we turn to the proof of the following lemma.

Lemma 3.3 Let Assumption 1.3 and 1.10 and (1.13) be satisfied. Let λ ∈ (0, λ∗r) and u0 ∈ E be given.
Then the solution of (1.12) with initial data u0, denoted by u = u(t, x), satisfies

lim
t→0+

sup
x∈R

eλx|u(t, x)− u0(x)| = 0.
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Proof. Fix α > K + 2‖µ‖∞. Let us introduce for each φ ∈ E and t ≥ 0, the operator given by

Qt[φ](·) := αφ(·) +
∫

R

K(y)φ(· − y)dy −Kφ(·) + µ(t)φ(·) (1− φ(·)) .

Note that one has
∥

∥

∥

∥

∫

R

K(y)φ(· − y)dy

∥

∥

∥

∥

BCλ

= sup
x∈R

∣

∣

∣

∣

∫

R

K(y)eλyeλ(x−y)φ(x − y)dy

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

R

K(y)eλydy

∣

∣

∣

∣

‖φ‖BCλ
.

Let us observe that
∣

∣

∫

R
K(y)eλydy

∣

∣ <∞ due to 0 < λ < λ∗r < σ(K). Since 0 ≤ φ ≤ 1 then one has

‖Qt[φ](·)‖BCλ
≤

(

α+

∣

∣

∣

∣

∫

R

K(y)eλydy

∣

∣

∣

∣

+K + ‖µ‖∞
)

‖φ‖BCλ
<∞.

Thus for each φ(·) ∈ E, for all t ≥ 0, Qt[φ](·) ∈ BCλ(R).
Next let us observe that Qt[φ] is nondecreasing with respect to φ ∈ E. Indeed, if for any φ, ψ ∈ E and

φ(x) ≥ ψ(x) for all x ∈ R, then for each given t ≥ 0, x ∈ R

Qt[φ](x) −Qt[ψ](x) = α(φ(x) − ψ(x)) +

∫

R

K(y)[φ(x − y)− ψ(x − y)]dy −K(φ − ψ)(x)

+ µ(t)φ(x)(1 − φ(x)) − µ(t)ψ(x)(1 − ψ(x))

≥
(

α−K − 2‖µ‖∞
)

(φ(x) − ψ(x))

≥ 0.

The last inequality comes from α > K + 2‖µ‖∞. So that for any t ≥ 0, the map φ 7→ Qt[φ] is nondecreasing
on E.

For each given u0 ∈ E and any fixed h > 0, we define the following space

W := {t 7→ u(t, ·) ∈ C([0, h], BCλ(R)) : 0 ≤ u ≤ 1, u(0, x) = u0(x)} .

Let us rewrite (1.12) to
∂tu(t, x) + αu(t, x) = Qt[u(t, ·)](x),

then one has

u(t, ·) = e−αtu0(·) +
∫ t

0

eα(s−t)Qs[u(s, ·)](·)ds =: T [u](t, ·).

Next we show that for each u ∈ W , one has T [u] ∈ W . Let u ∈ W be given. Firstly we show that
Qt[u](·) ∈ BCλ(R) uniformly for t ∈ [0, h]. Since t 7→ u(t, ·) ∈ C([0, h], BCλ(R)), then one has

sup
t∈[0,h]

‖u(t, ·)‖BCλ
<∞.

Thus one has

sup
t∈[0,h]

‖Qt[u(t, ·)](·)‖BCλ
≤

(

α+

∣

∣

∣

∣

∫

R

K(y)eλydy

∣

∣

∣

∣

+K + ‖µ‖∞
)

sup
t∈[0,h]

‖u(t, ·)‖BCλ
<∞.

Moreover, one can observe that for each t ∈ [0, h],

‖T [u](t, ·)‖BCλ
≤ ‖u0‖BCλ

+
1

α
sup

t∈[0,h]

‖Qt[u(t, ·)]‖BCλ
<∞.

That is T [u](t, ·) ∈ BCλ(R), for each t ∈ [0, h].
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Then we show that t 7→ T [u](t, ·) is continuous. To see this, fix t0 ∈ [0, h] and observe that one has

‖T [u](t, ·)− T [u](t0, ·)‖BCλ
≤

∣

∣e−αt − e−αt0
∣

∣ ‖u0‖BCλ

+ sup
x∈R

eλx
∣

∣

∣

∣

∫ t0

0

[

eα(s−t) − eα(s−t0)
]

Qs[u(s, ·)](x)ds
∣

∣

∣

∣

+ sup
x∈R

eλx
∣

∣

∣

∣

∫ t

t0

eα(s−t)Qs[u(s, ·)](x)ds
∣

∣

∣

∣

≤
∣

∣e−αt − e−αt0
∣

∣ ‖u0‖BCλ

+
∣

∣e−αt − e−αt0
∣

∣ sup
s∈[0,h]

‖Qs[u(s, ·)]‖BCλ

∫ t0

0

eαsds

+ sup
s∈[0,h]

‖Qs[u(s, ·)]‖BCλ

∣

∣

∣

∣

1− eα(t0−t)

α

∣

∣

∣

∣

.

So that t 7→ T [u](t, ·) ∈ C([0, h], BCλ(R)) and T [u](0, ·) = u0(·).
Also, note that due to for each t ∈ [0, h], Qt[u(t, ·)] is nondecreasing with u(t, ·) ∈ E, then we get

0 ≤ T [u](t, ·) ≤ e−αt +
1

α
(1 − e−αt)α ≤ 1, ∀t ∈ [0, h].

Hence, for each u ∈W , then T [u] ∈W .
For each u, v ∈W and a given γ > 0 large enough, we introduce a metric on W defined by

d(u, v) := sup
t∈[0,h]

sup
x∈R

eλx|u(t, x)− v(t, x)|e−γt.

Note that

d(T [u], T [v]) = sup
t∈[0,h]

sup
x∈R

eλx
∣

∣

∣

∣

∫ t

0

eα(s−t) (Q[u](s, x)−Q[v](s, x)) ds

∣

∣

∣

∣

e−γt

≤ sup
t∈[0,h]

sup
x∈R

∣

∣

∣

∣

∫ t

0

e(α+γ)(s−t)

[

α+

∫

R

K(y)eλydy +K + 3‖µ‖∞
]

e−γseλx|u(s, x)− v(s, x)|ds
∣

∣

∣

∣

≤
[

α+

∫

R

K(y)eλydy +K + 3‖µ‖∞
]

sup
t∈[0,h]

∫ t

0

e(α+γ)(s−t)ds · d(u, v)

≤ α+
∫

R
K(y)eλydy +K + 3‖µ‖∞

α+ γ
· d(u, v).

So that T [u] is a contraction map on W endowed with the metric d = d(u, v), as long as γ > 0 sufficiently
large such that

α+
∫

R
K(y)eλydy +K + 3‖µ‖∞

α+ γ
< 1.

Finally since (W,d) is a complete metric space, by Banach fixed point theorem ensures that T [u] has a unique
fixed point in W which is the solution of (1.12) with u(0, ·) = u0(·). Since t 7→ u(t, ·) ∈ C([0, h], BCλ(R)),
then one has obtained

lim
t→0+

sup
x∈R

eλx|u(t, x)− u0(x)| = 0,

that completes the proof of the lemma.

Lemma 3.4 Let Assumption 1.3 and 1.10 and (1.13) be satisfied. Let u = u(t, x) be the solution of (1.12)
supplemented with the initial data v0 satisfying the following properties:
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assume v0 is Lipschitz continuous in R, there is A > 0 large enough, α > 0, p ∈ (0, 1) and λ ∈ (0, λ∗r) such
that

v0(x) =



















increasing function, x ∈ [0, α],

β := pe−λA, x ∈ [α,A],

pe−λx, x ∈ [A,∞),

0, x ∈ (−∞, 0].

(3.10)

Then the function u = u(t, x) is uniformly continuous on [0,∞)× R.

Proof. As in the proof of Lemma 3.1, u = u(t, x) also satisfies (3.2).
Now from the definition of v0, for h > 0 small enough, for the given λ ∈ (0, λ∗r), one can observe

v0(x) ≥ e−λhv0(x− h), ∀x ∈ R.

Let us show that the function vh(t, x) := e−λhu(t, x− h) (with vh(0, x) = e−λhv0(x− h)) is a sub-solution of
(1.12). To see this, note that vh(t, x) satisfies

∂tv
h(t, x) =

∫

R

K(y)vh(t, x − y)dy −Kvh(t, x) + µ(t)vh(t, x)
(

1− eλhvh(t, x)
)

≤
∫

R

K(y)vh(t, x − y)dy −Kvh(t, x) + µ(t)vh(t, x)
(

1− vh(t, x)
)

.

Hence vh(t, x) becomes a sub-solution of (1.12).
Since vh(0, ·) ≤ v0(·), the comparison principle implies that

u(t, x) ≥ e−λhu(t, x− h), ∀t ≥ 0, x ∈ R.

Similarly as in (3.7), one also has, for all h > 0 sufficiently small,

u(t, x− h)− u(t, x) ≤
(

1− e−λh
)

u(t, x− h) ≤ 1− e−λh, ∀t ≥ 0, x ∈ R, (3.11)

and changing x to x+ h yields for all h > 0 sufficiently small,

u(t, x)− u(t, x+ h) ≤
(

1− e−λh
)

u(t, x) ≤ 1− e−λh, ∀t ≥ 0, x ∈ R. (3.12)

Next we show that there exists 0 < α(h) < 1, α(h) → 1 as h→ 0 such that for all h > 0 small enough

u(
√
h, x) ≥ α(h)v0(x+ h), ∀x ∈ R.

Since v0(x+ h) = 0 for x ≤ −h, it is sufficiently to consider the above inequality for x ≥ −h. As in the proof
of Lemma 3.1, note that for all h > 0 sufficiently small and uniformly for x ∈ R, one has

u(
√
h, x) ≥ v0(x)

(

1−K
√
h

)

+
√
h

(
∫

R

K(y)v0(x− y)dy + o(1)

)

.

One may now observe that for all 2A ≥ x ≥ −h, there exists ε > 0 such that

∫

R

K(y)v0(x− y)dy ≥ ε > 0.

As in the proof of Claim 3.2, set α1(h) = 1− 2K
√
h. Then one has

u(
√
h, x) ≥ α1(h)v0(x+ h), ∀x ≤ 2A.
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Let us now prove that there exists 0 < α2(h) < 1 and α2(h) → 1, as h → 0 such that u(
√
h, x) ≥

α2(h)v0(x+ h) for x ≥ 2A. From Lemma 3.3, one has

lim
h→0+

sup
x≥2A

eλx|u(
√
h, x) − pe−λx| = 0.

Set
γ(h) := sup

x≥2A
eλx|u(

√
h, x)− pe−λx|,

and observe that, for h sufficiently small, for all x ≥ 2A, one has

(

1− γ(h)

p

)

v0(x) = −γ(h)e−λx + pe−λx ≤ u(
√
h, x)

≤ γ(h)e−λx + pe−λx

=

(

γ(h)

p
+ 1

)

v0(x).

So that one can set α2(h) := 1− γ(h)
p

to obtain 0 < α2(h) < 1, α2(h) → 1 as h→ 0 and

u(
√
h, x) ≥ α2(h)v0(x), ∀x ≥ 2A.

Then since v0 is non-increasing for x ≥ A, one has

u(
√
h, x) ≥ α2(h)v0(x) ≥ α2(h)v0(x + h), ∀x ≥ 2A.

Now, set α(h) := min{α1(h), α2(h)}. We get

u(
√
h, x) ≥ α(h)v0(x+ h), ∀x ∈ R.

As in the proof of Lemma 3.1, one can also construct a function b̃h(t) → 1 as h → 0 uniformly for t ≥ 0
with 0 < b̃h(0) < α(h) and such that for all h > 0 small enough one has

u(t+
√
h, x) ≥ b̃h(t)u(t, x + h), ∀t ≥ 0, x ∈ R.

With such a choice, for all h > 0 small enough, for all t ≥ 0 and x ∈ R, one obtains that

u(t, x+ h)− u(t, x) ≤
(

1

b̃h(t)
− 1

)

u(t+
√
h, x) +M

√
h ≤

(

1

b̃h(t)
− 1

)

+M
√
h. (3.13)

As well as, for all t ≥ 0 and x ∈ R, one has

u(t, x)− u(t, x− h) ≤
(

1

b̃h(t)
− 1

)

u(t+
√
h, x− h) +M

√
h ≤

(

1

b̃h(t)
− 1

)

+M
√
h. (3.14)

Combined with (3.11) and (3.12), this ensures that u is uniformly continuous on [0,∞) × R and completes
the proof of the lemma.

Remark 3.5 Here we point out that problem (1.1) is invariant with respect to spatial translation, so that
spatial shift on the initial data v0(·), induces the same spatial shift on the solution and does not change the
uniform continuity on [0,∞)× R.
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3.2 Proof of Theorem 1.11

In this subsection, we construct a suitable exponentially decaying super-solution and prove Theorem 1.11.
Proof of Theorem 1.11. For each given λ > 0 and sufficiently large A > 0, let us firstly construct the
following function

u(t, x) :=

{

Ae−λ∗

r(x−
∫

t

0
c(λ∗

r)(s)ds), if λ ≥ λ∗r ,

Ae−λ(x−
∫

t

0
c(λ)(s)ds), if 0 < λ < λ∗r .

Here we let A > 0 large enough such that u(0, ·) ≥ u0(·) and recall that the speed function t 7→ c(λ)(t) is
defined in (1.8).

Since f(t, u) ≤ µ(t) for all t ≥ 0 and u ∈ [0, 1], then one readily obtains that u is super-solution of (1.1).
So that the comparison principle implies that

lim
t→∞

sup
x≥

∫
t

0
c+(λ)(s)ds+ηt

u(t, x) ≤ lim
t→∞

sup
x≥

∫
t

0
c+(λ)(s)ds+ηt

u(t, x) = 0, ∀η > 0.

This completes the proof of the upper estimate as stated in Theorem 1.11.

3.3 Proof of Theorem 1.12

In this section we first discuss some properties of the solution of the following autonomous Fisher-KPP
equation:

∂tu(t, x) =

∫

R

k(y)u(t, x− y)dy − k̄u(t, x) + u(t, x)(m− bu(t, x)), t ≥ 0, x ∈ R. (3.15)

Here k(·) is a given symmetric kernel as defined in Remark 1.4, k̄ =
∫

R
k(y)dy > 0 while m and b are given

positive constants.
Define

c0 := inf
λ>0

∫

R
k(y)eλydy − k̄ +m

λ
.

Note that c0 > 0 since k(·) is a symmetric function (see also [47] where the sign of the (right and left) wave
speed is investigated). Next our first important result reads as follows.

Lemma 3.6 Let u = u(t, x) be the solution of (3.15) supplemented with a continuous initial data 0 ≤ u0(·) ≤
m
b
and u0 6≡ 0 with compact support. Let us furthermore assume that u is uniformly continuous for all t ≥ 0,

x ∈ R. Then one has
lim
t→∞

sup
|x|≤ct

∣

∣

∣

m

b
− u(t, x)

∣

∣

∣
= 0, ∀c ∈ [0, c0).

Remark 3.7 For the kernel function with supp(k) = R and without the uniform continuity assumption, the
above propagating behaviour is already known. We refer to [34, Theorem 3.2]. For the reader convenience, we
give a short proof of Lemma 3.6, with the help of Theorem 3.3 in [47] and the additional regularity assumption
of solution.

Proof. Let c ∈ [0, c0) be given and fixed. To prove the lemma let us argue by contradiction by assuming that
there exists a sequence (tn, xn) and |xn| ≤ ctn such that

lim sup
n→∞

u(tn, xn) <
m

b
.

Denote for n ≥ 0 the sequence of functions un by un(t, x) := u(t + tn, x + xn). Since u = u(t, x) is
uniformly continuous on [0,∞) × R and 0 ≤ u ≤ m

b
, then Arzelà-Ascoli theorem applies and ensures that

as n → ∞ one has un(t, x) → u∞(t, x) locally uniformly for (t, x) ∈ R
2, for some function u∞ = u∞(t, x)

defined in R
2 and such that u∞(0, 0) < m

b
.

19



Now fix c′ ∈ (c, c0). Recall that Theorem 3.3 in [47] ensures that there exists some constant qc′ ∈
(

0, m
b

]

such that
lim inf
t→∞

inf
|x|≤c′t

u(t, x) ≥ qc′ .

Hence there exists T > 0 such that

inf
|x|≤c′t

u(t, x) ≥ qc′/2, ∀t ≥ T.

This implies that for all n ≥ 0 and t ∈ R such that t+ tn ≥ T one has

inf
|x+xn|≤c′(t+tn)

u(t+ tn, x+ xn) ≥ qc′/2.

Since one has |xn| ≤ ctn for all n ≥ 0, this implies that for all n ≥ 0 and t ∈ R with t+ tn ≥ T :

inf
|x|≤(c′−c)tn+c′t

u(t+ tn, x+ xn) ≥ qc′/2.

Finally since c′ > c and tn → ∞ as n→ ∞, then one has u∞(t, x) ≥ qc′/2 > 0 for all (t, x) ∈ R
2.

Next, we consider U = U(t) with U(0) = qc′/2 > 0 the solution of the ODE

U ′(t) = U(t) (m− bU(t)) , ∀t ≥ 0.

Since u∞(s, x) ≥ qc′/2 for all (s, x) ∈ R
2, then comparison principle implies that

u∞(t+ s, x) ≥ U(t), ∀t ≥ 0, s ∈ R, x ∈ R.

So that
u∞(0, 0) ≥ U(t), ∀t ≥ 0.

On the other hand, since U(0) > 0, one gets U(t) → m
b

as t → ∞. Hence this yields u∞(0, 0) ≥ m
b
, a

contradiction with u∞(0, 0) < m
b
, which completes the proof.

Now we apply the key lemma to prove our inner propagation result Theorem 1.12.
Proof of Theorem 1.12 (i). Here we assume that the initial data u0 has a fast decay rate and we aim at
proving that

lim
t→∞

sup
x∈[0,ct]

|1− u(t, x)| = 0, ∀c ∈ (0, c∗r).

One can construct a initial data v0 alike in Lemma 3.1, through choosing proper parameter and spatial
shifting (see Remark 3.5) such that v0(x) ≤ u0(x) for all x ∈ R. Let v(t, x) be the solution of (1.12) with
initial data v0. Lemma 3.1 ensures that v(t, x) is uniformly continuous for all t ≥ 0, x ∈ R. Since v0(·) ≤ u0(·),
then the comparison principle implies that v(t, x) ≤ u(t, x) for all t ≥ 0, x ∈ R. Note that u(t, x) ≤ 1, it is
sufficiently to prove that

lim
t→∞

inf
x∈[0,ct]

v(t, x) = 1, ∀c ∈ (0, c∗r).

Firstly, let us prove that
lim inf
t→∞

inf
x∈[0,ct]

v(t, x) > 0, ∀c ∈ (0, c∗r).

To do this, for all B,R > 0, γ ∈ R, we define cR,B(γ) by

cR,B(γ) :=
2R

π

∫ B

−B

K(z)eγz sin(
πz

2R
)dz. (3.16)

Note that γ 7→ cR,B(γ) is continuous and recalling (1.10) one has

lim
γ→λ∗

r

lim
R→∞
B→∞

cR,B(γ) = c∗r .
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So for each c′ ∈ (c, c∗r), one can choose proper γ close to λ∗r such that for R,B > 0 large enough,

c′ ≤ cR,B(γ).

Then for all c
c′
< k < 1,

ct

k
≤ X(t) := cR,B(γ)t.

Now, we apply Lemma 2.6 to show that

lim inf
t→+∞

inf
0≤x≤kX(t)

v(t, x) > 0.

Note that t 7→ X(t) is continuous for t ≥ 0, and Lemma 3.1 ensures that v = v(t, x) is uniformly continuous
for all t ≥ 0, x ∈ R. We only need to check that v = v(t, x) satisfies the conditions (H1) − (H3) in Lemma
2.6.

To show (H1), recalling (1.5) and (1.6), one may observe that v = v(t, x) satisfies

∂tv(t, x) ≥
∫

R

k(y)v(t, x − y)dy −Kv(t, x) + v(t, x) (µ(t)− Cv(t, x)) .

Recalling Assumption 1.5 (f4) and Lemma 1.2, there exists a ∈ W 1,∞(0,∞) such that µ(t) −K + a′(t) ≥ 0
for all t ≥ 0. Setting w(t, x) := ea(t)v(t, x) so that w satisfies

∂tw(t, x) ≥
∫

R

k(y)w(t, x − y)dy − k̄w(t, x)

+ w(t, x)
(

k̄ + µ(t)−K + a′(t)− Ce−a(t)w(t, x)
)

≥
∫

R

k(y)w(t, x − y)dy − k̄w(t, x) + w(t, x)
(

m− Ce‖a‖∞w(t, x)
)

,

where m := inf
t≥0

(

k̄ + µ(t)−K + a′(t)
)

≥ k̄ > 0. Now we consider w = w(t, x) the solution of following

equation

∂tw(t, x) = k ∗ w(t, x)− k̄w(t, x) + w(t, x)
(

m− Ce‖a‖∞w(t, x)
)

. (3.17)

supplemented with the initial data w(0, x) = e−‖a‖∞v0(x). Thus note that one has w(0, x) ≤ w(0, x) for all
x ∈ R and the comparison principle implies that

w(t, x) = ea(t)v(t, x) ≥ w(t, x), ∀t ≥ 0, x ∈ R.

Lemma 3.6 implies that there exists c̃ > 0 such that

lim
t→∞

sup
|x|≤ct

∣

∣

∣
w(t, x)− m

Ce‖a‖∞

∣

∣

∣
= 0, ∀c ∈ (0, c̃). (3.18)

Since a ∈ W 1,∞(0,∞), we end-up with

lim inf
t→∞

v(t, 0) ≥ lim
t→∞

e−‖a‖∞w(t, 0) =
m

Ce2‖a‖∞

> 0,

and (H1) is fulfilled.
Next we verify assumption (H2). Recall that for all ṽ ∈ ω(v) \ {0}, there exist sequences (tn)n with

tn → ∞ and (xn)n such that ṽ(t, x) = lim
n→∞

v(t + tn, x + xn) where this limit holds locally uniformly for

(t, x) ∈ R
2. As in the proof of Claim 2.5, such a function ṽ satisfies

∂tṽ(t, x) ≥
∫

R

k(y)ṽ(t, x− y)dy + ṽ(t, x)(µ̃(t)−K − Cṽ(t, x)), ∀(t, x) ∈ R
2,
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where k(y) is defined in (1.5) and µ̃ = µ̃(t) ∈ L∞(R) is a weak star limit of some shifted function µ(tn + ·).
Similar to Definition 1.3 and Lemma 1.2, one can define the least mean of µ̃ over R as

⌊µ̃⌋ = lim
T→∞

inf
s∈R

1

T

∫ T

0

µ̃(t+ s)dt.

Also, the least mean of µ̃ satisfies
⌊µ̃⌋ = sup

a∈W 1,∞(R)

inf
t∈R

(a′ + µ̃)(t).

Assumption 1.5 (f4) implies that ⌊µ̃⌋ ≥ K and the same argument as above yields

lim inf
t→∞

ṽ(t, 0) ≥ m

Ce2‖b‖∞

> 0,

where b ∈ W 1,∞(R) such that µ̃(t)−K + b′(t) ≥ 0 for all t ∈ R. Hence the condition (H2) is satisfied.
Before proving (H3), we state a lemma related to a compactly supported sub-solution of (1.1). Since

(1.12) is a special case of (1.1), one can construct the similar sub-solution of (1.12). The following lemma
can be proved similarly to Lemma 6.1 in [16]. So that the proof is omitted.

Lemma 3.8 Let Assumption 1.3, 1.5 and 1.10 be satisfied. Let γ ∈ (0, λ∗r) be given. Then there exist B0 > 0
large enough and θ0 > 0 such that for all B > B0 there exists R0 = R0(B) > 0 large enough enjoying the
following properties: for all B > B0 and R > max(R0(B), B), there exists some function a ∈ W 1,∞(0,∞)
such that the function

uR,B(t, x) =

{

ea(t)e−γx cos( πx2R ) if t ≥ 0 and x ∈ [−R,R],
0 else,

satisfies, for all θ ≤ θ0, for all x ∈ [−R,R] and for any t ≥ 0,

∂tu(t, x)− cR,B(γ)∂xu(t, x) ≤
∫

R

K(x− y)u(t, y)dy +
(

µ(t)− θ −K
)

u(t, x).

Herein the speed cR,B(γ) is defined in (3.16). Furthermore, let

u(t, x) := ηuR,B(t, x−X(t)),

where X(t) = cR,B(γ)t and η > 0 small enough, then u(t, x) is the sub-solution of (1.1).

Now with the help of Lemma 3.8 and the comparison principle, one can choose η > 0 small enough such
that u(0, x) ≤ v0(x) and therefore one has

lim inf
t→∞

v(t,X(t)) ≥ lim inf
t→∞

u(t,X(t)) = lim inf
t→∞

ηuR,B(t, 0) > 0,

which ensures that (H3) is satisfied.
As a conclusion all the conditions of Lemma 2.6 are satisfied and this yields

lim inf
t→∞

inf
0≤x≤kX(t)

v(t, x) > 0.

So that
lim inf
t→∞

inf
0≤x≤ct

v(t, x) > 0, ∀c ∈ (0, c∗r). (3.19)

Finally, let us prove that
lim inf
t→∞

inf
0≤x≤ct

v(t, x) = 1, ∀c ∈ (0, c∗r).

22



To do this, note that combining (3.18) and (3.19) yields

lim inf
t→∞

inf
−c1t≤x≤ct

v(t, x) > 0, ∀0 < c1 < c̃, ∀c ∈ (0, c∗r).

By the similar analysis to the proof of Lemma 3.6, one could show that the above limit is equal to 1. Hence
the proof is completed.

Next we prove Theorem 1.12 (ii). Firstly, we state a lemma about a sub-solution of (1.1). One can also
construct the similar sub-solution for (1.12).

Lemma 3.9 Let Assumption 1.3, 1.5 and 1.10 be satisfied. For each given λ ∈ (0, λ∗r), define that

ϕ(t, x) = e−λ(x+a(t)) − e−λa(t)+B0(t)+B1e−(λ+h)x, t ≥ 0, x ∈ R, (3.20)

where a,B0 ∈W 1,∞(0,∞), B1 > 0 and 0 < h < min {λ, σ(K)− λ}. Then

φ(t, x) := max

{

0, ϕ

(

t, x−
∫ t

0

cλ,a(s)ds

)}

is the subsolution of (1.1).

Remark 3.10 Note that ϕ(t, x) is positive when

x >
‖B0(t)‖∞ +B1

h
.

We point out that this lemma can be proved similarly to [16, Theorem 2.9]. So we omit the proof.

Proof of Theorem 1.12(ii). As proof of Theorem 1.12 (i), we can construct v0(x) alike in Lemma 3.4, through
choosing proper parameter and spatial shifting (see Remark 3.5) such that v0(x) ≤ u0(x) for all x ∈ R. Let
v(t, x) be the solution of (1.12) equipped with initial data v0. Lemma 3.4 ensures that v(t, x) is uniformly
continuous for all t ≥ 0, x ∈ R.

Recalling (1.8) and (1.9), for each given λ ∈ (0, λ∗r) and for all c < c′ < ⌊c(λ)⌋, one can choose a proper
function a ∈W 1,∞(0,+∞) such that

c′ < cλ,a(t), ∀t ≥ 0.

Then we define

X(t) :=

∫ t

0

cλ,a(s)ds+ P,

where P > ‖B0(t)‖∞+B1

h
> 0 and B0(·), B1 and h are given in Lemma 3.9. Note that for all c

c′
< k < 1,

ct ≤ kX(t).

Next it is sufficiently to apply key Lemma 2.6 to show that

lim inf
t→∞

inf
0≤x≤kX(t)

v(t, x) > 0.

Note that for exponential decay initial data v0 on the right-hand side, that is x ≫ 1, one can construct
an initial data v0 alike in Lemma 3.1 with compact support such that v0 ≤ v0. Then comparison principle
implies that (H1) and (H2) hold. To verify the condition (H3), by Lemma 3.9 and comparison principle,
one has

lim inf
t→∞

v(t,X(t)) ≥ lim inf
t→∞

φ(t,X(t)) = lim inf
t→∞

ϕ(t, P ) > 0.

So (H3) is satisfied. Hence the key Lemma 2.6 ensures that

lim inf
t→∞

inf
0≤x≤kX(t)

v(t, x) > 0.
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Then one has
lim inf
t→∞

inf
0≤x≤ct

v(t, x) > 0, ∀0 < c < ⌊c(λ)⌋.

Similarly to the proof of Theorem 1.12 (i), one can show that

lim
t→∞

sup
x∈[0,ct]

|u(t, x)− 1| = 0, ∀0 < c < ⌊c(λ)⌋.

The proof is completed.
Finally, we prove Corollary 1.13.

Proof of Corollary 1.13. Recalling H > 0 given in Remark 1.7, let us consider

∂tv(t, x) =

∫

R

K(y)v(t, x− y)dy −Kv(t, x) + µ(t)v(t, x) (1−Hv(t, x)) , t ≥ 0, x ∈ R. (3.21)

By the same analysis, one can obtain that the similar result for (3.21) as in Theorem 1.12. For the reader
convenience, we state it in the following.

Let v = v(t, x) be the solution of (3.21) equipped with a continuous initial data u0, with 0 ≤ u0 ≤ 1 and
u0 6≡ 0. Then the following inner spreading occurs:

(i) (fast exponential decay) If u0(x) = O(e−λx) as x→ ∞ for some λ ≥ λ∗r then one has

lim
t→∞

sup
x∈[0,ct]

∣

∣

∣

∣

v(t, x)− 1

H

∣

∣

∣

∣

= 0, ∀c ∈ (0, c∗r);

(ii) (slow exponential decay) If lim inf
x→∞

eλxu0(x) > 0 for some λ ∈ (0, λ∗r) then one has

lim
t→∞

sup
x∈[0,ct]

∣

∣

∣

∣

v(t, x) − 1

H

∣

∣

∣

∣

= 0, ∀c ∈ (0, ⌊c(λ)⌋) .

Denote that u(t, x) is a solution of (1.1) equipped with initial data u0. Recall (1.6) so that v(t, x) is the
sub-solution of (1.1). Then comparison principle implies that u(t, x) ≥ v(t, x) for all t ≥ 0, x ∈ R. Hence the
conclusion is proved.
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