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Abstract

We develop a Q-tensor model of nematic liquid crystals occupying a stationary surface
which represents a fluidic material film in space. In addition to the evolution due to
Landau–deGennes energy the model includes a tangent viscous incompressible flow along
the surface. A thermodynamically consistent coupling of a two-dimensional flow and a
three-dimensional Q-tensor dynamics is derived from the generalized Onsager principle
following the Beris–Edwards system known in the flat case. The main novelty of the
model is that it allows for a flow of an arbitrarily oriented liquid crystal so the Q-tensor is
not anchored to the tangent plane of the surface, and also obeys an energy law. Several
numerical experiments explore kinematical and dynamical properties of the novel model.
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1 Introduction

Modeling of materials with orientational order is a challenging task. There is a variety of
approaches including particle theories as well as continuum director field and Q-tensor theories
which may be customized by specifying the energy landscape to accommodate different types
of phase transitions.

In this paper we focus on the Q-tensor approach [6], [34] . The main idea is to characterize
the nematic liquid crystal state by averaging the probability density ρp at a point p over the
unit sphere S which is the statistical distribution of the orientations of liquid crystal molecules
at p. More specifically, a Q-tensor at p is a symmetric, traceless matrix

Q =

∫
S2
ρp(s)s⊗ s ds− 1

3
I
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defined as the difference between the second moments (the first moments are trivial due to the
so-called tail-to-head symmetry) and the isotropic state 1

3I. The physically relevant information
derived from a Q-tensor simulation is the eigenframe of the matrix

Q = λ1(q1 ⊗ q1) + λ2(q2 ⊗ q2) + λ3(q3 ⊗ q3) (1.1)

with the most significant orientations qi and corresponding eigenvalues λi. Then the Landau–
deGennes energy of a liquid crystal occupying a domain Ω combines the elastic energy with a
material constant L > 0 and the double-well potential F [Q] with material constants c > 0, a, b:

ELdG[Q] =

∫
Ω

L

2
|∇Q|2 +

∫
Ω

F [Q] , (1.2)

F [Q] =
a

2
|Q|2 − b

3
(Q : Q2) +

c

4
|Q|4 , (1.3)

where the so-called one-constant approximation [6, 11, 55] is considered for simplicity. At
the same time Onsager reciprocity principle [48], [49] suggests that space variations of the
orientational order should be matched with a macroscopic flux of momentum [61] to have an
energy law provided by thermodynamics. The coupling of the Q-tensor dynamics with the
transport of the momentum is a delicate matter due to possible non-conservative behavior
of the total energy of the system. A well-known thermodynamically consistent model is the
Beris–Edwards system [5], [63] in which the transport of the Q-tensor exerts Ericksen stress
Σ = QH −HQ and Leslie force H : ∇Q to the momentum flow. Here the molecular field H
is the traceless and symmetric variation of ELdG[Q] with respect to Q.

A surface Beris–Edwards model would help in understanding the dynamics of thin ne-
matic liquid crystals shells. Thin nematic liquid crystal shells are potential candidates for
self-assembling colloids due to the configuration of defects in a thin LC shell [38], which can be
tuned by varying the thickness of the LC shell [30].

The analytical properties of the Beris–Edwards system for flat domains in R2 and R3 has
been studied extensively. A nonexhaustive list of references include works on existence of weak
solutions in R2,R3 [51], weak-strong uniqueness and higher regularity in R2 [51], short time
existence for strong solutions in bounded domains [2], existence of weak solutions and short time
well-posedness with mixed boundary conditions [1], and physical eigenvalue preservation of the
Q-tensor in the corotational Beris–Edwards system [59]. To the best of our knowledge, many of
these questions of existence, possible uniqueness, regularity, and eigenvalue preservation remain
open for hydrodynamical models of liquid crystals on curved surfaces.

Regarding numerical methods for the Landau–deGennes dynamics and for the Beris–Edwards
model for flat domains we refer to [64], [8], [20] and references therein. In addition, we refer to
[55] for modeling of dissipative ordered fluids.

We aim to extend the Beris–Edwards model to stationary curved surfaces. For an example
of a situation in which the model is relevant, one may think of a liquid crystal material confined
between two parallel surfaces which may be far enough apart to fit normally oriented rod-like
particles but are sufficiently close so Q-tensor states are constant along the thickness. Yet
tangent distortions of the orientational order generate a tangent macroscopic flow of matter.
The main challenge is thus to establish a thermodynamically consistent energy law for a curved
surface while still having a generically oriented Q-tensor.

We start with a discussion of situations where a generically oriented Q-tensor description
of a liquid crystal may be desirable. In the case of long bulk cylinders with homeotropic
anchoring on the cylinder wall, experiments show that the liquid crystal may experience what
is called an escape to the third dimension [10, 32, 58]. This behavior has also been shown
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theoretically using director field models [32]. For flat 2D disks, escape to the third dimension
has also been observed to be energetically favorable for Q-tensor models due to the complex
Landau-de Gennes energy landscape [23, 24]. We point to [22] for a numerical exploration of
this landscape. Moreover, in thin flat domains where tangential anchoring is present on the top
and bottom boundary, numerical experiments suggest that the liquid crystal orientation may
not stay planar [9]. For thin shells with varying thickness and a bead inside, the numerics in [17]
provide a plausible explanation of experiments of a metastable configuration with an escape to
the third dimension near defects. Numerical experiments of three-dimensional LC shells show
the escape to the third dimension near defects when the shell increases in thickness [4, 28].
Additionally, [27] provides a plausible explanation of the presence of two +1/2 defects and one
+1 defect in experiments [30]: the +1 defect is composed of two boojums on the confining
surfaces and escape to the third dimension occurs in the thickness of the shell. We finally point
to the experiments in [35] where escape to the third dimension is observed near topological
defects in a thin LC cell. This escape to the third dimension depends on the strength of surface
anchoring. All these situations do not involve coupling with a fluid, but do suggest that a
generically oriented Q-tensor description may be warranted.

Existing models of liquid crystals films differ from each other in the assumed structure of
the Q-tensor eigenframe and its relation to the tangent plane of the surface. For example, in
the thin-film models of [29], [36] the Q-tensor is assumed to be conforming and flat-degenerate
with zero eigenvalue in the normal direction. We define these concepts as follows for a general
Q-tensor Q ∈ R3×3 on a surface Γ :

Q is called conforming to Γ at a point x ∈ Γ if one of the eigenvectors equals
the unit normal vector n(x) to Γ;

(1.4)

Q is called flat-degenerate at a point x ∈ Γ if one of the eigenvalues is zero. (1.5)

Physically a conforming and flat-degenerate Q-tensor with zero eigenvalue in the normal
eigendirection corresponds to the case of liquid crystal molecules being located strictly in the
tangent plane essentially forming a two-dimensional liquid crystal state in each tangent plane.
The assumption that the Q-tensor is conforming and flat-degenerate at each point requires the
presence of an ad-hoc large interface force, e.g. a reaction force from rigid walls surrounding
the thin film from one or both sides, which dominates all the other forces because otherwise
the Q-tensor field would evolve to a uniform, uniaxial state in R3 violating the conformity
assumption.

The conformity assumption reduces the number of independent coefficients for a general
traceless, symmetric Q-tensor [39]. In the conforming case, when one eigenvector is normal to
the surface, the tangent orientational order of the liquid crystal state is described by a tangent
director field and a scalar order parameter. The normal orientational order, i.e. the eigenvalue
corresponding to the normal eigenvector, is described by a scalar field which often (e.g. [43])
has a prescribed constant value; see [39] for a general discussion of conforming models. Thus,
the conformity assumption facilitates the reduction of the number of Q-tensor unknowns from
5 to 3. The expression of the elastic energy |∇Q|2 from (1.2) in terms of a tangent director
field contains several geometric terms which complicate the numerical implementation. Note
that strategies for dimension reduction of the Landau–deGennes energy other than [39] are
possible, e.g. [47].

In addition to conformity, the assumption of flat-degeneracy in the normal eigendirection
further reduces the number of independent variables of the Q-tensor field by 1 - from 3 to 2.
It should be noted that such flat-degenerate Q-tensor fields are biaxial from the perspective
of R3 while the minimizers of a double-well potential have to be uniaxial; see Definition 5.2.
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Consequently, the assumption of flat-degeneracy means that there exists a force with a special
structure to prevent the evolution of a Q-tensor towards a uniaxial state.

Besides [29] and [36], where conformity and flat-degeneracy in the normal eigendirection
are assumed, other models of liquid crystal films may relax some of these assumption but not
entirely. In [42] the eigenvalues of a Q-tensor may be general but the eigenframe is assumed to
be conforming to the surface. The normal eigenvalue and the tangent order parameter undergo
interrelated L2 gradient flows which are formulated in the language of local tensor calculus. In
[19] the Q-tensor does not have to be conforming but no evolution laws are discussed. The bulk
Landau–deGennes energy of a thick film is combined in [19] with an anchoring energy of the
film interfaces, and the minimizers of the resulting landscape are studied via Γ-convergence.

The aforementioned references involve liquid crystal models with no hydrodynamical prop-
erties. To the best of the authors’ knowledge the only paper in which a coupling of a Q-tensor
and linear momentum is considered for curved liquid crystal films is [41]. In such a paper the
Q-tensor is assumed to be conforming but the evolution laws are not shown to have an energy
structure. An important conclusion of the present paper is the requirement of thermodynami-
cal consistency, namely the existence of a proper energy law, strongly ties the kinematics and
the dynamics of curved liquid crystal films. Nevertheless, it is physically reasonable that there
are regimes for which the anchoring of Q-tensors can be justified if it is posed weakly with an
energy term that penalizes the non-conformity.

We also note that the model derived in this paper reduces to surface Navier–Stokes equations
when Q ≡ 0. There has been extensive work on surface Navier–Stokes for modeling and
numerics. We point to [3, 54, 26, 25, 33] for works on modeling and [54, 45, 16, 16, 53, 7, 52]
for works on numerics of surface fluid flows.

The goal of this paper is three-fold. The first one is to derive a surface model of the liquid
crystal flow where the orientational order is not anchored to the surface or, in other words, the
Q-tensor is not conforming to the surface. This model is derived via the generalized Onsager
principle mainly following [55], [61], [62] and a private communication with Qi Wang. A
similar approach called Lagrange-Rayleigh principle has been applied to Ericksen–Leslie theory
involving a director field tangent to the film [37]. The formalism of Onsager is quite general
and it does not involve any assumptions on the relation between the dimensions of the model
and its environment, and, hence, is suitable for the modelling of embedded surfaces. So, the
applicability of the generalized Onsager principle as a guiding physical principle of thin-film
modeling is assumed in this paper. We refer to [12] for the principle’s thermodynamical premises
and to [13], [56] for further details of its application to the particular physical systems. The
second goal is to use the language of differential geometry in cartesian coordinates instead of the
language of differential geometry that refers to local parametric coordinate systems [41], thus
simplifying implementation of the model in standard computational packages. The application
of this approach to Q-tensors on surfaces appears to be new. The third goal is to explore
computationally the action of three forces, one new to our surface model, and the consequences
of non-conformity for the dynamics of Q-tensors on surfaces.

The outline of the paper is as follows. In Section 2, following [25], we give the preliminaries
of tangential calculus and introduce two tensor derivatives on a surface Γ: the external surface
derivative (2.1) and the covariant surface derivative (2.9) - both will be used in our surface
model; in Appendices A and B we provide further discussion and proofs. Section 3 is devoted
to the development of the kinematical properties of the surface Beris–Edwards system. We
introduce the new notion of passive transport of generically oriented Q-tensors along a surface
flow; see Definition 3.7. This novel concept is based on Assumption 2 which possesses a clear
physical meaning. In Section 4 we apply systematically the generalized Onsager principle [57] to
derive a thermodynamically consistent surface Beris–Edwards model based on the kinematical
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properties defined in Section 3, and establish the underlying energy law. In Section 5 we
discuss the biaxiality parameter β[Q] and the non-conformity parameter rΓ[Q] and study their
properties. We conclude in Section 6 with several numerical simulations of the surface Beris–
Edwards model derived in Section 4 to demonstrate its basic properties, and investigate the
action of the three induced forces and role of non-conformity. We do observe nonconforming
dynamics connecting conforming states in Section 6.3.1. The parameters β[Q] and rΓ[Q] are
crucial to describe the numerical experiments.

2 Preliminaries in tangential calculus

In this section the surface and all the fields are assumed to be sufficiently smooth. Although
we are concerned with a surface model, we intentionally work with tensor fields in Rn, the
ambient space to the surface, to avoid the less practical parametric approach. This section
summarizes and clarifies two types of surface derivatives of tensors of order up to two, see e.g.
[25], [40], which are both relevant to the surface Beris–Edwards model to be derived in this
paper. Some preliminary notations are given in Appendix A. Integration by parts for the two
types of derivatives is discussed in Appendix B.

2.1. External surface derivatives

Here we introduce some standard operators of calculus on embedded surfaces. Intuitively,
these operators replicate standard Cartesian operators with an assumption that their tensor
arguments are extended from the surface constantly along the normal direction. Although the
concept is certainly not novel, in this paper we will call such operators external to highlight the
difference from similar operators which are based on the covariant derivative, see Section 2.2.

Consider a closed surface Γ ⊂ Rn defined as the zero level set of its distance function
d ∈ C2(Ωδ) where Ωδ = {x ∈ Rn : |d(x)| < δ} is a tubular neighborhood of Γ of thickness
δ > 0. The boundary ∂Ωδ consists of two parallel surfaces, Γ+

δ = {x ∈ Rn : d(x) = δ} and
Γ−
δ = {x ∈ Rn : d(x) = −δ}. By means of the unit vector field n = ∇d ∈ C1(Ωδ)

n, which is
orthogonal to level sets of d(x), we define the projectors N and P onto the normal and tangent
subspaces to such level sets as well as the shape operator B (or Weingarten map) to be

N = n⊗ n ∈ C1(Ωδ)
n×n , P = I− n⊗ n ∈ C1(Ωδ)

n×n , B = ∇n ∈ C(Ωδ)
n×n , x ∈ Ωδ

where I is the identity operator.
Consider a tensor (scalar, vector, matrix) field T on Ωδ. The so-called external derivative

∇MT (see Definition 2.1 below) guarantees that

(∇MT)v = (∇T)Pv , ∀v ∈ Rn , x ∈ Ωδ.

Essentially, this condition prescribes a non-standard Cartesian derivative in Ωδ which disregards
variations of the tensor field in the normal direction: if v = Pv then ∇ and ∇M coincide. We
stress that the external derivative ∇MT evaluated on Γ depends only on the values of T on
Γ. The latter is straightforward for scalar tensor fields, and, therefore, holds for the external
derivatives of a vector and a matrix fields as well since they are based on the external derivatives
of scalar components.

Definition 2.1 (external derivative). For a scalar field f , a vector field u, and a matrix field
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A on Ωδ the external surface derivative is given by

∇Mf = P∇f =

n∑
j=1

(Pej)∂jf ,

∇Mu = (∇u)P =

n∑
j=1

∂ju⊗Pej =

n∑
j=1

ej ⊗∇Muj ,

∇MA =

n∑
j=1

∂jA⊗Pej =

n∑
j=1

ej ⊗∇M (AT )j , x ∈ Ωδ .

(2.1)

Therefore, the external surface directional derivative along a vector field v is then given by

(∇T
Mf)v = (∇T f)Pv =

n∑
j=1

v · (Pej)∂jf ,

(∇Mu)v = (∇u)Pv =

n∑
j=1

(v ·Pej)∂ju =

n∑
j=1

(∇Muj · v)ej ,

(∇MA)v =

n∑
j=1

(v ·Pej)∂jA =

n∑
j=1

(∇MAj)v ⊗ ej .

(2.2)

Note that ∇T
Mf is a short notation for (∇Mf)T . We note that the surface directional derivative

(∇Mu)v of a vector field u may have non-zero normal components.

Remark 2.2 (normal extension). Consider a tensor field T with values on Γ only. The normal
extension Te on Ωδ is defined by

Te(x) := T(x− d(x)n(x)) , x ∈ Ωδ;

thus ne = n. A key property of the normally extended tensor fields is the vanishing of the
derivative in the normal direction which can be expressed via (A.2) as:

(∇Te(x))n(x) = 0 , x ∈ Ωδ. (2.3)

Consequently, the external derivative of the normal extensions Te satisfies

(∇MT)v = (∇T)Pv = (∇Te)v ∀v ∈ Rn , x ∈ Γ , (2.4)

whence, for a normally extended tensor field the directional derivatives due to ∇ and ∇M

coincide for any v (not just for v = Pv). Note that 2.4 could be seen as a way to compute
∇MT on Γ: given a field on Ωδ, restrict its values to Γ, extend it normally to Ωδ and find its
Cartesian gradient.

The surface divergence operator is defined in the same spirit: for normally extended tensors
the result corresponds to the Cartesian divergence (A.4):

divMu = tr(∇Mu) , divMA =

n∑
j=1

ej divM (AT )j , divM∇MA =

n∑
j=1

ej ⊗ divM∇M (AT )j .
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Remark 2.3 (alternative definition of divergence). We note that the surface divergence is the
trace of the surface gradient. This definition coincides with those in differential geometry
and other works in finite element methods for surface PDEs. For instance, we note that our
definition of divM is consistent with previous work on finite elements for surface PDEs [14, Eq.
(2.7)], and our definition of divΓ below is consistent with the definition of surface divergence
found in previous work on modeling of elastic surfaces [21, Eq. (2.8)]. This definition of surface
divergence is not the L2-adjoint of ∇Γ for a vector field with nonzero normal component as
seen in Proposition B.5 (covariant integration by parts) below.

Definition 2.4 (external strain-rate and spin tensors). For a given velocity field v on Γ we
define the external strain-rate and external spin tensors, respectively, as follows:

DM (v) =
1

2
(∇Mv +∇T

Mv) , WM (v) =
1

2
(∇Mv −∇T

Mv) . (2.5)

Again, ∇T
Mv is a short notation for (∇Mv)T . These rates correspond to symmetric and

antisymmetric parts of the Cartesian gradient of the vector field normally extended from the
surface Γ to its neighborhood Ωδ. Using (A.3) and (2.2) we define the contraction C : ∇MA of
a second order tensor C and the surface gradient of a second order tensor A as a vector such
that for all v ∈ Rn we have

(C : ∇MA) · v = C : (∇MA)v . (2.6)

Since C : (∇MA)v =
∑n

j=1(v ·Pej)C : ∂jA =
(∑n

j=1(C : ∂jA)Pej

)
· v we obtain

C : (∇MA) =

n∑
j=1

(C : ∂jA)Pej (2.7)

which shows that vector C : ∇MA is tangent to Γ.

2.2. Covariant surface derivatives

Here we discuss covariant operators on the surface Γ, considered as an isometric embedding
of a C2 Riemannian manifold, which are intrinsic in the sense that they only depend on the
Riemannian structure and the surface values of the argument if it belongs to the tangent plane.
Intuitively, the covariant derivative of a tangent object measures the tangent part of the change
of the object in a tangent direction.

For each x0 ∈ Γ the subspace {x ∈ Rn : x − x0 = P(x0)(x − x0)} is identified with the
tangent space of the manifold at x0. A linear operator A is called tangent if the normal n is
in its kernel and its range belongs to the tangent plane, or A = PAP. Given a tangent vector
v at x0 consider a regular curve γ : (a, b) → Γ, γ(t0) = x0, t0 ∈ (a, b) such that γ′(t0) = v. In
the following we assume that all tangent planes of R3 are identified with itself as usual so the
addition of tensors from different points is meaningful. The tangent component of the variation
along the curve defines the action of the covariant directional derivative:

(∇T
Γf(x0))v = lim

t→t0

1

t− t0
(f(γ(t))− f(x0))

(∇Γu(x0))v = P(x0)

(
lim
t→t0

1

t− t0
(u(γ(t))− u(x0))

)
(∇ΓA(x0))v = P(x0)

(
lim
t→t0

1

t− t0
(A(γ(t))−A(x0))

)
P(x0)

8



which, by extending the tensor fields normally and applying (2.2), can be shown to be equivalent
to the following expressions for all x ∈ Γ

(∇T
Γf)v = (∇T

Mf)v , (∇Γu)v = P(∇Mu)v

(∇ΓA)v = P(∇MA)vP =

n∑
j=1

(∇ΓAj)v ⊗Pej .
(2.8)

Note that∇T
Γf is a short notation for (∇Γf)

T . Finally, we give the definition of the covariant
surface derivative, which applies to fields that are not necessarily constant along the normal
direction:

Definition 2.5 (covariant derivatives). For a scalar field f , a vector field u, and a matrix field
A on Ωδ the covariant surface derivative is given by

∇Γf = ∇Mf =
n∑

j=1

(Pej)∂jf ,

∇Γu = P∇Mu =

n∑
j=1

P∂ju⊗Pej =

n∑
j=1

Pej ⊗∇Muj ,

∇ΓA =

n∑
j=1

P(∂jA)P⊗Pej .

(2.9)

In fact, it can be shown [25] that for points x ∈ Γ the covariant derivatives (2.9) of tensors
extended from Γ are independent of the chosen extension.

The covariant divergence of a vector field u and of a matrix field A is defined as:

divΓu = tr(∇Γu) , divΓA =
(
divΓ(A

T )1, divΓ(A
T )2, divΓ(A

T )3
)T

, x ∈ Ωδ , (2.10)

namely the divergence of A is computed by rows. However, because of the cyclic property of
traces we have

divΓu = tr(P∇uP) = tr(∇uP) = divMu , divΓA = divMA . (2.11)

Definition 2.6 (covariant strain-rate and spin tensors). For a given velocity field v on Γ we
define the covariant strain-rate and covariant spin tensors, respectively, as follows:

DΓ(v) =
1

2
(∇Γv +∇T

Γv) , WΓ(v) =
1

2
(∇Γv −∇T

Γv). (2.12)

These tensors correspond to symmetric and antisymmetric tangent parts of the instant
deformation of a tangent plane due to the flow v. Essentially, formulas in (2.12) as well as
the ∇Γ operator represent objects intrinsic to Γ which one may compute using the Riemannian
structure only.

Finally we note the relation of the external and covariant rates because of (2.1) and (2.9):

DΓ(v) = PDM (v)P , WΓ(v) = PWM (v)P . (2.13)
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3 Kinematics of Q-tensors on surfaces

In this section we discuss kinematic properties of the model of surface flows of liquid crystals
developed in this paper. The kinematic properties are introduced by defining the dependence of
the state variables, which are the momentum and the Q-tensor, on the prescribed deformation
of the domain, caused by a vector field v in the absence of any forces. The resulting operators,
if set equal to zero, are called passive transport equations. For example, the passive transport
of a scalar field f , e.g. the density, along a tangent flow v on a surface Γ is usually given by

ḟ = ∂tf + (∇T
Γf)v = ∂tf + (∇T

Mf)v = 0 (3.1)

which attaches scalar values to the flow v. Similarly, we will define a notion of surface transport
of the linear momentum and a notion of surface transport of generically oriented Q-tensor fields
based on the derivatives introduced in previous sections. While the former is well-established
in the literature [25], the latter is new. The definition of the Q-tensor passive transport will
be motivated by kinematic assumptions with a clear physical meaning: a tangent eigenvector
is embedded into a surface flow similar to the flat case in R2 and a normal eigenvector has to
stay normal along the flow.

3.1. Momentum transport

We assume the density ρ is constant and often omitted it in this section for clarity. To express
the rate of change of the linear momentum field ρu in the ambient space, we need to use the
Euclidean parallel transport equation (2.1) of a velocity field u normally extended from Γ:

∂tu+ (∇Mu)v = ∂t(uT + uNn) + (∇MuT + uN∇Mn+ n⊗∇MuN )v

= ∂tuT + (∇MuT )v + n(∂tuN + (∇T
MuN )v) + uN (∇Mn)v

= [∂tuT + (∇ΓuT )v] +N(∇MuT )v + u̇Nn+ uNBv

= [∂tuT + (∇ΓuT )v]− (v ·BuT )n+ u̇Nn+ uNBv ,

(3.2)

where we split the velocity u into the normal and tangent components as in (B.4), and used
(B.2) and Proposition A.1. We consider films which are stationary in space, whence the surface
Γ does not evolve in time and the velocity u = uT + uNn is tangent to Γ, i.e. uN = 0. We
express the transport of linear momentum by setting v = uT in (3.2). What remains in (3.2)
is the tangential material acceleration

∂tuT + (∇ΓuT )uT (3.3)

and the normal centripetal acceleration −uT · BuT . Since we require uN = 0 the centripetal
acceleration has to be balanced by the reaction forces which enforce the constraint that the
surface does not evolve. This suggests that the tangent part of the rate of change, P(∂tu +
(∇Mu)u) = ∂tuT + (∇ΓuT )uT , should represent the passive transport of momentum in a
surface model. This idea is summarized in the following assumption.

Assumption 1 (kinematics of momentum). The passive transport of the linear momentum
field ρu = ρuT along the velocity uT is the parallel transport (3.3), i.e.:

∂tuT + (∇ΓuT )uT = 0 .

Based on this kinematic assumption on how the momentum ρu is transported in the absence
of any forces we define the surface material derivative, which suits the Assumption 1, as follows:
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Definition 3.1. The surface material derivative u̇ of a vector field u : Γ → R3 along a given
tangent vector field v is a vector field with the following normal and tangent components:

Nu̇ = u̇Nn , Pu̇ = ∂tuT + (∇ΓuT )v .

Remark 3.2. The passive transport u̇ = 0 by the surface material derivative given in Definition
3.1 has the following properties. The normal component u · n = uN of the vector field u is
transported by (3.1) as a scalar field. Consequently, if at the initial moment of time the vector
field u is tangent, then it remains tangent along the passive flow by a vector field v. The tangent
component uT = Pu satisfies the Riemannian parallel transport equation ∂tuT +(∇ΓuT )v = 0.

Finally we would like to show that the passive transport of the velocity field along itself has
the property of preserving the kinetic energy and the linear momentum in the ambient space
R3. We start with a property of the convective term, which is well known in flat domains.

Lemma 3.3 (vanishing of the convective term). Let uT , vT , wT be tangent vector field on a
closed surface Γ. Then trilinear convective form satisfies

((∇ΓvT )wT ,uT )Γ + ((∇ΓuT )wT ,vT )Γ = −(vT · uT , divΓwT )Γ .

and it vanishes provided divΓwT = 0 and uT = vT , namely

((∇ΓuT )wT ,uT )Γ = 0 . (3.4)

Proof. Using Lemma B.5 (covariant integration by parts) followed by (2.11) and Proposition
A.1 (product rules) for normally extended ue

T ,v
e
T ,w

e
T we deduce

0 =
(
divΓ((vT · uT )wT ), 1

)
Γ
=
(
(vT · uT ) divMwT +wT · ∇M (uT · vT ), 1

)
Γ

=
(
(vT · uT ) divΓwT + uT · (∇MvT )wT + vT · (∇MuT )wT , 1

)
Γ
.

Invoking (2.9), namely P∇Mu = ∇Γu, and reordering yields the assertion.

Corollary 3.4 (preservation of kinetic energy and linear momentum). Let uT be a tangent and
incompressible velocity field that is passively transported, namely u satisfies divΓuT = 0 and
∂tuT + (∇ΓuT )uT = 0, for sufficiently smooth initial condition on a closed surface Γ. Then
the kinetic energy 1

2

∫
Γ
ρu2

T and the total linear momentum
∫
Γ
ρuT are preserved over time.

Proof. Taking into account that density ρ is constant we compute

d

dt

∫
Γ

ρ

2
u2
T = ρ

(
∂tuT ,uT

)
Γ
= −ρ

(
(∇ΓuT )uT ,uT

)
Γ
= 0 ,

according to (3.4). To treat the vector of total linear momentum, we consider its x-component

d

dt

(∫
Γ

ρuT · ex
)

= ρ
(
∂tuT , ex

)
Γ
= −ρ

(
(∇ΓuT )uT , ex

)
Γ
= −ρ

(
∇Γ(uT · ex),uT

)
Γ
= 0

where used Lemma B.5 (covariant integration by parts) with u = uT and f = uT · ex at the
last step. Other components of uT are dealt with similarly. This completes the proof.
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3.2. Q-tensor transport

Although many objective rates are available for modeling of Q-tensor flows even in R3, we aim
to choose one, the corotational derivative (3.5), and show how it should be adapted for the case
of a fixed surface Γ resulting in Definition 3.7. Modeling flows of liquid crystal material in R3

often involves the following objective rates of change [55], [60]

∂tq+ (∇q)v − (∇v −∇Tv)

2
q , ∂tQ+ (∇Q)v +Q

∇v −∇Tv

2
− ∇v −∇Tv

2
Q (3.5)

which are the corotational derivatives of a vector field q and of a matrix field Q along the
flow v. These corotational derivatives express the rate of change of tensors with respect to the
(Lagrangian) coordinate system embedded in the fluid, and sometimes they should be chosen
over the parallel Euclidean transport to model the physics adequately. For example, one uses
the parallel Euclidean transport ∂tu+(∇u)v to express the rate of change of the non-material
momentum vector ρu; while if one works with the rate of change of the Q-tensor, which provides
the statistical description of the liquid crystal orientation, the objective rate (3.5) should be
used. We refer to [44, Section 10] for discussion of different time derivatives for vectors and
Q-tensors on surfaces.

Remark 3.5. A zero corotational derivative (3.5) of a vector field q means that the vector field
is embedded in the flow v in the following kinematical sense [55]: it is transported parallelly
in R3 by the flow v and, in addition, is rotated along it by the spin tensor 1

2 (∇v −∇Tv). To

make this point concrete, we consider X(t) to satisfy d
dtX(t) = v(t,X(t)). Computing the time

derivative of q̃(t) = q(t,X(t)) yields

d

dt
q̃ = ∂tq+ (∇q)v =

(∇v −∇Tv)

2
q =

(∇v −∇Tv)

2
q̃.

At the same time, a zero corotational derivative (3.5) of a Q-tensor field Q means that its
eigenframe is embedded in the flow v: the eigenvectors are transported and rotated as vectors
by (3.5) and the eigenvalues are transported as scalars by (3.1).

In this paper the flow v is two-dimensional and is tangent to a surface Γ, but the Q-tensor is
three-dimensional. This raises the question of what rate of change should be utilized to model
the passive motion of Q-tensors along the surface flow.

It is natural to try the following transport equation

∂tQ+ (∇MQ)v +Q
∇Mv −∇T

Mv

2
− ∇Mv −∇T

Mv

2
Q = 0 , (3.6)

where all the derivatives correspond to Cartesian derivatives of the normal extensions of argu-
ments. Unfortunately, the Q-tensor of type n⊗n− 1

3I is not in the kernel of the operator (3.6).
In fact, using (2.3), (2.2) and Lemma B.1 we compute

0 = (∇M (n⊗ n))v + (n⊗ n)
∇Mv

2
+

∇T
Mv

2
(n⊗ n)

=

n∑
j=1

(v ·Pej)∂j(n⊗ n) +
1

2

(
n⊗ (∇T

Mv)n+ (∇T
Mv)n⊗ n

)
= (∇Mn)v ⊗ n+ (∇Mn)⊗Bv +

1

2
(n⊗ (−Bv) + (−Bv)⊗ n) =

1

2
(Bv ⊗ n+ n⊗Bv)

whence B = 0 or, equivalently, the surface has to be flat. We have just shown that transport
of a Q-tensor by (3.6) does not keep alignment with respect to the normal direction. These
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considerations suggest that there are many ways to define the transport of a Q-tensor field and
that we need to choose one based on some kinematic assumptions similar to Assumption 1. In
fact, to transport a three-dimensional tensor we need a three dimensional spin tensor which
cannot be provided by a two-dimensional surface flow.

At a point x ∈ Γ consider an orthonormal basis t1, t2,n of R3 where the first two vectors
belong to the tangent plane of Γ. A general three-dimensional skew-symmetric spin tensor W
can be represented in this local basis with the help of a tangent vector wT = (w2t1 − w1t2)
and a tangent tensor WT = w3(t2 ⊗ t1 − t1 ⊗ t2):

W = w3(t2 ⊗ t1 − t1 ⊗ t2) + w2(t1 ⊗ n− n⊗ t1) + w1(n⊗ t2 − t2 ⊗ n)

= PWP+ (w2t1 − w1t2)⊗ n− n⊗ (w2t1 − w1t2) = WT +wT ⊗ n− n⊗wT .
(3.7)

Motivated by the three-dimensional corotational derivatives (3.6) we are in position to
determine the structure of the surface corotational derivatives of Q-tensors. Consider a vector
field v tangent to Γ, a matrix field Q and its eigenvector field q. A surface corotational
derivative along the flow v can be expected to be given by

◦
q = ∂tq+ (∇Mq)v −Wq ,

◦
Q = ∂tQ+ (∇MQ)v + (QW −WQ) , (3.8)

where the spin tensor W is yet to be defined via wT and WT in (3.7). For completeness, we
define the corotational derivative of a scalar field by its material derivative (3.1),

◦
f = ḟ .

We specify WT and wT in (3.7) by making the following assumption.

Assumption 2 (kinematics of Q-tensors). The tangent vector wT and the tangent spin tensor
WT are such that the normal eigenvector q = n of a conforming Q-tensor is in the kernel of
the passive transport operator (3.8) along a tangent flow v = uT . Also, the passive transport
of a tangent eigenvector q = t of a conforming Q-tensor field is a combination of the parallel
transport (3.3) and the instant rotation by the covariant spin tensor (2.12):

◦
n = 0 ,

◦
t = ∂tt+ (∇Γt)uT − 1

2
(∇ΓuT −∇T

ΓuT )t .

In view of Remark 3.5,
◦
t = 0 means that the tangent vector field t is also embedded in the

flow uT but this time in the sense of the Riemannian structure on Γ. This rate of change
◦
t

of a tangent vector field t is known as surface Jaumann derivative [44]. From this modelling
assumption on how the eigenframe of a conforming Q-tensor is transported, we immediately
find what should wT and WT be like.

Lemma 3.6 (characterization of spin tensor). In order to satisfy Assumption 2, the spin tensor
W in (3.8) should be given by (3.7) with

wT = BuT , WT =
1

2
(∇ΓuT −∇T

ΓuT ) (3.9)

Proof. Indeed, using the structure of (3.8) and the definition of the shape operator B = ∇Mn
we compute

◦
n = ∂tn+ (∇Mn)uT −Wn = BuT −wT
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and, because
◦
n should vanish, we have to have wT = BuT in (3.7). Similarly, using Defini-

tion 3.1, we compute

◦
t = ∂tt+ (∇Mt)uT −Wt = ∂tt+ (∇Γt)uT +N(∇t)uT −Wt

= ṫ+N(∇t)uT −WT t+ (wT · t)n = ṫ−WT t− (n⊗Bt)uT + (wT · t)n = ṫ−WT t

which leads to the choice WT = WΓ(uT ) to suit Assumption 2. Consequently, the spin tensor
(3.7) can be expressed in terms of the covariant spin tensor WΓ from (2.12) or of the external
spin tensor from WM (2.5) as follows (using (B.3) in the last equality)

W = WΓ(uT ) +BuT ⊗ n− n⊗BuT = WΓ(uT ) +W∗(uT ) = WM (uT ) +
1

2
W∗(uT )

(3.10)

where the star spin tensor W∗ is defined for a given velocity uT by

W∗(uT ) := BuT ⊗ n− n⊗BuT . (3.11)

This concludes the proof.

Based on the Assumption 2 (kinematics of Q-tensors) on how the eigenframe of a conforming
Q-tensor is transported in the absence of any forces we define the surface corotational derivative
of general Q-tensors in the following definition.

Definition 3.7 (external surface corotational derivative). The surface corotational derivatives
◦
q of a vector field q : Γ → R3 and

◦
Q of a matrix field Q : Γ → R3×3 along a tangent vector

field v are given by

◦
q = ∂tq+ (∇Mq)v − (WΓ(v) +W∗(v))q , (3.12)
◦
Q = ∂tQ+ (∇MQ)v +Q (WΓ(v) +W∗(v))− (WΓ(v) +W∗(v))Q (3.13)

Clearly, the structure of Cartesian corotational derivative (3.5) can be recognized in Defini-
tion 3.7 but the special spin tensor (3.10) is used because the domain of definition of all objects
is a surface, and the flow v is two-dimensional while the Q-tensor is three-dimensional.

3.3. Properties of the surface corotational derivative

In this section we characterize the surface corotational derivative
◦
q of general vector fields q

using the splitting (B.4). We also explain the structure of the surface corotational derivative
◦
Q of a Q-tensor Q by relating the passive transport equation

◦
Q = 0 to the passive transport

equations
◦
qi = 0,

◦
λi = 0 of the eigenvectors and eigenvalues of Q.

We first present some intuitive properties of the vector (3.12) and the matrix (3.13) surface
corotational derivatives. It is shown that if a vector field q = qNn + qT satisfies the passive

transport equation
◦
q = 0 then the normal component qN is transported by (3.1) as a scalar field

while the tangent component qT undergoes a combination of the parallel transport (3.3) and
the instant rotation by the covariant spin tensor (2.12) (the tangent component is embedded
in the tangent two-dimensional flow). At the same time, we recover the usual meaning of the

corotational derivative of matrices but for the case of a surface (see Remark 3.5): if
◦
Q = 0 then

the eigenvalues and the eigenvectors are embedded (in the sense described above) into the flow
along a surface.

We start with the basic properties of corotational derivatives in the next lemma.
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Lemma 3.8 (properties of corotational derivatives). The surface corotational derivative (3.12)
along a tangent flow v has the following distributive properties for vector fields a,b and matrix
field A

◦
(a · b) = ◦

a · b+
◦
b · a ,

◦
(fA) = ḟA+ f

◦
A ,

◦
(a⊗ b) =

◦
a⊗ b+ a⊗

◦
b .

Proof. The properties follow from Lemma A.1, (2.1), (3.10) and v = Pv:

◦
(a · b) = ∂ta · b+ a · ∂tb+ v · ((∇Ma)Tb+ (∇Mb)Ta) = (∂ta+ (∇Ma)v) · b+ a · (∂tb+ (∇Mb)v)

= (
◦
a+Wa) · b+ (

◦
b+Wb) · a =

◦
a · b+

◦
b · a+ a · (W +WT )b =

◦
a · b+

◦
b · a

◦
(fA) = ∂t(fA) +∇M (fA)v + (fA)W −W(fA)

= ∂tfA+ f∂tA+ (f∇MA+A⊗∇Mf)v + f(AW −WA) = ḟA+ f
◦
A

◦
(a⊗ b) = ∂ta⊗ b+ a⊗ ∂tb+∇M (a⊗ b)v + (a⊗ b)W −W(a⊗ b)

= (∂ta+ (∇Ma)v)⊗ b+ b⊗ (∂tb+ (∇Mb)v)− a⊗Wb−Wa⊗ b =
◦
a⊗ b+ a⊗

◦
b

This concludes the proof.

Assumption 2 (kinematics of Q-tensors) dictates how the eigenframe of a conforming Q-
tensor field is transported by a tangent flow. In the following lemma we characterize the

passive transport
◦
q = 0 of an eigenvector which is neither normal nor tangent to Γ.

Lemma 3.9 (corotational derivative of a vector). The surface corotational derivative
◦
q of a

vector field q : Γ → R3 is a vector field with the following normal and tangent components:

N
◦
q = q̇Nn , P

◦
q = q̇T −WΓqT

Proof. We recall Definition 3.1 and (3.1). Since v = Pv, we compute

◦
q = ∂t(qT + qNn) + (∇MqT + n⊗∇ΓqN + qNB)v −WΓqT − qNBv + (Bv · qT )n

= (∂tqT +P(∇MqT )v) + (∂tqN + (∇ΓqN ) · v)n+ (N∇MqT )v −WΓqT + (Bv · qT )n

= P(q̇T −WΓqT ) + (q̇N + n · (∇MqT )v +Bv · qT )n = P(q̇T −WΓqT ) +N(q̇Nn)

where we used symmetry of B, WΓ = PWΓP and (B.1) in the last step.

Remark 3.10. The passive transport
◦
q = 0 of vector fields by the surface corotational derivative

given in Definition 3.7 has the following properties. If at the initial moment of time a vector
field q is tangent, then it remains to be tangent along the passive flow by a vector field v. The
tangent component qT is subjected to the parallel transport (3.3) and the instant rotation by
the covariant spin tensor (2.12) embedded in the flow along v). Also, the normal component
q · n of a non-tangent vector field q is transported by (3.1) as a scalar field.

Finally, we characterize the corotational transport (3.13) of a general Q-tensor, namely
non-conforming to Γ, via its eigenframe: the eigenvectors and the eigenvalues of a Q-tensor are
embedded into the flow and are passively transported in the sense of the ◦ operator.

Theorem 3.11 (corotational derivative of a tensor). Given a symmetric matrix field Q ∈
C1(Γ× (0, T ))3×3 consider a point x ∈ Γ and its neighborhood U(x) ⊂ Γ such that there exists
a spectral decomposition (1.1) with eigenvalues λi ∈ C1(U(x) × (0, T )) and the corresponding
unit-length eigenvectors qi ∈ C1(U(x)× (0, T ))3, i = 1, 2, 3. If in U(x)× (0, T )
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• all eigenvalues are distinct then

◦
Q = 0 ⇐⇒ ◦

qi = 0 , λ̇i = 0 , i = 1, 2, 3;

• two eigenvalues are equal but distinct from the third one with eigenvector qm then

◦
Q = 0 ⇐⇒ ◦

qm = 0 , λ̇i = 0 , i = 1, 2, 3;

• all eigenvalues are equal then

◦
Q = 0 ⇐⇒ λ̇i = 0 , i = 1, 2, 3 .

Remark 3.12. Three cases appear in the statement because eigenvectors are not determined
uniquely if some of the eigenvalues coincide. For example, in the case of two equal eigenvalues,
one can discuss the transport of the corresponding planar eigenspace, but eigenvectors that

form this eigenspace may undergo arbitrary deformations without affecting
◦
Q = 0.

Proof. We start with the case of distinct eigenvalues. The spectral decomposition Q(x) =∑3
k=1 λk(x)(qk(x)⊗qk(x)) holds for all x ∈ U(x) and q1(x),q2(x),q3(x) form an orthonormal

basis. We take the corotational derivative and apply its properties from Lemma 3.8:

◦
Q =

3∑
k=1

(qk ⊗ qk) λ̇k + λk

( ◦
qk ⊗ qk + qk ⊗ ◦

qk

)
from where the sufficiency follows immediately. To show the necessity we contract the result
with qi from the right and then with qj from the left:

◦
Qqi = λi

◦
qi + λ̇iqi +

3∑
k=1,k ̸=i

λk(
◦
qk · qi)qk

qj ·
◦
Qqi = λiqj ·

◦
qi + λ̇iqj · qi +

3∑
k=1,k ̸=i

λk(
◦
qk · qi)(qj · qk)

where we used the identity (
◦
qj ·qi)+(

◦
qi ·qj) = 0. Consider the diagonal, i = j, and off-diagonal,

i ̸= j, contractions separately:

qi ·
◦
Qqi = λ̇i , qj ·

◦
Qqi = (λi − λj)qj ·

◦
qi

If
◦
Q = 0 and λi ̸= λj then λ̇i = 0 and all the projections of

◦
qi on the basis vectors q1,q2,q3

are zero.
The case of two equal eigenvalues λi = λj = λ is similar. We rearrange the spectral

decomposition

Q = λm(qm ⊗ qm) + λ(qi ⊗ qi + qj ⊗ qj) = λm(qm ⊗ qm) + λ(I− qm ⊗ qm)

= λI+ (λm − λ)qm ⊗ qm

compute the corotational derivative and contract it with qm from the right and from the left

◦
Q = λ̇I+ (λ̇m − λ̇)(qm ⊗ qm) + (λm − λ)

(◦
qm ⊗ qm + qm ⊗ ◦

qm

)
◦
Qqm = λ̇mqm + (λm − λ)

◦
qm , qm

◦
Qqm = λ̇m

which shows the equivalence. The case of three equal eigenvalues is trivial.
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Remark 3.13. The preceding surface corotational derivatives
◦
q and

◦
Q have a physically intuitive

explanation: they correspond to the three-dimensional, Cartesian corotational derivatives (3.5)
along the special rotational extension vr of a surface flow v from the surface Γ to a bulk
three-dimensional neighborhood of it. This rotational extension vr is described below.

Consider the tangential projector P, the normal projector N and the shape operator B in
the basis of principal directions t1 , t2 ,n of Γ:

P = ti ⊗ ti , N = n⊗ n , B = ∇Γn = κiti ⊗ ti

where κi are principle curvature fields on Γ. We may extend a tangent velocity field v = viti
from Γ to Ωδ in the normal direction constantly or rotationally :

ve = (vi)etei , vr = (1 + dκe
i )(v

i)etei = ve + dBeve

where d is the signed distance to Γ. In other words, if a surface velocity v is aligned with a
principle direction, then its rotational extension vr changes linearly away from the center of
curvature; if the velocity has two nonzero components along the surface principle directions,
then the rotational extensions act on these components separately. Using Proposition A.1
(product rules), the bulk gradient of vr evaluated on Γ is

∇vr = ∇ve + (Beve)⊗∇d+ d∇(Beve) = ∇Mv + (Bv)⊗ n.

Hence, 1
2 (∇vr − ∇Tvr) on Γ is 1

2 (∇vr − ∇Tvr) = WM +W∗ = W. Essentially, the surface
corotational derivatives (3.12) and (3.13) provide the same rate of change as the bulk corota-
tional derivatives (3.5) evaluated on Γ in which v is set as the rotational extension vr. Although
the surface corotational derivatives (3.12) and (3.13) are independent of the normal extension,
the bulk corotational derivatives (3.5) do depend on the extension, and vr is one particular
choice of bulk extension such that (3.5) coincides with (3.12) and (3.13). One reason it is called
the rotational extension is that this extension is more physical for rotational velocity fields.
For example, if we consider Γ to be the unit circle with prescribed velocity v = (cos θ, sin θ)
on Γ, where θ is the polar angle, then divve ̸= 0 while divvr = 0 in this special case in two
dimensions. Although divvr = 0 will not hold for more general surfaces, the above reasoning
explains why vr is called the rotational extension.

4 Derivation of surface Beris–Edwards model

We develop a model of fluidic liquid crystal films following [61],[62], [15] and [46]. The modeling
approach chosen in this paper is the so-called generalized Onsager principle [57], [12] which is
used as a tool. The principle is formulated without referring to dimensions of the system
and its environment, and it appears to be suitable for modelling of embedded surfaces. We
refer to [12] for the principle’s thermodynamical premises and to [13], [56] for further details
of its application to particular physical systems. The generalized Onsager principle is not an
extremal principle which only needs a constitutive relation to complete the model (e.g. of
an elastic body) but rather a sequence of predetermined steps which guide the creation of a
model with a thermodynamically consistent energy structure based on predetermined kinematic
properties. We briefly outline these abstract steps (also see [56], Section 2.3) as they should be
applied to adapt the classical Beris–Edwards model [5] in flat domains to the case of curved
surfaces Γ.

Step 1: Kinematics. We choose the state variables of the forthcoming thermodynamical system on
Γ to be the tangent momentum field ρu and the Q-tensor field Q; density ρ is constant.
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We postulate that the kinematics of the system are dictated by the surface material

derivative u̇ and the surface corotational derivative
◦
Q given by Definitions 3.1 and 3.7;

Step 2: Energy landscape. We define the total energy Etotal of the system to be the sum of the
kinetic energy and the Landau–deGennes energy, and express its time derivative in terms

of the rates
◦
Q and u̇ from Step 1;

Step 3: Evolution laws. We propose a suitable structure of the evolution laws involving the rates
◦
Q, u̇ from Step 1 and several thermodynamical quantities (generalized forces) yet-to-be-
determined. We split the latter into reversible and dissipative forces;

Step 4: Reversible quantities. The generalized reversible forces are responsible for the Hamiltonian
structure of the system, whence they do not change the energy from Step 2 over time.
Exploiting this fact, we determine these reversible quantities;

Step 5: Dissipative quantities. The generalized dissipative forces are responsible for the total
energy decrease over time. We propose a nonequilibrium dissipative process in terms of
a suitable least action principle, which identifies these dissipative quantities.

We apply in detail the five steps of the generalized Onsager principle in Section 4.1, and
summarize the resulting surface Beris–Edwards model in Section 4.2, which satisfies a natural
energy decay over time dictated by the dissipative quantities, namely

d

dt
Etotal ≤ 0.

4.1. Generalized Onsager principle

In this section we apply the generalized Onsager principle following the steps outlined above.
After the last step the resulting system is simplified using Lemma B.6.

Step 1: Kinematics. We start by assuming that a fluidic liquid crystal film is a nonequi-
librium thermodynamical system on a stationary surface Γ described by two state variables,
namely the tangent incompressible velocity field u and the three-dimensional symmetric and
traceless Q-tensor field Q:

Q = Q(x, t) , u = u(x, t) , x ∈ Γ.

Moreover, we describe the kinematical properties of u and Q via the surface material derivative

u̇ (or acceleration) and the surface corotational derivative
◦
Q introduced in Definitions 3.1

and 3.7. Such definitions are consistent with transport in the absence of any forces (passive

transport), in which case they reduce to
◦
Q = 0 and u̇ = 0.

Step 2: Energy landscape. We postulate that the thermodynamical system possesses a total
energy Etotal = ELdG + K, given by the following Landau–deGennes energy ELdG[Q,∇MQ]
and kinetic energy K[u]:

ELdG[Q,∇MQ] =

∫
Γ

e[Q,∇MQ] :=

∫
Γ

L

2
|∇MQ|2 +

∫
Γ

F [Q] , K[u] =

∫
Γ

ρ

2
|u|2, (4.1)

where |∇MQ|2 is the surface Frank energy [19] and F [Q] is the double-well potential (1.3). More
complicated forms of elastic energy ELdG can be postulated here, but we choose to consider the

18



one-constant model of energy for the ease of presentation. To compute the rate of change of the
total energy, we use the fact that Γ is a closed, time-independent surface and u is tangential.
This can be viewed as an application of Leibniz formula [14, Lemma 2.1]. The resulting change
in total energy is

d

dt
Etotal[Q,∇MQ,u] =

∫
Γ

(
∂e

∂t
[Q,∇MQ] +

1

2

∂(ρu2)

∂t

)
.

We simply write
∫
Γ
ρu · ∂tu for the second term, while for the first term we have∫
Γ

∂e

∂t
[Q,∇MQ] =

∫
Γ

∂e

∂Q
:
∂Q

∂t
+

∂e

∂(∇MQ)
...
∂(∇MQ)

∂t
,

where we recall the notation (A.3) for the contraction ‘
...’. Commuting ∂t and ∇M , because Γ is

stationary, and using Corollary B.9 (external integration by parts) yields for any matrix field
C ∫

Γ

∂e

∂(∇MQ)
... ∇MC =

∫
Γ

L∇MQ
... ∇MC = −

∫
Γ

LdivM
(
∇MQ

)
: C.

This implies∫
Γ

∂e

∂t
[Q,∇MQ] =

∫
Γ

(
− LdivM

(
∇MQ

)
+ F ′[Q]

)
: ∂tQ = −

∫
Γ

H : ∂tQ , (4.2)

where the molecular field H is the traceless symmetric matrix

H = P
(
LdivM∇MQ− F ′[Q]

)
, (4.3)

and P is the projection operator on the subspace of symmetric and traceless matrices. Note
that H here is neither conforming nor flat-degenerate in the normal direction, in the sense of
definitions (1.4) and (1.5), because Q is general.

We next intend to express d
dtEtotal in terms of the surface material derivative u̇ and surface

corotational derivative
◦
Q, or equivalently to substitute ∂tu and ∂tQ by u̇ and

◦
Q. To this end,

we recall the kinematical properties from Definition 3.1 and Definition 3.7,

∂tu = u̇− (∇Γu)u , ∂tQ =
◦
Q− (∇MQ)u+ S, (4.4)

where (3.10) and (3.11) are used to split the tensor S = S[u,Q] = W(u)Q−QW(u) as follows:

S := SΓ + S∗ , SΓ := WΓ(u)Q−QWΓ(u) , S∗ := W∗(u)Q−QW∗(u) . (4.5)

This, together with the fact that (u, (∇Γu)u)Γ = 0 according to (3.4), yields the following
expression for the rate of change of total energy

d

dt
Etotal[Q,∇MQ,u] =

∫
Γ

(
−H : ∂tQ+ ρu · ∂tu

)
= −

(
H,

◦
Q

)
Γ

+

(
ρu, u̇

)
Γ

+

(
H, (∇MQ)u− S[u,Q]

)
Γ

.

(4.6)

Step 3: Evolution laws. Following the classical Beris–Edwards model in R3 we postulate
that the surface model is driven by abstract evolution equations on the surface Γ with the
kinematics derived from Assumptions 1 (kinematics of momentum) and 2 (kinematics of Q-
tensors). Note that only the structure is postulated while the required new quantities (adT , F

d,
ar, frT ) are yet-to-be-determined. We formulate these abstract evolution laws as follows.
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Assumption 3 (evolution laws). The thermodynamics of the surface Beris–Edwards model
has both a dissipative and a Hamiltonian structure [61]. The dissipative structure is due to a
symmetric tangent stress adT = PadTP and a symmetric tensor Fd. The reversible Hamiltonian
structure is due to a skew-symmetric stress ar and a tangent force frT = PfrT . Motivated by the
structure of the three-dimensional Beris–Edwards model, we propose the kinematic equations

ρu̇ = PdivΓ(a
d
T + ar) + frT ,

◦
Q = Fd ;

(4.7)

the terms frT and adT in the surface momentum equation are assumed to be tangent to the
surface Γ because the model involves a two-dimensional viscous flow along Γ which is expected
to be recovered upon setting Q = 0 in (4.7); also, see Remark 4.6.

Remark 4.1 (alternative definition of surface divergence and evolution laws). As mentioned in
Remark 2.3, our definition of divΓ follows that in differential geometry. However, suppose we
posit the evolution laws to be

ρu̇ = P d̂ivΓ(a
d
T + ar) + f̂rT ,

◦
Q = Fd ,

where d̂ivΓ is defined as the L2(Γ) adjoint of ∇M as motivated by the integration-by-parts
formula in Lemma B.7 (covariant integration by parts). The procedure outlined in Steps 4 and
5 below would yield exactly the same surface Beris-Edwards system as (4.13) and (4.14). The

resulting f̂rT would be slightly simpler than frT because of using the L2(Γ) adjoint d̂ivΓ, but the
right-hand sides of the equations for u̇ would be identical.

Our next task is to combine Assumption 3 with (4.6). We first invoke Lemma B.7, i.e.(
u, ρu̇

)
Γ

= −
(
∇Mu,adT + ar

)
Γ

+

(
(trB)(adT + ar)n,u

)
Γ

+

(
u, frT

)
Γ

,

and take into account the symmetry and tangentiality of adT = PadTP to write
(
adT ,∇Mu

)
Γ
=(

adT ,DΓ(u)
)
Γ
because of (2.5) and (2.13), as well as the skew-symmetry of ar and (2.5) to

obtain (
u, ρu̇

)
Γ

=

(
u, frT + (trB)arn

)
Γ

−
(
DΓ(u),a

d
T

)
Γ

−
(
WM (u),ar

)
Γ

. (4.8)

Similarly, (4.7) yields (
H,

◦
Q

)
Γ

=

(
H,Fd

)
Γ

,

and, in view of S = S[u,Q] = W(u)Q−QW(u), we see that(
H, (∇MQ)u− S[u,Q]

)
Γ

=

(
u,H : ∇MQ

)
Γ

−
(
H,W(u)Q−QW(u)

)
Γ

.

We define the skew-symmetric Ericksen stress Σ and the Leslie force Λ to be

Σ = QH−HQ, Λ = −H : ∇MQ; (4.9)
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the latter is tangent to Γ due to (2.7), whereas the former is unrelated to Γ. Consequently,(
H, (∇MQ)u− S[u,Q]

)
Γ

= −
(
u,Λ

)
Γ

+

(
Σ,W(u)

)
Γ

.

Using (3.10) for u = uT tangential to Γ, namely W(u) = WM (u) + 1
2W∗(u), we deduce

Σ : W(u) = Σ : WM +BΣn · u

because Σ and W∗(u) = Bu⊗ n− n⊗Bu being antisymmetric yield

1

2
Σ : W∗ = Σ : (Bu⊗ n) = tr(nuTBΣ) = tr(uTBΣn) = BΣn · u.

Hence the rate of change of the total energy Etotal[Q,∇MQ,u] is given by

d

dt
Etotal[Q,∇MQ,u] = −

(
H,Fd

)
Γ

−
(
DΓ(u),a

d
T

)
Γ

+

(
u, frT −Λ+ (trB)arn+BΣn

)
Γ

−
(
WM (u),ar −Σ

)
Γ

,

(4.10)

where the dissipative and reversible terms are collected in separate lines.

Remark 4.2. Only the dissipative terms in the first line of (4.10) should contribute to the energy
rate d

dtEtotal as identified by Assumption 3. Two reversible terms from the second line should
cancel with each other for any possible dynamics of the system. From the perspective of theory
of constitutive modeling, this gives rise to a plethora of possible models where the functional
dependence of ar and frT on u and Q varies even in the flat case. We will require in the Step 4
that each term in the second line vanishes separately. This modeling choice is consistent with
the classical Beris–Edwards system in flat domains. One could try to attribute this choice to
the principle of frame indifference, but it is beyond the scope of this paper.

Step 4: Reversible quantities. To find the reversible quantities ar and frT we recall that
these terms should not contribute to the time derivative of the total energy (4.10). Some of the
reversible quantities in (4.10) are paired with the velocity u which represents a uniform motion
of an infinitesimal material volume while others are paired with WM (u) which represents a
rotation of an infinitesimal volume. As discussed in Remark 4.2, none of these conjugated pairs
should produce mechanical work, whence the last two terms in (4.10) vanish for any u:

ar = Σ frT = Λ− (B+ (trB)P)Σn . (4.11)

Consequently, the reversible quantities in (4.7) are fully determined.

Step 5: Dissipative quantities. To find the dissipative quantities adT and Fd we make an
additional assumption regarding the nonequilibrium thermodynamics of the model in the form
of the least action principle (see [57] for details) First, we define the dissipation functional

Φ[Fd,adT ] :=

∫
Γ

(
|Fd|2

2M
+

|adT |2

4µ

)
where the mobility M and the viscosity µ are material constants. According to the least action
principle, dissipative quantities should minimize the expression d

dtEtotal+Φ at every time during
the evolution to be thermodynamically consistent. Therefore, its first variation must vanish

δ(ad
T ,Fd)

(
d

dt
Etotal[Q,∇MQ,u] + Φ[Fd,adT ]

)
= 0 .
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In view of the first line of (4.10), we discover that the tensors adT and Fd satisfy

−DΓ(u) +
1

2µ
adT = 0 , −H+

1

M
Fd = 0 . (4.12)

Consequently, the dissipative quantities in (4.7) are fully determined.
We have just finished the five steps of the generalized Onsager principle and are now ready

to write the ensuing system of equations on Γ. Inserting (4.11) and (4.12) into (4.7) yields

ρu̇ = 2µPdivΓDΓ(u) +PdivΓΣ+Λ−
(
B+ (trB)P

)
Σn , (4.13)

◦
Q = MH , (4.14)

which by construction enjoys the following energy structure.

Proposition 4.3 (energy law). The system of equations (4.13)-(4.14) on the surface Γ satisfies

d

dt
Etotal[Q,∇MQ,u] = −2µ∥DΓ(u)∥2Γ −M∥H∥2Γ . (4.15)

Proof. Simply replace (4.11) and (4.12) into (4.10).

A further simplication of (4.13) is in order. We express the tangential force PdivΓΣ due to
the Ericksen stress Σ defined in (4.9) in terms of the tangent Ericksen stress ΣΓ = PΣP and
a remainder. We resort to Lemma B.6 to relate divΓΣ to divΓΣΓ as follows:

PdivΓΣ = PdivΓΣΓ + tr(B)PΣn+BΣTn . (4.16)

We observe that the term tr(B)PΣn in (4.16) cancels with the last term in (4.13), while the
skew-symmetry Σ = −ΣT of the Ericksen stress implies BΣn−BΣTn = 2BΣn. We thus end
up with the following reduced form of the momentum equation

ρu̇ = 2µPdivΓDΓ(u) + fE +Λ− f∗ , (4.17)

with the Ericksen force fE and star force f∗ defined by

fE := PdivΓΣΓ, f∗ := 2BΣn. (4.18)

Both forces are tangent to Γ, fE due to the projection P and f∗ because the range of the shape
operator B is contained in the tangent plane at each point of Γ. It is worth realizing that
thermodynamics consistency requires the presence of the novel force f∗ in (4.17). If the surface
Γ is flat, e.g. a domain in R2, then B = 0 and f∗ = 0. Moreover, f∗ vanishes again provided
Σn = 0 as it would happen if both Q and H are assumed to be conforming and flat-degenerate.
The relaxation of these assumptions is the main contribution of this paper.

We further explore the extraction of the tangent part ΣΓ from Σ in (4.16), that leads to
the Ericksen force fE of (4.18). In fact, we present a simple characterization of fE , which is of
independent interest and quite useful to understand simulations in Section 6.2.2.

Lemma 4.4 (characterization of the Ericksen force). There exists a scalar function θ such that

fE = n×∇Γθ . (4.19)
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Proof. Consider the right-handed basis of principal directions t1, t2,n at a point x ∈ Γ. Any
second order tensor A may be represented in this basis via dyads as follows:

A =

2∑
i,j=1

aijti ⊗ tj +

2∑
i=1

(a3in⊗ ti + ai3ti ⊗ n) + a33n⊗ n

for some components aij , 1 ≤ i, j ≤ 3. Since the surface Ericksen stress ΣΓ = PΣP is
tangent, its representation does not include any dyads involving n. Moreover, skew-symmetry
ΣΓ = −ΣT

Γ implies a11 = a22 = 0 and a21 = −a12 = θ, where θ is the only non-trivial
component of ΣΓ and is a function of x ∈ Γ. Consequently,

ΣΓ = θ (t2 ⊗ t1 − t1 ⊗ t2) ,

and the second order tensor Ωn := t2 ⊗ t1 − t1 ⊗ t2 maps t1 to t2 and t2 to −t1. It is
thus a rotation by π

2 around the axis n or, simply, the cross product operator Ωna = n × a
according to the corkscrew rule. It turns out that Ωn admits the following cross product matrix
representation in terms of the canonical Cartesian basis ex, ey, ez

ΣΓ = θΩn = θ

 0 −nz ny

nz 0 −nx

−ny nx 0

 . (4.20)

Note that the function θ and the normal n fully describe the surface Ericksen stress ΣΓ.
Moreover, using (2.11), (2.3) together with Proposition A.1 (product rules), we calculate

divΓΣΓ = divMΣΓ = divΣe
Γ = div (θeΩe

n) = θedivΩe
n +Ωe

n∇θe .

We finally observe that divΩe
n = −curlne = 0, because ne = ∇d, to obtain that divΓΣΓ =

n×∇Γθ and that fE = PdivΓΣΓ is given by (4.19) as asserted.

We point out that the orientation of n is not unique. If we change n to −n, then we also
have to exchange t1 with t2 to have a right-handed basis and this flips the sign of θ; hence the
representation of (4.19) is well defined. Moreover, since divΓΣΓ = n×∇Γθ is already tangent
to Γ, we deduce that the projection P in the definition fE = PdivΓΣΓ is superfluous.

4.2. Surface Beris–Edwards model

We are now in a position to present the novel model of fluidic liquid crystal films. Let a closed
surface Γ represent the liquid crystal film. The liquid crystal may be generally oriented in R3,
but the material flows tangentially to Γ so that Γ does not change over time. The incompressible
flow is described by the tangential velocity u, which is assumed to be divergence-free divΓu = 0.
Therefore, the density ρ is constant and the scalar pressure field p enforces divΓu = 0 on Γ.

The new model combines the equations 4.14 and (4.17) with the expressions (4.3) and (4.4)
and the constitutive relations (4.9) and (4.18). Given initial conditions u0 and Q0, the model
reads: find symmetric and traceless matrix fields H,Q as well as tangent velocity u = Pu and
scalar pressure p on Γ such that for all times the following system of PDEs is satisfied on Γ

H+ PF ′[Q] = LP divM∇MQ ,

∂tQ+ (∇MQ)u = MH+ (SΓ + S∗) ,

ρ
(
∂tu+ (∇Γu)u+∇Γp

)
= 2µPdivΓDΓ(u)− (fΓ + f∗) ,

divΓu = 0 ,

(4.21)
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where

SΓ = SΓ[Q,u] = WΓ(u)Q−QWΓ(u) , S∗ = S∗[Q,u] = W∗(u)Q−QW∗(u) ,

Σ = Σ[Q,H] = QH−HQ , ΣΓ = ΣΓ[Q,H] = PΣP ,

fΓ = fΓ[Q,H] = −PdivΓΣΓ +H : ∇MQ , f∗ = f∗[Q,H] = 2BΣn .

Here SΓ is the corotation (4.5) by the covariant spin tensor WΓ in (2.12), S∗ is the corotation
(4.5) by the star spin tensor W∗ in (3.11), Σ is the Ericksen stress (4.9) with the tangent part
ΣΓ = PΣP, fΓ is the tangent surface Beris–Edwards force which consists of the Ericksen force
fE = PdivΓΣΓ in (4.18) and the Leslie force Λ = −H : ∇MQ in (4.9), and f∗ is the star force
from (4.18). The first variation of the double-well potential F [Q] in (1.3) is given by

PF ′[Q] = aQ− bQ2 +
b

3
tr(Q2)I+ c tr(Q2)Q , (4.22)

where P is the projection onto the subspace of traceless and symmetric matrices. The operator
P acts likewise on the variation divM∇MQ of the elastic energy. The surface Beris–Edwards
model (4.21) obeys the energy law (4.15) by construction.

Remark 4.5. We would like to stress that the star corotation tensor S∗ and the star force
f∗ distinguish our model from the model in [41] where Q is assumed to be conforming to
the surface with a prescribed eigenvalue in the normal direction. These terms guarantee the
thermodynamical consistency of our model for a non-flat surface. We demonstrate the behavior
of conforming and non-conforming Q-tensors in our numerical experiments of Section 6.

Remark 4.6. If we disregard the Q-tensor equations and the coupling force fΓ+f∗ we will be left
with the well-known surface Navier–Stokes system [25] which models an incompressible surface
flow driven by inertia.

5 Representation of Q-tensors on surfaces

In this section we define the notions of uniaxiality and flat-degeneracy, along with the biaxiality
parameter β[Q] which relates them. We also introduce the non-conformity parameter rΓ[Q].
These parameters will be instrumental in describing and visualizing the numerical experiments
in Section 6.

5.1. Biaxiality parameter

We start with a simple definition: unit vector fields q ∈ R3 will be called director fields.

Definition 5.1 (flat-degeneracy). A Q-tensor Q ∈ R3×3 is flat-degenerate if one of its eigen-
values is zero, say λ2 = 0 whence λ1 = −λ3. Therefore, if r := 2λ1, then Q reads

Q = λ1 (q1 ⊗ q1 − q3 ⊗ q3) = r

(
q1 ⊗ q1 −

1

2
Pq2

)
, (5.1)

where Pq := I− q⊗ q is the projector onto the orthogonal plane to the director q.

This definition is consistent with (1.5). A flat-degenerate state of the form (5.1) is essentially
a two-dimensional Q-tensor state in the plane orthogonal to q2. Another important class of
three-dimensional Q-tensor states is given by the following definition [34], [6], [55].
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Definition 5.2 (unixiality). A Q-tensor Q ∈ R3×3 is uniaxial if it may be represented as

Q = s

(
q⊗ q− 1

3
I

)
(5.2)

for some director q and order parameter s. Otherwise the Q-tensor is biaxial.

The following biaxiality parameter [31] relates the notions of flat-degeneracy and uniaxiality
of Q-tensors, and allows for a classification of Q-tensor fields useful in simulations.

Definition 5.3 (biaxiality parameter). For a non-zero Q-tensor Q ∈ R3×3 the biaxility param-
eter is the real number

β[Q] = 1− 6
(trQ3)2

(trQ2)3
. (5.3)

It is well known that the vanishing of β[Q] indicates that Q is uniaxial [31], but the opposite
limit, when it is equal to one, indicates the flat-degeneracy of liquid crystal state as shown in
the following Lemma.

Lemma 5.4 (properties of biaxiality parameter). The biaxiality parameter satisfies

0 ≤ β[Q] ≤ 1 ∀Q ∈ R3×3 , Q ̸= 0. (5.4)

The minimal value, β[Q] = 0, corresponds to Q being uniaxial whereas the maximal value,
β[Q] = 1, corresponds to Q being flat-degenerate.

Proof. We exploit the spectral decomposition (1.1) to write Qj =
∑3

k=1 λ
j
k(qk ⊗qk) for j ∈ N,

whence trQj =
∑3

k=1 λ
j
k. In view of the definition (5.3), we have to prove

0 ≤ 6

(
trQ3

)2(
trQ2

)3 ≤ 1.

The leftmost inequality is trivial. The rightmost one entails the following tedious computation.
Since trQ = 0 we let λ2 = −λ1 − λ3 and rewrite the desired traces in terms of α = λ−1

1 λ3

trQ2 = λ2
1

(
1 + (1 + α)2 + α2

)
= 2λ2

1(1 + α+ α2),

trQ3 = λ3
1

(
1− (1 + α)3 + α3

)
= −3λ3

1α(1 + α),

because Q ̸= 0 implies either λ1 ̸= 0 or λ3 ̸= 0. Consequently, we obtain the asserted inequality(
trQ2

)3 − 6
(
trQ3

)2
= 2λ6

1

(
2 + 3α− 3α2 − 2α3

)2
= 2λ6

1(1− α)2(2α+ 1)2(α+ 2)2 ≥ 0.

Moreover, this explicit expression reveals that β[Q] = 0 is equivalent to either α = 1, α = − 1
2

or α = −2. This in turn corresponds to λ1 = λ3, λ1 = −2λ3 (i.e. λ2 = λ3) or λ3 = −2λ1

(i.e. λ2 = λ1). According to the characterization of a uniaxial Q-tensor after Definition 5.2, we
deduce that β[Q] = 0 is equivalent to Q being uniaxial.

In contrast, β[Q] = 1 is equivalent to trQ3 = 0 which reduces to either α = 0 or α = −1.
This in turn reads either λ3 = 0 (or symmetrically λ1 = 0) or λ3 = −λ1 (i.e. λ2 = 0). According
to Definition 5.1, we infer that β[Q] = 1 if and only if Q is flat degenerate. This completes the
proof.

Finally, the following result is proved in [31, Proposition 1], but we state it as a lemma for
further reference in Section 6.
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Lemma 5.5 (minimizer of F ). Let the parameters a, b, c of the double-well potential F in (1.3)
satisfy a < 0 , b > 0 , c > 0. Then F [Q] is minimized by a uniaxial state (5.2) with s given by

s+ =
b+

√
b2 − 24ac

4c
. (5.5)

5.2. Non-conformity parameter

In this section we turn to the representation of Q-tensors on surfaces and introduce a scalar field
which quantifies the notion of non-conformity of Q-tensors. In fact, we extend the representation
of conforming Q-tensors of [39, equation (5)] to arbitrary Q ∈ R3×3.

Strictly speaking, since we are concerned with general Q-tensors there is no a priori relation
between the surface Γ and the eigenframe of Q. Nevertheless, we would like to split the general
state of the Q-tensor into liquid crystal states related to the normal and tangent subspaces to
Γ.

Given the unit normal n to Γ and a tangent director field qΓ, i.e. qΓ · n = 0, we consider
sums NΓ +TΓ of arbitrary traceless matrices of the form

NΓ = nΓ

(
n⊗ n− 1

2
P

)
=

3

2
nΓ

(
n⊗ n− 1

3
I

)
, TΓ = sΓ

(
qΓ ⊗ qΓ − 1

2
P

)
, (5.6)

where NΓ is an uniaxial homeotropic Q-tensor (normal to Γ), and TΓ is a flat-degenerate Q-
tensor tangent to Γ. Note that β[NΓ] = 0 and β[TΓ] = 1 and that both NΓ and TΓ are always
conforming. Clearly, an arbitrary Q-tensor Q ∈ R3 cannot be represented by such sums if its
eigenframe does not include the normal vector. Therefore, for Q ∈ R3 we define its traceless
conforming (normal and tangential) components NΓ[Q] and TΓ[Q] by minimizing the residual
with respect to nΓ and TΓ:

min
nΓ,TΓ

|RΓ|2 , RΓ = Q−NΓ −TΓ . (5.7)

Lemma 5.6 (homeotropic decomposition of Q on Γ). An arbitrary Q-tensor Q ∈ R3×3 admits
the orthogonal decomposition Q = NΓ[Q] + TΓ[Q] + RΓ[Q] into three traceless symmetric
tensors, where NΓ[Q] is a uniaxial Q-tensor given by (5.6) with nΓ = nTQn, TΓ[Q] is a flat-
degenerate tangent Q-tensor, and RΓ[Q] has minimal Frobenius norm. Moreover, they satisfy
|Q|2 = |NΓ[Q]|2 + |TΓ[Q]|2 + |RΓ[Q]|2 and are given by the expressions

NΓ[Q] = nΓ

(
n⊗ n− 1

2
P

)
, TΓ[Q] = PQP+

nΓ

2
P ,

RΓ[Q] = (Q− nΓI)n⊗ n+ n⊗ (Q− nΓI)n .

(5.8)

Proof. We expand the residual

|RΓ|2 = (Q−TΓ − nΓnn
T − nΓ

2
P) : (Q−TΓ − nΓnn

T − nΓ

2
P)

= Q : Q− 2Q : TΓ +TΓ : TΓ − 2nΓ(Q−TΓ) : nn
T − nΓP : (Q−TΓ) +

3

2
n2
Γ ,

and compute its first variations. Since nΓ is scalar, we readily have

0 =
∂

∂nΓ
|RΓ|2 = −2Q : nnT + tr(PQP−TΓ) + 3nΓ .
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On the other hand, since TΓ is traceless and tangent to Γ, a general variation of TΓ reads
PCP − 1

2 tr
(
PCP

)
P for an arbitrary symmetric matrix C ∈ R3×3. Consequently, a tedious

computation of ∂
∂TΓ

|RΓ|2 : C using that trP = 2 yields

0 =
∂

∂TΓ
|RΓ|2 = −2PQP− tr(PQP)P+ 2TΓ .

Exploiting that tr(TΓ) = 0, these equations give the optimal values

nΓ =
2

3
nTQn− 1

3
tr(PQP) , TΓ = PQP− 1

2
tr(PQP)P .

Since

PQP =
(
I− n⊗ n

)
Q
(
I− n⊗ n

)
= Q− n⊗Qn−Qn⊗ n+

(
nTQn

)
n⊗ n ,

and Q is traceless, we deduce tr
(
PQP

)
= −nTQn whence nΓ = nTQn and the expressions for

TΓ and RΓ in (5.8) follow immediately. Moreover, NΓ[Q] and TΓ[Q] are orthogonal because

NΓ[Q] : TΓ[Q] = nΓ

(
n⊗ n− 1

2
P
)
:
(
PQP+

nΓ

2
P
)
=

nΓ

2

(
nTQn− nΓ

)
= 0 ,

whence the minimization property (5.7) is equivalent to the orthogonality ofRΓ[Q] andNΓ[Q]+
TΓ[Q]. This concludes the proof.

Now we are in a position to introduce a quantitative measure of non-conformity for an
arbitrary Q-tensor Q ∈ R3. Since both NΓ[Q] and TΓ[Q] are conforming to Γ, possible non-
conformity of Q is dictated by the solution RΓ[Q] of the minimization problem (5.7). The
relation |RΓ[Q]| ≤ |Q| motivates the forthcoming definition.

Definition 5.7 (non-conformity parameter). The non-conformity parameter rΓ[Q] of an arbi-
trary Q ∈ R3×3 on Γ is the fraction 0 ≤ rΓ[Q] ≤ 1 defined by

rΓ[Q] :=
|RΓ[Q]|
|Q|

. (5.9)

Remark 5.8. We see that rΓ[Q] = 0 if and only ifQ = NΓ[Q]+TΓ[Q] or equivalentlyRΓ[Q] = 0.
In contrast, rΓ[Q] = 1 if and only if NΓ[Q] = TΓ[Q] = 0 or equivalently nΓ = 0 and

Q = RΓ[Q] = Qn⊗ n+ n⊗Qn .

Therefore, if rΓ[Q] = 1 we infer that Qn is tangent to Γ because nΓ = nTQn = 0 and Qq is
perpendicular to Γ for any tangent vector q because 0 = TΓ[Q]q = PQq.

Remark 5.9. If Q is conforming to Γ, i.e. rΓ[Q] = 0, and its normal component NΓ[Q] = 0,
then Q = TΓ[Q] is flat degenerate. Therefore, according to Lemma 5.4, Q is biaxial and the
biaxiality parameter β[Q] = 1 is maximal.

5.3. Enforcing Conformity: The Hess-Osipov Energy

We consider enforcing conformity through penalization. Natural penalizations are the following
physically justified energies, which can be found in [39, Eq. (4)] and [19, Eq. (8)], and are
closely tied to the energies found in [18, Eq. (4)] and [50, Eq. (7)]:

Epen[Q] := γ

∫
Γ

|PQn|2, Enorm[Q] := α

∫
Γ

∣∣nTQn− δ
∣∣2. (5.10)
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The energy Epen[Q] with penalty parameter γ weakly enforces that Qn be normal. In fact, in
the limit γ → ∞, the energy Epen[Q] is minimized provided PQn = 0 or equivalently if Qn is
normal. This is the strong form of conformity according to (1.4).

On the other hand, the energy Enorm[Q] with penalty parameter α > 0 enforces a value
δ of orientational order in the normal direction. For conforming Q-tensors the value nΓ =
nTQn is the eigenvalue of Q in the normal direction n according to Lemma 5.6 (homeotropic
decomposition of Q on Γ). However, unless n is an eigenvector of Q, the limit α → ∞ only
penalizes the deviation of nTQn from δ, which may vary along Γ.

The role of (5.10) will be computationally explored in Section 6.3.1 and Section 6.3.2.

6 Exploration of the surface Beris–Edwards model

In this section we explore computationally basic properties of the surface Beris–Edwards model
presented in Section 4.2. We resort to the biaxiality parameter β[Q] of Section 5.1 and the
non-conformity parameter rΓ[Q] of Section 5.2 to interpret and display our results. We start in
Section 6.1 with the kinematics of the surface Landau–deGennes equation without transport of
momentum. In Section 6.2 we compute profiles of the Leslie force (4.9) and the Ericksen and star
forces (4.18) on some simple Q-tensor configurations with a defect; this provides basic intuition
on the thermodynamical coupling of the Q-tensor and the momentum transport on surfaces. In
section 6.3 we demonstrate computationally that the transition between two conforming states
may occur through non-conforming intermediate states. Finally, we show in Section 6.4 why
the relaxation of the conformity assumption (1.4) may be critical for the modeling of liquid
crystal films. We consider a homeotropic, radially symmetric Q-tensor on a unit sphere and
investigate the influence of the weak anchoring on the stability of this Q-tensor configuration.

6.1. Landau–de Gennes dynamics on a sphere

In this section we consider the surface Landau–deGennes model from Section 4.2 without
the momentum equation, and explore the main kinematical and dynamical properties of this
simplified model. For all experiments in this section, we set the mobility M , the elastic constant
L, and the parameters of the double-well potential a, b, c in (4.22) to be

M = 1, L = 1, a = −5, b = 1, c = 10.

Consequently, the equilibrium value (5.5) of the order parameter is s+ ≈ 0.60.

6.1.1. Passive corotational transport of a non-conforming Q-tensor

The first numerical simulation demonstrates the action of the corotational derivative
◦
Q defined

in (3.13). To this end, we consider the passive velocity v(x, y, z) = πez×(x, y, z) for (x, y, z) ∈ Γ
over the unit sphere Γ; v is tangent to Γ and corresponds to a rigid rotation of Γ around the

axis ez. We examine the passive transport equation
◦
Q = 0 dictated by v over Γ where the

initial condition Q0 of Q is uniaxial

Q0(x, y, z) := s0

(
q0 ⊗ q0 −

1

3
I

)
, (x, y, z) ∈ Γ , (6.1)

and the order parameter s0 and director q0 are given by

s0(x, y, z) = s+
(
1 + exp(−20(y − 0.6))

)−1
, q0(x, y, z) = (1, 1, 0)/

√
2 . (6.2)
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We stress that q0 is neither normal nor tangent, and s0 localizes Q0 to a spherical cap 0.6 ≲ y.
We display the passive dynamics in Figure 1.

a)

t = 0 t = 0.25 t = 0.5

b)

Figure 1: Passive surface corotational transport of an initially uniaxial Q-tensor along a rotation of
the unit sphere Γ given by the prescribed velocity field v = πez × (x, y, z) for (x, y, z) ∈ Γ; all pictures
display the (x, y)-plane so ez is perpendicular to it. a) largest eigenvalue of Q and corresponding
oblique eigenvector q. b) biaxiality parameter β[Q] of (5.3) and velocity field v. Since β[Q] stays close
to zero, Q remains uniaxial with respect to q. The uniaxial Q-tensor state (s,q) is uniform on the
spherical cap and rotates rigidly. Therefore, the entire Q-tensor eigenframe moves along the sphere as
if the ambient space experiences the rotation.

According to Theorem 3.11, and the property that a Q-tensor with two equal eigenvalues is

uniaxial, the solution to
◦
Q with initial condition (6.1) is the uniaxial Q-tensor

Q(x, y, z, t) = s

(
q⊗ q− 1

3
I

)
, (x, y, z) ∈ Γ , (6.3)

where s = s(x, y, z, t) and q = q(x, y, z, t) satisfy the initial value problems on Γ

ṡ = 0 , s(0) = s0 ,
◦
q = 0 , q(0) = q0 . (6.4)

In view of Lemma 3.9, the director field q admits the decomposition q = qT + qNn in terms of
normal component qN and tangential component qΓ, which satisfy the following initial value
problems:

q̇N = 0 , qN (0) = (q0)N , ∂tqT + (∇ΓqT )v −WΓ(v)qT = 0 , qT (0) = (q0)T ,

Since v is a rotation of the sphere, the solution (s(t),Q(t)) of the initial value problem (6.4) is
just the rigidly rotated initial condition (s0,q0). This solution of (6.4) for t ∈ [0, 0.5] is shown
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in Figure 1: at the final time t = 0.5 the solution (s(t),Q(t)) has rotated π/2 around ez and
the biaxiality parameter β[Q] ≈ 0. This corroborates that Q(t) remains uniaxial for all t.

It is worth realizing that if one did not use the covariant spin tensor WΓ defined in (2.12) in
the transport of the tangent component qT , then the parallel transport (3.3) would not result
in the rotated solution q(t) (and Q(t)). This numerical example highlights the importance of
corotational derivatives (3.12) and (3.13) for the kinematics of liquid crystal films.

6.1.2. Diffusion of a uniaxial Q-tensor.

In this example, we explore the so-called “dry” case of the surface Beris–Edwards model. The
Q-tensor changes are driven solely by the interaction of elastic energy and double-well potential
F in the Landau - deGennes energy (4.1) in the absence of momentum transport. We thus set
u = 0 (no fluid) in the system (4.21) from Section 4.2, thereby resulting in the gradient flow
dynamics for the surface Landau–deGennes energy ELdG[Q,∇MQ]

H+ PF ′[Q] = LP divM∇MQ ,

∂tQ = MH ,
(6.5)

which is supplemented with the initial condition Q(0) = Q0 from (6.1). The initial value
problem (6.5) is solved numerically on a unit sphere Γ and the results are displayed on Figure
2. The numerical solution exhibits two crucial aspects of the Landau–deGennes dynamics.
First, since the initial condition is localized approximately to the spherical cap y > 0.6, the
Q-tensor state diffuses due to the term LP divM∇MQ in (6.5). Second, the order parameter
s is zero away from a spherical cap that expands downwards (light blue on Figure 2a). The
nonlinear term PF ′[Q] in (6.5), associated with the double-well potential F [Q], drives the
order parameter s everywhere to the value s+ that minimizes F [Q] according to Lemma 5.5. In
addition, the director field q stays parallel to the initial value q0 to minimize the elastic energy
in (4.1). The solution is thus uniaxial and given by (6.3). This is corroborated by Figure 2b,
which depicts the biaxiality parameter β[Q] defined in (5.3). In fact, β[Q] ≈ 0 for all times in
the entire surface, which is only possible if Q is uniaxial according to Lemma 5.4. Therefore, the
uniaxial evolution of the Q-tensor field is preferable to avoid competition between the elastic
and potential energies that give rise to ELdG[Q,∇MQ] in (4.1), provided the initial director
field q0 is constant and the corresponding elastic energy vanishes.

6.1.3. Evolution of a uniform Q-tensor under passive rotation.

This example couples the Landau–deGennes dynamics on the unit sphere Γ of the previous
example with a passive rotation. We prescribed the tangential velocity v(x, y, z) = πez×(x, y, z)

for (x, y, z) ∈ Γ and replace the time derivative ∂tQ in (6.5) with the corotational derivative
◦
Q

of (3.13). We consider the initial Q0 = s0
(
q0 ⊗ q0 − 1

3I
)
in (6.1) with uniform director field

q0 given by (6.2) but with the non-equilibrium value s0 = 0.1 of the order parameter s. This
results in the following initial value problem

H+ PF ′[Q] = LP divM∇MQ ,
◦
Q = MH .

(6.6)

with Q(0) = Q0. Figure 3 documents the evolution for t ∈ [0, 1]. Since the prescribed velocity
v is a rotation around the z-axis, the solution consists of the concatenation of diffusion without
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a)

t = 0 t = 0.2 t = 0.8

b)

Figure 2: Diffusion along the unit sphere Γ of a Q-tensor Q with initial uniaxial condition Q0 given
by (6.1) localized to a spherical cap. All pictures show the xy-plane view: a) the largest eigenvalue
and corresponding eigenvector of Q; b) the biaxiality parameter β[Q] ≈ 0 for all times indicates that
Q is always uniaxial according to Lemma 5.4. The localized Q-tensor diffuses along Γ while staying
parallel to Q0 to minimize the elastic energy. At the same time, the double-well potential F [Q] drives
the scalar order parameter s of Q to the minimizer s+ of F [Q] stated in (5.5) .

velocity with a rigid rotation. Since the initial condition Q0 is uniform, the elastic energy is
zero and only the double-well potential F [Q] is active to drive the order parameter s. This is
precisely what Figure 3a illustrates: the eigenframe of Q at each point of Γ rotates by an angle
π in the plane orthogonal to ez while s evolves towards the minimizer s+ of the potential F [Q]
given by (5.5). Moreover, Q remains uniaxial for all time because the biaxiality parameter
β[Q] ≈ 0 in light of Figure 3b, whence Lemma 5.4 applies. This example reveals the essential
role of the corotational derivative (3.13) in modeling liquid crystals on surfaces in that it does
not generate spurious biaxial states during a passive dynamics of the eigenframe of Q.

6.2. Coupling forces in the momentum equation of surface Beris–Edwards model

This set of experiments explore the action of the forces on the momentum equation (4.21)c

ρ
(
∂tu+ (∇Γu)u+∇Γp

)
= 2µPdivΓDΓ(u) +Λ+ fE − f∗ , (6.7)

namely the Leslie force Λ in (4.9), and the Ericksen fE and star f∗ forces in (4.18)

Λ = −H : ∇MQ, fE = PdivΓΣΓ, f∗ = 2BΣn. (6.8)

We deal with the following configuration of Q lying in the xz-plane and described in terms of
polar coordinates (r, ϕ), i.e. ϕ = atan2(x, z) , r =

√
x2 + z2. Let ω ≥ 0 be a parameter that

controls the swirled director field qω perpendicular to ey = (0, 1, 0)

qω = qω(r, ϕ) =
(
cos(ϕ+ ωr), 0, sin(ϕ+ ωr)

)
, (6.9)
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a)

t = 0 t = 0.5 t = 1

b)

Figure 3: Evolution of a uniform Q-tensor under passive rotation around the z-axis with velocity field
v = πez × (x, y, z) for (x, y, z) ∈ Γ. All pictures show the xy-plane view: a) the largest eigenvalue and
corresponding eigenvector of Q; b) the biaxiality parameter of (5.3) satisfies β[Q] ≈ 0 for all times.
Lemma 5.4 implies that the Q-tensor remains uniaxial for all times. In fact, Q is always uniform in
space and rotates rigidly with v, whence the elastic energy vanishes. The order parameter s evolves
uniformly in space from s0 = 0.1 to the minimizer s+ of the potential energy F [Q] in (5.5).

and let the order parameter sk,ξ(r) vary between 0 and s+ defined in (5.5) via a regularized
radial step function which is the logistic sigmoid with midpoint ξ and width k

sk,ξ = sk,ξ(r) =
s+

1 + exp (−2k(r − ξ))
.

The Q-tensor is uniaxial with eigenvector Pqω tangential to Γ and order parameter sk,ξ, namely

Q = Q[k; ξ;ω] = sk,ξ

(
Pqω

|Pqω|
⊗ Pqω

|Pqω|
− 1

3
I

)
. (6.10)

This is a regularized degree +1 defect because at the origin, where qω becomes singular, the
order parameter sk,ξ is about zero. The largest eigenvalue of Q is λmax = 2/3s+ ≈ 0.82 with
s+ defined in (5.5). Moreover, the physical parameters of the fluid are its density ρ = 0.1 and
viscosity µ = 0.1 in (6.7).

Remark 6.1. We point out that to generate non-zero Ericksen stressesΣ we need a configuration
of the Q-tensor with a swirled and regularized director field qω. Figure 4 shows homeotropic
and uniform Q-tensors on a spherical cap for which all coupling forces in (6.8) are zero. Hence,
no transport of momentum appears in such Q-tensor configurations.

6.2.1. Leslie force on a flat disc

We first examine Λ in (6.8). To this end, we consider a flat disc Γ of radius 5 orthogonal
to (0, 1, 0) with Dirichlet boundary conditions for the Q-tensor Q and the velocity u. We let
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Figure 4: Q-tensors on spherical caps for which all the forces in (6.8) are zero. Left: a homeotropic
Q-tensor Q = s+ (n⊗ n− I/3), right: a uniform Q-tensor Q = s+ ((1, 1, 1)⊗ (1, 1, 1)− I) /3.

ω = 0 and Q be the radial uniaxial regularized defect Q[5; 2.5; 0] of degree +1 defined in (6.10)
without a “swirl”. The order parameter sk,ξ of Q is almost flat except near the circle of radius
r = ξ = 2.5, whence its gradient is radial and points outwards. Figure 5)b displays Q.

Figure 5: Leslie force Λ = −H : ∇MQ (left) for the Q-tensor Q[5; 2.5; 0] in (6.10) on a flat disc of
radius 5; this is a regularized defect of degree +1 with order parameter sk,ξ about zero at the origin
(right). The gradient of sk,ξ, which is radial and points outwards, is mostly responsible for the structure
of Λ (left). In fact, its concavity flips in the transition region near the circle of radius r = ξ = 2.5,
thereby resulting in a radial Λ that point outwards for r > ξ and inwards for r < ξ.

The molecular field H might be thought of approximately as the Laplacian of Q, whence
it changes sign around r = ξ where the convexity of sk,ξ flips to concavity. Since ∇MQ must
be radial, because of symmetry arguments, the Leslie force Λ = −H : ∇MQ is also radially
symmetric and points inwards for r < ξ and outwards for r > ξ. This is shown in Figure 5)a.

Since the disc Γ is flat, the shape operator B = ∇Mn vanishes and so does the star force
f∗ = 2BΣn in (6.7). In addition, computations reveal that the Ericksen tensor Σ = QH−HQ
is zero and so is the Ericksen force fE = PdivΓΣΓ. Therefore, the only active force is the
Leslie force Λ, which is not divergence-free according to Figure 5. Computations also show
that Λ does not produce fluid flow because the velocity is u = 0, which in turn implies that
Λ is a gradient equilibrated by the pressure term to enforce the incompressibility condition
divΓu = 0.

6.2.2. Ericksen force on a flat annulus

We now examine the impact of the tangent Ericksen stress ΣΓ = P(QH −HQ)P and corre-
sponding Ericksen force fE = PdivΓΣΓ on the momentum equation (6.7). We consider the flat
annulus Γ of inner radius 1 and outer radius 5 which is orthogonal to ey = (0, 1, 0) = n. Note
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that removing the inner disc gets rid of the defect at the origin. Throughout Γ we take the
order parameter s to be the constant s+ defined in (5.5) and the swirl parameter ω = 0.1 in
the definition (6.9) of the director qω. We consider the following uniaxial Q-tensor

Q = s+

(
qω ⊗ qω − 1

3
I

)
, (6.11)

which is depicted in Figure 6b. The value ω ̸= 0 is responsible for the Ericksen tensor Σ =
QH −HQ ̸= 0, for otherwise radial symmetry forces H and Q to have the same conforming,
radial eigenframe at every x ∈ Γ and Σ = 0. On the other hand, s+ minimizes the double-well
potential, according to Lemma 5.5 (minimizer of F ), and Q in (6.11) satisfies PF ′[Q] = 0.

Figure 6: Velocity field u produced by the Ericksen force divΓΣΓ on an annulus [1, 5] × S1 (top
left). Uniaxial tensor Q given by (6.10) with swirl parameter ω = 0.1 and constant order parameter
sk,ξ = s+ defined in (5.5) (top right). The complex flow exhibits two regions of rotation, the outer one
clockwise and the inner one counterclockwise, separated by an stagnation layer of vanishing velocity.
The parameter θ from (4.19) corresponds to the unit normal n = (0, 1, 0) of Γ pointing upwards (bottom
left). The vector ∇Γθ is radial and points towards the stagnation layer in both the inner and outer
annuli. Therefore, the Ericksen force fE = n×∇Γθ is rotational and mimics the velocity. The largest
eigenvalue and corresponding eigenvector of the tensor H (bottom right), which is also conforming with
zero eigenvalue in the normal direction. The eigenframes of Q and H do not coincide.

We impose Dirichlet boundary conditions to both the Q-tensor Q and the velocity u, and
report the computational results in Fig. 6. It turns out that the Ericksen force fE generates a
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rotational incompressible flow with two distinct regions of rotation separated by a stagnation
layer with zero velocity; this is displayed on Figure 6a. In the inner region the flow rotates
counterclockwise while in the outer region the liquid crystal material flows in the opposite
direction. Since the Q-tensor, displayed in Figure 6b, has a uniformly clockwise swirl on the
entire annulus, one might wonder what originates this complex flow.

First, we investigate analytically the structure of the molecular field H and surface Ericksen
stress ΣΓ for Q in (6.11). If we consider the basis q1 = qω,q2 = n × qω,n, which is an
eigenframe for the uniaxial Q-tensor Q, then Q and the projector P may be represented by

Q =

 2
3s+ 0 0
0 − 1

3s+ 0
0 0 − 1

3s+

 , P =

1 0 0
0 1 0
0 0 0

 .

On the other hand, the tensor H satisfies (6.6) with PF ′[Q] = 0, whence

Hn = LP divM (∇MQ)n = 0

due to the flatness of Γ and conformity of Q. Since H is traceless and symmetric, we get

H =

a b 0
b −a 0
0 0 0

 , (6.12)

in the basis q1,q2,n for suitable functions a and b. The Ericksen stress Σ = QH−HQ reads

Σ =

 0 s+b 0
−s+b 0 0
0 0 0

 (6.13)

in the same basis and shows that b ̸= 0 is required for a nontrivial Σ. In other words, the
eigenframe of H should not coincide with that of of Q for Σ ̸= 0, as alluded to earlier in
Section 6.2.2. Moreover, comparing Σ = ΣΓ in (6.13) with (4.20), the function θ in (4.19)
satisfies

θ = −s+b , fE = P divΓΣΓ = −s+n×∇Γb . (6.14)

Intuitively, the molecular field H enters the expression of ∂tQ in (4.21b), and a nonzero
off-diagonal component, b ̸= 0, in (6.12) means that the eigenframe of H rotates relative to
that of Q. In this sense, the surface Ericksen force fE in (6.14) encodes the spatial rate of
change of the eigenframe rotation: the linear momentum is the thermodynamic counterpart of
the relative rotation of the molecular field H from (6.12) due to the swirl structure of Q in
(6.11).

We next provide a computational justification for the intriguing flow in Figure 6a. We
resort to the parameter θ in (4.19), which provides the representation fE = n × ∇Γθ of the
Ericksen force according to Lemma 4.4. The scalar field θ is displayed on Figure 6c, whence its
gradient ∇Γθ is radially symmetric and pointing towards an annulus where θ exhibits its largest
value; hence ∇Γθ changes orientation from an inner to an outer annular region. Therefore, the
Ericksen force fE is rotational and exhibits the same structure as the velocity field on Figure 6a
with inner and outer regions of counterclockwise and clockwise orientation.
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6.2.3. A regularized swirled defect on a flat disc

We next combine the effects of the Ericksen force fE = divΓΣΓ and the Leslie force Λ =
−H : ∇MQ in one single experiment. We consider the swirled regularized Q-tensorQ[5; 2.5; 0.1]
defined in (6.10) with swirl parameter ω = 0.1 and transition parameter ξ = 2.5 on a flat disc
Γ of radius 5 orthogonal to (0, 1, 0). The computational results are shown on Figure 7. The
parameter ξ characterizes the green layer on Figure 7b where the incompressible flow changes
the direction of rotation. For r < ξ the fluid rotation is counterclockwise according Figure 7a,
which also depicts Q, namely both the swirl director field qω and order parameter sk,ξ in (6.10).
Moreover, in Figure 7b we display the profiles of fE and Λ and realize that the fluid flow is
consistent with the rotational character of fE and the azimuthal component of Λ.

a)

b)

Figure 7: a) Velocity field u (left) created by the swirled regularized defect Q[5; 2.5; 0.1] defined
in (6.10) (right) on a flat disc Γ of radius 5. b) Ericksen force fE = divΓΣΓ (left) and Leslie force
Λ = −H : ∇MQ (right) near the transition region near r = ξ = 2.5 depicted by the green circle.
Note that Λ exhibits a larger magnitude than fE , but only the rotational part of Λ may generate
incompressible flow. The rotational flow is mostly due to fE .

Notice that, in contrast to the experiment in Section 6.2.1 where ω = 0, the Leslie force
Λ has a radial and an azimuthal component. The former is absorbed into the pressure and
does not create linear momentum as in Section 6.2.1. However, the latter adds to the Ericksen
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force fE to give rise to an inner region r < ξ with clockwise rotational flow and an outer
region r > ξ with opposite flow. We observe that the velocity magnitude is much larger in the
transition region r ≈ ξ than in the inner and outer regions and that, even though fE is smaller
in magnitude than Λ, it is mostly responsible for the counterclockwise flow.

6.2.4. The star force on a unit sphere

The star force f∗ = 2BΣn is zero on flat geometries because the shape operator B = ∇Mn
vanishes. In this experiment we consider the unit sphere Γ, for which B = P, to show the non-
trivial behavior of f∗ even for a surface with a simple shape operator. To demonstrate the action
of f∗ on Γ we choose regularized unixial Q-tensors defined in (6.10): radialQ[5, 0.5, 0] with ω = 0
and swirled Q[5, 0.5, 1.5] with ω = 1.5. Figure 8 and Figure 9 show these configurations with
unit vector ey = (0, 1, 0) pointing upwards. The definition (6.10) of Q is relative the xz-plane
perpendicular to ey, so the transition region occurs at r =

√
x2 + z2 = ξ = 0.5.

Figure 8: Star force f∗ = 2BΣn (left) for a regularized radial defect Q[5, 0.5, 0] of degree +1 defined
in (6.10) on the unit sphere Γ with ey pointing upwards (right). The Leslie force Λ is similar to the
flat disc (Figure 5) and the Ericksen force fE is zero (neither is shown). The total force generates no
flow.

It turns out that the “radial” tensor Q[5, 0.5, 0] generates no flow. This is because the
star force f∗ = 2PΣn = 2Σn has a radial structure and is localized near the transition region
r ≈ ξ, where the Ericksen stress Σ = QH−HQ is non-zero; hence f seems to be a corotational
gradient that is compensated by ∇Γp in (6.7). Moreover, the Leslie force Λ = −H : ∇MQ (not
shown on Figure 8) is also radial and similar to that in Figure 5, whence it can also be absorbed
into the pressure term. However, the profiles of f∗ and Λ are quite different: the former has
a direction pointing towards the equator in both the upper and lower spherical caps of Γ (see
Figure 8a), whereas the latter flips its direction near the transition region as in Figure 5a.
Finally, the Ericksen force fE = PdivΓΣΓ appears to be zero while Σn is clearly not.

In contrast, the swirled tensor Q[5, 0.5, 1.5], shown on Figure 9b, creates a force f∗ that
generates flow. Viewed from the north pole, such a flow develops an outer region r > ξ, where
the velocity rotates counterclockwise, as well as an inner region r < ξ, where the velocity
rotates clockwise but is much smaller in magnitude than the former (see Figure 9a). On the
othet hand, Q swirls clockwise (see Figure 9b).
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Figure 9: Velocity field u (left) produced by the star force f∗ = 2BΣn for a regularized swirled defect
Q[5, 0.5, 1.5] of degree +1 defined in (6.10) (right) on a unit sphere Γ. The field u rotates clockwise
near the defect at the north pole and counterclockwise near the equator.

6.3. Relaxation of a flat-degenerate state

In Section 1 we argued that assuming Q-tensors to be conforming, namely to obey (1.4), may
be inconsistent with their surface dynamics unless an additional (penalty) energy enforces this
configuration. We now explore such inconsistency computationally on a simple configuration
of the Q-tensor on the unit sphere Γ. The initial configuration is a flat-degenerate Q-tensor
field with zero normal eigenvalue (see Definition 5.1), while the final configuration is uniaxial
with nTQn = 2

3s+ (see Definition 5.2) and s+ = 1.5 given in (5.5). We will see that the
intermediate states are generally non-conforming even if we penalize the lack of conformity,
unless the penalty parameters are sufficiently large.

To describe Q0 = Q(0) in Figure 10, let ey = (0, 1, 0) point upwards and let the director
field m = Pey/|ey| be tangent to the unit sphere Γ, where P = I− n⊗ n. Then, let

Q0 = s+

(
m⊗m− 1

2
P

)
(6.15)

be a flat-degenerate Q-tensor with degree +1 defects at both north pole y = 1 and south
pole y = −1. Therefore, the biaxiality parameter β[Q0] = 1 defined in (5.3) attains the
largest possible value, according to Lemma 5.4), at all points of Γ except for the defects. Since
minimizers of the double-well potential F [Q] are uniaxial states (Lemma 5.5) andQ0 is far from
uniform and carries large elastic energy at the defects, we expect Q0 to be far from a minimizer
of the Landau–deGennes energy ELdG[Q,∇MQ] in (4.1). In fact, the final configuration is a
uniaxial state (5.2) with director field q = n and orientational order s = s+, whence

nTQn =
2

3
s+ (6.16)

is the eigenvalue in the normal direction. Flat-degenerate Q-tensors are prototypical for simu-
lations in flat, two-dimensional domains. However, we stress that the evolution of Q0 involves
non-conforming Q-tensors with three non-zero eigenvalues.
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t = 0.005 t = 0.015 t = 0.023 t = 0.03

t = 0.05 t = 0.075 t = 0.1 t = 0.4

Figure 10: Relaxation of the Q-tensor from the axisymmetric flat-degenerate state Q0 in (6.15) to the
uniaxial state (5.2) with q = n and s = s+. The interface parameters in the energy (6.17) are α = 10,
δ = 2

3
s+. The Q-tensor relaxes from nTQn = 0 to nTQn = 2

3
s+ = 1 passing through non-conforming

states. Top: maximum eigenvalue and corresponding eigenvector of Q evolve from tangential to normal
to Γ. Bottom: biaxiality parameter β[Q] and velocity field u (scaled by 0.5); β[Q] varies from 0 to 1
with intermediate alternating regions of biaxiality. Vertical direction corresponds to the director ey.

6.3.1. Normal anchoring penalization

As discussed in Section 5.3, the Landau–deGennes energy (4.1) of a liquid crystal film may
include, in some applications [18, 19, 39, 50], the energy Enorm[Q] with penalty parameter
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α > 0 defined in (5.10), which enforces a value δ of orientational order in the normal direction

Enorm[Q] = α

∫
Γ

∣∣nTQn− δ
∣∣2 . (6.17)

The dynamics of the Beris–Edwards system is dictated by the competition of several en-
ergies: the double-well potential F [Q] promotes uniaxial states with order parameter s+; the
elastic energy L|∇MQ|2/2 promotes uniform states in R3; and the energy Enorm[Q] promotes
a certain degree of orientational order, but does not affect the conformity. A rigid condition of
the form nTQn = c, as discussed in Section 1, is often a modelling assumption postulated along
with the conformity assumption. If this condition is relaxed but the conformity assumption
is still applied, then nTQn is an additional scalar variable representing the normal orienta-
tional order. One could model a transition from the conforming flat-degenerate state (6.15)
with nTQn = 0 to the conforming uniaxial state with nTQn = δ enforcing conformity of Q
for all intermediate times. However, our simulations show that our Beris-Edwards model find
non-conforming intermediate states more energetically favorable.

We simulate the full surface Beris–Edwards system (4.21) with initial conditions u(0) = 0
and Q(0) = Q0 given by (6.15), as well as the augmented Landau–deGennes energy (4.1) by
(6.17). This leads to the following variant of (4.21)a

H+ P(F ′[Q] + E′
norm[Q]) = LP divM∇MQ , (6.18)

where E′
norm[Q] is the variational derivative of Enorm. We choose the parameters

a = −1, b = 1, c = 1; M = 1, L = 1, ρ = 0.1, µ = 0.1; α = 10, δ =
2

3
s+ = 1.0

in (1.3), (4.21) and (6.17) respectively. We report on Figure 10 the numerical results for time
evolution of the augmented surface Beris–Edwards system (4.21)–(6.18). The Q-tensor relaxes
from the flat-degenerate state with nTQn = 0 to the uniaxial state with nTQn = 2

3s+ passing
through non-conforming states. The biaxiality parameter β[Q] is uniform at the beginning and
end of the simulation, with values β[Q] = 1 (biaxial) to β[Q] = 0 (uniaxial) respectively, and
exhibits alternating and space-dependent values in between. The energy landscape is complex
with non-conforming intermediate states.

6.3.2. Non-conformity penalization

To further check our claim of non-conformity on the transition from flat-degenerate to uniaxial
configurations, we develop a second experiment. To enforce that Qn be normal, whence n be
an eigenvector of Q, we incorporate the physically justified anchoring energy [18, 19, 39, 50],

Epen[Q] = γ

∫
Γ

|PQn|2 . (6.19)

already discussed in (5.10). Therefore, the limit γ → ∞ imposes the strong conformity condition
Qn = λn because (6.19) is minimized if Qn is normal.

We now repeat the preceding simulation of the augmented system (4.21)–(6.18) but this
time adding Epen[Q] + Enorm[Q] to the Landau–deGennes energy (4.1). We choose

γ = 0, γ = 100, γ = 10000

in (6.19), and display on Figure 11 (top) the maximal eigenvalue and corresponding eigenvector
of Q at the fixed time t = 0.023 far from equilibrium. We also report the non-conformity
parameter rΓ[Q] defined in (5.9) on Figure 11 (bottom). The parameter γ = 0 corresponds to
the simulations in Figure 10. As expected, large values of γ promote conformity of the Q-tensor
for all times, while for small to moderate values of γ intermediate states are non-conforming.
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γ = 0 γ = 1e2 γ = 1e4

γ = 0 γ = 1e2 γ = 1e4

Figure 11: Relaxation of the flat-degenerate Q-tensor field (6.15), with director ey pointing upwards,
for different values of the parameter γ in (6.19) that penalizes non-conformity; γ = 0 corresponds to
Figure 10. All snapshots are taken for the time t = 0.023, which is far from the final steady state.
Small to moderate values of γ give rise to intermediate non-conforming Q-tensor fields. Top: maximal
eigenvalue and corresponding eigenvector. Bottom: non-conformity parameter rΓ[Q] defined in (5.9).
Note that, for γ = 1e4, at each point of the sphere one of the eigenvectors is almost exactly normal.
What is shown on the Figure is the eigenvector with the largest eigenvalue so a discontinuity may
appear where two eigenvalues are equal and are largest.

6.3.3. Enforcing conforming and flat-degenerate Q-tensor dynamics

Inspired by dynamic simulations of a conforming and flat-degenerate Q-tensor on a unit sphere
from [41], we explore the predictions of our model and numerical approach in the same context.
In fact, we show that enforcing the Q-tensor dynamics to be conforming and flat-degenerate in
the normal direction via (6.17) and (6.19) leads to the so-called tetrahedral configuration. This
minimizing equilibrium configuration consists of four +1/2-defects located at the vertices of a
regular tetrahedron inscribed in the unit sphere, as depicted in Figure 12.

We take the initial condition proposed in [41]. It consists of two tangent vector fields on
the unit sphere Γ given by

qx =
P(0, y, z)T

|P(0, y, z)T |
, qz =

P(x, y, 0)T

|P(x, y, 0)T |
, (6.20)

which have +1-defects at (±1, 0, 0) and (0, 0,±1), respectively. Next a composite vector field
mxz on Γ is defined as follows,

mxz = qx, y ≥ 0 , mxz = qz, y < 0 , (6.21)
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t = 0.01 t = 0.1 t = 2

Figure 12: Evolution towards a tetrahedral minimizer starting from a conforming, flat-degenerate Q-
tensor field (6.22) with defects in the XZ-plane (horizontal). The Q-tensor stays conforming and flat-
degenerate for all times via penalization (6.17) and (6.19). The maximal eigenvalue and corresponding
eigenvector are shown at times t = 0.01, 0.1, 2, along with green segments connecting the center of the
unit sphere with the vertices of a fixed regular tetrahedron. Two of the four +1/2-defects are visible
and move towards their final positions at the vertices of the tetrahedron. The angles between the green
segments are in the range of 109±3 degrees which is close to the angle of the regular tetrahedron. The
vertical direction corresponds to the Y -axis.

With the help of this composite vector field we construct a conforming, flat-degenerate Q-tensor,

Q0 = s+

(
mxz ⊗mxz − 1

2
P

)
. (6.22)

The advantage of this initial configuration is that Q0 quickly transforms into a planar
configuration of four +1/2-defects located in the XZ-plane and resembling tennis ball patches
(Figure 12 (left)). This planar configuration slowly evolves towards the minimizing tetrahedral
configuration depicted on Figure 12 (right). In this simulation we set

a = −10, b = 1, c = 10; M = 1, L = 0.1, ρ = 0.1, µ = 0.1; α = 100, γ = 10000, δ = 0 .

The choice of penalization parameters α, γ, δ ensures that the Q-tensor stays conforming and
flat-degenerate in the normal direction for all times.

We observe from Figure 12 that the final equilibrium configuration is still conforming and
flat-degenerate and it corresponds to the expected tetrahedral arrangement of four +1/2-defects
that maximizes the distance between defects [41]. This shows the flexibility of our model
to accommodate Q-tensor conformity via the Hess-Osipov energy described in Section 5.3.
However, this desirable consistency does not mean that our model always reduces to that in
[41] in the limit α, γ → ∞ without further structural assumptions on the molecular field H.
This crucial discovery in under current investigation.

6.4. Homeotropic state: Instability and weak anchoring of Q-tensors

Although it should be clear that the general kinematics of Q-tensors introduced in Section 3 is
inconsistent with the conformity assumption, we would like to demonstrate how this assumption
affects the behavior of the Beris–Edwards model in a concrete example which is of standalone
interest. Consider an initial condition on a unit sphere which is homeotropic (i.e. conforming
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and uniaxial with respect to the normal n):

Q = s+

(
n⊗ n− 1

3
I

)
with the constant order parameter s+ from (5.5) that minimizes the double-well potential. The
configuration is rotationally symmetric and it is interesting to check if it is a stable one.

t = 0 t = 1 t = 4

Figure 13: Stability of a hometropic Q-tensor anchored to the unit sphere by γ = 10 in the Beris–
Edwards model. The order parameter of the initial condition minimizes the double-well potential. The
competition between the elastic energy and the double-well potential drives the configuration to a new
homeotropic state with a constant order parameter s close to 0.6 which is shown at the most right
snapshot. The Q-tensor stays conforming and uniaxial for all times. The vertical direction corresponds
to the X axis.

Assume the Q-tensor has to stay conforming for all times. Since the elastic energy of such
radial configuration is nonzero, the elastic part of Landau–deGennes energy can be minimized
by either evolving the order parameter s from s+ to a smaller value or even by generating a
biaxial state which would brake the radial symmetry. We choose

a = −1, b = 1, c = 1; L = 1, M = 1, ρ = 0.1, µ = 0.1; γ = 10,

in the double-well potential (1.3), the Beris-Edwards system (4.21), and the anchoring energy
(6.19) respectively. The effect of (6.19) is to penalize the lack of conformity, whence the Q-
tensor field evolves according to the first scenario, which slightly reduces the order parameter
while keeping the Q-tensor radially symmetric and homeotropic provided γ is large. In fact, for
γ → ∞ we expect a strong imposition of conformity. Figure 13 documents this claim for γ = 10,
and reveals that the final radially symmetric, conforming, homeotropic Q-tensor configuration
is stable for moderate values of γ.

To trigger the onset of instability we perturb the initial director as follows

Q̃0 = s+

(
ñ⊗ ñ− 1

3
I

)
, ñ =

n+ 0.2(1, 0, 0)

|n+ 0.2(1, 0, 0)|
, (6.23)

and examine the full surface Beris–Edwards model (4.21) augmented with (6.19) via the small
parameter value γ = 0.1. The numerical results, displayed on Figure 14, reveal that the initial
configuration Q0 loses stability because the weak anchoring provided by γ is not strong enough.
The ensuing dynamics is quite rich: the instability manifest first via the formation of a biaxial
ring with +1 defect in the north pole (t = 10), which splits into two +1/2 defects (t = 12). The
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t = 5 t = 10 t = 12

t = 16 t = 21 t = 23

Figure 14: Instability of the initially homeotropic, radially symmetric Q-tensor Q0 in (6.23), with
director ey = (0, 1, 0) pointing upwards, weakly anchored to the unit sphere Γ via (6.19) with parameter
γ = 0.1. The initial condition Q0 is the same as in Figure 13 but γ is much smaller. Since the anchoring
is not sufficiently strong, the Q-tensor loses stability through non-conforming configurations, starting
with the formation of a biaxial ring, followed by the splitting of the +1 defect in the north pole by two
+1/2 defects that repel each other initially. They eventually coalesce to form the global minimizer -
a uniaxial state, uniform in R3, with s = s+ as the order parameter. Top: maximal eigenvalue and
corresponding eigenvector. Bottom: biaxiality parameter β[Q] and velocity field u (scaled by 5).

nature of these defects is apparent in the display of the Q-tensor in the first row. These defects
initially repel from each other (t = 16), but later they coalesce (t = 21 and t = 23). Figure 15
displays the velocity fields for these extreme stages of splitting and merging: they are similar
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t = 12 t = 21

Figure 15: Velocity fields (scaled by 5) for specific times t = 12 (left) and t = 21 (right) of the same
experiment as in Figure 14. Coloring corresponds to the biaxiality parameter (5.3): two dark spots
with low biaxiality, corresponding to Q-tensor defects, are surrounded by annuli with high biaxiality.
The velocity fields for splitting (left) and merging (right) of defects are similar but opposite. This
saddle-like pattern of velocity is consistent with the splitting and merging of defects for flat domains.

but point in opposite directions and resemble saddle-like patterns already documented in flat
cases. The final Q-tensor state is uniaxial uniform in R3, and close to the global minimizer
Q = s+

(
ey ⊗ ey − 1

3I
)
of the double-well potential with ey = (0, 1, 0) pointing vertically in

Figure 14 . The final orientation is affected by the perturbation (6.23) of the initial condition.
This experiment indicates that the stability and evolution of simple Q-tensor configurations

depend on the penalization parameter γ which controls the anchoring energy Epen[Q]. It is
thus conceivable that the actual size of γ coming from materials science applications might not
be sufficiently large to enforce the conformity assumption.

7 Conclusions

This paper derives and explores a novel model of liquid crystal films with general orientational
order. For a given smooth, stationary and closed surface Γ, the main contributions are:

• Non-conforming Q-tensors: We develop a new notion of Q-tensor kinematics on surfaces,
which hinges on Assumption 1. We introduce the surface corotational derivative of Q-tensors
(3.13) to transport a generically oriented Q-tensor field. This allows for transport of Q-
tensors such that the unit normal vector n to Γ is not an eigenvector (non-conformity). In
this vein, Assumption 2 dictates how the eigenframe of a conforming Q-tensor is transported.

• Energy law: We invoke the generalized Onsager principle to derive a model with an energy
structure that mimics the Beris–Edwards model in R3. We impose Assumption 3 to define
the structure of the evolution laws. The derivation employs extrinsic calculus in R3, thereby
avoiding surface parametrizations and making finite element discretizations in R3 readily
available. The surface model contains three distinct forces: the Leslie force Λ and Ericksen
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force fE , which already exist in flat domains, as well as the new star force f∗ which is
responsible for thermodynamics consistency for non-conforming Q-tensors.

• Simulations: We conduct a systematic computational study of the surface Beris–Edwards
model to unravel the role of several forces and mechanisms. This includes

– experiments with the “dry” surface Landau–deGennes (gradient flow dynamics without
linear momentum) to examine the novel Q-tensor kinematics;

– experiments that illustrate the role of the three forces Λ, fE and f∗ and their profiles for
a Q-tensor configuration with a degree +1 defect;

– experiments of the dynamics connecting two confoming states which undergo more en-
ergetically favorable non-conforming intermediate states;

– conforming dynamics of four + 1
2 defects enforced via penalization that lead to a regular

tetrahedral structure consistent with [41].

– simulations of the instability of a radially symmetric, homeotropic Q-tensor on a unit
sphere due to insufficient anchoring, which showcases the effect of non-conformity.

The relaxation of the conformity assumption, via a thermodynamically consistent model, and
computational exploration of its consequences are the main novelties of our work.
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A General notation

In this appendix preliminary definitions and notations are clearly presented for the ease of
further reading. We adopt the matrix notation where a vector x is represented by the column
of its components xj = (x)j in the standard basis ej of Rn, j ∈ {1, ..., n}. A linear operator A
is represented by the n× n matrix Aij = (Aj)i where the vector Aj = Aej is the image of ej
under A. The gradient of a scalar function f is a column of partial derivatives, (∇f)j = ∂jf .
The matrix of the gradient of a vector field u consists of rows of transposed gradients of the
field components, (∇u)ij = ∂jui. We denote ∂kA the matrix (vector) of k-th partial derivatives
of a matrix (vector) A applied component-wise.
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We will often use dyads. The dyadic or tensor product of two vectors, u ⊗ v, is a linear
operator with the matrix representation uvT , while the inner product u · v denotes the scalar
uTv. A linear operator A may be represented by dyads involving either its column-vectors,∑n

j=1 Aj⊗ej , or its row-vectors,
∑n

j=1 ej⊗(AT )j . Higher order tensor products can be derived
from the associativity of u⊗ v ⊗ q, e.g. (A⊗ u)v = (u · v)A and (u⊗A)v = u⊗ (Av).

The standard gradient operator in Rn for a scalar field f , a vector field u and a matrix field
A is defined in the language of vector algebra as follows [25]

∇f =

n∑
j=1

ej∂jf , ∇u =

n∑
j=1

∂ju⊗ ej =

n∑
j=1

ej ⊗∇uj ,

∇A =

n∑
j=1

∂jA⊗ ej =

n∑
j=1

ej ⊗∇(AT )j

(A.1)

The associated directional derivative in Rn along a vector v is given by

(∇T f)v =

n∑
j=1

vj∂jf , (∇u)v =

n∑
j=1

vj∂ju =

n∑
j=1

(∇uj · v)ej ,

(∇A)v =

n∑
j=1

vj∂jA =

n∑
j=1

(∇Aj)v ⊗ ej

(A.2)

Here and later ∇Tf is a short notation for (∇f)T . We define the pointwise inner product of
two matrices A and C as well as their gradients

A : C =

n∑
j=1

Aj ·Cj =

n∑
i,j=1

AijCij , ∇A
... ∇C =

n∑
j=1

∂jA : ∂jC =

n∑
j=1

∇Aj : ∇Cj (A.3)

The inner product of tensor fields on Ω ⊂ Rn is defined as follows:

(f, g)Ω =

∫
Ω

fg , (u,v)Ω =

∫
Ω

u · v , (A,C)Ω =

∫
Ω

A : C

The divergence operator is given by

divu = tr(∇u) , divA =

n∑
j=1

ej div (A
T )j , div (∇A) =

n∑
j=1

ej ⊗ div∇(AT )j (A.4)

and we want to stress that the vector divergence is applied to rows of a matrix, and the
divergence of the gradient of a matrix is defined accordingly.

The following proposition summarizes some straightforward useful identities which are con-
sistent with the adopted notation.

Proposition A.1 (product rules). For any scalar field f , vector fields u,v,q and matrix field
A, we have

∇(fu) = f∇u+ u⊗∇f , ∇(u · v) = (∇Tu)v + (∇Tv)u,

∇(fA) = f∇A+A⊗∇f , ∇(Av) =

n∑
i=1

vi∇Ai +A∇v,

∇(u⊗ q)v = (∇u)v ⊗ q+ u⊗ (∇q)v , div (fu) = fdivu+ u · ∇f,

div (u⊗ v) = (divv)u+ (∇u)v , div (fA) = fdivA+A∇f,

div (ATu) = divA · u+A : ∇u, div (u⊗A) = u⊗ divA+ (∇u)AT .
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Again, ∇Tu is a short notation for (∇u)T . The following proposition summarizes some
integration by parts rules which are consistent with the adopted notation.

Proposition A.2 (integration by parts). For any scalar field f , vector field u and matrix field
A defined on a open domain Ω ⊂ Rn with boundary ∂Ω and outer unit normal n, we have

(divu, f)Ω = (fu,n)∂Ω − (u,∇f)Ω , (divA,u)Ω = (ATu,n)∂Ω − (A,∇u)Ω.

B Integration by parts and tangential decomposition of
tensors on surfaces

In this appendix we present some results concerning the external and covariant tensor deriva-
tives used in this paper. More specifically, we derive formulas that show the connection be-
tween the integration by parts on surfaces and tangential decomposition of tensors. Note that
throughout the paper the integrals are taken component-wise, with respect to the ambient space
R3.

Lemma B.1 (Gauss-Weingarten). Given a vector field u such that u(x) ·n(x) = const, for all
x ∈ Ωδ, the covariant and external derivatives are related by the shape operator as follows:

∇Mu = ∇Γu− n⊗Bu , x ∈ Ωδ . (B.1)

Proof. For all j ∈ [1, n] we compute

0 = ∂j(u · n) = ∂ju · n+ u · ∂jn = (∇u)j · n+ u · (∇n)j , ∀x ∈ Ωδ

which, due to the symmetry of B = ∇n = BT , implies

(∇Tu)n+Bu = 0 , x ∈ Ωδ (B.2)

From the definitions and the property B = PB = BP, we deduce

∇Mu−∇Γu = (I−P)∇Mu = N∇uP = nnT∇uP = n⊗ (P(∇Tu)n) = −n⊗PBu .

This concludes the proof.

The following corollary of Lemma B.1 is used in the development of the surface model of
liquid crystal flows.

Corollary B.2 (relation between spin tensors). For tangent vector fields, uN = 0, the covariant
and external spin tensors in (2.12) and (2.5) are related through

WM (u) = WΓ(u) +
1

2
(Bu⊗ n− n⊗Bu) . (B.3)

B.1. Vector fields

We decompose a vector field u on Ωδ into the tangent component uT and the normal component
uNn as follows:

u = uT + uNn , uT = Pu , uNn = Nu . (B.4)
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Lemma B.3 (covariant divergence). For a vector field u = uT + uNn on Ωδ, we have

divΓu = divΓuT + uN trB .

Proof. Using the definition (2.10), Lemma A.1, the cyclic property of traces and PN = 0 we
compute

div Γu = div Γ(Pu+Nu) = div Γ(Pu) + tr(∇Γ(Nu)) = div ΓuT + tr(P∇(Nu)P)

= div ΓuT + trB(u · n)

where the last step is due to the following identity

P∇(Nu) =

n∑
i=1

uiP∇Ni +PN∇u =

n∑
i=1

uiP∇(nin) =

n∑
i=1

uiP(ni∇n+ n⊗∇ni)

=

n∑
i=1

uiP(ni∇n) = (u · n)B .

This gives the assertion.

Lemma B.4 (normal flux). For a normally extended vector field u = ue, we have

lim
δ→0

1

2δ

(∫
Γ+
δ

u · n−
∫
Γ−
δ

u · n

)
=

∫
Γ

(trB)u · n .

Proof. First consider a normally extended scalar f :

lim
δ→0

1

2δ

(∫
Γ+
δ

fe −
∫
Γ−
δ

fe

)
=

d

dδ

(∫
Γδ

fe

)
|δ=0 =

d

dδ

(∫
Γ

det(1 + δBδ)f
e

)
|δ=0

=

(∫
Γ

d

dδ
det(1 + δBδ)f

e

)
|δ=0 =

∫
Γ

(trB)f .

The proof concludes by applying this formula to products ue
ini of components of a vector field

ue and the normal n, and summation over i.

Lemma B.5 (covariant integration by parts). For a vector field u and a scalar field f on Ωδ,
the integration by parts over a closed surface Γ reads

( divΓu, f)Γ = (tr(B)fu,n)Γ − (u,∇Γf)Γ .

Proof. Since divΓu depends only on the values of u on Γ we first restrict u to Γ and then
extend it normally obtaining ue. We use Lemmas A.4 and B.4 and take the limit δ → 0 in

lim
δ→0

1

2δ
(divue, fe)Ωδ

= lim
δ→0

1

2δ

(
(feue,n)Γ+

δ
− (feue,n)Γ−

δ

)
− lim

δ→0

1

2δ
(ue,∇fe)Ωδ

to obtain

( divΓu, f)Γ = −(u,∇Γf)Γ + (f(trB)u,n)Γ

because divΓu = divMu = divue and ∇Γf = ∇Mf = ∇fe .

In view of (2.9) and (2.11), Lemma B.5 extends to tangential derivatives.
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B.2. Matrix fields

We introduce a tangential decomposition of matrices. For an arbitrary matrix A we compute

PAP = (I−N)A(I−N) = A−PAN−NAP−NAN

which suggests the following tangential decomposition

A = AΓ +AN +ANΓ , AΓ = PAP , AN = NAN , ANΓ = NAP+PAN (B.5)

Lemma B.6 (matrix decomposition). For a matrix field A on Ωδ the vector field divΓA has
the following tangential and normal components:

PdivΓA = PdivΓAΓ + tr(B)PAn+BATn , N divΓA = N divΓAΓ + divΓ(A
Tn)n.

Proof. In view of (2.8) and (2.10), we deduce divΓA = divΓ(AΓ+AN+NA−NAN) and treat
each term separately. By definition (2.10), Lemma A.1 and the identity divΓ(fn) = f divΓn
we obtain

( divΓ(AN))j = divΓ(NAT )j = divΓN(AT )j

= divΓ(n · (AT )j)n = (n · (AT )j) divΓn = tr(B)(An)j

and ( divΓ(NAN))j = tr(B)(NAn)j . We use the identity divΓ(fu) = f divΓu+ u · ∇Γf in

( divΓ(NA))j = divΓ(A
TN)j = divΓnj(A

Tn) = nj divΓ(A
Tn) +ATn · ∇Γnj ,

= divΓ(A
Tn)nj +ATn ·Bj = divΓ(A

Tn)nj + (BATn)j

and put together all the components as follows

divΓA = divΓAΓ + tr(B)An+ divΓ(A
Tn)n+BATn− tr(B)NAn

= divΓAΓ + divΓ(A
Tn)n+ tr(B)PAn+BATn .

The claim follows due to B = PB.

Lemma B.7 (covariant integration by parts). For a vector u and a matrix A on Ωδ, we have

( divΓA,u)Γ = −(A,∇Mu)Γ + ((trB)An,u)Γ

Proof. Since divΓA depends only on the values of A on Γ we first restrict A and u to Γ and
then extend them normally obtaining Ae and ue. We use Proposition A.2 to obtain

(divAe,ue)Ωδ
= −(Ae,∇ue)Ωδ

+ (ATue,n)Γ+
δ
− (ATue,n)Γ−

δ

We take the limits δ → 0:

lim
δ→0

1

2δ
(divAe,ue)Ωδ

= (divAe,u)Γ , lim
δ→0

1

2δ
(Ae,∇ue)Ωδ

= (A,∇ue)Γ

lim
δ→0

1

2δ

(
(ATue,n)Γ+

δ
− (ATue,n)Γ−

δ

)
= ((trB)ATu,n)Γ = ((trB)An,u)Γ

and conclude the proof by noticing divAe = divMA = divΓA and ∇ue = ∇Mu ̸= ∇Γu.

Remark B.8. We point that for both vectors and matrices the decompositions in Lemma B.3
and B.6 contain terms that have counterparts in Lemma B.5 and B.7. This fact is used in the
derivation of the model in Section 4.
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Corollary B.9 (external integration by parts). For matrix fields A,C on Ωδ, we have

( divM∇MA,C)Γ = −(∇MA,∇MC)Γ .

Proof. The assertion follows from Lemma B.7 and (∇MAT )n = 0. In fact, we have

( divM∇MA,C)Γ =
( n∑

j=1

ej ⊗ divM∇M (AT )j ,

n∑
j=1

ej ⊗ (CT )j

)
Γ
=

n∑
j=1

( divM∇M (AT )j , (C
T )j)Γ

= −
n∑

j=1

(∇M (AT )j ,∇M (CT )j)Γ + ((trB)(∇M (AT )j)n,u)Γ = −
n∑

j=1

(∇M (AT )j ,∇M (CT )j)Γ

= −
( n∑

j=1

ej ⊗∇M (AT )j ,

n∑
j=1

ej ⊗∇M (CT )j

)
Γ
= −(∇MA,∇MC)Γ.

This concludes the proof.
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