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Abstract

In this paper, we study the general rogue wave solutions and their patterns in the vector (or
M -component) nonlinear Schrödinger (NLS) equation. By applying the Kadomtsev-Petviashvili hi-
erarchy reduction method, we derived an explicit solution for the rogue wave expressed by τ functions
that are determinants of K × K block matrices (K = 1, 2, · · · ,M) with an index jump of M + 1.
Patterns of the rogue waves for M = 3, 4 and K = 1 are thoroughly investigated. We find that when
a specific internal parameter is large enough, the wave patterns are linked to the root structures
of generalized Wronskian-Hermite polynomial hierarchy in contrast with rogue wave patterns of the
scalar NLS equation, the Manakov system and many others. Moreover, the generalized Wronskian-
Hermite polynomial hierarchy includes the Yablonskii-Vorob’ev polynomial hierarchy and Okamoto
polynomial hierarchies as special cases, which have been used to describe the rogue wave patterns
of the scalar NLS equation and the Manakov system, respectively. As a result, we extend the most
recent results by Yang et al. for the scalar NLS equation and the Manakov system. It is noted that
the case M = 3 displays a new feature different from the previous results. The predicted rogue wave
patterns are compared with the ones of the true solutions for both cases of M = 3, 4. An excellent
agreement is achieved.

Keywords: Kadomtsev-Petviashvili hierarchy reduction method, vector nonlinear Schrödinger
equation, rogue waves, pattern formation, Wronskian-Hermite polynomials

1 Introduction

Rogue waves have been known in the maritime community as part of folklore for centuries. Notable
features of such waves include sudden emergence, abnormally large amplitude, and disappearance without
any trace. These characteristics indicate that rogue waves may result in tremendous impacts on their
surrounding environment and have been associated with many maritime disasters [24]. Systematic studies
on rouge waves started only after the first verified measurement of an extreme water wave on 1995 [31].
Remarkably, research on rogue waves has developed considerably since 2007, following the discovery of
rouge waves in optical fibres [51], which has attracted much interest in both optics and hydrodynamics.
Since then, there has been an explosion of studies to explore rogue waves extended to other physical
systems, such as superfluid helium [29], Bose-Einstein condensates [13], capillary waves [50], and plasmas
[4].

In optics and hydrodynamics, the mathematical models governing wave propagation can be derived
from Maxwell’s equations and the Euler equations, respectively [23]. Under further assumptions, the
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nonlinear Schrödinger (NLS) equation, which describes the evolution of slowly varying wave packets in
nonlinear wave systems, can be reduced from both of these two models [1]. Owing to its integrability,
the NLS equation has been widely studied [8, 25, 37, 47, 54, 64] and shown to admit a number of
analytic solutions. In particular, one of its rational solutions, namely the Peregrine soliton [48], is widely
regarded as the prototype of rogue waves. In the past two decades, mathematical study on rogue waves
has attracted much attention, and various higher-order rogue wave solutions of the NLS equation have
been constructed [2, 22, 38, 30, 45]. It is worth noting that these solutions in turn have facilitated the
experimental studies of rogue waves. On the other hand, explicit rogue wave solutions have been derived
in various integrable equations, such as the derivative NLS equation [57], the Yajima-Oikawa equation
[15, 16], the three-wave equation [59], the Manakov system [6, 19], the Sasa-Satsuma equation [27, 55],
and many others. Besides, rogue waves of infinite order have been uncovered [10, 12] by making use of
the Riemann-Hilbert approach [63], while rogue waves on the periodic background [17, 18, 26] have also
been explored. Large-order asymptotics for solitons [9] and [11] rogue waves of the NLS equation were
analyzed by using the inverse-scattering transform method.

In addition to their physical significance, rouge waves may exhibit extremely regular and symmetric
patterns, which are intriguing and can provide critical information for predicting subsequent rogue waves
from previous ones. For instance, circular rogue wave clusters of the NLS equation were reported in [38]
by using Darboux transformation and numerical simulations. Soon after this phenomenon was confirmed
analytically in [32], a systematic classification of the NLS rogue wave patterns was obtained in [39]
according to the order of rogue waves and the parameter shifts involved in the Akhmediev breathers in
the rogue-wave limit. Moreover, this study reveals various highly symmetric geometric structures of rogue
waves under certain choices of parameters, including triangles, pentagons, heptagons, and nonagons. A
even more remarkable observation is that, which was first shown in [60], the distribution of rogue waves
for specific choices of parameters looks very similar to another independent object, that is, the root
structure of the Yablonskii-Vorob’ev polynomial hierarchy, which is closely related to rational solutions
of the Painlevé II hierarchy [21]. When specific internal parameter is large enough, the deep connection
between these two objects has been established analytically in [60], which is a remarkable progress in
the study of rogue waves. Following this work, it is found that [58] such patterns are universal, as rogue
waves of many other integrable equations demonstrate similar patterns, such as the Boussinesq equation
and the Manakov system, as long as the Schur polynomials involved in the τ functions have index jumps
of two. Beyond that, Yang and Yang [62] very recently discovered that other rogue wave patterns exist
when the index jumps are three, and these patterns are characterized by root structures of Okamoto
polynomial hierarchies.

Inspired by the works in [60, 58, 62], some natural problems arise.

• Can we construct the rogue wave solution in M -component NLS equation?

• What about the patterns of rogue waves for M = 3, 4 or even the general case? Are these patterns
related to some orthogonal polynomial hierarchy?

The main objective of this paper is to solve the problems listed above by considering the vector NLS
equation

iuj,t + uj,xx +

(
M∑
k=1

σk |uk|2
)
uj = 0, j = 1, 2, · · · ,M, (1)

where M is a positive integer and σk = ±1. For M = 2, it is known as the Manakov system [42], which
is a model that governs soliton propagation through optical fiber arrays [3, 35, 36]. Our results consist of
two ingredients. First, we will apply the Kadomtsev-Petviashvili hierarchy reduction technique to derive
rogue wave solutions of the vector NLS equation whose τ functions are represented by determinants of
K ×K block matrices (K = 1, 2, · · · ,M) with index jumps of M + 1. The crucial point of this part is to
solve a system of algebraic equations (see Lemma 2.1 and its proof). Then we will study the rogue wave
patterns for M = 3, 4 and K = 1. We find that when a specific internal parameter is large enough, these
patterns are connected to the root structure of a new orthogonal polynomial hierarchy, which is called
generalized Wronskian-Hermite polynomials (see Section 2.2). Moreover, we notice that the Yablonskii-
Vorob’ev polynomial hierarchy and Okamoto polynomial hierarchies are special cases of the generalized
Wronskian-Hermite polynomials. Accordingly, our results have unified rogue wave patterns of the scalar
NLS equation and the vector NLS equation (1) for M = 2, 3, 4. In addition, we find that the proof in the
inner region for M = 3 is different from other cases. In the proofs of the inner region of the scalar NLS
equation and the Manakov system, one can perform row and column operations to reduce the τ functions
into determinants of block matrices with lower triangular matrices at the (1,1) entry whose elements on
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the diagonal are all 1. Then the sizes of the determinants can be decreased; hence these waves can be
approximated by possible lower-order rogue waves in the inner region. However, although the waves for
M = 3 can also be approximated by possible lower-order rogue waves in the inner region, it turns out
that in certain cases the sizes of the determinants remain unchanged after row and column operations,
as the (1,1) entries of the block matrices are no longer triangular. The predicted rogue wave patterns are
compared with actual ones, and excellent agreement is achieved.

The structure of this paper can now be explained. Section 2 presents some preliminary results that
will be used in the subsequent discussions. We first provide explicit rogue wave solutions with index
jumps of M + 1 of the vector NLS equation, and it is shown that these solutions are expressed by K ×K
block matrices (K = 1, 2, · · · ,M). This is followed by an introduction to the generalized Wronskian-
Hermite polynomials and the study of their root structures. Then rogue wave patterns for the three- and
four-component NLS equations under the condition that specific parameters are large enough are stated
in Section 3, which form the main results of this paper. Section 4 is devoted to comparing predicted and
actual rogue wave patterns, while the proofs of the main results are provided in Section 5. We summarize
the main results of this paper in Section 6. Finally, the proof of Lemma 2.1, which involves the study
of multiple roots of some rational function and plays a pivotal role in this paper, and derivations of
rogue wave solutions in the vector NLS equation are given in Appendices A and B respectively, while the
results on root structures of the generalized Wronskian-Hermite polynomials of jump k = 4, 5 are proved
in Appendix C.

2 Preliminaries

2.1 Rogue wave solutions of the vector nonlinear Schrödinger equation

This section presents rogue wave solutions of the vector NLS equation (1), which possesses an infinite
dimensional algebra of non-commutative symmetries [40]. We note that these solutions have been studied
before [7, 19, 41, 43, 49, 65]. In particular, vector Peregrine solitons were found by applying the loop
group theory in [65], in which the authors proposed the problem of whether patterns of these rogue
waves are related to Yablonskii-Vorob’ev polynomial hierarchy. This problem was later confirmed for the
Manakov system [56], which has been taken as an example to show that universal rogue wave patterns
associated with the Yablonskii-Vorob’ev polynomial hierarchy exist in integrable systems. Very recently,
new patterns of another class of (degenerate) rogue waves of the Manakov system have been obtained
by Yang and Yang [62] through establishing the connection between these waves and the Okamoto
polynomial hierarchies. A remarkable feature of these new patterns is that, unlike previous patterns, the
transformations between the locations of fundamental rogue waves and zeros of the Okamoto polynomial
hierarchies are nonlinear, thereby leading to deformations of rogue patterns. Inspired by these studies,
we will extend the results in [62] and solve the problem mentioned above in [65] for M = 3, 4 by studying
patterns of degenerate rogue waves of the vector NLS equation (1). To this end, we introduce some
notations and lemma that will be needed.

The Schur polynomials Sn(x) are defined by

∞∑
n=0

Sn(x)λn = exp

( ∞∑
k=1

xkλ
k

)
,

where x = (x1, x2, · · · ). To be more specific, we have

S0(x) = 1, S1(x) = x1, S2(x) =
1

2
x2

1 + x2, . . . , Sj(x) =
∑

l1+2l2+···+mlm=j

(
m∏
i=1

xlii
li!

)
. (2)

Further, we define Sj(x) ≡ 0 for j < 0.

Lemma 2.1. Let M be a positive integer and λ1 > 0, rj 6= 0, kj be real constants, j = 1, 2, . . . ,M , where
the kj ’s are distinct. Let RM (z) be a rational function defined by

RM (z) =

M∑
j=1

rj
(z + kj)2

+ 2. (3)
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Then RM (z) = 0 has a pair of complex conjugate roots with nonzero imaginary parts of multiplicity M

λ1 cos[π/(M + 1)]− k1 ± iλ1 sin[π/(M + 1)], (4)

if the parameters rj , kj , j = 2, . . . ,M , satisfy the conditions

kj = k1 + λ1 (sin[π/(M + 1)] cot[jπ/(M + 1)]− cos[π/(M + 1)]) ,

and

rj = 2(−1)j+1
M∏
i=1
i 6=j

(kj − ki)−1

(
λ1

sin[π/(M + 1)]

sin[jπ/(M + 1)]

)M+1

. (5)

Remark 1. The equation RM (z) = 0 may have real roots of multiplicity M as well. For instance, the
equation

162

(z + 2)2
− 256

(z + 3)2
− 16

(z + 1)2
+ 2 = 0

has a real root 1 of multiplicity 3, while the equation

− 1024

(z + 2)2
+

3125

(z + 3)2
− 2592

(z + 4)2
+

81

(z + 1)2
+ 2 = 0

has a real root 2 of multiplicity 4. Nevertheless, this case will not occur in our subsequent discussions.

We will provide the proof of Lemma 2.1 in Appendix A. Next, we define the functions GM (p) and
p(κ) respectively by

GM (p) =

M∑
j=1

σjρ
2
j

p− ikj
+ 2p, (6)

GM (p(κ)) =
GM (p(0))

M + 1

M+1∑
n=1

exp

(
exp

(
2nπi

M + 1

)
κ

)
,

=
GM (p(0))

M + 1

M+1∑
n=1

exp

(
cos

(
2nπ

M + 1

)
κ

)
cos

(
sin

(
2nπ

M + 1

)
κ

)
, (7)

where ρj > 0, kj are real constants, j = 1, 2, · · · ,M . We may deduce from Lemma 2.1 that if σj , ρj and
kj , j = 1, 2, · · · ,M , satisfy the constraints

kj = k1 + λ1 (sin[π/(M + 1)] cot[jπ/(M + 1)]− cos[π/(M + 1)]) ,

σjρ
2
j = 2(−1)j+1

M∏
i=1
i 6=j

(kj − ki)−1

(
λ1

sin[π/(M + 1)]

sin[jπ/(M + 1)]

)M+1

, (8)

then the algebraic equation
G′M (p) = 0 (9)

has a pair of non-imaginary roots of multiplicity M given by

± λ1 sin[π/(M + 1)]− iλ1 cos[π/(M + 1)] + ik1. (10)

Theorem 2.2. Let M be a positive integer, ρj > 0, kj be real constants, and σj = 1, where j =
1, 2, · · · ,M . Assume ρj and kj are given by (8). Let GM (p), p(κ) be functions defined by (6) and (7)
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respectively. Let x±I =
(
x±1,I , x

±
2,I , · · ·

)
, I = 1, 2, . . . ,M , and s = (s1, s2, · · · ) be the vectors defined by

x+
i,I = αix+ βiit+

M∑
j=1

njθij + ai,I , (11)

x−i,I = α∗i x− β∗i it−
M∑
j=1

njθ
∗
ij + a∗i,I , (12)

ln

[
1

κ

(
p0 + p∗0
p1

)(
p(κ)− p0

p(κ) + p∗0

)]
=

∞∑
r=1

srκ
r, (13)

where the asterisk ‘∗’ represents complex conjugation, p0 = p(0), p1 = p′(0), the ai,I ’s are arbitrary
constants, and αi, βi, θij , j = 1, 2, . . . ,M , are defined by the expansions

p(κ)− p0 =

∞∑
r=1

αrκ
r, p2(κ)− p2

0 =

∞∑
r=1

βrκ
r, ln

p(κ)− ikj
p0 − ikj

=

∞∑
r=1

θrjκ
r.

In this case, the M -component NLS equation (1) admits N -th order rogue wave solutions

uj,N =
gj,N
fN

ei(kjx+wjt), j = 1, 2, · · · ,M, (14)

where

wj =

M∑
i=1

σiρ
2
i − k2

j , N = (N1, N2, . . . , NM ) , (15)

with Nj (j = 1, 2, · · · ,M) being nonnegative integers, and f and gj are given by

fN = τn0
, gj,N = τnj (16)

with

n0 = (0, 0, . . . , 0) ∈ RM , nj =

M∑
l=1

δjlel,

el being the standard unit vector in RM and δjl being the Kronecker delta. Here, τn is given by the
following K ×K (K = 1, 2, · · · ,M) block determinant

τn = det


τ

[I1,I1]
n τ

[I1,I2]
n · · · τ

[I1,IK ]
n

τ
[I2,I1]
n τ

[I2,I2]
n · · · τ

[I2,IK ]
n

...
...

. . .
...

τ
[IK ,I1]
n τ

[IK ,I2]
n · · · τ

[IK ,IK ]
n


N×N

, (17)

where

n = (n1, n2, . . . , nM ) , 1 ≤ I1 < I2 < · · · < IK ≤M, (18)

τ [I,J]
n =

(
m

(n,I,J)
(M+1)i−I,(M+1)j−J

)
1≤i≤NI ,1≤j≤NJ

, 1 ≤ I, J ≤M, (19)

n1, n2, . . . , nM are integers, Ij , NIj (j = 1, 2, · · · ,K) are positive integers with NI1 +NI2 + · · ·+NIK = N
and Nl = 0 for l ∈ {1, 2, · · · ,M}\{I1, I2, · · · , IK}, and the corresponding matrix elements of (19) are
defined by

m
(n,I,J)
i,j =

min(i,j)∑
v=0

[
|p1|2

(p0 + p∗0)
2

]v
Si−v

(
x+
I (n) + vs

)
Sj−v

(
x−J (n) + vs∗

)
. (20)

We provide the proof of Theorem 2.2 in Appendix B.

Remark 2. The rogue wave solutions to the vector NLS equation (1) in Theorem 2.2 are represented
by τ functions which have matrix elements expressed by Schur polynomials with index jumps of M + 1.
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These rogue waves exist only when G′M (p) = 0 has non-imaginary roots of order M . This indicates that
the scalar NLS equation and the Manakov system have no such kind of rogue waves with index jumps of
J ≥ 4. In addition, when G′M (p) = 0 has simple or double roots, the vector NLS equations would possess
similar types of rogue waves as the scalar NLS equation or the Manakov system, where the index jumps
of the corresponding Schur polynomials are 2 or 3. In such cases, the rogue wave patterns are similar to
those of the scalar NLS equation [60] or the Manakov system [62] and hence we will not present these
rogue waves.

Remark 3. We restrict the study of rogue wave patterns to the cases of M = 3, 4. Then the p(κ)
introduced in (7) can be expressed by

GM (p(κ)) =


G3(p(0))

4
(eκ + e−κ + 2 cosκ) , M = 3,

G4(p(0))

5

(
eκ + 2e

(
−
√

5
4 −

1
4

)
κ
(
e
√

5κ
2 cos

(√√
5

8 + 5
8κ

)
+ cos

(√
5
8 −

√
5

8 κ

)))
, M = 4.

(21)
It is also clear that there are other parameter choices for G′M (p) = 0 (M = 3, 4) to have a pair of non-
imaginary roots of order M , on account of the symmetry of the vector NLS equation (1). Let (i, j, l) be
any permutation of the set {1, 2, 3}, then the condition (8) can be replaced by

ρi = ρj =
√

2ρl = 2|kl − ki| = 2|kl − kj | 6= 0, ki 6= kj . (22)

Similarly, assume (i, j, l,m) is any permutation of the set {1, 2, 3, 4}, then the condition (8) can be replaced
by

2ρ2
i = (3−

√
5)ρ2

j = (3−
√

5)ρ2
l = 2ρ2

m = (6− 2
√

5)(kj − ki)2 = 4(kl − ki)2 = (6 + 2
√

5)(km − ki)2 6= 0. (23)

Under these conditions, the roots are

p0 =


±ρi

2
+ ikl, for M = 3,

±1

4

√
5 +
√

5ρi + i

(
ki −

1

4

√
3−
√

5ρi

)
, for M = 4.

(24)

Remark 4. When K = 1, the τ functions are comprised of determinants of single block matrices, i.e.,

τn = det
1≤i,j≤N

(
m

(n,I1,I1)
(M+1)i−I1,(M+1)j−I1

)
, 1 ≤ I1 ≤M,

where m
(n,I,J)
i,j is given by (20). In this case, we define the rogue wave solutions in Theorem 2.2 to be the

I1-th type, 1 ≤ I1 ≤M , and simply denote x±I by x± by ignoring the dependence on I.

Remark 5. By rewriting τn into a larger determinant similar to [45], we can show that the degrees of
the polynomials τn for M = 3, 4 with respect to x and t in Theorem 2.2 are

deg(τn) =

{
3
(
N2

1 +N2
2 +N2

3

)
− 2(N1N2 +N1N3 +N2N3) + (3N1 +N2 −N3) , M = 3,

5
(
N2

1 +N2
2 +N2

3 +N2
4

)
− (N1 +N2 +N3 +N4)2 + 4N1 + 2N2 − 2N4, M = 4,

(25)

where Nj (j = 1, 2, . . . ,M) are non-negative integers such that N1 +N2 + · · ·+NM = N . We note that,

when NI = 0, it means that the block matrices τ
[I,Il]
n and τ

[Il,I]
n (l = 1, 2, . . . ,M) do not appear in (17).

Remark 6. It can be calculated that

s1 = s2 = s3 = s5 = s6 = s7 = s9 = s10 = s11 = 0, when M = 3, (26)

and
s1 = s2 = s3 = s4 = s6 = s7 = s8 = s9 = s11 = 0, when M = 4, (27)

in (13), but we do not know whether or not si = 0 holds for all i ∈ N such that i 6≡ 0 mod (M + 1) when
M = 3, 4. We also note that x±r,I can be removed from the solution when r ≡ 0 mod (M + 1), by using
the technique developed in [60].
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2.2 Generalized Wronskian-Hermite polynomials

Hermite polynomials are a sequence of classical orthogonal polynomials, and they arise in many areas of
mathematics, such as probability, combinatorics, random matrix theory, etc. Like other orthogonal poly-
nomials, Hermite polynomials can be defined from various viewpoints. It is also worth noting that there
are two different standardizations in common use. However, it turns out neither of them is convenient
for the analysis of wave patterns. Instead, we will introduce a slightly different definition [61]. Let pj(z)
be Schur polynomials defined by

∞∑
j=0

pj(z)ε
j = exp

(
zε+ ε2

)
, (28)

with pj(z) ≡ 0 for j < 0. Then it can be shown that the polynomials pj(z) are related to Hermite
polynomials via certain rescaling.

Next, we introduce Wronskian-Hermite polynomials, which have appeared in the study of certain
monodromy-free Schrödinger operators [44]. Let N be a positive integer and Λ = (n1, n2, . . . , nN ), where
{ni} are distinct positive integers such that n1 < n2 < · · · < nN , then the Wronskian-Hermite polynomial
WΛ(z) is defined as

WΛ(z) =

∣∣∣∣∣∣∣∣∣
pn1(z) pn1−1(z) · · · pn1−N+1(z)
pn2(z) pn2−1(z) · · · pn2−N+1(z)

...
...

...
...

pnN (z) pnN−1(z) · · · pnN−N+1(z)

∣∣∣∣∣∣∣∣∣ . (29)

Note from (31) that p′k+1(z) = pk(z). This implies that the Wronskian-Hermite polynomial WΛ(z) can
be rewritten as

WΛ(z) = Wronskian [pn1
(z), pn2

(z), . . . , pnN (z)] . (30)

In particular, when the indices (n1, n2, . . . , nN ) are consecutive, these polynomials are called generalized
Hermite polynomials, which are closely related to rational solutions of the fourth Painlevé equation [21].

The Yablonskii-Vorob’ev polynomials [56, 53] and Okamoto polynomials [46] are another two impor-
tant classes of special polynomials, and as shown in [21, 62], they can be generalized to hierarchies that
have close connections with rogue wave patterns of certain integrable systems [58, 62]. It turns out that

the Wronskian-Hermite polynomials can be generalized in a similar way. Let p
[m]
j (z), where m > 1 is a

positive integer, be Schur polynomials defined by

∞∑
j=0

p
[m]
j (z)εj = exp (zε+ εm) , (31)

with p
[m]
j (z) ≡ 0 for j < 0. Then the generalized Wronskian-Hermite polynomials are defined by

W
[m]
Λ (z) =

∣∣∣∣∣∣∣∣∣∣
p

[m]
n1 (z) p

[m]
n1−1(z) · · · p

[m]
n1−N+1(z)

p
[m]
n2 (z) p

[m]
n2−1(z) · · · p

[m]
n2−N+1(z)

...
...

...
...

p
[m]
nN (z) p

[m]
nN−1(z) · · · p

[m]
nN−N+1(z)

∣∣∣∣∣∣∣∣∣∣
. (32)

In particular, these polynomials are called generalized Wronskian-Hermite polynomials of jump k > 0 if
nj+1 − nj = k, j = 1, 2, . . . , N − 1. Further, when n1 = l, where 1 ≤ l < k, we denote the generalized

Wronskian-Hermite polynomial of jump k > 0 by W
[m,k,l]
N (z), i.e.,

W
[m,k,l]
N (z) = c

[m,k,l]
N

∣∣∣∣∣∣∣∣∣∣
p

[m]
l (z) p

[m]
l−1(z) · · · p

[m]
l−N+1(z)

p
[m]
l+k(z) p

[m]
l+k−1(z) · · · p

[m]
l+k−N+1(z)

...
...

...
...

p
[m]
l+k(N−1)(z) p

[m]
l+k(N−1)−1(z) · · · p

[m]
l+k(N−1)−N+1(z)

∣∣∣∣∣∣∣∣∣∣
, (33)
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where

c
[m,k,l]
N =

(
N∏
n=1

γn!

)/ ∏
1≤i<j≤N

(γj − γi)

 , (34)

γn = l + (n− 1)k, 1 ≤ n ≤ N. (35)

For the convenience of later use, we have multiplied a constant c
[m,k,l]
N in (33), which makes W

[m,k,l]
N (z)

a monic polynomial.

Since we can deduce from (31) that (p
[m]
j+1)′(z) = p

[m]
j (z), W

[m,k,l]
N (z) can be rewritten as

W
[m,k,l]
N (z) = Wronskian

[
pl(z), pl+k(z), . . . , pl+k(N−1)(z)

]
. (36)

If we take m = 2, k = 4, then the first few W
[2,4,l]
N (z) (N, l = 1, 2, 3) are

W
[2,4,1]
1 (z) = z,

W
[2,4,1]
2 (z) = z3

(
z2 + 10

)
,

W
[2,4,1]
3 (z) = z6

(
z6 + 42z4 + 540z2 + 2520

)
,

W
[2,4,2]
1 (z) = z2 + 2,

W
[2,4,2]
2 (z) = z

(
z6 + 18z4 + 60z2 + 120

)
,

W
[2,4,2]
3 (z) = z3

(
z12 + 60z10 + 1260z8 + 12000z6 + 54000z4 + 181440z2 + 302400

)
,

W
[2,4,3]
1 (z) = z(z2 + 6),

W
[2,4,3]
2 (z) = z3

(
z6 + 30z4 + 252z2 + 840

)
,

W
[2,4,3]
3 (z) = z6

(
z12 + 84z10 + 2700z8 + 43680z6 + 388080z4 + 1995840z2 + 4656960

)
.

We remark that, when k = 2, the generalized Wronskian-Hermite polynomials W
[2m+1,2,1]
N (z) are related

to the Yablonskii-Vorob’ev polynomials through some rescaling. In addition, W
[m,3,1]
N (z) and W

[m,3,2]
N (z)

are multiples of the Okamoto polynomial hierarchies of Q
[m]
N (z) and R

[m]
N (z) respectively [62]. In other

words, the Yablonskii-Vorob’ev polynomial hierarchy and the Okamoto polynomial hierarchies are special
cases of the generalized Wronskian-Hermite polynomials.

As we will see in the subsequent sections, rogue wave patterns of the vector NLS equation (1) are
asymptotically determined by the distribution of zeros of the generalized Wronskian-Hermite polynomials.
Root structures of certain special cases of the generalized Wronskian-Hermite polynomials have been
obtained in previous studies, such as the Yablonskii-Vorob’ev polynomial hierarchy [21, 5, 28, 52, 14] and
the Okamoto polynomials hierarchies [20, 34, 28]. For instance, it has been shown that all nonzero roots of

the Yablonskii-Vorob’ev polynomials and the Okamoto polynomials Q
[1]
N (z) and R

[1]
N (z) are simple [28, 34].

Despite that, as far as we know, root structures for higher members of generalized Wronskian-Hermite
polynomials have not been studied yet.

Now we discuss root structures of the generalized Wronskian-Hermite polynomials of jump 4 and 5,
which will be used in later studies on rogue wave patterns. Let N0 be the remainder of N divided by m,
i.e.,

N0 ≡ N mod m or N = km+N0,

where k is a nonnegative integer, and we denote [a] by the largest integer less than or equal to a real
number a. Then our results can be summarized as follows.

Theorem 2.3. The generalized Wronskian-Hermite polynomials W
[m,4,l]
N of jump 4 are monic with degree

N(3N − 3 + 2l)/2, and has the form

W
[m,4,l]
N = zΓw

[m,4,l]
N (ζ), ζ = zm, (37)

where w
[m,4,l]
N (ζ) is a monic polynomial with real coefficients, w

[m,4,l]
N (0) 6= 0, and Γ is the multiplicity of

the zero root given by

Γ =
3

2

(
N2

1 +N2
2 +N2

3

)
− (N1N2 +N1N3 +N2N3) +

1

2
(3N1 +N2 −N3) (38)

8



with the values of N1, N2 and N3 characterized as follows.

• When m ≡ 1 mod 4, we have

l = 3 : (N1, N2, N3) =


(N0, 0, 0) , 0 ≤ N0 ≤

[
m
4

]([
m
4

]
, N0 −

[
m
4

]
, 0
)
,

[
m
4

]
+ 1 ≤ N0 ≤ 2

[
m
4

]([
m
4

]
,
[
m
4

]
, N0 − 2

[
m
4

])
, 2

[
m
4

]
+ 1 ≤ N0 ≤ 3

[
m
4

]
(m− 1−N0,m− 1−N0,m− 1−N0) , 3

[
m
4

]
+ 1 ≤ N0 ≤ m− 1

l = 2 : (N1, N2, N3) =


(0, N0, 0) , 0 ≤ N0 ≤

[
m
4

](
0,
[
m
4

]
, N0 −

[
m
4

])
,

[
m
4

]
+ 1 ≤ N0 ≤ 2

[
m
4

]([
m
4

]
− 1,

[
m
4

]
− 1, N0 − 2

[
m
4

]
− 1
)
, 2

[
m
4

]
+ 1 ≤ N0 ≤ 3

[
m
4

]
(m− 1−N0,m− 1−N0,m− 1−N0) , 3

[
m
4

]
+ 1 ≤ N0 ≤ m− 1

l = 1 : (N1, N2, N3) =


(0, 0, N0) , 0 ≤ N0 ≤

[
m
4

]([
m
4

]
− 1, N0 −

[
m
4

]
− 1, 0

)
,

[
m
4

]
+ 1 ≤ N0 ≤ 2

[
m
4

]
+ 1([

m
4

]
− 1,

[
m
4

]
, N0 − 2

[
m
4

]
− 1
)
, 2

[
m
4

]
+ 2 ≤ N0 ≤ 3

[
m
4

]
+ 1

(m− 1−N0,m−N0,m−N0) , 3
[
m
4

]
+ 2 ≤ N0 ≤ m− 1.

• When m ≡ 2 mod 4, we have

l = 3 : (N1, N2, N3) =


(
km
2 +N0, 0,

km
2

)
, 0 ≤ N0 ≤

[
m
4

](
km
2 +

[
m
4

]
, 0, km2 +N0 −

[
m
4

])
,

[
m
4

]
+ 1 ≤ N0 ≤ 3

[
m
4

]
+ 1(

km
2 +N0 − 2

[
m
4

]
− 1, 0, km2 + 2

[
m
4

]
+ 1
)
, 3

[
m
4

]
+ 2 ≤ N0 ≤ m− 1

l = 2 : (N1, N2, N3) =


(
km
2 − 1, 0, km2 +N0

)
, 0 ≤ N0 ≤

[
m
4

](
km
2 +N0 − 1−

[
m
4

]
, 0, km2 +

[
m
4

])
,

[
m
4

]
+ 1 ≤ N0 ≤ 3

[
m
4

]
+ 1(

km
2 + 2

[
m
4

]
, 0, km2 +N0 − 2

[
m
4

]
− 1
)
, 3

[
m
4

]
+ 2 ≤ N0 ≤ m− 1

l = 1 : (N1, N2, N3) =


(
km
2 , 0, km2 +N0

)
, 0 ≤ N0 ≤

[
m
4

]
+ 1(

km
2 +N0 −

[
m
4

]
− 1, 0, km2 +

[
m
4

]
+ 1
)
,

[
m
4

]
+ 2 ≤ N0 ≤ 3

[
m
4

]
+ 2(

km
2 + 2

[
m
4

]
+ 1, 0, km2 +N0 − 2

[
m
4

]
− 1
)
, 3

[
m
4

]
+ 3 ≤ N0 ≤ m− 1.

• When m ≡ 3 mod 4, we have

l = 3 : (N1, N2, N3) =


(N0, 0, 0) , 0 ≤ N0 ≤

[
m
4

](
N0 − 1−

[
m
4

]
,
[
m
4

]
, 0
)
,

[
m
4

]
+ 1 ≤ N0 ≤ 2

[
m
4

]
+ 1(

N0 − 2
[
m
4

]
− 2,

[
m
4

]
,
[
m
4

])
, 2

[
m
4

]
+ 2 ≤ N0 ≤ 3

[
m
4

]
+ 2

(m− 1−N0,m− 1−N0,m− 1−N0) , 3
[
m
4

]
+ 3 ≤ N0 ≤ m− 1

l = 2 : (N1, N2, N3) =


(0, N0, 0) , 0 ≤ N0 ≤

[
m
4

]
+ 1(

N0 −
[
m
4

]
− 1,

[
m
4

]
+ 1, 0

)
,

[
m
4

]
+ 2 ≤ N0 ≤ 2

[
m
4

]
+ 1(

N0 − 2
[
m
4

]
− 2,

[
m
4

]
,
[
m
4

]
+ 1
)
, 2

[
m
4

]
+ 2 ≤ N0 ≤ 3

[
m
4

]
+ 2

(m− 1−N0,m− 1−N0,m−N0) , 3
[
m
4

]
+ 3 ≤ N0 ≤ m− 1

l = 1 : (N1, N2, N3) =


(0, 0, N0) , 0 ≤ N0 ≤

[
m
4

]
+ 1(

0, N0 −
[
m
4

]
− 1,

[
m
4

]
+ 1
)
,

[
m
4

]
+ 2 ≤ N0 ≤ 2

[
m
4

]
+ 2(

N0 − 2
[
m
4

]
− 2,

[
m
4

]
+ 1,

[
m
4

]
+ 1
)
, 2

[
m
4

]
+ 3 ≤ N0 ≤ 3

[
m
4

]
+ 2

(m− 1−N0,m− 1−N0,m−N0) , 3
[
m
4

]
+ 3 ≤ N0 ≤ m− 1.

Theorem 2.4. The generalized Wronskian-Hermite polynomials W
[m,5,l]
N of jump 5 are monic with degree

N(2N − 2 + l), and has the form

W
[m,5,l]
N = zΓw

[m,5,l]
N (ζ), ζ = zm, (39)
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where w
[m,5,l]
N (ζ) is a monic polynomial with real coefficients, w

[m,5,l]
N (0) 6= 0, and Γ is the multiplicity of

the zero root given by

Γ =
5

2

(
N2

1 +N2
2 +N2

3 +N2
4

)
− 1

2
(N1 +N2 +N3 +N4)2 + 2N1 +N2 −N4. (40)

The values of N1, N2, N3, N4 can be characterized in a similar way as Theorem 2.3 (the details are
provided in Lemma 6.1 of Appendix C).

We provide the proofs of Theorems 2.3 and 2.4 in Appendix C.

Remark 7. We note that Theorems 2.3 and 2.4 provide the multiplicities of the zero root of the general-

ized Wronskian-Hermite polynomials W
[m,4,l]
N and W

[m,5,l]
N respectively, and as we will see subsequently,

these multiplicities are essential in the analysis of rogue wave patterns in the inner region when spe-

cific parameters are very large (see Theorems 3.1 and 3.2). It is also clear that the roots of W
[m,4,l]
N

are distributed symmetrically on some circles in the sense that if z0 is a root of W
[m,4,l]
N , then so is

z0 exp(2kπi/m), where k = 0, 1, . . . ,m− 1.

m = 2 m = 3 m = 5 m = 6 m = 7

N
=

2
Im

(z
)

N
=

3
Im

(z
)

N
=

4
Im

(z
)

N
=

5
Im

(z
)

Re(z) Re(z) Re(z) Re(z) Re(z)

Figure 1: Plots of the roots of the polynomials W
[m,4,3]
N (z) for 2 ≤ N ≤ 5 and m = 2, 3, 5, 6, 7.

In the analytical study of rogue wave patterns, a crucial assumption is that all the nonzero roots

of the corresponding generalized Wronskian-Hermite polynomials W
[m,k,l]
N are simple [60, 58, 62]. This

assumption has been proved for Yablonskii-Vorob’ev polynomials W
[3,2,1]
N (z) and Okamoto polynomials

W
[2,3,1]
N (z) [28] and W

[2,3,2]
N (z) [28, 34]. Nevertheless, this assumption has not been verified for the

general case. Since our results will also rely on this assumption, we propose a conjecture similar to those
in [60, 58, 62].

Conjecture. All nonzero roots of the generalized Wronskian-Hermite polynomials W
[m,k,l]
N are simple

for any integers N ≥ 1,m ≥ 1, k ≥ 2, 1 ≤ l ≤ k − 1.

Although we are not able to prove this conjecture, we have verified it numerically for a variety of

special cases which include all the particular generalized Wronskian-Hermite polynomials W
[m,k,l]
N that

will be involved in this paper.
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m = 2 m = 3 m = 5 m = 6 m = 7
N

=
2

Im
(z

)
N

=
3

Im
(z

)
N

=
4

Im
(z

)
N

=
5

Im
(z

)

Re(z) Re(z) Re(z) Re(z) Re(z)

Figure 2: Plots of the roots of the polynomials W
[m,4,1]
N (z) for 2 ≤ N ≤ 5 and m = 2, 3, 5, 6, 7.

The distribution of roots of the Yablonskii-Vorob’ev polynomial hierarchies and Okamoto polyno-
mial hierarchies demonstrates highly regular and symmetric structures [21, 20]. The original Yablonskii-
Vorob’ev polynomials form approximately equilateral triangles, while the higher members of the Yablonskii-
Vorob’ev polynomial hierarchy form various shapes, such as pentagons, septagons, nonagons and un-
decagons, etc., depending on the values of m [62]. The roots of Okamoto polynomials exhibit com-

pletely different structures compared with Yablonskii-Vorob’ev polynomials. Both of the W
[2,3,1]
N (z)

and W
[2,3,2]
N (z) have similar root structures as theses roots are located on two “triangles” except that

W
[2,3,1]
N (z) has an extra row of roots on a straight line between these two triangles. Here, we use “tri-

angles” because the edges of these triangles are curved rather than straight lines. A natural question is
what characteristics the root structures of the generalized Wronskian-Hermite polynomials would exhibit.

To this end, we plot the roots of W
[m,4,l]
N (z) and W

[m,5,l]
N (z) in Figs. 1-2 and 3, respectively.

3 Rogue wave patterns of the three- and four-component non-
linear Schrödinger equation

Theorem 3.1. Let p0, p1, θ1n, ρn, kn, wn (n = 1, 2, 3) be the same as in Theorem 2.2. Assume that
|am| � 1 and all other parameters are O(1) in the i-th type Ni-th order rogue waves (i = 1, 2, 3)

u1,Ni(x, t), u2,Ni(x, t), u3,Ni(x, t), (41)

of the three-component nonlinear Schrödinger equation, where

Ni = N

3∑
j=1

δijej ,

11



m = 2 m = 3 m = 4 m = 6 m = 7
N

=
2

Im
(z

)
N

=
3

Im
(z

)
N

=
4

Im
(z

)
N

=
5

Im
(z

)

Re(z) Re(z) Re(z) Re(z) Re(z)

Figure 3: Plots of the roots of the polynomials W
[m,5,1]
N (z) for 2 ≤ N ≤ 5 and m = 2, 3, 5, 6, 7.

N is a positive integer, ej is the standard unit vector in R3 and δij is the Kronecker delta. We also

assume that all non-zero roots of the generalized Wronskian-Hermite polynomials W
[m,4,4−i]
N of jump 4

are simple. Then, we have the following results concerning the asymptotics of the rogue waves (41).

(1) In the outer region on the (x, t) plane, when
√
x2 + t2 = O

(
|am|1/m

)
, the Ni-th order rouge waves

separate into N(3N + 5 − 2i)/2 − Γ fundamental rouge waves, where Γ is given in (37). These
fundamental rouge waves are

û1(x, t) = ρ1e
i(k1x+ω1t)

[p1x+ 2p0p1(it) + θ11] [p∗1x− 2p∗0p
∗
1(it)− θ∗11] + |h0|2

|p1x+ 2p0p1(it)|2 + |h0|2
, (42)

û2(x, t) = ρ2e
i(k2x+ω2t)

[p1x+ 2p0p1(it) + θ12] [p∗1x− 2p∗0p
∗
1(it)− θ∗12] + |h0|2

|p1x+ 2p0p1(it)|2 + |h0|2
, (43)

û3(x, t) = ρ3e
i(k3x+ω3t)

[p1x+ 2p0p1(it) + θ13] [p∗1x− 2p∗0p
∗
1(it)− θ∗13] + |h0|2

|p1x+ 2p0p1(it)|2 + |h0|2
, (44)

where |h0|2 = |p1|2 / (p0 + p∗0)
2
, and their positions (x̂0, t̂0) are given by

x̂0 =
1

< (p0)
<
[
p∗0
p1

(
z0a

1/m
m −∆i

)]
, t̂0 =

1

2< (p0)
=
[

1

p1

(
z0a

1/m
m −∆i

)]
, (45)

where z0 is any one of the non-zero simple roots of W
[m,4,4−i]
N (z), ∆i is a z0-dependent O(1)

quantity, and (<,=) refer to the real and imaginary parts of a complex number, respectively.

The approximation error here is O
(
|am|−1/m

)
. In other words, when |am| � 1 and (x− x̂0)

2
+(

t− t̂0
)2

= O(1), we have the following asymptotics

un,Ni(x, t) = ûn
(
x− x̂0, t− t̂0

)
+O

(
|am|−1/m

)
, n = 1, 2, 3. (46)
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(2) In the inner region, where x2 + t2 = O(1), if zero is a root of the generalized Wronskian-Hermite

polynomials W
[m,4,4−i]
N (z), then [u1,Ni(x, t), u2,Ni(x, t), u3,Ni(x, t)] is approximately a lower N̂i-th

order rogue wave
u1,N̂i(x, t), u2,N̂i(x, t), u3,N̂i(x, t)

where N̂i =

3∑
j=1

Nj,4−iej and Nj,l refers to the value of Nj against l ∈ {1, 2, 3} given in Theorem

2.3. Moreover, the internal parameters(
â1,n, â2,n, â3,n, â5,n, â6,n . . . , â4Nn,4−i−n,n

)
, n = 1, 2, 3,

in this lower-order rogue waves are related to those in the original rogue wave as follows.

– For m ≡ 1 or 3 mod 4, we have

âj,1 = âj,2 = âj,3 = aj +

(
N −

3∑
n=1

Nn,4−i

)
sj , j = 1, 2, 3, 5, 6, 7 · · · .

– For m ≡ 2 mod 4, we have

âj,1 = âj,3 =


aj +

(
N −

3∑
n=1

Nn,4−i

)
sj , if j = 1, 2, 3, 5, · · · ,m− 1,m+ 1, · · · ,(

N −
3∑

n=1

Nn,4−i

)
sj , if j = m.

Here, sj is defined in Theorem 2.2. The approximation error of this lower-order rogue wave is

O
(
|am|−1

)
. In other words, when |am| � 1 and x2 + t2 = O(1), we have

un,Ni (x, t; a2, a3, a5, a6, · · · )

= un,N̂i (x, t; âj,1, âj,2, âj,3, j = 1, 2, 3, 5, 6 . . .) +O
(
|am|−1

)
, n = 1, 2, 3.

If zero is not a root of W
[m,4,4−i]
N (z), the solution

[u1,Ni(x, t), u2,Ni(x, t), u3,Ni(x, t)]

is approximately the constant background[
ρ1e

i(k1x+ω1t), ρ2e
i(k3x+ω2t), ρ3e

i(k3x+ω3t)
]
.

Theorem 3.2. Let p0, p1, θ1n, ρn, kn, wn (n = 1, 2, 3, 4) be the same as in Theorem 2.2. Assume that
|am| � 1 and all other parameters are O(1) in the i-th type Ni-th order rogue waves (i = 1, 2, 3, 4)

u1,Ni(x, t), u2,Ni(x, t), u3,Ni(x, t), u4,Ni(x, t) (47)

of the four-component nonlinear Schrödinger equation, where

Ni = N

4∑
j=1

δijej ,

N is a positive integer, ej is the standard unit vector in R4 and δij is the Kronecker delta. We also

assume that all non-zero roots of the generalized Wronskian-Hermite polynomials W
[m,5,5−i]
N of jump 5

are simple. Then, we have the following results concerning the asymptotics of the rogue waves (47).

(1) In the outer region on the (x, t) plane, when
√
x2 + t2 = O

(
|am|1/m

)
, the N -th order rouge

waves separate into N(2N + 3 − i)− Γ fundamental rouge waves, where Γ is given in (39). These
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fundamental rouge waves are

ū1(x, t) = ρ1e
i(k1x+ω1t)

[p1x+ 2p0p1(it) + θ11] [p∗1x− 2p∗0p
∗
1(it)− θ∗11] + |h0|2

|p1x+ 2p0p1(it)|2 + |h0|2
, (48)

ū2(x, t) = ρ2e
i(k2x+ω2t)

[p1x+ 2p0p1(it) + θ12] [p∗1x− 2p∗0p
∗
1(it)− θ∗12] + |h0|2

|p1x+ 2p0p1(it)|2 + |h0|2
, (49)

ū3(x, t) = ρ3e
i(k3x+ω3t)

[p1x+ 2p0p1(it) + θ13] [p∗1x− 2p∗0p
∗
1(it)− θ∗13] + |h0|2

|p1x+ 2p0p1(it)|2 + |h0|2
, (50)

ū4(x, t) = ρ4e
i(k4x+ω4t)

[p1x+ 2p0p1(it) + θ14] [p∗1x− 2p∗0p
∗
1(it)− θ∗14] + |h0|2

|p1x+ 2p0p1(it)|2 + |h0|2
, (51)

where |h0|2 = |p1|2 / (p0 + p∗0)
2
, and their positions (x̄0, t̄0) are given by

x̄0 =
1

< (p0)
<
[
p∗0
p1

(
z0a

1/m
m − ∆̄i

)]
, t̄0 =

1

2< (p0)
=
[

1

p1

(
z0a

1/m
m − ∆̄i

)]
, (52)

where z0 is any one of the non-zero simple roots of W
[m,5,5−i]
N (z), ∆̄i is a z0-dependent O(1)

quantity. The approximation error here is O
(
|am|−1/m

)
. In other words, when |am| � 1 and

(x− x̄0)
2

+ (t− t̄0)
2

= O(1), we have the following asymptotics

un,Ni(x, t) = ūn (x− x̄0, t− t̄0) +O
(
|am|−1/m

)
, n = 1, 2, 3, 4. (53)

(2) In the inner region, where x2 + t2 = O(1), if zero is a root of the generalized Wronskian-Hermite

polynomials W
[m,5,5−i]
N (z), then [u1,Ni(x, t), u2,Ni(x, t), u3,Ni(x, t), u4,Ni(x, t)] is approximately a

lower N i-th order rogue wave

u1,N i(x, t), u2,N i(x, t), u3,N i(x, t), u4,N i(x, t)

where N i =

4∑
j=1

Nj,5−iej and Nj,l refers to the value of Nj against l ∈ {1, 2, 3, 4} are given in

Theorem 2.4. Moreover, the internal parameters(
ā1,n, ā2,n, ā3,n, ā4,n, ā6,n . . . , ā5Nn,5−i−n,n

)
, n = 1, 2, 3, 4,

in this lower-order rogue waves are related to those in the original rogue wave by

āj,1 = āj,2 = āj,3 = āj,4 = aj +

(
N −

4∑
n=1

Nn,5−i

)
sj , j = 1, 2, 3, 4, 6, 7 · · · ,

where sj is defined in Theorem 2.2. The approximation error of this lower-order rogue wave is

O
(
|am|−1

)
. In other words, when |am| � 1 and x2 + t2 = O(1), we have

un,Ni (x, t; a2, a3, a4, a6, · · · )

= un,N i (x, t; āj,1, āj,2, āj,3, āj,4, j = 1, 2, 3, 4, 6, 7 . . .) +O
(
|am|−1

)
, n = 1, 2, 3, 4.

If zero is not a root of W
[m,5,5−i]
N (z), the solution

[u1,Ni(x, t), u2,Ni(x, t), u3,Ni(x, t), u4,Ni(x, t)]

is approximately the constant background[
ρ1e

i(k1x+ω1t), ρ2e
i(k3x+ω2t), ρ3e

i(k3x+ω3t), ρ4e
i(k4x+ω4t)

]
.
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4 Comparison between predicted and true rogue wave patterns

4.1 Comparison in the three-component NLS equation

In this subsection, we compare our predictions of rouge wave patterns in Theorem 3.1 with true rouge
waves of the three-component NLS equation. It is noted that the predicted i-th type |un,Ni(x, t)|, n =
1, 2, 3, from Theorem 3.1 can be divided into a simple form

|un,Ni(x, t)| = |un,N̂i(x, t)|+
Np∑
j=1

(
|ûn
(
x− x̂(j)

0 , t− t̂(j)0

)
| − ρn

)
, n = 1, 2, 3, (54)

where un,N̂i(x, t) is a lower-order rogue wave of the three-component NLS equation with all its internal

parameters set to 0, N̂i = (N1, N2, N3) is given by Theorems 3.1 and 2.3, ûn (x, t) , n = 1, 2, 3, is the

fundamental rogue wave of the three-component NLS equation, whose predicted location
(
x̂

(j)
0 , t̂

(j)
0

)
can

be obtained from (45), and Np is the number of fundamental rogue waves given in Theorem 3.1. To
analyze the triple root case, we choose the background wavenumbers k2 = −k1 = 1 and k3 = 0, which
gives ρ1 = ρ2 = ρ2

3 = 2 by (22). Further, we select p0 = 1, p1 = −1/ 4
√

3 and p2 = 1/
√

3 for the subsequent
analysis.

4.1.1 First-type rogue waves of the three-component NLS equation

We start with (2, 0, 0)-th order rogue wave solutions. Moreover, we let one of the internal parameters
(a2, a3, a5, a6, a7) be large and set others to 0. We note that a1 can be set to 0 by normalization, and a4

is a parameter that can be removed. Then, the very large parameter is one of

a2 = 30, a3 = 100, a5 = 1200, a6 = 3000, a7 = 7000. (55)

According to Theorem 3.1, the position (x̂0, t̂0) of each fundamental rogue wave corresponding to

u1,N1
(x, t), u2,N1

(x, t), u3,N1
(x, t)

can be predicted by equation (45). The lower (N1, N2, N3)-th order rogue wave would appear in the inner
region, and the value of (N1, N2, N3) can be obtained from Theorems 3.1 and 2.3. In our prediction, the
(N1, N2, N3) values for these five rogue solutions are

(N1, N2, N3) = (1, 0, 1), (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 0),

respectively. Note that (0, 0, 0) means no lower-order rogue wave exists in the inner region. Because of
our choice of parameters am and the value of sj shown in Remark 6, the internal parameters in these
predicted lower (N1, N2, N3)-th order rogue waves of the inner region are all zero.

For [u1,N1(x, t), u2,N1(x, t), u3,N1(x, t)], their corresponding predicted rogue wave patterns are illus-
trated in the last three rows of Fig. 4, with the first row being the locations of predicted rogue waves.
These predicted rogue waves are generated in the following way. We first replace each non-center dot,
which is the non-zero root, in the first row of Fig. 4 by a fundamental rogue wave according to (42)-(44).
Then the center dot is replaced by a lower (N1, N2, N3)-th order rogue wave with all internal parameters
set to zero.

It can be seen from Fig. 4 that the large-a2 solution displays a skewed double-triangle, corresponding

to the double-triangle root structure of W
[2,4,3]
2 (z). The large-a3 solution exhibits a skewed triple-triangle,

corresponding to the triple-triangle root structure ofW
[3,4,3]
2 (z). The large-a5 solution displays a deformed

pentagon, corresponding to the pentagon-shaped root structure of W
[5,4,3]
2 (z). The large-a6 solution

exhibits a deformed hexagon, corresponding to the hexagon-shaped root structure of W
[6,4,3]
2 (z). The

large-a7 solution displays a deformed heptagon, corresponding to the heptagon-shaped root structure

of W
[7,4,3]
2 (z). It seems that triple-triangle is a new type of pattern compared with those of the NLS

equation [59] and Manakov system [61].
By comparison of the true rogue waves to the predicted ones (see Figs. 4 and 5), we can observe that

each of the rogue waves matches perfectly in terms of position and rogue wave shape. Notice that the

predicted pattern looks very different from the root structure of W
[m,4,3]
2 (z). This is due to the term ∆1

leading to a nonlinear transformation from the root structure. When |am| is set to be very large, the
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term ∆1 can be neglected, and the patterns become much closer to certain linear transformations of the

root structure of W
[m,4,3]
2 (z).

Apart from the above observations, we can also qualitatively compare the differences between predicted
and true rogue waves. To illustrate this, we choose the 1st type (2, 0, 0)-th order rogue waves, then select
various large real values of a3 to analyze errors in the outer region and various large real values of a5 to
analyze errors in the inner region. Referring to the work of Yang and Yang [60], we define

error of Peregrine location =

√
(x̂0 − x0)

2
+
(
t̂0 − t0

)2
, (56)

and
error of inner region =

∣∣∣u1,N1
(x, t)− û1,N̂1

(x, t)
∣∣∣
x=t=0

, (57)

where (x0, t0) is the location where each rogue wave reaches maximum modulus value and (x̂0, t̂0) is the
predicted location of each fundamental rogue wave. These errors and decay rate of |a3|−1/3 and |a5|−1

for large-a3 and large-a5 solutions are plotted in Fig. 6. As can be seen, the results of the numerical
analysis also match very well.

a2 = 30 a3 = 100 a5 = 1200 a6 = 3000 a7 = 7000

p
re

d
ic

te
d
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ti
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s

t

|u1| t

|u2| t

|u3| t

x x x x x

Figure 4: Predicted 1st type (2, 0, 0)-th order rogue waves of the three-component NLS from Theorem
3.1. Each column depicts rogue waves with a single large parameter am, whose value is indicated on top,
and all other internal parameters are set to zero. Top row: predicted

(
x̂0, t̂0

)
locations by formulae (45).

Second row: predicted |u1(x, t)|. Third row: predicted |u2(x, t)|. Bottom row: predicted |u3(x, t)|. First
column: the (x, t) intervals are −21 ≤ x ≤ 21, −25 ≤ t ≤ 25. Second column: the (x, t) intervals are
−30 ≤ x ≤ 30, −25 ≤ t ≤ 25. Third column: the (x, t) intervals are −30 ≤ x ≤ 20, −16 ≤ t ≤ 16.
Fourth column: the (x, t) intervals are −30 ≤ x ≤ 25, −15 ≤ t ≤ 15. Fifth column: the (x, t) intervals
are −30 ≤ x ≤ 25, −15 ≤ t ≤ 15.
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a2 = 30 a3 = 100 a5 = 1200 a6 = 3000 a7 = 7000

|u1| t

|u2| t

|u3| t

x x x x x

Figure 5: True 1st type (2, 0, 0)-th order rogue waves of the three-component NLS with the same pa-
rameters as Fig. 4. The (x, t) interval for each column is the same as the corresponding column in Fig.
4.

4.1.2 Second-type rogue waves of the three-component NLS equation

In this case, we mainly carry out the second-type rogue waves in detail by takingN2 = 3, i.e., (N1, N2, N3) =
(0, 3, 0). For brevity, we only let one of the internal parameters (a2, a3, a5, a6, a7) be large, and the others
are set to 0. The very large parameter is one of

a2 = 30, a3 = 400, a5 = 4800, a6 = 3000, a7 = 7000. (58)

According to Theorem 3.1, the position (x̂0, t̂0) of each fundamental rogue wave

u1,N2
(x, t), u2,N2

(x, t), u3,N2
(x, t)

can be predicted by equation (45). The lower (N1, N2, N3)-th order rogue wave would appear in the
inner region. The values of (N1, N2, N3) can be deduced by Theorems 3.1 and 2.3. In our prediction, the
(N1, N2, N3) values for these five rogue solutions are

(N1, N2, N3) = (1, 0, 1), (0, 0, 0), (0, 0, 0), (1, 0, 1), (1, 2, 0),

respectively. Note that (0, 0, 0) means no lower-order rogue wave exists in the inner region. On account
of our choice of parameters am and the value of sj shown in Remark 6, the internal parameters in these
predicted lower (N1, N2, N3)-th order rogue waves of the inner region are all chosen to be zero.

For [u1,N2(x, t), u2,N2(x, t), u3,N2(x, t)], their corresponding lower-order rogue wave patterns are shown
in the last three rows of Fig. 7, with the first row being the predicted locations of the rogue waves. As
seen in Fig. 7, solutions in the first column are skewed double-triangles, while solutions from the second
to the fifth columns are skewed triple-triangles, pentagons, hexagons and heptagons respectively.

Comparing the true rogue waves with predicted ones (see Figs. 7 and 8), we can observe that each
of the rogue waves strikingly matches in position and rogue wave shape. Not only that, but it is also
numerically demonstrated that the actual and predicted results match very well. Since they are very
similar to the previous error analysis, we omit the details.

4.1.3 Third-type rogue waves of the three-component NLS equation

In this case, we choose (0, 0, 4)-th order rogue wave solutions. We only set one of the internal parameters
(a2, a3, a5, a6, a7) to be large, and the remaining parameters are set to 0. The very large parameter is
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|u3| t |u3| t

x x
(a) (b) (c) (d)

Figure 6: Decay of errors in our predictions of Theorem 3.1 for the outer and inner regions of the 1st
type (2, 0, 0)-th order rogue waves in the three-component NLS with various large real values of a3 or
a5, while other internal parameters are set to zero. (a) |u3(x, t)| of the true rogue wave with a3 = 100.
(b) Decay of error versus a3 for the outer fundamental rogue wave marked by the red box, together with
the |a3|−1/3 decay for comparison. (c) |u3(x, t)| of the true rogue wave with a5 = 1000. (d) Decay of
error versus a5 for the lower order rogue wave marked by the red box, together with the |a5|−1 decay for
comparison.

one of
a2 = 100, a3 = 200, a5 = 1500, a6 = 5000, a7 = 10000. (59)

According to Theorem 3.1, the position (x̂0, t̂0) of each fundamental rogue wave

u1,N3
(x, t), u2,N3

(x, t), u3,N3
(x, t)

can be predicted by equation (45). The lower (N1, N2, N3)-th order rogue wave would appear in the inner
region. The value of (N1, N2, N3) can be obtained from Theorems 3.1 and 2.3. In our prediction, the
(N1, N2, N3) values for these five rogue wave solutions are

(N1, N2, N3) = (2, 0, 2), (0, 0, 1), (0, 1, 1), (2, 0, 2), (0, 2, 2),

respectively. We remark that (0, 0, 1) means there is only a fundamental rogue wave in the inner region.
The internal parameters in these predicted lower (N1, N2, N3)-th order rogue waves of the inner region
are all zero, due to our choice of parameters am and the value of sj shown in Remark 6.

For [u1,N3
(x, t), u2,N3

(x, t), u3,N3
(x, t)], their corresponding predicted rogue wave patterns are shown

in the last three rows of Fig. 9, with the first row being the locations of the rogue waves. It can be
seen from Fig. 9 that the large-a3 solution exhibits a skewed triple-triangle, corresponding to the triple-

triangle root structure of W
[3,4,1]
4 (z). The large-a5 solution displays a deformed pentagon, corresponding

to the pentagon-shaped root structure of W
[5,4,1]
4 (z). The large-a6 solution exhibits a deformed hexagon,

corresponding to the hexagon-shaped root structure of W
[6,4,1]
4 (z). The large-a7 solution exhibits a

deformed heptagon, corresponding to the heptagon-shaped root structure of W
[7,4,1]
4 (z).

Comparing the actual rogue waves with the predicted ones (see Figs. 9 and 10), we can observe that
each of the rogue waves matches perfectly in position and rogue wave shape. Moreover, one can further
compare them numerically. The results also support our prediction, and since they are very similar to
previous analysis, the details are omitted.

4.1.4 Effect of parameters on the rogue wave shapes

We first represent the complex parameter am as am = |am| exp (iϑm). In what follows, we will discuss
the effects of the modulus |am| and the argument ϑm on the shapes of rogue waves.

To illustrate the effect of the changes of ϑm, we consider the 2nd type (0, 3, 0)-th order rogue waves
of the three-component NLS equation and set |a3| = 300 while the remaining parameters am are set to
0. Here we simply choose four values of a3, namely,

(300 exp (−πi/3), 300, 300 exp (πi/3), 300 exp (πi)),

then the corresponding predicted and true rogue wave patterns are shown in Fig. 11. It can be seen that
the orientation of the rogue wave pattern is changed when we vary the values of ϑ3. In fact, this can be
seen from Theorem 3.1 as well. In addition, we find that the orientation of the rogue wave pattern is

obtained by rotating angle arg(−am)/m of the root structure of W
[3,4,2]
3 (z), where “arg” represents the
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a2 = 30 a3 = 400 a5 = 4800 a6 = 3000 a7 = 7000
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Figure 7: Predicted 2nd type (0, 3, 0)-th order rogue waves of the three-component NLS from Theorem
3.1. Each column depicts rogue waves with a single large parameter am, whose value is indicated on top,
and all other internal parameters are set to zero. Top row: predicted

(
x̂0, t̂0

)
locations by formulae (45).

Second row: predicted |u1(x, t)|. Third row: predicted |u2(x, t)|. Bottom row: predicted |u3(x, t)|. First
column: the (x, t) intervals are −25 ≤ x ≤ 25, −26 ≤ t ≤ 26. Second column: the (x, t) intervals are
−45 ≤ x ≤ 51, −29 ≤ t ≤ 27. Third column: the (x, t) intervals are −47 ≤ x ≤ 31, −22 ≤ t ≤ 22.
Fourth column: the (x, t) intervals are −40 ≤ x ≤ 35, −20 ≤ t ≤ 20. Fifth column: the (x, t) intervals
are −35 ≤ x ≤ 30, −20 ≤ t ≤ 20.

argument of a complex number.
To study the effect of changes in |am| on rogue wave patterns, we choose 2nd type (0, 3, 0)-th order

rogue waves. Set the argument of a2 to 0 while the remaining parameters am are chosen to be 0. The
corresponding predicted and true rogue wave patterns are depicted in Fig. 12. It can be observed that
the shape of the rogue wave pattern becomes closer and closer to the linear transformation of the roots

of W
[2,4,2]
3 (z) when the modulus of a2 gets larger. Specifically, when a2 = 20, both predicted and true

rogue wave patterns look very irregular, especially those located on the negative x-axis. However, further
increasing the value of a2, the distortion will gradually be weakened. For a2 = 500, the shape of rogue

waves is very close to a linear transformation of the roots of W
[2,4,2]
3 (z). The reason is that ∆2 is a

z0-dependent O(1) quantity. Specifically, when a2 takes a very large value, the value of ∆2 in (45) can
be ignored and the predicted rogue wave can be obtained approximately by some linear transformation

from the root structure of W
[2,4,2]
3 (z).

4.2 Comparison in the four-component NLS equation

In this subsection, we compare our predicted rouge wave patterns in Theorem 3.2 with true rouge waves of
the four-component NLS equation. For the quadruple root case, we choose background wavenumbers k1 =

−k4 =
(√

5− 1
)
/4 and k2 = −k3 = −

(√
5 + 1

)2
/8, which implies ρ1 = ρ4 =

√
2 and ρ2 = ρ3 =

√√
5 + 3

according to (23). In this circumstance, we select p0 =
√(√

5 + 5
)
/2/2 and p1 = 10

√
(11
√

5 + 25)/4608.
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a2 = 30 a3 = 400 a5 = 4800 a6 = 3000 a7 = 7000

|u1| t

|u2| t

|u3| t

x x x x x

Figure 8: True 2nd type (0, 3, 0)-th order rogue waves of the three-component NLS with the same
parameters as Fig. 7. The (x, t) interval for each column is the same as the corresponding column in Fig.
7.

4.2.1 Third-type rogue waves of the four-component NLS equation

In this case, we focus on (0, 0, 2, 0)-th order rogue wave solution. For brevity, we only consider the first
four irreducible parameters (a2, a3, a4, a6), and set the rest of the parameters to 0. Then, for the internal
parameters (a2, a3, a4, a6), we let one of them be large and set the others to 0. The very large parameter
is one of

a2 = 50, a3 = 200, a4 = 500, a6 = 5000. (60)

According to Theorem 3.2, the position (x̄0, t̄0) of each fundamental rogue wave

u1,N1
(x, t), u2,N1

(x, t), u3,N1
(x, t), u4,N1

(x, t)

can be predicted by (52). The (N1, N2, N3, N4)-th order rogue wave would appear in the inner region,
and the (N1, N2, N3, N4) values for these five rogue wave solutions are obtained from Theorems 3.2 and
2.4 as

(N1, N2, N3, N4) = (0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 1, 0), (0, 0, 1, 1),

Note that (0, 0, 0, 0) means no lower-order rogue wave exists in the center region. Owing to our choice of
parameters am and the value of sj shown in Remark 6, the internal parameters in these predicted lower
(N1, N2, N3, N4)-th order rogue waves of the center region are all chosen to be zero.

For [u1,N1(x, t), u2,N1(x, t), u3,N1(x, t), u4,N1(x, t)], their corresponding predicted rogue wave patterns
are shown in the last four rows of Fig. 13, with the first row being the locations of the rogue waves. Each
column is separated when one of the parameters (a2, a3, a4, a6) is large.

As depicted in Fig. 13, the large-a2 solution exhibits a skewed double-triangle, corresponding to

the double-triangle root structure of W
[2,5,2]
2 (z). The large-a3 solution exhibits a skewed triple-triangle,

corresponding to the triple-triangle root structure of W
[3,5,2]
2 (z). The large-a4 solution exhibits a deformed

rectangle, corresponding to the rectangle-shaped root structure of W
[4,5,2]
2 (z). The large-a6 solution

exhibits a deformed hexagon, corresponding to the hexagon-shaped root structure of W
[6,5,2]
2 (z).

Comparing the actual rogue waves with the predicted rogue waves (see Figs. 13 and 14), we can
observe that each of the rogue waves matches perfectly in terms of position and rogue wave shape.

Notice that the predicted pattern looks very different from the root structure of W
[m,5,2]
2 (z). This is

caused by ∆̄3, which leads to a nonlinear transformation from the root structure. When we take |am|
very large, the term ∆̄3 can be neglected, and our pattern becomes more similar to a certain linear
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Figure 9: Predicted 3rd type (0, 0, 4)-th order rogue waves of the three-component NLS from Theorem
3.1. Each column corresponds to rogue waves with a single large parameter am, whose value is indicated
on top, and all other internal parameters are set to zero. Top row: predicted

(
x̂0, t̂0

)
locations by formulae

(45). Second row: predicted |u1(x, t)|. Third row: predicted |u2(x, t)|. Bottom row: predicted |u3(x, t)|.
First column: the (x, t) intervals are −30 ≤ x ≤ 20, −50 ≤ t ≤ 50. Second column: the (x, t) intervals
are −45 ≤ x ≤ 50, −32 ≤ t ≤ 32. Third column: the (x, t) intervals are −55 ≤ x ≤ 40, −25 ≤ t ≤ 25.
Fourth column: the (x, t) intervals are −55 ≤ x ≤ 40, −25 ≤ t ≤ 25. Fifth column: the (x, t) intervals
are −45 ≤ x ≤ 35, −40 ≤ t ≤ 20.

transformation of the root structure of W
[m,5,2]
2 (z). The numerical results also match very well, and as

they are very similar to the previous error analysis, we omit the details.

4.2.2 Fourth-type four-component NLS equation rogue wave solution

In this circumstance, we consider (0, 0, 0, 2)-th order rogue waves. For brevity, we only let one of the
internal parameters (a2, a3, a4, a6) be large and the others are set to 0. The very large parameter is one
of

a2 = 50, a3 = 200, a4 = 500, a5 = 5000. (61)

According to Theorem 3.2, the position (x̄0, t̄0) of each fundamental rogue wave

u1,N4
(x, t), u2,N4

(x, t), u3,N4
(x, t), u4,N4

(x, t)

can be predicted by (52). The possible (N1, N2, N3, N4)-th order rogue wave would appear in the inner
region, and the (N1, N2, N3, N4) values for these five rogue wave solutions are obtained from Theorems
3.2 and 2.4 as

(N1, N2, N3, N4) = (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 1, 1), (0, 0, 0, 0),
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a2 = 100 a3 = 200 a5 = 1500 a6 = 5000 a7 = 10000
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|u3| t

x x x x x

Figure 10: True 3rd type (0, 0, 4)-th order rogue waves of the three-component NLS with the same
parameters as Fig. 9. The (x, t) interval for each column is the same as the corresponding column in Fig.
9.

respectively. Note that (0, 0, 0, 0) means that there are no lower-order rogue waves in the center region.
For the same reason as previous cases, the internal parameters in these predicted lower (N1, N2, N3, N4)-th
order rogue waves of the center region are all taken to be zero.

For [u1,N2
(x, t), u2,N2

(x, t), u3,N2
(x, t)], their corresponding predicted rogue wave patterns are shown

in the last three rows of Fig. 15, with the first row being the predicted locations of the rogue waves. It can
be seen from Fig. 15 that the first to fourth columns are skewed double-triangles, skewed triple-triangles,
rectangles and hexagons, respectively.

Comparing the true rogue waves with predicted ones (see Figs. 15 and 16), we can observe that
each of the rogue waves matches perfectly in terms of position and rogue wave shape. The results of the
numerical analysis also match very well, but we omit the details because they are very similar to the
previous error analysis.

5 Proof of the main results

Proof of Theorem 3.1. We will only provide the proof for i = 1 as the proofs are similar in other
cases. Assume |am| is large and the rest parameters are O(1) in the 1st type rogue wave solutions of the
three-component NLS equation. We first consider the case when (x, t) is far away from the origin and

(x2 + t2)1/2 = O(|am|1/m). In this circumstance, we have

Sj
(
x+(n) + νs

)
= Sj

(
x+

1 , x
+
2 , x

+
3 , νs4, x

+
5 , x

+
6 , x

+
7 , νs8, · · · , x+

m + νsm, · · ·
)
∼ Sj(v), (62)

where
v = (p0x+ 2p0p1it, 0, · · · , 0, am, 0, · · · ) .

According to Remark 6, we have s1 = s2 = s3 = s5 = s6 = s7 = 0. By the definition of Schur polynomials,
we have the relation

Sj(v) = aj/mm p
[m]
j (z), (63)

where
z = a−1/m

m (α1x+ β1it) = a−1/m
m (p0x+ 2p0p1it) . (64)
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Figure 11: Effect of the argument in a3 on orientations of the 2nd type (0, 3, 0)-th order rogue waves of
the three-component NLS equation. Each column represents a rogue wave with a different value of a3

with the same modulus 300 but a different argument, and all other internal parameters are set to zero.
The (x, t) intervals are −55 ≤ x ≤ 55 and −30 ≤ t ≤ 30.

Then it follows that

det
1≤i,j≤N

[
S4i−j

(
x+(n) + νjs

)]
∼ (c

[m,4,3]
N )−1a3N(N+1)/2m

m W
[m,4,3]
N (z) (65)

and
det

1≤i,j≤N

[
S4i−j

(
x−(n) + νjs

∗)] ∼ (c
[m,4,3]
N )−1 (a∗m)

3N(N+1)/2m
W

[m,4,3]
N (z∗). (66)

Here, Sj ≡ 0 when j < 0.
Next, we rewrite the function τn into the following form by Laplace expansion

τn =
∑

0≤ν1<ν2<···<νN≤4N−1

det
1≤i,j≤N

[
(h0)

νj S4i−1−νj
(
x+(n) + νjs

)]
× det

1≤i,j≤N

[
(h∗0)

νj S4i−1−νj
(
x−(n) + νjs

∗)] , (67)

where h0 = p1/ (p0 + p∗0).
It is clear that the highest order term in am in this τn comes from the index choices of νj = j − 1.

Therefore, we have

τn ∼ |α|2 |am|3N(N+1)/m
∣∣∣W [m,4,3]

N (z)
∣∣∣2 , (68)

where α = h
N(N−1)/2
0 (c

[m,4,3]
N )−1. From the asymptotic analysis above, we conclude that the leading-

order term of τn is independent of n. Consequently, when (x, t) is not close to (x̌0, ť0), which is related

to the roots of W
[m,4,3]
N (z) by

z0 = a−1/m
m

(
p0x̌0 + 2p0p1iť0

)
,

we have
τn1

τn0

∼ 1,
τn2

τn0

∼ 1,
τn3

τn0

∼ 1, |am| � 1. (69)

However, when (x, t) is close to (x̌0, ť0), the coefficient of the term with highest order in am van-
ishes. To deal with this case, we have to consider lower order terms in am, which require more precise
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Figure 12: Effect of the size a2 on shapes of the 2nd type (0, 3, 0)-th order rogue waves of the three-
component NLS equation. Each column represents a rogue wave with different values of a2 indicated on
top, and all other internal parameters are set to zero. Top row: prediction location of |u3(x, t)|. Bottom
row: true |u3(x, t)|. First column: the (x, t) intervals are −30 ≤ x, t ≤ 30. Second column: the (x, t)
intervals are −45 ≤ x, t ≤ 45. Third column: the (x, t) intervals are −85 ≤ x, t ≤ 85.

asymptotics. In this circumstance, i.e., (x, t) is near (x̌0, ť0), we find that

Sj
(
x+(n) + νs

)
= Sj

(
x+

1 , x
+
2 , x

+
3 , νs4, x

+
5 , x

+
6 , x

+
7 , νs8, · · · , x+

m + νsm, · · ·
)

=
[
Sj(v̂) + x̂+

2

(
x̌0, ť0

)
Sj−2(v̂)

] [
1 +O

(
a−2/m
m

)]
, |am| � 1,

where

v̂ = (p0x+ 2p0p1it+ n1θ11 + n2θ12 + n3θ13, 0, · · · , 0, am, 0, · · · ) ,
x̂+

2 (x, t) = p2x+
(
2p0p2 + p2

1

)
(it),

p2 = p2
1 and a1 in x+

1 is set to 0. Similar to (63), we can get

Sj(v̂) = aj/mm p
[m]
j (ẑ), (70)

where
ẑ = a−1/m

m (p0x+ 2p0p1it+ n1θ11 + n2θ12 + n3θ13) . (71)

In this case, there are two index choices of νj that will produce leading-order terms in am for τn. One of
them is ν = (0, 1, · · · , N − 1) while the other is ν = (0, 1, · · · , N − 2, N).

(1) For the first choice of index, i.e., νj = j − 1, there are two parts that will provide leading-order
terms. The first part stems from Sj(v̂), and we find that the dominant term involving x+(n) is expressed
as

α a
3N(N+1)

2m
m W

[m,4,3]
N (ẑ)

[
1 +O

(
a−2/m
m

)]
. (72)

Then, we expand W
[m,4,3]
N (ẑ) around z0, and noting W

[m,4,3]
N (z0) = 0, we obtain

W
[m,4,3]
N (ẑ) = a−1/m

m

[
p0 (x− x̌0) + 2p0p1i

(
t− ť0

)
+ n1θ11 + n2θ12 + n3θ13

] [
W

[m,4,3]
N

]′
(z0)

[
1 +O

(
a−1/m
m

)]
.

(73)
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Figure 13: Predicted 3rd type (0, 0, 2, 0)-th order rogue waves of the four-component NLS equation
from Theorem 3.2. Each column corresponds to a rogue wave with a single large parameter am, whose
value is indicated on top, and all other internal parameters are set to zero. Top row: predicted (x̄0, t̄0)
locations by formulae (52). Second row: predicted |u1(x, t)|. Third row: predicted |u2(x, t)|. Fourth row:
predicted |u3(x, t)|. Bottom row: predicted |u4(x, t)|. First column: the (x, t) intervals are −25 ≤ x ≤ 25,
−40 ≤ t ≤ 40. Second column: the (x, t) intervals are −50 ≤ x ≤ 40, −35 ≤ t ≤ 35. Third column: the
(x, t) intervals are −30 ≤ x ≤ 30, −20 ≤ t ≤ 20. Fourth column: the (x, t) intervals are −30 ≤ x ≤ 30,
−15 ≤ t ≤ 15.
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Figure 14: True 3rd type (0, 0, 2, 0)-th order rogue waves of the four-component NLS equation with the
same parameters as Fig. 13. The (x, t) interval for each column is the same as the corresponding column
in Fig. 13.

As a result, the corresponding leading-order term in am is

αa
3N(N+1)−2

2m
m

[
p0 (x− x̌0) + 2p0p1i

(
t− ť0

)
+ n1θ11 + n2θ12 + n3θ13

] [
W

[m,4,3]
N

]′
(z0)

[
1 +O

(
a−1/m
m

)]
.

(74)
The other leading-order term results from the determinants containing x̂+

2 (x̌0, ť0)Sj−2, that is,

x̂+
2 (x̌0, ť0)h

N(N−1)/2
0

N∑
j=1

det
1≤i≤N

[
S4i−1(v̂), · · · , S4i−(j−1)(v̂), S4i−j−2(v̂), S4i−(j+1)(v̂), · · · , S4i−N (v̂)

]
×
[
1 +O

(
a−1/m
m

)]
. (75)

Combing (74) and (75) yields the leading-order term in am [62] of the first determinant in (67) containing
x+(n) corresponding to the index choice νj = j − 1, that is,

αa[3N(N+1)−2]/2m
m

[
p0 (x− x̌0) + 2p0p1i

(
t− ť0

)
+ n1θ11 + n2θ12 + n3θ13 + ∆1

] [
W

[m,4,3]
N

]′
(z0)

[
1 +O

(
a−1/m
m

)]
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Figure 15: Predicted 4th type (0, 0, 0, 2)-th order rogue waves of the four-component NLS equation
from Theorem 3.2. Each column corresponds to rogue waves with a single large parameter am, whose
value is indicated on top, and all other internal parameters are set to zero. Top row: predicted (x̄0, t̄0)
locations by formulae (52). Second row: predicted |u1(x, t)|. Third row: predicted |u2(x, t)|. Fourth row:
predicted |u3(x, t)|. Bottom row: predicted |u4(x, t)|. First column: the (x, t) intervals are −25 ≤ x ≤ 25,
−35 ≤ t ≤ 35. Second column: the (x, t) intervals are −55 ≤ x ≤ 35, −25 ≤ t ≤ 25. Third column: the
(x, t) intervals are −25 ≤ x ≤ 25, −25 ≤ t ≤ 25. Fourth column: the (x, t) intervals are −30 ≤ x ≤ 30,
−20 ≤ t ≤ 20.
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Figure 16: True 4th type (0, 0, 0, 2)-th order rogue waves of the four-component NLS equation with the
same parameters as Fig. 15. The (x, t) interval for each column is the same as the corresponding column
in Fig. 15.

where

∆1 =
x̂+

2 (x̌0, ť0)

a
1/m
m

∑N
j=1 det1≤i≤N

[
p

[m]
4i−1 (z0) , · · · , p[m]

4i−j+1 (z0) , p
[m]
4i−j−2 (z0) , p

[m]
4i−j−1 (z0) , · · · , p[m]

4i−N (z0)
]

[
W

[m,4,3]
N

]′
(z0)

(76)
and ∆1 = O(1) as

x̂+
2 (x̌0, ť0) = p2x̌0 +

(
2p0p2 + p2

1

)
(iť0) = O(|a1/m

m |).

Further, we can absorb the ∆1 into (x̌0, ť0) [62] and obtain

αa
3N(N+1)−2

2m
m

[
p0 (x− x̂0) + 2p0p1i

(
t− t̂0

)
+ n1θ11 + n2θ12 + n3θ13

] [
W

[m,4,3]
N

]′
(z0)

[
1 +O

(
a−1/m
m

)]
.

(77)
where x̂0 and t̂0 are given in (45).

Similarly, the second determinant in (67) containing x−(n) corresponding to the index choice νj = j−1
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contributes the term

α∗(a∗m)
3N(N+1)−2

2m

[
p∗0 (x− x̂0)− 2p∗0p

∗
1i
(
t− t̂0

)
− n1θ

∗
11 − n2θ

∗
12 − n3θ

∗
13

] [
W

[m,4,3]
N

]′
(z∗0)

[
1 +O

(
a−1/m
m

)]
.

(78)
(2) For the second choice of index, i.e., ν = (0, 1, · · · , N − 2, N), the dominant term in am can be

calculated in a similar way as (65), that is,

h
N(N−1)+2

2
0 a

3N(N+1)−2
2m

m det
1≤i≤N

[
p

[m]
4i−1 (z0) , p

[m]
4i−2 (z0) , · · · , p[m]

4i−(N−1) (z0) , p
[m]
4i−N−1 (z0)

] [
1 +O

(
a−1/m
m

)]
.

(79)

Since p
[m]
j−1(z) =

[
p

[m]
j

]′
(z), the above term can be expressed as

h0αa
3N(N+1)−2

2m
m

[
W

[m,4,3]
N

]′
(z0)

[
1 +O

(
a−1/m
m

)]
.

Similarly, its conjugate counterpart reads

h∗0α
∗ (a∗m)

3N(N+1)−2
2m

[
W

[m,4,3]
N

]′
(z∗0)

[
1 +O

(
a−1/m
m

)]
.

Summarizing the above two contributions, we conclude that

τn(x, t) = |α|2
∣∣∣∣[W [m,4,3]

N

]′
(z0)

∣∣∣∣2 |am|[3N(N+1)−2]/m ×
( [
p1 (x− x̂0) + 2ip0p1

(
t− t̂0

)
+ n1θ11 + n2θ12 + n3θ13

]
[
p∗1 (x− x̂0)− 2ip∗0p

∗
1

(
t− t̂0

)
− n1θ

∗
11 − n2θ

∗
12 − n3θ

∗
13

]
+ |h0|2

)
×
[
1 +O

(
a−1/m
m

)]
. (80)

Finally, under the assumption that all nonzero roots of the generalized Wronskian-Hermite polynomials

W
[m,k,l]
N are simple, the above leading-order term in am for τn(x, t) is non-zero. Hence, using (80), we

conclude that, near (x̂0, t̂0), the N -th order rogue wave is approximated by a fundamental rogue wave of

the three-component NLS equation given in Theorem 3.1 with error O(|am|−1/m
).

In order to study the patterns of the 1st type rogue waves of the three-component NLS rogue waves
under the condition |am| � 1 in the inner region with x2 + t2 = O(1), we first use similar method as that
in [45] to rewrite the determinant τn as a 5N × 5N determinant

τn =

∣∣∣∣ ON×N ΦN×4N

−Ψ4N×N I4N×4N

∣∣∣∣ , (81)

where

Φi,j =

(
p1

p0 + p∗0

)j−1

S4i−j
[
x+(n) + (j − 1)s

]
, Ψi,j =

(
p∗1

p0 + p∗0

)i−1

S4j−i
[
x−(n) + (i− 1)s∗

]
.

It is clear that each element in (81) is a polynomial in am. To express these polynomials explicitly, we
define y± to be the vector x± without the am term, i.e.,

x+ = y+ + (0, · · · , 0, am, 0, · · · ) , x− = y− + (0, · · · , 0, a∗m, 0, · · · ) . (82)

Then we can expand the Schur polynomials Sj (x± + νs) by

Sj
(
x+ + νs

)
=

[j/m]∑
l=0

alm
l!
Sj−lm

(
y+ + νs

)
, Sj

(
x− + νs∗

)
=

[j/m]∑
l=0

(a∗m)
l

l!
Sj−lm

(
y− + νs∗

)
, (83)

where [a] refers to the largest inter less than or equal to a. To determine the highest order term in am of
τn, a straightforward way is to keep only the highest order of am in each element. However, it turns out
the resulting determinant will vanish. To tackle this issue, we can use similar argument as that in [60]
to perform row and column operations. Notice that we have totally three cases to consider, i.e., m ≡ j
mod 4, j = 1, 2, 3. Since the proof for j = 2 is different from those in the NLS equation [59] and the
Manakov system [60], we first focus on the proof of this case. As the proofs for the cases j = 1 and 3 are
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similar to [60], we only provide a brief proof for j = 1.
For m ≡ 2 mod 4, i.e., m = 4r + 2 (r ≥ 0), according to the block structure of the determinant τn,

we can perform row operations on the matrix ΦN×4N . For convenience, we define Ŝj = Sj (y+ + νs)

and omit (p1/(p0 + p∗0))
j−1

in the following representation because they are the same in each column and
have no affect on the row operations. Then, we can substitute (83) into ΦN×4N and rewrite it into the
form

ΦN×4N ∼



Ŝ3 Ŝ2 · · ·
Ŝ7 Ŝ6 · · ·
...

...
. . .

Ŝm−3 Ŝm−4 · · ·
amŜ1 + Ŝm+1 amŜ0 + Ŝm · · ·
amŜ5 + Ŝm+5 amŜ4 + Ŝm+4 · · ·

...
...

. . .

amŜm−1 + Ŝ2m−1 amŜm−2 + Ŝ2m−2 · · ·
a2
m

2!
Ŝ3 + amŜm+3 + Ŝ2m+3

a2
m

2!
Ŝ2 + amŜm+2 + Ŝ2m+2 · · ·

...
...

. . .

a2
m

2!
Ŝm−3 + amŜ2m−3 + Ŝ3m−3

a2
m

2!
Ŝm−4 + amŜ2m−4 + Ŝ3m−4 · · ·

a3
m

3!
Ŝ1 +

a2
m

2!
Ŝm+1 +O(am)

a3
m

3!
Ŝ0 +

a2
m

2!
Ŝm +O(am) · · ·

...
...

. . .

a3
m

3!
Ŝm−1 +

a2
m

2!
Ŝ2m−1 +O(am)

a3
m

3!
Ŝm−2 +

a2
m

2!
Ŝ2m−2 +O(am) · · ·

a4
m

4!
Ŝ3 +

a3
m

3!
Ŝm+3 +

a2
m

2!
Ŝ2m+3 +O(am)

a4
m

4!
Ŝ2 +

a3
m

3!
Ŝm+2 +

a2
m

2!
Ŝ2m+2 +O(am) · · ·

...
...

. . .

a4
m

4!
Ŝm−3 +

a3
m

3!
Ŝ2m−3 +

a2
m

2!
Ŝ3m−3 +O(am)

a4
m

4!
Ŝm−4 +

a3
m

3!
Ŝ2m−4 +

a2
m

2!
Ŝ3m−4 +O(am) · · ·

...
...

. . .



.

In this case, we can notice that the coefficients of the highest am power terms in the first column are
proportional to

Ŝ3, Ŝ7, · · · , Ŝm−3; Ŝ1, Ŝ5, · · · , Ŝm−1 (84)

and repeating. To be more precise, the first r rows are a sequence starting with Ŝ3, and the subscripts
of Ŝ increase by 4. The next r + 1 rows, i.e., rows r + 1 to 2r + 1, are a sequence starting with Ŝ1, and
the subscripts increase by 4 as well. After that, the subsequent r rows are the sequence starting with
a multiple of Ŝ3, followed by r + 1 rows starting with a multiple of Ŝ1, and so on and so forth. Each
element in the second and higher columns maintains the same form as the elements in the first column,
except that the subscripts decreasing by 1, where Ŝj ≡ 0 for j < 0.

Notice that each 2r + 1 (= m/2) row circulates a multiple of the sequence (84) and N0 ≡ N mod m,
i.e., N = km + N0. Hence, we define the first m/2 rows of ΦN×4N as the first block matrix, the next
m/2 rows as the second block matrix, and so on. The first km rows consist of 2k blocks, and each of
these blocks contains two parts. The last remaining N0 rows are called the remaining block matrix, i.e.,
the (2k + 1)-th block matrix.

The first round of the row operation is to use the first block to eliminate the highest power term of am
in each subsequent block, and leaving the lower power terms of am. This can be achieved by multiplying
each row of the first part of the first block matrix by −a2

m/(2n − 2)! and multiplying each row of the
second part of the first block matrix by −a2

m/(2n− 1)! and adding them to the corresponding row of the
n-th block matrix. The resulting ΦN×4N is
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ΦN×4N ∼



Ŝ3 Ŝ2 · · ·
Ŝ7 Ŝ6 · · ·
...

...
. . .

Ŝm−3 Ŝm−4 · · ·
amŜ1 + Ŝm+1 amŜ0 + Ŝm · · ·
amŜ5 + Ŝm+5 amŜ4 + Ŝm+4 · · ·

...
...

. . .

amŜm−1 + Ŝ2m−1 amŜm−2 + Ŝ2m−2 · · ·
amŜm+3 + Ŝ2m+3 amŜm+2 + Ŝ2m+2 · · ·

...
...

. . .

amŜ2m−3 + Ŝ3m−3 amŜ2m−4 + Ŝ3m−4 · · ·(
1

2!
− 1

3!

)
a2
mŜm+1 +O(am)

(
1

2!
− 1

3!

)
a2
mŜm +O(am) · · ·

...
...

. . .(
1

2!
− 1

3!

)
a2
mŜ2m−1 +O(am)

(
1

2!
− 1

3!

)
a2
mŜ2m−2 +O(am) · · ·

a3
m

3!
Ŝm+3 +

a2
m

2!
Ŝ2m+3 +O(am)

a3
m

3!
Ŝm+2 +

a2
m

2!
Ŝ2m+2 +O(am) · · ·

...
...

. . .

a3
m

3!
Ŝ2m−3 +

a2
m

2!
Ŝ3m−3 +O(am)

a3
m

3!
Ŝ2m−4 +

a2
m

2!
Ŝ3m−4 +O(am) · · ·

...
...

. . .



. (85)

The second round of the row operation is to use the second block to eliminate the highest power term
of am in each subsequent block, and leaving the lower power terms of am. This results in

ΦN×4N ∼



Ŝ3 Ŝ2 · · ·
Ŝ7 Ŝ6 · · ·
...

...
. . .

Ŝm−3 Ŝm−4 · · ·
amŜ1 + Ŝm+1 amŜ0 + Ŝm · · ·
amŜ5 + Ŝm+5 amŜ4 + Ŝm+4 · · ·

...
...

. . .

amŜm−1 + Ŝ2m−1 amŜm−2 + Ŝ2m−2 · · ·
amŜm+3 + Ŝ2m+3 amŜm+2 + Ŝ2m+2 · · ·

...
...

. . .

amŜ2m−3 + Ŝ3m−3 amŜ2m−4 + Ŝ3m−4 · · ·(
1

2!
− 1

3!

)
a2
mŜm+1 +O(am)

(
1

2!
− 1

3!

)
a2
mŜm +O(am) · · ·

...
...

. . .(
1

2!
− 1

3!

)
a2
mŜ2m−1 +O(am)

(
1

2!
− 1

3!

)
a2
mŜ2m−2 +O(am) · · ·(

1

2!
− 1

3!

)
a2
mŜ2m+3 +O(am)

(
1

2!
− 1

3!

)
a2
mŜ2m+2 +O(am) · · ·

...
...

. . .(
1

2!
− 1

3!

)
a2
mŜ3m−3 +O(am)

(
1

2!
− 1

3!

)
a2
mŜ3m−4 +O(am) · · ·

...
...

. . .



. (86)

We can continue to perform these row operation to ΦN×4N , which have 2k rounds in total. Similar
column operations can be applied to the matrix Ψ4N×N .

At the end of these operations, we arrive at the situation where the determinant (81) does not vanish
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when we keep only the highest order term in am for each element. The difference with the previous work
in [60] is that we cannot generate the lower triangular block matrix or upper triangular block matrix
after keeping the highest order terms and row switchings. This indicates that the size of determinant τn
in unchanged. Moreover, it can be shown that τn reduces to the form

τn = β1 |am|γ1
∣∣∣∣ ON×N Φ̂N×4N

−Ψ̂4N×N I4N×4N

∣∣∣∣ [1 +O
(
a−1
m

)]
, (87)

where β1 6= 0, γ1 > 0 are constants, and

Φ̂ =

(
Φ̂

(1)
N1×4N

Φ̂
(3)
N3×4N

)
, Ψ̂ =

(
Ψ̂

(1)
4N×N1

Ψ̂
(3)
4N×N3

)
,

Φ̂
(I)
i,j = (h0)

−(j−1)
S4i+1−I−j

[
y+(n) + (j − 1) s

]
,

Ψ̂
(J)
i,j = (h∗0)

−(i−1)
S4j+1−J−i

[
y−(n) + (i− 1) s∗

]
.

(88)

Since the rogue wave solutions are independent of the constants β1 and γ1, we can rewrite (87) into
a 2× 2 block determinant [61]

τn = det

(
τ

[1,1]
n τ

[1,3]
n

τ
[3,1]
n τ

[3,3]
n

)[
1 +O

(
a−1
m

)]
(89)

where
τ [I,J]
n =

(
m

(n,I,J)
4i−I,4j−J

)
1≤i≤NI ,1≤j≤NJ

, 1 ≤ I, J ≤ 3, (90)

and

m
(n,I,J)
i,j =

min(i,j)∑
v=0

[
|p1|2

(p0 + p∗0)
2

]v
Si−v

(
y+(n) + vs

)
Sj−v

(
y−(n) + vs∗

)
. (91)

Note that the determinant τn is still of order N , but the degree of τn with respect to x or t is reduced, so
this is still a lower-order rogue wave. Moreover, in this case, τn in the inner region is always approximately
a 2× 2 block matrix regardless of the values of N and m, i.e., N2 = 0 in (15). As a result of this, when
x2 + t2 = O(1) and |am| � 1, the determinant in (81) is approximately a (N1, 0, N3)-th order rogue wave
of the three-components NLS equation

[u1,N̂1
(x, t), u2,N̂1

(x, t), u3,N̂1
(x, t)]

where N̂1 = (N1, 0, N3), uj,N̂1
(j = 1, 2, 3) is given in Theorem 2.2 with Nj = Nj,3, and the internal

parameters (
â1,n, â2,n, â3,n, â5,n, â6,n . . . , â4Nn,3−n,n

)
, n = 1, 3,

are related to those in the original rogue wave as

âj,1 = âj,3 = aj , j = 1, 2, 3, 5, 6, 7 · · · ,m− 1,m+ 1, · · ·

and
âm,1 = âm,3 = 0.

From (89), we deduce that the approximation error of this lower-order rogue wave is O
(
|am|−1

)
.

Next, we consider the case m ≡ 1 mod 4, i.e., m = 4r + 1 (r > 1). Notice that the coefficients of the
highest am power terms in the first column of ΨN×4N are proportional to

Ŝ3, Ŝ7, · · · , Ŝ4r−1, Ŝ2, Ŝ6, · · · , Ŝ4r−2, Ŝ1, Ŝ5, · · · , Ŝ4r−3, Ŝ0, Ŝ4, · · · , Ŝ4r

and repeating. Similar to the previous case, we can think of the first m rows as the first block matrix
of ΦN×4N , the next m rows as the second block matrix, and so on. On account of N = km + N0, the
remaining N0 rows are called the remaining block matrix, i.e., the (k + 1)-th block matrix. Each block
matrix can be divided into four parts, for example, the first column of these four parts are sequences
starting with Ŝ3, Ŝ2, Ŝ1 and Ŝ0 respectively.
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Then, using similar argument as in [59], we arrive at the situation where the determinant (81) does
not vanish when we keep only the highest order term in am for each element. In this case, after row and
column swapping, upper and lower triangular block matrices will be generated. After expanding these
block matrices, τn reduces to the form

τn = β2 |am|γ2
∣∣∣∣∣ ON̄3×N̄3

Φ̂N̄3×N̂
−Ψ̂N̂×N̄3

IN̂×N̂

∣∣∣∣∣ [1 +O
(
a−1
m

)]
, (92)

where β2 6= 0, γ2 > 0 are constants, N̄3 =

3∑
n=1

Nn,3, N̂ = max
1≤i≤3

(4Ni,3 − i+ 1),

Φ̂ =


Φ̂

(1)

N1,3×N̂

Φ̂
(2)

N2,3×N̂

Φ̂
(3)

N3,3×N̂

 , Ψ̂ =
(

Ψ̂
(1)

N̂×N1,3
Ψ̂

(2)

N̂×N2,3
Ψ̂

(3)

N̂×N3,3

)

Φ̂
(I)
i,j = (h0)

−(j−1)
S4i+1−I−j

[
y+(n) + (j − 1 + ν0) s

]
Ψ̂

(J)
i,j = (h∗0)

−(i−1)
S4j+1−J−i

[
y−(n) + (i− 1 + ν0) s∗

]
(93)

and ν0 = N − N̄1. Finally, using similar argument as in [61], we find that τn can be asymptotically
reduced to a (N1,3, N2,3, N3,3)-th order rogue wave of the three-components NLS equation in the inner
region. Notice that the internal parameters(

â1,n, â2,n, â3,n, â5,n, â6,n . . . , â4Nn,3−n,n
)
, n = 1, 2, 3,

are related to those in the original rogue wave as

âj,1 = âj,2 = âj,3 = aj +
(
N − N̄3

)
sj , j = 1, 2, 3, 5, 6, 7 · · · .

As pointed before, the proofs of our 1st type and 3rd type rogue waves of the three-component NLS
are very similar, so we omit the proof of 3rd type. However, there are some differences in the proof of
2nd type rogue waves in the inner region. This is explained as follows.

We rewrite the determinant τn as a 5N × 5N determinant as in (81). Note that m ≡ j mod 4, j =
1, 2, 3, and the different case is still j = 2, i.e., m = 4r + 2 (r ≥ 0). In this case, we can substitute (83)
into (81) to expand each element into a polynomial in am. Similar to the proof of 1st type, we can rewrite
ΦN×4N as follows

ΦN×4N ∼



Ŝ2 Ŝ1 · · ·
Ŝ6 Ŝ5 · · ·
...

...
. . .

Ŝm−4 Ŝm−5 · · ·
amŜ0 + Ŝm Ŝm−1 · · ·
amŜ4 + Ŝm+4 amŜ3 + Ŝm+3 · · ·

...
...

. . .

amŜm−2 + Ŝ2m−2 amŜm−3 + Ŝ2m−3 · · ·
a2
m

2!
Ŝ2 + amŜm+2 + Ŝ2m+2

a2
m

2!
Ŝ1 + amŜm+1 + Ŝ2m+1 · · ·

...
...

. . .

a2
m

2!
Ŝm−4 + amŜ2m−4 + Ŝ3m−4

a2
m

2!
Ŝm−5 + amŜ2m−5 + Ŝ3m−5 · · ·

a3
m

3!
Ŝ0 +

a2
m

2!
Ŝm +O(am)

a2
m

2!
Ŝm−1 +O(am) · · ·

...
...

. . .

a3
m

3!
Ŝm−2 +

a2
m

2!
Ŝ2m−2 +O(am)

a3
m

3!
Ŝm−3 +

a2
m

2!
Ŝ2m−3 +O(am) · · ·

...
...

. . .



. (94)
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It can be seen that the matrix ΦN×4N can be divided into a number of blocks. We use the same
method as before, that is, we use the preceding blocks to eliminate the highest-order terms in am of the
subsequent blocks in turn. After the above operations, we find that only the coefficient of the highest-
power term in (r + 1)-th row is Ŝ0. This inspires us to eliminate one row and one column through some
operations.

We first keep only the highest remaining power of am in the (r + 1)-th row of ΦN×4N . Then, from
the original determinant τn, we can expand it according to the (r + 1)-th row, and obtain

ΦN×4N ∼



Ŝ1 Ŝ0 · · ·
Ŝ5 Ŝ4 · · ·
...

...
. . .

Ŝm−5 Ŝm−6 · · ·
amŜ3 + Ŝm+3 amŜ2 + Ŝm+2 · · ·

...
...

. . .

amŜm−3 + Ŝ2m−2 amŜm−4 + Ŝ2m−3 · · ·
amŜm+1 + Ŝ2m+1 amŜm + Ŝ2m · · ·

...
...

. . .

amŜ2m−5 + Ŝ3m−5 amŜ2m−6 + Ŝ3m−6 · · ·(
1

2!
− 1

3!

)
a2
mŜm−1 +O(am)

(
1

2!
− 1

3!

)
a2
mŜm−2 +O(am) · · ·

...
...

. . .(
1

2!
− 1

3!

)
a2
mŜ2m−3 +O(am)

(
1

2!
− 1

3!

)
a2
mŜ2m−4 +O(am) · · ·

...
...

. . .



. (95)

Similar treatment can be applied to the matrix Ψ4N×N . It can be observed that we have a similar
situation to the inner region of 1st type rogue wave with m = 4r + 2. Finally, we can rewrite (87) into a
2× 2 block determinant

τn = det

(
τ

[1,1]
n τ

[1,3]
n

τ
[3,1]
n τ

[3,3]
n

)[
1 +O

(
a−1
m

)]
(96)

where
τ [I,J]
n =

(
m

(n,I,J)
4i−I,4j−J

)
1≤i≤NI ,1≤j≤NJ

, 1 ≤ I, J ≤ 3, (97)

and

m
(n,I,J)
i,j =

min(i,j)∑
v=0

[
|p1|2

(p0 + p∗0)
2

]v
Si−v

(
x+
I (n) + vs

)
Sj−v

(
x−J (n) + vs∗

)
. (98)

Note that the determinant τn is always (N − 1) × (N − 1) and τn in the inner region is always
approximately a 2× 2 block matrix regardless of the values of N and m, i.e., N2 = 0 in (15). Moreover,
we remark that the internal parameters(

â1,n, â2,n, â3,n, â5,n, â6,n . . . , â4Nn,2−n,n
)
, n = 1, 3,

are related to those in the original rogue wave as

âj,1 = âj,3 = aj + sj , j = 1, 2, 3, 5, 6, 7 · · · ,m− 1,m+ 1, · · ·

and
âm,1 = âm,3 = sm.

This completes the proof of Theorem 3.1 for the inner region.

Proof of Theorem 3.2. Since the proofs are similar for different i ∈ {1, 2, 3, 4}, it suffices to present
the proof for i = 1.

Assume |am| is large and other parameters are O(1). We first consider the situation when (x, t) is
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located in the outer region, i.e.,
√
x2 + t2 = O

(
|am|1/m

)
. Since the proof is very simlar to Theorem 3.1,

we only show the differences.
To begin with, we have

Sj
(
x+(n) + νs

)
= Sj

(
x+

1 , x
+
2 , x

+
3 , x

+
4 , νs5, x

+
6 , x

+
7 , x

+
8 , x

+
9 , νs10, · · · , x+

m + νsm, · · ·
)
∼ Sj(v), (99)

where
v = (p0x+ 2p0p1it, 0, · · · , 0, am, 0, · · · ) . (100)

This relation is the same as (62), but the values of p0 and p1 are different from the three-component NLS
equation. Then, after some calculations similar to the proof of Theorem 3.1, we find that the highest
order term in am for τn is

τn ∼ |α|2 |am|4N(N+1)/m
∣∣∣W [m,5,4]

N (z)
∣∣∣2 , (101)

where
α = h0

N(N−1)/2(c
[m,5,4]
N )−1, h0 = p1/ (p0 + p∗0) , z = a−1/m

m (p0x+ 2p0p1it) .

Note that the order of am is changed from 3N(N + 1)/m in the three-component case to 4N(N + 1)/m.
Thus, the solutions

u1,N1
(x, t), u2,N1

(x, t), u3,N1
(x, t), u4,N1

(x, t)

are the plane-wave backgrounds, except at or near
(
x̃0, t̃0

)
, where

z0 = a−1/m
m

(
p0x̃0 + 2p0p1it̃0

)
(102)

is a root of W
[m,5,4]
N (z).

In what follows, we show that, when (x, t) is contained in a small neighborhood of
(
x̃0, t̃0

)
given by

(102), the underlying rogue wave is approximately a fundamental rogue wave. Denote by

x̂+
2 (x, t) = p2x+

(
2p0p2 + p2

1

)
(it),

which contains the dominant terms of x+
2 (x, t) in (11) with the index ‘I’ removed. Then, for (x, t) in the

neighborhood of
(
x̃0, t̃0

)
, we have a more refined asymptotics for Sj (x+(n) + νs)

Sj
(
x+(n) + νs

)
=
[
Sj(v̂) + x̂+

2

(
x̃0, t̃0

)
Sj−2(v̂)

] [
1 +O

(
a−2/m
m

)]
, |am| � 1, (103)

where
v̂ = (p0x+ 2p0p1it+ n1θ11 + n2θ12 + n3θ13 + n4θ14, 0, · · · , 0, am, 0, · · · ) . (104)

Here, the normalization of a1 = 0 has been utilized. Next, we rewrite τn in a similar form as (67) by
means of Laplace expansion. Further, the contribution from the first index choice of νj = j − 1 can be
expressed as

αa
2N(N+1)−1

m
m

[
p0 (x− x̃0) + 2p0p1i

(
t− t̃0

)
+

4∑
k=1

nkθ1k + ∆̄1

] [
W

[m,5,4]
N

]′
(z0)

[
1 +O

(
a−1/m
m

)]
(105)

where

∆̄1 =
x̂+

2

(
x̃0, t̃0

)
a

1/m
m

∑N
j=1 det1≤i≤N

[
p

[m]
5i−1 (z0) , · · · , p[m]

5i−j−2 (z0) , · · · , p[m]
5i−N (z0)

]
[
W

[m,5,4]
N

]′
(z0)

(106)

and ∆̄1 = O(1) as x̂+
2

(
x̃0, t̃0

)
= O

(∣∣∣a1/m
m

∣∣∣). By absorbing ∆̄1 into
(
x̃0, t̃0

)
[28], we obtain

αa
2N(N+1)−1

m
m

[
p0 (x− x̄0) + 2p0p1i (t− t̄0) +

4∑
k=1

nkθ1k

] [
W

[m,5,4]
N

]′
(z0)

[
1 +O

(
a−1/m
m

)]
. (107)

where x̄0 and t̄0 are given in Theorem 3.2.
For the second index choice, i.e., ν = (0, 1, · · · , N−2, N), the dominant terms in am can be calculated
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in a similar way as (76), that is,

h
N(N−1)+2

2
0 a

2N(N+1)−1
m

m det
1≤i≤N

[
p

[m]
5i−1 (z0) , p

[m]
5i−2 (z0) , · · · , p[m]

5i−(N−1) (z0) , p
[m]
5i−N−1 (z0)

] [
1 +O

(
a−1/m
m

)]
.

(108)

Since p
[m]
j−1(z) =

[
p

[m]
j

]′
(z), the above term can be expressed as

h0αa
2N(N+1)−1

m
m

[
W

[m,5,4]
N

]′
(z0)

[
1 +O

(
a−1/m
m

)]
. (109)

Summarizing the above two contributions, we conclude that

τn(x, t) (110)

= |α|2
∣∣∣∣[W [m,5,4]

N

]′
(z0)

∣∣∣∣2 |am| 2N(N+1)−1
m ×

(
[p1 (x− x̄0) + 2ip0p1 (t− t̄0) + n1θ11 + n2θ12 + n3θ13 + n4θ14]

[p∗1 (x− x̄0)− 2ip∗0p
∗
1 (t− t̄0)− n1θ

∗
11 − n2θ

∗
12 − n3θ

∗
13 − n4θ

∗
14] + |h0|2

)
×
[
1 +O

(
a−1/m
m

)]
. (111)

Thus, the proof for outer region is completed.
In order to study the patterns of the 1st type rogue waves of the four-component NLS rogue waves

under the condition |am| � 1 in the inner region with x2 + t2 = O(1), we first rewrite the determinant
τn as a 6N × 6N determinant

τn =

∣∣∣∣ ON×N ΦN×5N

−Ψ5N×N I5N×5N

∣∣∣∣ , (112)

where

Φi,j =

(
p1

p0 + p∗0

)j−1

S5i−j
[
x+(n) + (j − 1)s

]
, Ψi,j =

(
p∗1

p0 + p∗0

)i−1

S5j−i
[
x−(n) + (i− 1)s∗

]
.

Then, we can apply (82) and (83) to express each element in (112) into a polynomial in am explicitly.
Notice that have totally four cases to consider, i.e., m ≡ j mod 5, j = 1, 2, 3, 4. Since the proofs for all
cases are similar, it suffices to provide the proof for j = 1. To determine the highest order term in am of
τn, we can use similar argument as that in [60, 62] to perform row and column operations. After these
operations, τn can be reduced to the form

τn = β |am|γ
∣∣∣∣∣ ON4×N4

Φ̂N4×N̂
−Ψ̂N̂×N4

IN̂×N̂

∣∣∣∣∣ [1 +O
(
a−1
m

)]
, (113)

where β 6= 0, γ > 0 are constants, N4 =

4∑
n=1

Nn,4, N̂ = max
1≤i≤4

(5Ni,4 − i+ 1),

Φ̂ =


Φ̂

(1)

N1,4×N̂

Φ̂
(2)

N2,4×N̂

Φ̂
(3)

N3,4×N̂

Φ̂
(4)

N4,4×N̂

 , Ψ̂ =
(

Ψ̂
(1)

N̂×N1,4
Ψ̂

(2)

N̂×N2,4
Ψ̂

(3)

N̂×N3,4
Ψ̂

(4)

N̂×N4,4

)

Φ̂
(I)
i,j = (h0)

−(j−1)
S5i−I

[
y+(n) + (j − 1 + ν0) s

]
Ψ̂

(J)
i,j = (h∗0)

−(i−1)
S5j−J

[
y−(n) + (i− 1 + ν0) s∗

]
(114)

and ν0 = N − N4. Since the rogue wave solutions are independent of the constants β and γ, we can
rewrite (113) into a 4× 4 block determinant

τn = det


τ

[1,1]
n τ

[1,2]
n τ

[1,3]
n τ

[1,4]
n

τ
[2,1]
n τ

[2,2]
n τ

[2,3]
n τ

[2,4]
n

τ
[3,1]
n τ

[3,2]
n τ

[3,3]
n τ

[3,4]
n

τ
[4,1]
n τ

[4,2]
n τ

[4,3]
n τ

[4,4]
n

[1 +O
(
a−1
m

)]
(115)
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where
τ [I,J]
n =

(
m

(n,I,J)
5i−I,5j−J

)
1≤i≤NI,4,1≤j≤NJ,4

(116)

and

m
(n,I,J)
i,j =

min(i,j)∑
ν=0

[
|p1|2

(p0 + p∗0)
2

]ν
Si−ν

(
y+(n) + ν0s + νs

)
Sj−ν

(
y−(n) + ν0s

∗ + νs∗
)
. (117)

Finally, the determinant in (115) becomes a (N1,4, N2,4, N3,4, N4,4)-th order rogue wave of the four-
components NLS equation, and the internal parameters(

ā1,n, ā2,n, ā3,n, ā4,n, ā6,n . . . , ā5Nn,4−n,n
)
, n = 1, 2, 3, 4,

are related to those in the original rogue wave as

āj,1 = āj,2 = āj,3 = āj,4 = aj +
(
N −N4

)
sj , j = 1, 2, 3, 4, 6, 7 · · · .

From (115), we deduce that the approximation error of this lower-order rogue wave is O
(
|am|−1

)
. This

completes the proof of Theorem 3.2 for the inner region.

6 Conclusion

In summary, we have constructed rogue waves of the vector (or M -component) NLS equation (1) and
analyzed their patterns for M = 3, 4. These solutions are expressed in terms of Gram-type determinants
of K × K block matrices (K = 1, 2, · · · ,M) with index jumps of M + 1 via Kadomtsev-Petviashvili
hierarchy reduction technique. One crucial step in this process is solving a system of algebraic equations
(see Lemma 2.1 and its proof). The rogue wave patterns corresponding to M = 3, 4 and K = 1 have
been investigated comprehensively. We find that when specific internal parameters are large enough,
these patterns are described by new polynomial hierarchies, i.e., the generalized Wronskian-Hermite
polynomials, in contrast with the scalar NLS equation and the Manakov system. Since the Yablonskii-
Vorob’ev polynomial hierarchy and Okamoto polynomial hierarchies are special cases of the generalized
Wronskian-Hermite polynomials, our results have unified rogue wave patterns of the scalar NLS equation
and the vector NLS equation for M = 2, 3, 4. It is worth noting that the case M = 3 presents a
unique feature as, in certain cases, the sizes of the Gram-type determinants cannot be reduced in the
approximation of inner regions.

The rogue wave patterns for M = 3, 4 exhibit very rich structures similar to the Manakov system
[62], these patterns are, in general, distorted from root structures of the generalized Wronskian-Hermite
polynomials. The predicted rogue wave patterns have been compared with true solutions, and excellent
agreement is achieved. As pointed out in [58, 62], universal rogue wave patterns, which depend on the
index jumps, exist in integrable systems. We expect that the patterns uncovered in the present paper will
appear in many other systems and thus are universal, as long as the corresponding Schur polynomials
have index jumps of 4 or 5.
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Appendix A

In this appendix, we provide the proof of Lemma 2.1. Assume ξ is a root of RM (z) = 0 of multiplicity
M with =(ξ) 6= 0, then we have

R(n)
M (ξ) = 0, n = 0, 1, 2, . . . ,M − 1, (118)
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where

R(m)
M (ξ) = (−1)m(m+ 1)!

M∑
j=1

rj
(ξ + kj)m+2

, m ≥ 1.

The system of equations (118) is linear in rj , j = 1, 2, . . . ,M , so we can solve for them and obtain

(ξ + kj)
M+1 = −1

2

M∏
i=1
i 6=j

(kj − ki)rj . (119)

Denote by

ξ = x+ iy, −1

2

M∏
i=1
i 6=j

(kj − ki)rj = λM+1
j exp(iθjπ), j = 1, 2, . . . ,M, (120)

where λj > 0, x, y are real, y 6= 0 and

θj =


0, if − 1

2

∏M
i=1
i 6=j

(kj − ki)rj > 0,

1, if − 1

2

∏M
i=1
i 6=j

(kj − ki)rj < 0,
(121)

then we deduce from (119) that, for each kj , there exits lj ∈ {0, 1, . . . ,M} such that

x+ kj + iy =

{
λj exp[2ljπi/(M + 1)], if θj = 0,

λj exp[(2lj + 1)πi/(M + 1)], if θj = 1,
(122)

Comparing both sides of (122) gives

y =

{
λj sin[2ljπ/(M + 1)], if θj = 0,

λj sin[(2lj + 1)π/(M + 1)], if θj = 1.
(123)

This implies that all the corresponding sin[2ljπ/(M + 1)] or sin[(2lj + 1)π/(M + 1)], j = 1, 2, . . . ,M,
should have the same sign. Without loss of generality, we may assume y > 0. Note that the set

{1, exp[πi/(M + 1)], exp[2πi/(M + 1)], . . . , exp[2Mπi/(M + 1)], exp[(2M + 1)πi/(M + 1)]} (124)

contains exactly M elements with positive imaginary parts, which are

exp[πi/(M + 1)], exp[2πi/(M + 1)], . . . , exp[Mπi/(M + 1)]. (125)

Since the kj ’s are distinct, it then follows that

x+ kj + iy = λj exp[σjπi/(M + 1)] (126)

where (σ1, σ2, . . . , σM ) can be any permutation of the set {1, 2, . . . ,M}. Without loss of generality, we
may take

σj = j, (127)

where j = 1, 2, . . . ,M . In this circumstance, we have θj = [1 + (−1)j+1]/2 and

x = λj cos[jπ/(M + 1)]− kj , (128)

y = λj sin[jπ/(M + 1)], (129)

and hence

λj = λ1
sin[π/(M + 1)]

sin[jπ/(M + 1)]
, (130)

kj = k1 + λj cos[jπ/(M + 1)]− λ1 cos[π/(M + 1)], (131)

= k1 + λ1 (sin[π/(M + 1)] cot[jπ/(M + 1)]− cos[π/(M + 1)]) (132)

38



where j = 1, 2, . . . ,M . Further, we find from (120) and (130) that

rj = 2(−1)j+1
M∏
i=1
i 6=j

(kj − ki)−1

(
λ1

sin[π/(M + 1)]

sin[jπ/(M + 1)]

)M+1

. (133)

As RM (z) is a rational function with real coefficients, it is clear that ξ∗ is a root of RM (z) = 0 of
multiplicity M as well. This completes the proof.

Appendix B

In this appendix, we apply Hirota’s bilinear method to derive rogue wave solutions of the vector NLS
equation (1) presented in Theorem 2.2 based on the KP reduction technique. For convenience, we only
consider the case when τn given in (17) consists of M ×M block matrices, i.e., K = M , as other cases
can be treated in a similar manner. In such case, we have Ij = j (j = 1, 2, . . . ,M) in (17).

We first transform the vector NLS equation (1) into a set of bilinear equationsD2
x +

M∑
j=1

σjρ
2
j

 f · f =

M∑
j=1

σjρ
2
jgjg

∗
j ,(

iDt +D2
x + 2ikjDx

)
gj · f = 0, j = 1, 2, · · · ,M,

(134)

under the non-zero boundary condition at ±∞ by the variable transformation

uj = ρj
gj
f

ei(kjx+wjt), j = 1, 2, · · · ,M, (135)

where wj =
∑M
j=1 σjρ

2
j − k2

j , f is a real-valued function, gj is a complex-valued function, and D is the
Hirota’s bilinear operator [33] defined by

Dm
x D

n
t f · g =

(
∂

∂x
− ∂

∂x′

)m(
∂

∂t
− ∂

∂t′

)n
[f(x, t)g (x′, t′)]

∣∣∣∣
x′=x,t′=t

.

Next we define

mn =
1

p+ q

M∑
j=1

(
−p− ikj
q + ikj

)nj
eξ+η,

ξ = px+ p2y +

M∑
j=1

1

p− ikj
vj + ξ0(p),

η = qx− q2y +

M∑
j=1

1

q + ikj
vj + η0(q),

where n = (n1, n2, . . . , nM ) with nj being integers, p, q, vj are arbitrary complex constants, j = 1, 2, . . . ,M ,
and ξ0(p), η0(q) are arbitrary functions of p and q respectively. Let Ai and Bj be differential operators
of order i and j, respectively, defined by

Ai(p) =
1

i!
[f1(p)∂p]

i
, Bj(q) =

1

i!
[f2(q)∂q]

j
,

where f1(p), f2(q) are arbitrary functions of p and q respectively. Then it can be calculated that [45] the
determinant

τn = det
1≤ν,µ≤N

(
mn
iν ,jµ

)
where (i1, i2, · · · , iN ) and (j1, j2, · · · , jN ) are arbitrary sequences of indices, and the matrix element mn

ij

is defined as
mn
ij = AiBjmn, (136)
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would satisfy the bilinear equations(
1

2
DxDvj − 1

)
τn · τn = −τnj,1τnj,−1 , j = 1, 2, · · · ,M,(

D2
x −Dy + 2ikjDx

)
τnj,1 · τn = 0, j = 1, 2, · · · ,M,

(137)

where

nj,i = n + i× nj , nj =

M∑
l=1

δjlel,

el is the standard unit vector in RM and δjl is the Kronecker delta.
In what follows, we will establish the reductions from the bilinear equations (137) in the KP hierarchy

to the bilinear equations (134), thereby obtaining rogue wave solutions of the vector NLS equation (1).
This procedure consists of several steps.

i) Dimension reduction

Note that (
2∂x +

M∑
k=1

σkρ
2
k∂vk

)
mn
ij = AiBj [GM (p) +HM (q)]mn, (138)

where

GM (p) =

M∑
j=1

σjρ
2
j

p− ikj
+ 2p, HM (q) =

M∑
j=1

σjρ
2
j

q + ikj
+ 2q. (139)

This implies that(
2∂x +

M∑
k=1

σkρ
2
k∂vk

)
mn
ij =

i∑
µ=0

1

µ!
[(f1∂p)

µ GM (p)]mn
i−µ,j +

j∑
l=0

1

l!

[
(f2∂q)

lHM (q)
]
mn
i,j−l. (140)

Then we can use the method introduced in [59] to find f1(p) and f2(q) such that

(f1∂p)
M+1 GM (p) = GM (p), (f2∂q)

M+1HM (q) = HM (q). (141)

Choosing q0 = p∗0 and using (141) and the assumption that p0 is a root of G′M (p) = 0 of multiplicity
M , the equation (140) reduces to(

2∂x +

M∑
k=1

σkρ
2
k∂vk

)
mn
ij

∣∣∣
p=p0,q=q0

= GM (p0)

i∑
µ=0

µ≡0(mod (M+1))

1

µ!
mn
i−µ,j +HM (q0)

i∑
l=0

l≡0(mod (M+1))

1

l!
mn
i,j−l

∣∣∣
p=p0,q=q0

. (142)

Let N = N1 + N2 + · · · + NM , where Nj , j = 1, 2, · · · ,M, are positive integers, and define the
determinant τn by

τn = det


τ

[1,1]
n τ

[1,2]
n · · · τ

[1,M ]
n

τ
[2,1]
n τ

[2,2]
n · · · τ

[2,M ]
n

...
...

. . .
...

τ
[M,1]
n τ

[M,2]
n · · · τ

[M,M ]
n

 , (143)

where

τ [I,J]
n = mat1≤i≤NI ,1≤j≤NJ

(
mn

(M+1)i−I,(M+1)j−J

∣∣∣
p=p0,q=q0,ξ0=ξ0,I ,η0=η0,J

)
, 1 ≤ I, J ≤M,

(144)
and mn

i,j is given by (136).
With (142), we can use similar argument as in [45] to show that the determinant τn satisfies the
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dimensional reduction condition(
2∂x +

M∑
k=1

σkρ
2
k∂vk

)
τn = N [GM (p0) +HM (q0)] τn. (145)

Therefore, we can use (145) to eliminate the variables vj , j = 1, 2, · · · ,M , from the higher dimen-
sional bilinear system (137). As a result of this, we haveD2

x +

M∑
j=1

σjρ
2
j

 τn · τn =

M∑
j=1

σjρ
2
jτnj,1τnj,−1(

iDt +D2
x + 2ikjDx

)
τnj,1 · τn = 0, j = 1, 2, · · · ,M,

(146)

where t = −iy.

ii) Complex conjugate reduction

Impose the parameter constraint
ξ0,I = η∗0,I ,

and in view of p0 = q∗0 , we have [f1 (p0)]
∗

= f2 (q0). It then follows that

τn = τ∗−n. (147)

Define
f = τn0

, gj = τnj , j = 1, 2, · · · ,M, (148)

then the complex conjugacy condition (147) implies that f is real. Therefore, from (146) and (147),
we conclude that the functions f and gj satisfy the bilinear system (134), thereby yielding rational
solutions to the vector NLS equation (1) via the transformation (135).

iii) Introduction of free parameters

We apply the method proposed in [59] to introduce free parameters in the following form

ξ0,I =

∞∑
n=1

an,I lnn U(p), (149)

where U(p) is defined by the relation

f1(p) =
U(p)

U ′(p)
,

and the an,I ’s are free complex constants.

iv) Simplification of solutions

With the aid of the generator D of the differential operators (p∂p)
k

(q∂q)
l

given as

D =

∞∑
k=0

∞∑
l=0

κk

k!

λl

l!
(p∂p)

k
(q∂q)

l
= exp (κp∂p + λq∂q) = exp (κ∂ln p + λ∂ln q) , (150)

we are able to simplify the solutions expressed by (148) using differential operators into the form of
Schur polynomials as presented in Theorem 2.2. Since the computations are very similar to those
in the three-wave system by Yang and Yang [59], we omit the details.

Thus the proof of Theorem 2.2 is completed.

Appendix C

In the first part of this appendix, we provide the values of N1, N2, N3, N4 that appear in Theorem 2.4 in
the following lemma.

Lemma 6.1. The values of N1, N2, N3, N4 involved in Theorem 2.4 are characterized as follows.
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• When m ≡ 1 mod 5, we have

l = 4 : (N1, N2, N3, N4) =



(N0, 0, 0, 0) , 0 ≤ N0 ≤
[
m
5

]([
m
5

]
, N0 −

[
m
5

]
, 0, 0

)
,

[
m
5

]
+ 1 ≤ N0 ≤ 2

[
m
5

]([
m
5

]
,
[
m
5

]
, N0 − 2

[
m
5

])
, 2

[
m
5

]
+ 1 ≤ N0 ≤ 3

[
m
5

]([
m
5

]
,
[
m
5

]
,
[
m
5

]
, N0 − 3

[
m
5

])
, 3

[
m
5

]
+ 1 ≤ N0 ≤ 4

[
m
5

]
(m− 1−N0,m− 1−N0,m− 1−N0,m− 1−N0) , 4

[
m
5

]
+ 1 ≤ N0 ≤ m− 1

l = 3 : (N1, N2, N3, N4) =



(0, N0, 0, 0) , 0 ≤ N0 ≤
[
m
5

](
0,
[
m
5

]
, N0 −

[
m
5

]
, 0
)
,

[
m
5

]
+ 1 ≤ N0 ≤ 2

[
m
5

](
0,
[
m
5

]
,
[
m
5

]
, N0 − 2

[
m
5

])
, 2

[
m
5

]
+ 1 ≤ N0 ≤ 3

[
m
5

]([
m
5

]
− 1,

[
m
5

]
− 1,

[
m
5

]
− 1, N0 − 3

[
m
5

]
− 1
)
, 3

[
m
5

]
+ 1 ≤ N0 ≤ 4

[
m
5

]
+ 1

(m− 1−N0,m− 1−N0,m− 1−N0,m−N0) , 4
[
m
5

]
+ 2 ≤ N0 ≤ m− 1

l = 2 : (N1, N2, N3, N4) =



(0, 0, N0, 0) , 0 ≤ N0 ≤
[
m
5

](
0, 0,

[
m
5

]
, N0 −

[
m
5

])
,

[
m
5

]
+ 1 ≤ N0 ≤ 2

[
m
5

]([
m
5

]
− 1,

[
m
5

]
− 1, N0 − 2

[
m
5

]
− 1, 0

)
, 2

[
m
5

]
+ 1 ≤ N0 ≤ 3

[
m
5

]
+ 1([

m
5

]
− 1,

[
m
5

]
− 1,

[
m
5

]
, N0 − 3

[
m
5

]
− 1
)
, 3

[
m
5

]
+ 2 ≤ N0 ≤ 4

[
m
5

]
+ 1

(m− 1−N0,m− 1−N0,m−N0,m−N0) , 4
[
m
5

]
+ 2 ≤ N0 ≤ m− 1

l = 1 : (N1, N2, N3, N4) =



(0, 0, 0, N0) , 0 ≤ N0 ≤
[
m
5

]([
m
5

]
− 1, N0 −

[
m
5

]
− 1, 0, 0

)
,

[
m
5

]
+ 1 ≤ N0 ≤ 2

[
m
5

]
+ 1([

m
5

]
− 1,

[
m
5

]
, N0 − 2

[
m
5

]
− 1, 0

)
, 2

[
m
5

]
+ 2 ≤ N0 ≤ 3

[
m
5

]
+ 1([

m
5

]
− 1,

[
m
5

]
,
[
m
5

]
, N0 − 3

[
m
5

]
− 1
)
, 3

[
m
5

]
+ 2 ≤ N0 ≤ 4

[
m
5

]
+ 1

(m− 1−N0,m−N0,m−N0,m−N0) , 4
[
m
5

]
+ 2 ≤ N0 ≤ m− 1

• When m ≡ 2 mod 5, we have

l = 4 : (N1, N2, N3, N4) =



(N0, 0, 0, 0) , 0 ≤ N0 ≤
[
m
5

]([
m
5

]
, 0, N0 −

[
m
5

]
, 0
)
,

[
m
5

]
+ 1 ≤ N0 ≤ 2

[
m
5

](
N0 − 2

[
m
5

]
− 1,

[
m
5

]
, 0,
[
m
5

])
2
[
m
5

]
+ 1 ≤ N0 ≤ 3

[
m
5

]([
m
5

]
,
[
m
5

]
, N0 − 3

[
m
5

]
− 1,

[
m
5

])
, 3

[
m
5

]
+ 1 ≤ N0 ≤ 4

[
m
5

]
(m− 1−N0,m− 1−N0,m− 1−N0,m− 1−N0) , 4

[
m
5

]
+ 1 ≤ N0 ≤ m− 1

l = 3 : (N1, N2, N3, N4) =



(0, N0, 0, 0) , 0 ≤ N0 ≤
[
m
5

](
0,
[
m
5

]
, 0, N0 −

[
m
5

])
,

[
m
5

]
+ 1 ≤ N0 ≤ 2

[
m
5

]
+ 1(

N0 − 2
[
m
5

]
− 1,

[
m
5

]
, 0,
[
m
5

]
+ 1
)
, 2

[
m
5

]
+ 2 ≤ N0 ≤ 3

[
m
5

]
+ 1([

m
5

]
,
[
m
5

]
, N0 − 3

[
m
5

]
− 1,

[
m
5

]
+ 1
)
, 3

[
m
5

]
+ 2 ≤ N0 ≤ 4

[
m
5

]
+ 1

(m− 1−N0,m− 1−N0,m− 1−N0,m−N0) , 4
[
m
5

]
+ 2 ≤ N0 ≤ m− 1

l = 2 : (N1, N2, N3, N4) =



(0, 0, N0, 0) , 0 ≤ N0 ≤
[
m
5

](
N0 −

[
m
5

]
− 1, 0, 0,

[
m
5

])
,

[
m
5

]
+ 1 ≤ N0 ≤ 2

[
m
5

]
+ 1([

m
5

]
, 0, N0 − 2

[
m
5

]
− 1,

[
m
5

])
, 2

[
m
5

]
+ 2 ≤ N0 ≤ 3

[
m
5

]
+ 1([

m
5

]
− 1,

[
m
5

]
− 1, N0 − 3

[
m
5

]
− 2,

[
m
5

])
, 3

[
m
5

]
+ 2 ≤ N0 ≤ 4

[
m
5

]
+ 2

(m− 1−N0,m− 1−N0,m−N0,m−N0) , 4
[
m
5

]
+ 3 ≤ N0 ≤ m− 1

l = 1 : (N1, N2, N3, N4) =



(0, 0, 0, N0) , 0 ≤ N0 ≤
[
m
5

]
+ 1(

N0 −
[
m
5

]
− 1, 0, 0,

[
m
5

]
+ 1
)
,

[
m
5

]
+ 2 ≤ N0 ≤ 2

[
m
5

]
+ 1([

m
5

]
, 0, N0 − 2

[
m
5

]
− 1,

[
m
5

]
+ 1
)
, 2

[
m
5

]
+ 2 ≤ N0 ≤ 3

[
m
5

]
+ 1([

m
5

]
− 1,

[
m
5

]
, N0 − 3

[
m
5

]
− 2,

[
m
5

])
, 3

[
m
5

]
+ 2 ≤ N0 ≤ 4

[
m
5

]
+ 2

(m− 1−N0,m−N0,m−N0,m−N0) , 4
[
m
5

]
+ 3 ≤ N0 ≤ m− 1
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• When m ≡ 3 mod 5, we have

l = 4 : (N1, N2, N3, N4) =



(N0, 0, 0, 0) , 0 ≤ N0 ≤
[
m
5

]([
m
5

]
, 0, 0, N0 −

[
m
5

])
,

[
m
5

]
+ 1 ≤ N0 ≤ 2

[
m
5

]
+ 1([

m
5

]
, N0 − 2

[
m
5

]
− 1, 0,

[
m
5

])
2
[
m
5

]
+ 2 ≤ N0 ≤ 3

[
m
5

]
+ 1([

m
5

]
, N0 − 3

[
m
5

]
− 2,

[
m
5

]
,
[
m
5

])
, 3

[
m
5

]
+ 2 ≤ N0 ≤ 4

[
m
5

]
+ 2

(m− 1−N0,m− 1−N0,m− 1−N0,m− 1−N0) , 4
[
m
5

]
+ 3 ≤ N0 ≤ m− 1

l = 3 : (N1, N2, N3, N4) =



(0, N0, 0, 0) , 0 ≤ N0 ≤
[
m
5

](
N0 −

[
m
5

]
− 1, 0,

[
m
5

]
, 0
)
,

[
m
5

]
+ 1 ≤ N0 ≤ 2

[
m
5

]
+ 1([

m
5

]
, 0,
[
m
5

]
, N0 − 2

[
m
5

]
− 1
)
, 2

[
m
5

]
+ 2 ≤ N0 ≤ 3

[
m
5

]
+ 2([

m
5

]
, N0 − 3

[
m
5

]
− 2,

[
m
5

]
,
[
m
5

]
+ 1
)
, 3

[
m
5

]
+ 3 ≤ N0 ≤ 4

[
m
5

]
+ 2

(m− 1−N0,m− 1−N0,m− 1−N0,m−N0) , 4
[
m
5

]
+ 3 ≤ N0 ≤ m− 1

l = 2 : (N1, N2, N3, N4) =



(0, 0, N0, 0) , 0 ≤ N0 ≤
[
m
5

]
+ 1(

N0 −
[
m
5

]
− 1, 0,

[
m
5

]
+ 1, 0

)
,

[
m
5

]
+ 2 ≤ N0 ≤ 2

[
m
5

]
+ 1([

m
5

]
, 0,
[
m
5

]
+ 1, N0 − 2

[
m
5

]
− 1
)
, 2

[
m
5

]
+ 2 ≤ N0 ≤ 3

[
m
5

]
+ 1([

m
5

]
, N0 − 3

[
m
5

]
− 2,

[
m
5

]
+ 1,

[
m
5

]
+ 1
)
, 3

[
m
5

]
+ 2 ≤ N0 ≤ 4

[
m
5

]
+ 2

(m− 1−N0,m− 1−N0,m−N0,m−N0) , 4
[
m
5

]
+ 3 ≤ N0 ≤ m− 1

l = 1 : (N1, N2, N3, N4) =



(0, 0, 0, N0) , 0 ≤ N0 ≤
[
m
5

]
+ 1(

0, N0 −
[
m
5

]
− 1, 0,

[
m
5

]
+ 1
)
,

[
m
5

]
+ 2 ≤ N0 ≤ 2

[
m
5

]
+ 1([

m
5

]
, N0 − 2

[
m
5

]
− 2, 0,

[
m
5

])
, 2

[
m
5

]
+ 2 ≤ N0 ≤ 3

[
m
5

]
+ 2([

m
5

]
− 1, N0 − 3

[
m
5

]
− 3,

[
m
5

]
,
[
m
5

])
, 3

[
m
5

]
+ 3 ≤ N0 ≤ 4

[
m
5

]
+ 3

(m− 1−N0,m−N0,m−N0,m−N0) , 4
[
m
5

]
+ 4 ≤ N0 ≤ m− 1

• When m ≡ 4 mod 5, we have

l = 4 : (N1, N2, N3, N4) =



(N0, 0, 0, 0) , 0 ≤ N0 ≤
[
m
5

](
N0 −

[
m
5

]
− 1,

[
m
5

]
, 0, 0

)
,

[
m
5

]
+ 1 ≤ N0 ≤ 2

[
m
5

]
+ 1(

N0 − 2
[
m
5

]
− 2,

[
m
5

]
,
[
m
5

]
, 0
)

2
[
m
5

]
+ 2 ≤ N0 ≤ 3

[
m
5

]
+ 2(

N0 − 3
[
m
5

]
− 3,

[
m
5

]
,
[
m
5

]
,
[
m
5

])
, 3

[
m
5

]
+ 3 ≤ N0 ≤ 4

[
m
5

]
+ 3

(m− 1−N0,m− 1−N0,m− 1−N0,m− 1−N0) , 4
[
m
5

]
+ 3 ≤ N0 ≤ m− 1

l = 3 : (N1, N2, N3, N4) =



(0, N0, 0, 0) , 0 ≤ N0 ≤
[
m
5

]
+ 1(

N0 −
[
m
5

]
− 1,

[
m
5

]
+ 1, 0, 0,

)
,

[
m
5

]
+ 2 ≤ N0 ≤ 2

[
m
5

]
+ 1(

N0 − 2
[
m
5

]
− 2,

[
m
5

]
,
[
m
5

]
+ 1, 0

)
, 2

[
m
5

]
+ 2 ≤ N0 ≤ 3

[
m
5

]
+ 2(

N0 − 3
[
m
5

]
− 3,

[
m
5

]
,
[
m
5

]
,
[
m
5

]
+ 1
)
, 3

[
m
5

]
+ 3 ≤ N0 ≤ 4

[
m
5

]
+ 2

(m− 1−N0,m− 1−N0,m− 1−N0,m−N0) , 4
[
m
5

]
+ 3 ≤ N0 ≤ m− 1

l = 2 : (N1, N2, N3, N4) =



(0, 0, N0, 0) , 0 ≤ N0 ≤
[
m
5

]
+ 1(

0, N0 −
[
m
5

]
− 1,

[
m
5

]
+ 1, 0

)
,

[
m
5

]
+ 2 ≤ N0 ≤ 2

[
m
5

]
+ 2(

N0 − 2
[
m
5

]
− 2,

[
m
5

]
+ 1,

[
m
5

]
+ 1, 0

)
, 2

[
m
5

]
+ 3 ≤ N0 ≤ 3

[
m
5

]
+ 2(

N0 − 3
[
m
5

]
− 3,

[
m
5

]
,
[
m
5

]
+ 1,

[
m
5

]
+ 1
)
, 3

[
m
5

]
+ 3 ≤ N0 ≤ 4

[
m
5

]
+ 3

(m− 1−N0,m− 1−N0,m−N0,m−N0) , 4
[
m
5

]
+ 4 ≤ N0 ≤ m− 1

l = 1 : (N1, N2, N3, N4) =



(0, 0, 0, N0) , 0 ≤ N0 ≤
[
m
5

]
+ 1(

0, 0, N0 −
[
m
5

]
− 1,

[
m
5

]
+ 1
)
,

[
m
5

]
+ 2 ≤ N0 ≤ 2

[
m
5

]
+ 2(

0, N0 − 2
[
m
5

]
− 2,

[
m
5

]
+ 1,

[
m
5

]
+ 1
)
, 2

[
m
5

]
+ 3 ≤ N0 ≤ 3

[
m
5

]
+ 3(

N0 − 3
[
m
5

]
− 3,

[
m
5

]
+ 1,

[
m
5

]
+ 1,

[
m
5

]
+ 1
)
, 3

[
m
5

]
+ 4 ≤ N0 ≤ 4

[
m
5

]
+ 3

(m− 1−N0,m−N0,m−N0,m−N0) , 4
[
m
5

]
+ 4 ≤ N0 ≤ m− 1.

In the second part of this appendex, we will prove Theorems 2.3 and 2.4 for root structures of the

generalized Wronskian-Hermite polynomials W
[m,k,l]
N . We only provide the proof for k = 5, l = 4 and
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m ≡ 1, 2, 3, 4 mod 5, as other cases can be proved in a similar manner.

Firstly, we define a new class of special Schur polynomials S
[m]
j (z; a) and the polynomials Ŵ

[m,5,4]
N (z; a)

as

∞∑
j=0

S
[m]
j (z; a)εj = exp [zε+ aεm] , (151)

Ŵ
[m,5,4]
N (z; a) = c

[m,5,4]
N

∣∣∣∣∣∣∣∣∣∣
S

[m]
4 (z; a) S

[m]
3 (z; a) · · · S

[m]
5−N (z; a)

S
[m]
9 (z; a) S

[m]
8 (z; a) · · · S

[m]
10−N (z; a)

...
...

...
...

S
[m]
5N−1(z; a) S

[m]
5N−2(z; a) · · · S

[m]
4N (z; a)

∣∣∣∣∣∣∣∣∣∣
, (152)

where a is a parameter, c
[m,5,4]
N is a constant defined in (34), and S

[m]
j (z; a) ≡ 0 when j < 0. Compared

with the generalized Wronskian-Hermite polynomials W
[m,k,l]
N , the polynomials Ŵ

[m,5,4]
N (z; a) have a new

parameter a. Note that the polynomials S
[m]
j (z; a) are related to p

[m]
j (z) by

S
[m]
j (z; a) = aj/mp

[m]
j (ẑ), ẑ = a−1/mz. (153)

In addition, we have

Ŵ
[m,5,4]
N (z; a) = a2N(N+1)/mW

[m,5,4]
N (ẑ). (154)

From (153) and (154), we find that each term in the polynomial Ŵ
[m]
N (z; a) is a constant multiple of aszk

and k + ms = 2N(N + 1). This indicates that when the power of a is larger, the power of z is lower.
Thus, to find the lowest order of z, it suffices to find the highest order of a. To this end, we rewrite the

polynomials S
[m]
j (z; a) as

S
[m]
j (z; a) =

[j/m]∑
n=0

an

n!(j − nm)!
zj−nm (155)

and substitute (155) into the determinant (152). Note that coefficients of each aszk in each row are
proportional to each other, thus we can ignore them. In particular, for m = 5r + 1, where r is positive
integer, we get

Ŵ
[m,5,4]
N (z; a) ∼ cN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z4 z3 · · ·
...

...
. . .

z5r−1 z5r−2 · · ·
az3 + · · · az2 + · · · · · ·

...
...

. . .

az5r−2 + z5r−2+m az5r−3 + z5r−3+m · · ·
a2z2 + az2+m + · · · a2z1 + az1+m + · · · · · ·

...
...

. . .

a2z5r−3 + az5r−3+m + · · · a2z5r−4 + az5r−4+m + · · · · · ·
a3z1 + a2z1+m + · · · a3z0 + a2zm + · · · · · ·

...
...

. . .

a3z5r−4 + a2z5r−4+m + · · · a3z5r−5 + a2z5r−5+m + · · · · · ·
a4z0 + a3zm + · · · a3z5r + · · · · · ·

...
...

. . .

a4z5r + a3z5r+m + · · · a4z5r−1 + a3z5r−1+m + · · · · · ·
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (156)

Next, we perform row operations to (156), which consist of several steps.

1. Note that the coefficients of the highest order terms in a in the first column of (156) are periodic
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and one period is given by

z4 · · · z5r−1; z3 · · · z5r−2; z2 · · · z5r−3; z1 · · · z5r−4; z0 · · · z5r. (157)

According to this periodicity, we divide the determinants (156) into [N/m] block matrices of size
m × N and one N0 × N block matrix, where N0 ≡ N mod m. In addition, we divide the first
column in each block into five parts, which have distinct initial powers in z, and the difference of
the powers in z of consecutive terms in each part is 5. We denote the number of parts starting with
power j by N5−j , j = 1, . . . , 4.

2. We are only concerned with the first column of (156), since other columns have similar structures.
According to the above discussions, we may use each part of the first block to cancel the highest
order terms in a of the corresponding parts for the subsequent blocks. After the first round row
operations, the coefficients of the highest order terms in a in the first column of the second block
become

z4+m · · · z5r−1+m; z3+m · · · z5r−2+m; z2+m · · · z5r−3+m; z1+m · · · z5r−4+m; zm · · · z5r+m, (158)

and from the third to the last blocks, the corresponding coefficients change to zi+m from zi. In
the second round, we can use the second block to cancel the highest order terms in a of the blocks
below. Then we continue this process until the last block. At the end of these operations, we can
exchange the rows in each block such that the highest order terms in a of the first column are

z0, z1, z2, · · · , z5r; zm, zm+1, zm+2, · · · , zm+5r; · · · ; zkm, zkm+1, zkm+2, · · · , zkm+5r; · · · .

and the determinant (156) becomes

Ŵ
[m,5,4]
N×N ∼

(
L(N−N0)×(N−N0) 0(N−N0)×N0

MN0×(N−N0) ŴN0×N0

)
where L(N−N0)×(N−N0) is a lower triangular matrix whose diagonal entries are all 1.

3. Therefore, to calculate the lowest power of z of Ŵ
[m,5,4]
N (z; a), it suffices to compute the power of

the reduced N0 ×N0 determinant ŴN0×N0
and the final result is Γ as given in (40).

Next, we derive the factorization of W
[m,5,4]
N (z) provided in Theorem 2.4. Since the multiplicity of

the zero root of W
[m,5,4]
N (z) is Γ, we can write

W
[m,5,4]
N (z) = zΓq

[m]
N (z). (159)

Note that
p

[m]
j (ωz) = ωjp

[m]
j (z), (160)

where ω is any of the m-th root of 1, i.e., ωm = 1. From (159) and (160), we immediately have

W
[m,5,4]
N (ωz) = ω2N(N+1)W

[m,5,4]
N (z)

and

q
[m]
N (ωz) = ω2N(N+1)−Γq

[m]
N (z).

Since 2N(N + 1)− Γ is a multiple of m, we have ω2N(N+1)−Γ = 1, and hence

q
[m]
N (ωz) = q

[m]
N (z).

This completes the proof.

Remark 8. We note that the row operations performed above are similar to those in the proof of rogue
patterns in the inner region. For some special cases, such as m = 4r + 2 in the three-components NLS
equation, the proof needs some modifications similar to the proof of Theorem 2.3.

45



References

[1] M. J. Ablowitz, M. Ablowitz, and P. A. Clarkson, Solitons, nonlinear evolution equations
and inverse scattering, vol. 149, Cambridge University Press, 1991.

[2] N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, Rogue waves and rational solutions of
the nonlinear Schrödinger equation, Phys. Rev. E, 80 (2009), p. 026601.

[3] N. N. Akhmediev and A. Ankiewicz, Nonlinear pulses and beams, Springer, 1997.

[4] H. Bailung, S. Sharma, and Y. Nakamura, Observation of Peregrine solitons in a multicom-
ponent plasma with negative ions, Phys. Rev. Lett., 107 (2011), p. 255005.

[5] F. Balogh, M. Bertola, and T. Bothner, Hankel determinant approach to generalized
Vorob’ev–Yablonski polynomials and their roots, Constr. Approx., 44 (2016), pp. 417–453.

[6] F. Baronio, M. Conforti, A. Degasperis, S. Lombardo, M. Onorato, and S. Wabnitz,
Vector rogue waves and baseband modulation instability in the defocusing regime, Phys. Rev. Lett.,
113 (2014), p. 034101.

[7] F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, Solutions of the vector nonlin-
ear Schrödinger equations: evidence for deterministic rogue waves, Phys. Rev. Lett., 109 (2012),
p. 044102.
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