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Abstract

We consider the question whether starting from a smooth initial condition 3D inviscid
Euler flows on a periodic domain may develop singularities in a finite time. Our point
of departure is the well-known result by Kato (1972), which asserts the local existence
of classical solutions to the Euler system in the Sobolev space Hm for m > 5/2. Thus,
the potential formation of a singularity must be accompanied by an unbounded growth of
the Hm norm of the velocity field as the singularity time is approached. We perform a
systematic search for “extreme” Euler flows that may realize such a scenario by formulating
and solving a PDE-constrained optimization problem where the H3 norm of the solution at
a certain fixed time T > 0 is maximized with respect to the initial data subject to suitable
normalization constraints. This problem is solved using a state-of-the-art Riemannian
conjugate gradient method where the gradient is obtained from solutions of an adjoint
system. Computations performed with increasing numerical resolutions demonstrate that,
as asserted by the theorem of Kato (1972), when the optimization time window [0, T ] is
sufficiently short, the H3 norm remains bounded in the extreme flows found by solving the
optimization problem, which indicates that the Euler system is well-posed on this “short”
time interval. On the other hand, when the window [0, T ] is long, possibly longer than the
time of the local existence asserted by Kato’s theorem, then the H3 norm of the extreme
flows diverges upon resolution refinement, which indicates a possible singularity formulation
on this “long” time interval. The extreme flow obtained on the long time window has the
form of two colliding vortex rings and is characterized by certain symmetries. In particular,
the region of the flow in which a singularity might occur is nearly axisymmetric.

1 Introduction

The motion of an ideal (inviscid) incompressible fluid on a domain Ω ⊆ R3 is described by the
Euler equations

∂u

∂t
+ (u ·∇)u = −∇p, (x, t) ∈ Ω× (0, T ],

∇ · u = 0, (x, t) ∈ Ω× (0, T ],

u|t=0 = η, x ∈ Ω,

(1.1)

where ∇ = [∂1, ∂2, ∂3]
T is the gradient operator, u = u(x, t) = [u1, u2, u3]

T is the velocity
field, p = p(x, t) is the scalar pressure and T > 0 is the length of the time window considered.
We assume the flow domain to be a periodic unit cube Ω = T3 := R3/Z3, where “:=” means
“equal to by definition”. In system (1.1), the symbol η denotes the initial condition for the
velocity which is assumed to satisfy ∇ ·η = 0. We will use the notation u(t;η) to indicate the
dependence of the solution of system (1.1) at time t on η. We are interested in the possibility

∗Corresponding Author, Email: bprotas@mcmaster.ca

1

ar
X

iv
:2

21
2.

12
60

8v
2 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  1

8 
Fe

b 
20

24



of a spontaneous formation of finite-time singularities in solutions of the Euler system (1.1)
equipped with smooth initial data, the so-called “blow-up problem”. It remains one of the
central open questions in mathematical fluid mechanics (Gibbon et al., 2008) and is closely
related to the corresponding regularity problem for the viscous Navier-Stokes system (Doering,
2009; Robinson, 2020), which has been recognized by the Clay Mathematics Institute as one
of its “millennium problems” (Fefferman, 2000). Our goal in this paper is to undertake a
systematic search for possible singularities in the Euler system (1.1) using methods of numerical
PDE optimization.

The first results asserting local existence of classical solutions to the Euler system were
obtained by Lichtenstein (1925) for Hölder-regular initial data η ∈ C1,α(R3) with 0 < α < 1.
The local existence of classical solutions in Sobolev spaces was then established by Kato (1972)
and is summarized in the following theorem

Theorem 1.1 If η ∈ Hm(T3) for some m > 5/2 and satisfies ∇ · η = 0, then there exists
a time T = T (∥η∥Hm) > 0 such that (1.1) has a unique solution u(·;η) ∈ C([0, T ];Hm)⋂

C1([0, T ];Hm−1).

The study of the local well-posedness of the Euler system (1.1) with analytic initial data began
with the work of Bardos and Benachour (1977).

Another well-known conditional regularity result is the Beale-Kato-Majda (BKM) criterion
(Beale et al., 1984; Chen and Pavlović, 2012) which states that a smooth solution u of the
Euler system develops a singularity at t = T ∗ if and only if

lim
t→T ∗

∫ t

0
||ω(τ)||L∞ dτ = ∞, (1.2)

where ω := ∇ × u is the vorticity field of the flow. The sufficiency of this condition can be
deduced from Theorem 1.1 using a Sobolev inequality (Adams and Fournier, 2005)∫ t

0
||ω(τ)||L∞ dτ ≤ t sup

0≤τ≤t
||∇u(τ)||L∞ ≤ Ct sup

0≤τ≤t
||u(τ)||Hm , m > 5/2, (1.3)

whereas its necessity is a result of the inequality (Majda and Bertozzi, 2002)

||u(t)||Hm ≤ ||η||Hm exp

{
C1 exp

(
C2

∫ t

0
||ω(τ)||L∞ dτ

)}
. (1.4)

The double exponential on the right hand side (RHS) of (1.4) suggests that, should blow-up
indeed occur at some t = T ∗, we can expect a much more rapid growth of ∥u(t)∥Hm , m > 5/2,
than that of ∥ω(t)∥L∞ , as t → T ∗. There have been various refinements of the BKM criterion,
where the L∞ norm of vorticity in (1.2) is replaced with a norm in the BMO space (Kozono
and Taniuchi, 2000) or a Besov space (Chae, 2001). In addition, there are also geometric
criteria for blow-up (Constantin et al., 1996; Deng et al., 2005), in which the direction of the
vorticity ω/|ω| plays a crucial role. As was shown in Gibbon (2013), the relative ordering
of suitably rescaled vorticity moments provides information about the degree of depletion of
the nonlinearity, and hence also about the regularity of solutions. On the other hand, the
regularity of weak solutions of the Euler system is related to Onsager’s conjecture concerning
energy dissipation in such flows (Constantin et al., 1994) and significant progress has been
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made recently as regards the non-uniqueness of weak solutions with low regularity (De Lellis
and Székelyhidi Jr, 2019).

With respect to blow-up scenarios, Elgindi (2021) proved that there exist swirl-free ax-
isymmetric solutions of the Euler system corresponding to initial data in C1,α(R3) that can
develop finite-time singularities. Elgindi and Jeong (2019) showed the existence of finite-time
singularities in strong solutions to axisymmetric Euler equations on exterior domains with
“hourglass”-shaped boundaries. Most recently, Chen and Hou (2022) proved a nearly self-
similar blow-up of solutions to the 3D axisymmetric Euler equations with smooth initial data
on cylindrical domains with solid boundaries. We emphasize that in the last two cases the
presence of the solid boundary is key to the formation of the singularity.

The computational studies exploring the possibility of finite-time blow-up in the Euler
system include Brachet et al. (1983); Pumir and Siggia (1990); Brachet (1991); Kerr (1993);
Pelz (2001); Bustamante and Kerr (2008); Ohkitani and Constantin (2008); Ohkitani (2008);
Grafke et al. (2008); Gibbon et al. (2008); Hou (2009); Orlandi et al. (2012); Bustamante and
Brachet (2012); Kerr (2013); Orlandi et al. (2014); Campolina and Mailybaev (2018); Larios
et al. (2018), all of which considered problems subject to periodic boundary conditions in all
three spatial directions. We also mention the studies by Matsumoto et al. (2008) and Siegel
and Caflisch (2009), along with references found therein, in which various complexified forms
of the Euler equations were investigated. The idea of this approach is that, since solutions
to complexified equations have singularities in the complex plane, singularity formation in the
real-valued problem is manifested by the collapse of the complex-plane singularities onto the
real axis. Some of the investigations (Bustamante and Brachet, 2012; Orlandi et al., 2012)
hinted at the possibility of singularity formation in a finite time. In this connection we also
highlight the computational investigations of Luo and Hou (2014a,b) in which blow-up was
documented in axisymmetric Euler flows on a bounded cylindrical domain. This mechanism
of singularity formation involves an interaction with the solid boundary and was recently
validated with rigorous mathematical analysis by Chen and Hou (2022). We also mention an
investigation by Hou (2022) who provided evidence for blow-up in axisymmetric Euler flows
on bounded domains in which singularity occurs away from the boundaries. In contrast to
most other studies, the works of Luo and Hou (2014a,b); Hou (2022) relied on adaptive mesh
refinement employed to resolve fine structures in flows at the edge of regularity. In this context,
we also mention the investigation by Yin et al. (2021) where the Euler system (1.1) was solved
in the Lagrangian setting using the characteristic mapping method. Regarding weak solutions
and Onsager’s related conjecture, Fehn et al. (2022) recently presented numerical evidence for
nonvanishing energy dissipation in weak solutions of the Euler system (1.1) which was obtained
using a method based on a discontinuous Galerkin approximation.

While in the aforementioned computational studies the initial conditions for the Euler
system were chosen in an ad-hoc manner, albeit one usually motivated by deep physical con-
siderations, here we follow a fundamentally different approach wherein the initial condition
leading to the most singular, in a mathematically precise sense, solutions is sought system-
atically by solving a suitably constrained PDE optimization problem. This approach was
originally proposed by Lu and Doering (2008) as a way to determine incompressible velocity
fields maximizing the instantaneous growth rate of enstrophy in 3D Navier-Stokes flows. It
was later extended by Ayala and Protas (2011, 2014, 2017), Yun and Protas (2018) to study
extreme behavior in solutions of different hydrodynamic models such as variants of the Burgers

3



equation. Recently, Kang et al. (2020) and Kang and Protas (2021) applied this method to
search for potential singularities in 3D Navier-Stokes flows based on some classical conditional
regularity results. Highlights of this more than decade-long research program are summarized
in the review paper by Protas (2022). The present investigation represents a first application
of this framework to an inviscid problem.

Guided by the local well-posedness result in Theorem 1.1, we aim to find an initial condition
η ∈ Hm subject to certain constraints, such that the Hm norm of the corresponding solution of
the Euler system (1.1) is maximized at a prescribed time T . The desired initial conditions are
thus found as local maximizers of a constrained PDE optimization problem with the square
of the Hm (semi)norm used as the objective functional where for concreteness we set m =
3. We solve this optimization problem for different time intervals [0, T ] using a Riemannian
conjugate gradient method (Absil et al., 2008), where the gradient is conveniently computed
from solutions of a suitably-defined adjoint system. Both the Euler system (1.1) and the
adjoint system as well as different diagnostic quantities are approximated numerically using
pseudospectral methods.

In analogy to the work of Fehn et al. (2022); Guo et al. (2022), we adopt an indirect approach
to distinguish between regular and singular evolution based on resolution refinement. When
solving the optimization problem on a “short” time interval [0, T ], if the objective functional
approximated using different resolutions converges to a finite value as the resolution is refined,
then we conclude the Euler system (1.1) is well-posed on this short interval. However, when
the interval [0, T ] is “long”, presumably longer than the minimum time of existence guaranteed
by Theorem 1.1, the objective functional evaluated at the optimal solutions may diverge upon
resolution refinements. Here “short” and “long” times are defined in relation to the interval
of local existence guaranteed by Theorem 1.1. More specifically, a “short” time is assumed
to be within that interval, whereas a “long” time is outside. Theorem 1.1 does not provide a
precise numerical value for the interval of local existence and in practice, based on numerical
experiments, we use T = 25 and T = 75 for the short and long optimization time windows.
We do in fact observe these two distinct behaviors and conclude that in the latter scenario the
divergence of the objective functional on the long time interval [0, 75] may signal a potential
singularity formation in the flow. Although a definitive conclusion cannot be drawn due to
numerical limitations, the behavior of different diagnostic quantities does not contradict the
possibility of a singularity formation. The corresponding flow features two colliding vortex
rings and while these flow structures are quite deformed, the flow does exhibit certain nontrivial
symmetries. In particular, the region in the flow where the potential singularity may occur is
nearly axisymmetric.

The structure of the paper is as follows: in Section 2 we formulate an optimization problem
designed to elucidate the most extreme behavior possible in an Euler flow and in Section 3 we
describe a Riemannian gradient-based approach we use to solve this problem together with its
numerical discretization; the extreme flows found by the optimization algorithm on “short” and
“long” time intervals are discussed in Section 4; finally, conclusions and outlook are deferred
to Section 5.
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2 Optimization problem

Before introducing the optimization problem, let us first define the function space in which
its solutions will be sought. We begin by defining the norm in the Sobolev space Hm(T3) as
(Adams and Fournier, 2005)

∥u∥Hm :=

∑
j∈Z3

(
1 + |2πj|2

)m |ûj |2
1/2

, m ∈ R, (2.1)

where ûj is the Fourier coefficient of u corresponding to the wavevector k := 2πj = [2πj1, 2πj2, 2πj3].
The corresponding homogeneous seminorm, denoted ∥ · ∥Ḣm , is obtained from (2.1) by drop-
ping the constant (j-independent) terms. For simplicity, we will hereafter refer to it as the
Hm seminorm.

2.1 Functional setting

Since the Euler system (1.1) is locally well posed in Hm(T3), m > 5/2, cf. Theorem 1.1, it may
appear natural to look for optimal initial data η in that space. However, we are interested
in finite-time singularities potentially arising in classical solutions, whereas initial conditions
constructed in such spaces will in general not be smooth or real-analytic. Moreover, solving
the Euler system (1.1) with such initial data would not allow us to benefit from the exponential
convergence of the pseudospectral methods used in this study, cf. Section 3.3.1. We will thus
consider an extended Gevrey space Gσ with σ > 0 of real-analytic functions defined on T3 and
will endow it with the inner product

∀v,u ∈ Gσ, ⟨v,u⟩Gσ :=
∑
j∈Z3

(1 + |2πj|2)me4πσ|j|v̂j · ûj

=

∫
T3

(1 + |D|2)me2σ|D|v · u dx,

(2.2)

where overbar denotes complex conjugation, whereas the operators |D| and eσ|D| are defined
via [

|̂D|v
]
j
:= 2π|j|v̂j ,

[
êσ|D|v

]
j
:= e2πσ|j|v̂j . (2.3)

In the setting of our problem, the Gevrey space can be regarded a linear subspace of the
Sobolev space Hm(T3), i.e.,

Gσ :=
{
v ∈ Hm(T3) : ∥v∥Gσ = ⟨v,v⟩1/2Gσ < ∞

}
, m >

5

2
, σ > 0. (2.4)

Remark 2.1 It follows from definitions (2.2) and (2.4) that the Gevrey spaces have the prop-
erty

Gσ2 ⊂ Gσ1 ⊂ G0 = Hm, 0 < σ1 < σ2. (2.5)

Our strategy for choosing the value of σ will be discussed in Section 4.1.
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Since the initial condition η in system (1.1) needs to be divergence-free and the quantity∫
T η dx is an invariant of motion, we introduce the following subspace in which optimal initial
conditions will be sought

V := {v ∈ Gσ : ∇ · v = 0,

∫
T3

v dx = 0}. (2.6)

The Gevrey regularity is closely related to the analyticity of complex extensions of functions
in Gσ, i.e., u(z) := u(x + iy), where i :=

√
−1. If u ∈ Gσ can be extended to a strip

Sδ := {z = [z1, z2, z3]
T ∈ C3 : | Im(z1)|+ | Im(z2)|+ | Im(z3)| < δ}, so that u(z) does not have

any singularities in Sδ, then the largest such value of δ is called the width of the analyticity
strip and we have 0 < σ ≤ δ. Furthermore, if u = u(t) is a smooth time-dependent solution of
the Euler system (1.1), then the width of the analyticity strip is a function of time, δ = δ(t).

As regards the analyticity of solutions of the Euler system (1.1), among related works we
mention the study by Bardos and Benachour (1977) which showed that if the initial data η
is analytic, the solution u(t;η) also remains analytic as long as it is well defined in a certain
Hölder space. The relation between the BKM condition (1.2) and the Gevrey regularity was
investigated by Kukavica and Vicol (2009) who obtained lower bounds on δ(t) proportional

to exp
(
−
∫ t
0 ||∇u(·, s)||L∞ ds

)
. The width of the analyticity strip δ(t) can be conveniently

estimated from the Fourier spectrum of the solution u(t) (Sulem et al., 1983) and is often
used as a regularity indicator whose vanishing implies a singularity formation in numerical
computations of Euler flows (Bustamante and Brachet, 2012).

2.2 Statement of the optimization problem

Motivated by the local existence result in Theorem 1.1, the goal of our optimization-based
formulation is to construct initial data η with a prescribed Hm, m > 5/2, norm, such that
at a given time T > 0, the corresponding solution u(T ;η) of the Euler system (1.1) has the
largest possible Hm norm. To fix attention, we will hereafter use m = 3. Furthermore, since
we consider zero-mean initial conditions, cf. (2.6), without loss of generality, we can use the
H3 seminorm instead of the full H3 norm as this will make the optimization problem more
similar to the problem considered by Kang et al. (2020).

We define the objective functional ΦT : V → R+ as

ΦT (η) := ∥u(T ;η)∥2
Ḣ3 , (2.7)

where u(T ;η) is the solution of the Euler system (1.1) obtained with the initial condition
η ∈ V . System (1.1) possesses a scaling property such that if {u(x, t), p(x, t)} is a solution,
then for any λ > 0, {

uλ(x, t) := λu(x, λt), pλ(x, t) := λ2p(x, λt)
}

(2.8)

is also a solution. Hence, for any nonzero initial condition η, we have the identity

ΦT (η) = ||η||2
Ḣ3Φ||η||Ḣ3T

(
η

||η||Ḣ3

)
. (2.9)
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Therefore, we can restrict our discussion to initial conditions with unit Ḣ3 seminorm which
belong to a closed manifold M1 ⊂ V defined as

M1 = {v ∈ V : ||v||Ḣ3 = 1}. (2.10)

Thus, we arrive at the following optimization problem

Problem 2.2 Given T ∈ R+, find

η̃T = argmax
η∈M1

ΦT (η). (2.11)

Flows corresponding to optimal initial conditions η̃T are referred to as “extreme”. Since a
priori we do not know if a singularity may appear in Euler flows on a given time interval [0, T ],
we solve the optimization problem for increasing values of T and deduce whether a singularity
may occur inside the interval [0, T ] by performing resolution refinement as discussed in detail
in Section 4. If the time window [0, T ] falls within the interval of local existence guaranteed
by Theorem 1.1, then for any η ∈ M1, we expect ΦT (η) to be finite such that it will remain
bounded upon resolution refinement. On the other hand, if there exists an η ∈ M1, which will
lead to a finite-time blow-up inside a sufficiently long time interval [0, T ], we anticipate ΦT (η)
to diverge as the resolution is refined.

3 Solution approach

We solve Problem 2.2 using a Riemannian conjugate gradient approach which is a modification
of a gradient ascent method given by the iterative relation

η
(n+1)
T = η

(n)
T + τn∇ΦT

(
η
(n)
T

)
, η

(0)
T = η0, n = 0, 1, . . . , (3.1)

where ∇ΦT

(
η(n)

)
is the gradient of the objective functional ΦT (η) evaluated at the element

η
(n)
T , τn is the step size along the gradient direction and η0 is the initial guess. A local

maximizer η̃T of Problem 2.2 can then be found as the limit η̃T = limn→∞ η
(n)
T , such that

ΦT (η̃T ) = lim
n→∞

ΦT

(
η
(n)
T

)
= max

η∈M1

ΦT (η) =: Φ̃T ; η0 . (3.2)

Since our optimization problem is non-convex, the sequence constructed in (3.1) may converge
to different local maximizers depending on the initial guess η0. Therefore, we use the subscript
η0 on the RHS in (3.2) to indicate the dependence of the local maximizer on the initial guess.

In the spirit of the “optimize-then-discretize” paradigm (Gunzburger, 2003), we first for-
mulate our approach in the infinite-dimensional (continuous) setting and then discretize the
resulting relations in numerical computations. A key element of the iterative procedure (3.1)
is the evaluation of the gradient ∇ΦT (η), which is based on solving a suitably-defined adjoint
system backwards in time as discussed in Section 3.1. The Riemannian conjugate gradient
method, which accelerates the gradient ascent method (3.1) for problems defined on smooth
manifolds such as M1, is introduced in Section 3.2, whereas numerical techniques used to dis-
cretize the problem are briefly discussed in Section 3.3.1. Finally, different initial guesses we
use are listed in Section 3.3.2 and in Section 3.3.3 we describe the diagnostic quantities that
will be analyzed.
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3.1 Evaluation of the gradient

To compute the gradient ∇ΦT (η) of the objective functional in (3.1), we first introduce the
Gâteaux (directional) differential Φ′

T (η;η
′) : V × V → R

Φ′
T (η;η

′) := lim
ϵ→0

1

ϵ

[
ΦT

(
η + ϵη′)− ΦT (η)

]
, (3.3)

which represents the variation of the objective functional ΦT (η) resulting from applying an
infinitesimal perturbation proportional to η′ ∈ V to the initial condition η. Fixing the first
argument of Φ′

T (η;η
′), we can view the Gâteaux differential (3.3) as a bounded linear functional

on V . Therefore, we can define ∇ΦT (η) using the Riesz representation theorem (Luenberger,
1969) in terms of the inner product on Gσ, cf. (2.4), as

Φ′
T (η;η

′) =
〈
∇ΦT (η),η

′〉
Gσ , η,η′ ∈ V. (3.4)

The Gâteaux differential can be evaluated by substituting (2.7) into (3.3), which yields

Φ′
T (η;η

′) = 2
〈
u(·, T ),u′(·, T )

〉
Ḣ3 = 2

〈
|D|6u(·, T ),u′(·, T )

〉
L2 . (3.5)

Here u′(x, t) is the solution of the linearization of the Euler system (1.1) around its solution
u(x, t;η), which is defined by

L
[
u′

p′

]
: =

[
∂tu

′ + u′ ·∇u+ u ·∇u′ +∇p′

∇ · u′

]
=

[
0

0

]
,

u′(x, 0)= η′(x),

(3.6)

where η′ is the perturbation of the initial condition and p′(x, t) is the corresponding pressure
perturbation.

We note, however, that the expression (3.5) for the Gâteaux differential is not yet consistent
with the Riesz representation form (3.4), since the perturbation η′ of the initial condition does
not appear in it explicitly, but is instead “hidden” in the initial condition of the linearized
problem (3.6). In order to transform expression (3.5) into the required Riesz representation
form, where the perturbation η′ appears explicitly as a linear factor, we introduce the adjoint
states

{
u∗ : T3 × [0, T ] → R3, p∗ : T3 × [0, T ] → R

}
and the following duality-pairing relation(

L
[
u′

p′

]
,

[
u∗

p∗

])
:=

∫ T

0

∫
T3

L
[
u′

p′

]
·
[
u∗

p∗

]
dx dt

=

([
u′

p′

]
, L∗

[
u∗

p∗

])
+

∫
T3

u′(x, T ) · u∗(x, T ) dx

−
∫
T3

η′(x) · u∗(x, 0) dx

=0.

(3.7)

Here “·” denotes the usual Euclidean inner product on R4 and L∗ is the adjoint operator
defined in terms of the following system, which is obtained by performing integration by parts
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with respect to both space and time in (3.7)

L∗
[
u∗

p∗

]
: =

[
−∂tu

∗ − (∇u∗ + (∇u∗)T )u−∇p∗

−∇ · u∗

]
=

[
0

0

]
,

u∗(x, T )= 2|D|6u(x, T ).

(3.8)

We remark that system (3.8) is a terminal-value problem and as such has to be integrated
backwards in time. We also note that the spatial mean of its solutions is conserved during the
time evolution and therefore we have∫

T3

u∗(x, T ) dx =

∫
T3

u∗(x, 0) dx = 0. (3.9)

Combining (3.4), (3.5), (3.7) and (3.8), we have

Φ′
T (η;u

′
0) =

∫
T3

u′(x, T ) · u∗(x, T ) dx =

∫
T3

u′
0(x) · u∗(x, 0) dx =

〈
∇ΦT (η),η

′〉
Gσ . (3.10)

Using the definition of the Gevrey inner product (2.2) in the last equality above, we obtain

〈
∇ΦT (η),η

′〉
Gσ =

∫
T3

u∗(x, 0) · η′(x) dx

=

∫
T3

(1 + |D|2)3e2σ|D|
[
(1 + |D|2)−3e−2σ|D|u∗(x, 0)

]
· η′(x) dx

=
〈
(1 + |D|2)−3e−2σ|D|u∗(·, 0),η′(·)

〉
Gσ

,

(3.11)

which allows us to identify the gradient as

∇ΦT (η) = (1 + |D|2)−3e−2σ|D|u∗(0). (3.12)

In summary, evaluation of this expression requires the solution of the adjoint system (3.8),
which depends on the solution of the Euler system (1.1) with the initial condition η.

3.2 Riemannian conjugate gradient method

For any η ∈ M1, η+τ∇ΦT (η) given by (3.1) is divergence-free but does not necessarily have a
unit Ḣ3 seminorm and thus will not in general belong toM1. In order to enforce this constraint
and accelerate iterations, we use a Riemannian conjugate gradient method that consists of three
steps: first, we project the gradient ∇ΦT (η) onto the tangent space to M1 at η, then perform
a suitable vector transport operation in order to construct a Riemannian conjugate ascent
direction using the previous search direction and, finally, retract the resulting state back to
the constraint manifold M1. An analogous approach was employed by (Danaila and Protas,
2017) to solve an infinite-dimensional minimization problem with a similar structure arising in
quantum fluids.

We first define the tangent space to M1 at v as

TvM1 =
{
z ∈ V : ⟨v, z⟩Ḣ3 = 0

}
, (3.13)
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where the last condition represents the Gâteaux differential of the constraint ∥v∥Ḣ3 = 1. For
any z ∈ TvM1, this condition can be expressed as

⟨v, z⟩Ḣ3 =

∫
T3

|D|3v · |D|3z dx

=

∫
T3

(1 + |D|2)3e2σ|D|
(
(1 + |D|2)−3e−2σ|D||D|6v

)
· z dx

=
〈
(1 + |D|2)−3e−2σ|D||D|6v, z

〉
Gσ

= 0.

(3.14)

Thus, at each point v ∈ M1, the tangent space TvM1 can be characterized using the unit
“normal” vector given by

nv =
(1 + |D|2)−3e−2σ|D||D|6v∣∣∣∣(1 + |D|2)−3e−2σ|D||D|6v

∣∣∣∣
Gσ

(3.15)

which allows us to construct the projection operator PTvM1 : V → TvM1, cf. figure 1,

∀w ∈ V, PTvM1 w = w − ⟨nv,w⟩Gσ nv. (3.16)

In addition, we also need to introduce the retraction operator R : V → M1 which has the
form of normalization needed to satisfy the constraint ||v||Ḣ3 = 1 (Absil et al., 2008; Sato,
2021)

R(v) =
v

||v||Ḣ3

, v ̸= 0. (3.17)

In the standard (Euclidean) conjugate gradient approach, the search direction at (n+1)-th
iteration is obtained as a suitable linear combination of the steepest ascent direction (i.e., the
gradient) computed at (n+1)-th iteration and the search direction obtained at n-th iteration.
In the Riemannian setting the difficulty with this approach is that these two directions do not
belong to the same linear space and hence cannot be added directly. In order to circumvent
this difficulty, we introduce the vector transport operation defined as

T M1 ⊕ T M1 → T M1 : (φ, ξ) 7−→ Γφ(ξ) ∈ T M1, (3.18)

where T M1 = ∪v∈M1TvM1 is the tangent bundle on M1, describing how the vector field ξ
is transported along the manifold M1 in the direction of φ (Absil et al., 2008). The vector
transport provides a map between the tangent spaces T

η
(n)
T

M1 and T
η
(n+1)
T

M1 obtained at two

consecutive iterations, so that algebraic operations can be performed on vectors belonging to
these subspaces. It therefore generalizes the concept of the parallel translation to the motion
on the manifold. In general, vector transport is defined up to a multiplicative prefactor and
can be computed via the differentiated retraction as (Absil et al., 2008)

Tφu(ξu) =
d

dt
Ru(φu + tξu)

∣∣
t=0

=
1

∥u+φu∥Ḣ3

[
ξu −

⟨u+φu, ξu⟩Ḣ3

∥u+φu∥2Ḣ3

(u+φu)

]
, u ∈ M1

(3.19)
Combining the elements introduced above, the Riemannian conjugate gradient approach is

given by the iterative relation

η
(n+1)
T = R

[
η
(n)
T + τnd

(n)
]
, η

(0)
T = η0, n = 0, 1, . . . , (3.20)
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Figure 1: Schematic illustration of the Riemannian conjugate gradient method (3.20).

and is also schematically illustrated in figure 1. Here the search direction d(n) is computed as

d(0) = PT0 G
(0),

d(n) = PTn G
(n) + βnΓτn−1dn−1

(
dn−1

)
, n ≥ 1,

(3.21)

where G(n) := ∇ΦT

(
η(n)

)
and Tn := Tη(n)M1. The “momentum” term βn is chosen to

enforce the conjugacy of consecutive search directions and is computed using the Polak-Ribière
approach (Nocedal and Wright, 1999)

βn =

〈
PTn G

(n),
(
PTn G

(n) − Γτn−1dn−1 PTn−1 G
(n−1)

)〉
Gσ∣∣∣∣∣∣PTn−1 G

(n−1)
∣∣∣∣∣∣2
Gσ

. (3.22)

The step size τn in (3.20) is determined by solving the arc-search problem

τn = argmax
τ>0

{
ΦT

(
R
[
η(n) + τd(n)

])}
(3.23)

using a suitable derivative-free approach, such as a variant of Brent’s algorithm (Press et al.,
1986). Due to the presence of the retraction operator (3.17) in (3.20), the search in (3.23) is
performed following a geodesic arc on the manifold M1, this problem can be regarded as a
generalization of the more common line search approach (Press et al., 1986).

3.3 Numerical methods

3.3.1 Discretization, validation and numerical parameters

In numerical computations, systems (1.1) and (3.8) are discretized in space using a standard
pseudospectral Fourier method where derivatives are evaluated in the Fourier space, whereas
nonlinear products are computed in the physical space on an uniform grid with N points in
each direction. As regards dealiasing, we use the Gaussian filter proposed by Hou and Li (2007)
which is defined in terms of the Fourier multiplier Ĝj := exp

{
−36[(2|j1|/N)36 + (2|j2|/N)36 + (2|j3|/N)36]

}
.

As discussed in Section 4.2, this filter will also serve to prevent the blow-up of the numerical
solution after it becomes under-resolved. The resulting system of ordinary differential equa-
tions is discretized in time using an explicit fourth-order Runge-Kutta (RK4) method. The
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code is parallelized using MPI and the fast Fourier transforms (FFTs) are computed using
the parallel version of the software library FFTW (Frigo and Johnson, 2003). We consider
four spatial resolutions with N3 = 1283, 2563, 5123, 10243 and the time steps ∆t are adjusted
to satisfy the stability conditions of the RK4 method. If needed, the resolution used will be
denoted with a superscript N , i.e., uN (t) represents the numerical solution of the Euler system
(1.1) computed with the resolution N3, etc. At each iteration in (3.20), the solution u(t) of
the Euler system (1.1) is needed to construct coefficients in the adjoint system (3.8). For the
three smaller resolutions, we store the solutions of (1.1) at discrete time steps so that they can
be read directly from files when solving (3.8). However, this is not possible for the resolution
of 10243 due to storage limitations. We get around this difficulty using the time-reversibility
of the Euler system (1.1) to evolve this system backwards in time while solving the adjoint
system; this allows us to determine the coefficients in the latter system without having to store
the entire solution to the former.

The solver for the Euler system (1.1) was validated by verifying the convergence of the
numerical solutions to certain exact solutions of (1.1) as we increase the spatial resolution
and/or decrease the time step. As regards the accuracy of the evaluation of the gradient
∇ΦT (η), we consider the quantity (Ayala, 2014)

κN (ϵ) :=
ΦN
T (η + ϵη′)− ΦN

T (η)

ϵ
〈
∇ΦN

T (η),η′
〉
Gσ

(3.24)

which is the ratio of a finite-difference approximation of the Gâteaux differential (3.3) and its
representation in terms of the Riesz representation formula (3.4), both approximated using the
resolution N3. In theory, we expect that limN→∞ limϵ→0 κ

N (ϵ) = 1. However, in numerical
computations performed with finite-precision arithmetics, κN (ϵ) will become unbounded as
ϵ → 0 due to subtractive cancellation errors in the numerator in (3.24). For intermediate
values of ϵ, the quantity |κN (ϵ)− 1| is a measure of inaccuracies involved in the computation
of ΦN

T (η) and ∇ΦN
T (η) due to approximation errors in the numerical solution of systems (1.1)

and (3.8). In our validation tests, we observed that, as expected, |κN (ϵ)− 1| is reduced as the
discretization parameters N and ∆t are refined.

In computations with the nonlinear conjugate gradient method, it is common to restart the
algorithm periodically with a simple gradient step, i.e., by setting βn = 0, which allows us to
improve convergence by getting rid of ineffectual old information (Nocedal and Wright, 1999).
In our computations we restart the algorithm (3.20) based on the following two criteria:

(1) n = 20k, k ∈ Z+,

(2) The search direction d(n) fails to be an ascent direction, i.e.,〈
d(n),PTn G

(n)
〉
Gσ∣∣∣∣∣∣d(n)

∣∣∣∣∣∣
Gσ

∣∣∣∣∣∣PTn G
(n)

∣∣∣∣∣∣
Gσ

< ϵmachine, 0 < ϵmachine ≪ 1. (3.25)

Iterations (3.20) are declared converged when the relative change of the objective functional
between two consecutive iterations becomes smaller than a specified tolerance 0 < tol ≪ 1,
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i.e., when

0 ≤
Φ̃N
T

(
η
(n+1)
T

)
− Φ̃N

T

(
η
(n)
T

)
Φ̃N
T

(
η
(n)
T

) < tol. (3.26)

3.3.2 Initial guesses

Since Problem 2.2 is non-convex, iterations (3.20) may produce local maximizers which will
depend on the initial guess η0. In numerical computations, we thus consider a variety of
different initial guesses listed below, all normalized such that ∥η0∥Ḣ3 = 1. For simplicity,
we use the same notation for the original initial conditions and their normalizations. In each
case, we solve Problem 2.2 to obtain an optimal initial condition η̃T such that for any given
T the norm ∥u(T ; η̃T )∥Ḣ3 is larger than ∥u(T ;η0)∥Ḣ3 where η0 is each of the following initial
guesses.

(1) The 3D Taylor-Green vortex (Taylor and Green, 1937):

ηTG :=

 sin(2πx) cos(2πy) cos(2πz)
− cos(2πx) sin(2πy) cos(2πz)

0

 . (3.27)

The Taylor-Green vortex has been widely used as a candidate for potential blow-up in
Euler flows, however, it is still an open question whether this initial condition can indeed
lead to a singularity formation in a finite time (Cichowlas and Brachet, 2005; Bustamante
and Brachet, 2012; Fehn et al., 2022). We mention that the time windows [0, T ] considered
in this paper are much shorter than the times when a potentially singular behavior was
observed in these earlier studies.

(2) Random initial condition:

ηrand := PL vrand := vrand −∇∆−1(∇ · vrand), (3.28)

where PL is the Leray projector (Majda and Bertozzi, 2002) with the property that for
any w ∈ H1(T3), ∇ · (PLw) = 0, and vrand is given by

vrand =

v1v2
v3

 =


∑

|j1|+|j2|+|j3|≤N0
e−|j|/(4π)ei2πθ1(j1)ei2πj·x + c.c.∑

|j1|+|j2|+|j3|≤N0
e−|j|/(4π)ei2πθ2(j2)ei2πj·x + c.c.∑

|j1|+|j2|+|j3|≤N0
e−|j|/(4π)ei2πθ3(j3)ei2πj·x + c.c.

 , (3.29)

in which θ1, θ2 and θ3 are N0-dimensional random variables with uniform distributions on
[0, 1]N0 . In practice, we choose N0 = 64 and emphasize that in contrast to the unimodal
Taylor-Green vortex (3.27), the random initial condition (3.28) has energy distributed
over Fourier coefficients with wavevectors within the shell of radius 2πN0.

(3) Kerr’s initial condition (Kerr, 1993; Hou and Li, 2006):

ηK := ∇× (|D|−2ωK) (3.30)

13



which represents two perturbed anti-parallel vortex tubes located symmetrically with
respect to the xy-plane such that ωK(x, y, z) = −ωK(x, y,−z). The vorticity of the
vortex tube above the xy-plane is given by

ωK = 8Gω(r)[ω1, ω2, ω3]
T , (3.31)

where G is a Fourier filter defined by Ĝj = exp
(
−0.05

(
j41 + j42 + j43

))
and

ω(r) =

{
exp

[
−r2

1−r2
+ r4(1 + r2 + r4)

]
, r < 1,

0, r ≥ 1,
r =

1

R

√
[x− x(s)]2 + [z − z(s)]2,

x(s) = δx cos(πs/Lx), z(s) = z0,

s(y) = y2 + Lyδy1 sin(πy2/Ly), y2(y) = 4πy + Lyδy2 sin(π(4πy)/Ly),

ω1 = −πδx
Lx

[1 + πδy2 cos(π(4πy)/Ly)] · [1 + πδy1 cos(πy2/Ly)] sin(πs/Lx),

ω2 = 1, ω3 = 0.
(3.32)

We choose the same parameters as Hou and Li (2006), i.e.,

δy1 = 0.5, δy2 = 0.4, δx = −1.6, z0 = 1.57, R = 0.75, Lx = Ly = 4π, Lz = 2π. (3.33)

We would like to point out that in Hou and Li (2006), the equations are posed on
[−2π, 2π]3 rather than [−1/2, 1/2]3. We also note that due to a different normalization,
the times up to which Kerr (1993); Hou and Li (2006) were able to compute solutions
of the Euler system (1.1) with the initial condition ηK correspond to t1 = 108231 and
t2 = 110059, respectively, and are significantly longer than the optimization windows
considered in this study.

(4) Hou’s axisymmetric initial condition (Hou, 2022):

ηH := Guθeθ, (3.34)

where eθ is the unit vector in the azimuthal direction of the cylindrical coordinate system
and uθ is the angular velocity component given by

uθ =

{
r exp

(
−r2/(1− r2)

) 12000(1−r2)18 sin(2πz)

1+12.5 sin2(πz)
, r < 1,

0, r ≥ 1,
r =

√
x2 + y2

0.9
. (3.35)

This initial condition is a “compactified” version of the initial condition originally con-
sidered by Hou (2022), where it was defined on a cylindrical domain of unit radius and
with a no-flow boundary condition. The results reported by Hou (2022) indicate that the
Euler flow on such a bounded domain obtained with the initial condition (3.34) develops
a singularity at the origin after a finite, albeit quite long, time.
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3.3.3 Diagnostic quantities

We analyze numerical solutions of system (1.1) based on the following diagnostic quantities:
the Ḣ3 seminorm of the velocity field u(t), the L∞ norm of the vorticity field ω(t) and the
width δ(t) of the analyticity strip characterizing the velocity field, all of which are functions
of time t.

We approximate ∥u(t)∥Ḣ3 and ∥ω(t)∥L∞ as

∥u(t)∥Ḣ3 ≈

√√√√N−1∑
j1=0

N−1∑
j2=0

N−1∑
j3=0

|2πj|6 |ûj(t)|2, (3.36a)

∥ω(t)∥L∞ ≈ max
0≤j1,j2,j3<N

|ω (j1/N, j2/N, j3/N, t)| . (3.36b)

The width of the analyticity strip δ(t) has been used to diagnose singularity formation
in solutions of various PDEs (Sulem et al., 1983), including the 3D Euler equations (1.1)
(Bustamante and Brachet, 2012). To approximate it, we first define the energy spectrum of
u(x, t) as

e(k, t) :=
1

2

∑
j≤|j|<j+1

|ûj(t)|2, k = 2πj, j ∈ N, (3.37)

such that the kinetic energy of the flow is

E(t) :=
1

2

∫
T3

|u(x, t)|2 dx =
1

2

∑
j∈Z3

|ûj(t)|2 =
∑
j

e(2πj, t). (3.38)

When u(t) is real-analytic and admits an extension to the complex space C3, it can be shown
that the energy spectrum (3.37) has the following asymptotic representation as k → ∞ (Carrier
et al., 2005)

e(k, t) = C(t)k−n(t)e−2kδ(t), (3.39)

where C(t) is a scaling constant and n(t) is the order of the singularity nearest to the real
line. Clearly, the loss of analyticity and hence the singularity formation are signalled by the
vanishing of δ(t). Fixing the time t and computing the logarithm of (3.39), the parameters
C(t), n(t) and δ(t) can be determined by performing a least-squares fit to minimize the error
functional

χ(t) :=

k>∑
k=k<

[ln e(k, t)− lnC(t) + n(t) ln k + 2kδ(t)]2 , (3.40)

where k< = 4π and k> is determined in a slightly different manner for different time windows
T (details are provided below). Since (ln(k+2π)− ln k) decreases as k grows, the transformed
wavenumbers {ln k, k ∈ 2πN} are not evenly distributed over the interval [ln k<, ln k>]. This
makes it difficult to accurately determine the parameter n(t), as there are fewer grid points
for smaller values of k. In order to get around this problem, we perform the fit using grid
points distributed uniformly over the interval [ln k<, ln k>] where the error functional (3.40) is
evaluated by performing a linear interpolation of e(k, t) onto these equispaced points.
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4 Numerical results

To distinguish between regular and potentially singular evolution, we solve Problem 2.2 on
“short” and “long” time intervals [0, T ] and perform a resolution refinement, where optimal
initial conditions η̃N

T and the corresponding Euler flows uN
(
t; η̃N

T

)
are computed with increas-

ing numerical resolutions N3, cf. Section 3.3.1. We add that, based on the characteristic length
scale L = 1 (given by the size of the domain Ω) and the “size” of the initial data U ∼ 1, the
characteristic time scale of the flow is L/U ∼ 1.

When T is sufficiently small, such that the Euler system (1.1) is guaranteed by Theorem
1.1 to be well-posed on [0, T ], we expect that

lim
N→∞

ΦT

(
η̃N
T

)
< ∞, (4.1)

i.e., the objective functional (2.7) must remain finite upon resolution refinement.
On the other hand, when T is large enough such that Theorem 1.1 does not assert the

existence of classical solutions on [0, T ] for regular initial data η, the divergence of the objective
functional (2.7) upon resolution refinement

lim
N→∞

ΦT

(
η̃N
T

)
= ∞ (4.2)

would signal the possibility of a singularity formation at some t ∈ [0, T ]. As we shall see
in Section 4.1 and Section 4.2 below, behaviors consistent with (4.1) and (4.2) are in fact
observed in solutions of Problem 2.2 obtained with T = 25 and T = 75, respectively, with
the caveat that the limits in (4.1)–(4.2) are extrapolated from four resolutions only (N3 =
1283, 2563, 5123, 10243).

4.1 Results for T = 25

Since solutions of Problem 2.2 depend on the value of the parameter σ defining the Gevrey
space via (2.2) and (2.4), we begin by examining the effect of this parameter on these solutions.
We solve Problem 2.2 in different Gevrey spaces Gσ with σ = 10−1, 10−2, . . . , 10−5 using the
resolution 1283 and two initial guesses ηTG and ηrand. The dependence of the value of the
objective functional Φ25

(
η(n)

)
on the iteration index n in (3.20) is shown for different σ in

figure 2 for the two initial guesses. We observe that as long as σ is sufficiently small (σ < 10−1),
its value does not have an appreciable effect on the maximum attained value Φ̃25 of the objective
functional. However, this parameter does affect the rate of convergence and smaller values of
σ typically result in faster convergence. This can be interpreted in terms of an “effective
dimension” of the discrete space used to approximate the optimal initial condition η̃N

25, which
is larger for smaller σ since decreasing the value of this parameter reduces the penalty on the
Fourier components of η̃N

25 with large wavenumbers |k|. Hereafter we will use σ = 10−5 which

results in both larger attained values of Φ̃25 and faster convergence of iterations in (3.20),
cf. figure 2.

Since Problem 2.2 is non-convex, iterations (3.20) may lead to different local maximizers
depending on the choice of the initial guess η. To assess this possibility, we solve Problem 2.2
using four initial guesses ηTG, ηrand, ηK and ηH introduced in Section 3.3.2 with the resolution
1283. The results are presented in figures 3(a) and 3(b) where we show, respectively, the value of
the objective functional Φ25

(
η(n)

)
as a function of the iteration index n and the energy spectra
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Figure 2: [Short time window, T = 25] Dependence of the objective functional Φ25

(
η(n)

)
on

the iteration index n for different values of σ when (a) ηTG and (b) ηrand are used as initial
guesses in (3.20).

(3.37) of the optimal initial conditions η̃25 obtained with different initial guesses. From the
coincidence of the terminal values Φ̃25 in figure 3(a) and of the energy spectra e(k, 0) in figure
3(b) we conclude that an essentially the same optimal initial condition η̃25 is found when the
initial guesses ηTG, ηrand and ηH are used. On the other hand, with the initial guess ηK, a
much lower (approximately by a factor of 4) terminal value Φ̃25 of the objective functional is
found, cf. figure 3(a), which corresponds to an optimal initial condition with less energy in the
high-wavenumber part of the spectrum in figure 3(b). The reason for this is that the initial
condition ηK is designed to produce a large growth of different diagnostic quantities only after
a long time, approximately t ≈ 110059 (this value of t is obtained by rescaling the time when
Hou and Li (2006) stopped their computations to account for the normalization ∥η∥Ḣ3 = 1 we
use in the present study). In the remainder of this subsection we will use ηTG as the initial
guess in (3.20), which will allow us to compare our results with the findings of earlier studies of
potential singularities in Euler flows that used the Taylor-Green vortex as the initial condition
(Bustamante and Brachet, 2012).

As is evident from figure 3(b), calculations performed with the resolution 1283 are not
fully resolved since in all cases the optimal initial conditions η̃25 have Fourier coefficients
with magnitudes larger than the machine precision for wavenumbers |k| > k0:= 2π⌊N/3⌋,
which results in aliasing errors. To address this issue, we solve Problem 2.2 with increasing
resolutions N3 = 2563, 5123, 10243, which is done using the optimal initial condition η̃N

25 as
the initial guess for the iteration (3.20) performed with the resolution (2N)3. The dependence
of the objective functional ΦN

25

(
η(n)

)
on the iteration index n is shown in figure 4(a), where

we see that larger values of the objective functional are achieved each time the resolution is
refined. We also observe that after each resolution refinement, fewer iterations are needed to
achieve convergence; this is because only the Fourier coefficients with high wavenumbers, which
represent the fine structures in the flow, need to be adjusted following a resolution refinement.
As is evident from figure 4(b), the maximum values of the objective functional Φ̃N

25 converge

17



0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

(a)

10
1

10
2

10
3

k

10
-30

10
-20

10
-10

10
0

e
(k

,0
)

(b)

Figure 3: [Short time window, T = 25] (a) Dependence of the objective functional Φ25

(
η(n)

)
on the iteration index n and (b) energy spectra (3.37) of the optimal initial conditions η̃25

corresponding to different initial guesses ηTG, ηrand, ηK and ηH used in iterations (3.20). In
panel (b) the solid line represents the Gaussian filter we use (Hou and Li, 2007).

to a well-defined finite limit as the resolution increases, cf. (4.1).
The energy spectra of the optimal initial conditions η̃N

25 and of the corresponding terminal
states uN

(
25; η̃N

25

)
are shown in figures 5(a) and 5(b) for different resolutions. These plots

indicate that the computations are well resolved with N3 = 10243. The time evolution of the
width δ(t) of the analyticity strip and of the corresponding order n(t) of the singularity are
shown for N3 = 5123, 10243 in figures 6(a) and 6(b), respectively. When determining these
parameters by minimizing (3.40) we use k> = min{k0, supe(k,t)≥10−30 k}, i.e., the spectrum was
fitted up to the maximum wavenumbers unaffected by aliasing or to wavenumbers at which
the magnitude of the Fourier coefficients would drop to the level of the machine precision. The
fitting was also terminated whenever δ(t) ≤ 0. Besides aliasing errors, we use another criterion
to gauge the reliability of our computation which is based on δ(t). Following (Brachet et al.,
1983; Bustamante and Brachet, 2012), we define a “reliability time” Trel using the condition

δ(Trel) k0 = 2 (4.3)

and declare the numerical computation trustworthy for times t ≤ Trel, or in other words, as
long as δ(t) ≥ 2/k0. In figure 6(a) the reliability conditions (4.3) for different resolutions
are marked with horizontal lines. The reliability time increases as we increase the resolution
and the figure shows that the simulation remains reliable throughout the entire time interval
[0, 25] when N = 1024, which is consistent with figure 5(b). In figure 6(a), δ(t) reveals a mild
decrease only near the end of the time window [0, 25]. These observations further confirm that
the extreme Euler flows which correspond to the initial data η̃25 obtained as local maximizers
of Problem 2.2 for T = 25 remain regular on the interval [0, 25].

To close this subsection, in figures 7(a) and 7(b) we compare time evolution of the norms
∥u(t)∥Ḣ3 and ∥ω(t)∥L∞ in Euler flows corresponding to different initial conditions listed in
Section 3.3.2. We see that the growth of ∥u(t)∥Ḣ3 is by far the largest in the flow with the
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Figure 4: [Short time window, T = 25] Dependence of (a) the objective functional ΦN
25

(
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)
on the iteration index n for different resolutions N3 and (b) of the corresponding maximum
attained values Φ̃N

25 of the objective functional on N .
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Figure 5: [Short time window, T = 25] The energy spectra of (a) the optimal initial conditions
η̃N
25 and (b) of the corresponding terminal states uN

(
25; η̃N

25

)
obtained for different resolutions

N3. The solid lines represent the Gaussian filters we use (Hou and Li, 2007) whereas the
dashed lines mark the threshold wavenumber k0 above which aliasing errors occur.
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Figure 6: [Short time window, T = 25] Dependence of (a) the width δ(t) of the analyticity
strip and (b) the corresponding order n(t) of the singularity, cf. (3.39), on time t ∈ [0, 25] in
the extreme flows computed with resolutions N3 = 5123, 10243. In (a) the horizontal lines
represent the reliability condition (4.3) corresponding to different resolutions.

optimal initial condition η̃1024
25 and is only modest when the other initial conditions are used.

Likewise, the norm ∥ω(t)∥L∞ exhibits some weak growth only in the flow with the optimal
initial condition η̃1024

25 while it actually decreases for t ∈ [0, 25] when the initial conditions ηTG,
ηrand and ηH are used.

4.2 Results for T = 75

We now move on to discuss solutions of Problem 2.2 on a longer time window with T = 75
where the behavior of the “extreme” flows is qualitatively different from their behavior on
the short time window discussed in Section 4.1. We begin our discussion by analyzing the
effect of the initial guess η0 on the local maximizers of Problem 2.2 obtained with the iterative
algorithm (3.20). In figure 8(a) we show the dependence of the objective functional Φ75

(
η(n)

)
on the iteration index n and figure 8(b) shows the energy spectra of the corresponding optimal
initial conditions η̃75. We remark that, as an intermediate step, we first use the optimal initial
condition η̃128

25 as the initial guess to solve Problem 2.2 with T = 50, and then use its solution,
η̃128
50 , as the initial guess for T = 75. We see that, with the exception of the initial guess ηK,

computations performed with all other initial guesses lead to the same local maximizer (up
to rotation and translation). As was the case when Problem 2.2 was solved with T = 25,
computations using the initial guess ηK lead to a much smaller maximum attained value of the
objective functional since this initial condition is designed to promote a significant growth of
various regularity indicators, such as ∥u(t)∥Ḣ3 and ||ω(t)||L∞ , only on much longer time scales
(Hou and Li, 2006).

As is evident from figure 8(b), computations carried out with the resolution 1283 are under-
resolved and now we consider the effect of refining the resolution on solutions of Problem 2.2
with T = 75. As we did in Section 4.1, we proceed by using the optimal initial condition η̃N

75

as the initial guess in iteration (3.20) when solving Problem 2.2 with the resolution (2N)3.
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Figure 7: [Short time window, T = 25] Dependence of the solution norms (a) ∥u(t)∥Ḣ3 and
(b) ∥ω(t)∥L∞ for t ∈ [0, 25] in Euler flows corresponding to different initial conditions and
approximated using the resolution N3 = 10243.
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Figure 8: [Long time window, T = 75] (a) Dependence of the objective functional Φ75

(
η(n)

)
on the iteration index n and (b) energy spectra (3.37) of the optimal initial conditions η̃75

corresponding to different initial guesses ηTG, ηrand, ηK and η̃25 used in iterations (3.20). In
panel (b) the solid line represents the Gaussian filter we use (Hou and Li, 2007).
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Figure 9: [Long time window, T = 75] Dependence of (a) the objective functional ΦN
75

(
η(n)

)
on the iteration index n for different resolutions N3 and (b) of the corresponding maximum
attained values Φ̃N

75 of the objective functional on N .

The dependence of the objective functional ΦN
75

(
η(n)

)
on the iteration index n is presented for

different resolutions in figure 9(a). Figure 9(b) shows that, unlike in the case with T = 25,
cf. figure 4(b), the maximum attained values of the objective functional Φ̃N

75 diverge as we

refine the resolution with the difference Φ̃2N
75 − Φ̃N

75 increasing with N . As explained in Section
4, this indicates the possibility of a singularity formation at some t ∈ [0, 75].

The energy spectra of the optimal initial conditions η̃N
75 and the corresponding terminal

states uN
(
75; η̃N

75

)
are shown in figures 10(a) and 10(b), respectively. Comparing these two

figures, we observe that even though the initial conditions η̃N
75 are well-resolved for N =

512, 1024, the time evolutions computed with all resolutions become under-resolved at later
times. In particular, for N = 1024 this happens at t = T0 := 51.25 and is detected by the
appearance of aliasing errors when the amplitudes of Fourier coefficients with wavenumbers
|k| > k0 become larger than 10−30. For lower resolutions, computations become under-resolved
at earlier times. Once the numerical solution becomes under-resolved, its blow-up is prevented
by the presence of the filter Ĝj (cf. Section 3.3.1) which can be regarded as a form of dissipative
regularization applied to the Euler system (1.1). Since the form of the filter depends on the
resolution N (cf. figures 5 and 10), its regularizing effect vanishes when the resolution is refined,
thereby allowing the computed solution to approach the singular trajectory as seen in figure
9(b).

The time evolution of the width δ(t) of the analyticity strip and of the corresponding order
n(t) of the singularity in optimal flows computed with N = 512, 1024 is shown in figures
11(a) and 11(b), respectively. When determining these parameters by minimizing (3.40) we
use k> = k0, i.e., the spectrum was fitted up to the maximum wavenumbers unaffected by
aliasing. The fitting was also terminated whenever δ(t) ≤ 0. In figure 11(a) we see that,
following an initial period of growth, δ(t) starts to decrease when t > 40 and this decrease
follows a power-law behavior. According to the reliability conditions (4.3) indicated in figure
11(a), when N = 1024, we can trust the numerical computation up to time t = Trel = 51.875,
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Figure 10: [Long time window, T = 75] The energy spectra of (a) the optimal initial conditions
η̃N
75 and (b) of the corresponding terminal states uN

(
75; η̃N

75

)
obtained for different resolutions

N3. The solid lines represent the Gaussian filters we use (Hou and Li, 2007) whereas the
dashed lines mark the threshold wavenumber k0 above which aliasing errors occur.

which is close to, but slightly longer, than the time T0 when aliasing errors appear. This is
reasonable as there is a delay in the effect of aliasing errors on the part of the spectrum which
determines the width of the analyticity strip.

The time evolution of ∥u(t)∥Ḣ3 and ∥ω(t)∥L∞ in the flows corresponding to different initial
conditions is shown in figures 12(a) and 12(b), respectively. As was the case in Section 4.1,
a significant growth of these norms is evident only in the flows corresponding to the optimal
initial condition η̃1024

75 , whereas ∥ω(t)∥L∞ actually decreases on [0, 75] for solutions with the
initial conditions ηTG, ηrand and ηH. As regards the time evolution of the latter quantity,
Bustamante and Brachet (2012, Corollaries 10 and 11) used the BKM criterion (1.2) to obtain
a condition (whose details are omitted for brevity) which must be satisfied by the exponent
Γ(t) > 0 in an ansatz describing the evolution of the width of the analyticity strip under
the assumption of finite-time blow-up, namely δ(t) = C(t)(T ∗ − t)Γ(t), and the corresponding
evolution of the order of singularity n(t). The flow evolution corresponding to the optimal
initial data η̃1024

75 satisfies this condition, indicating that this evolution is consistent with a
possible singularity formation in finite time despite modest growth of the norm ∥ω(t)∥L∞

evident in figure 12(b).
In order to shed light on whether the growth of the norm ∥u(t)∥Ḣ3 observed in figure 12(a)

corresponding to the optimal initial conditions η̃N
75 may indicate a singularity formation at

some time t ∈ [0, 75], we further analyze the growth rate of ∥u(t)∥Ḣ3 . We assume that the
evolution of this norm is described by the relation

d∥u(t)∥Ḣ3

dt
= C(t)∥u(t)∥α(t)

Ḣ3
, (4.4)

which is motivated by the structure of rigorous a priori estimates for the rate of growth of
Sobolev norms of solutions to the Navier-Stokes system (Doering and Gibbon, 1995; Lu and
Doering, 2008; Ayala and Protas, 2017). We note that if the exponent α(t) in (4.4) remains
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Figure 11: [Long time window, T = 75] Dependence of (a) the width δ(t) of the analyticity
strip and (b) the corresponding order n(t) of the singularity, cf. (3.39), on time t ∈ [0, 75] in
the extreme flows computed with resolutions N3 = 5123, 10243. In (a) the horizontal lines
represent the reliability condition (4.3) corresponding to different resolutions.
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Figure 12: [Long time window, T = 75] Dependence of the solution norms (a) ∥u(t)∥Ḣ3 and
(b) ∥ω(t)∥L∞ for t ∈ [0, 75] in Euler flows corresponding to different initial conditions and
approximated using the resolution N3 = 10243.
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Figure 13: [Long time window, T = 75] (a) Dependence of (d/dt)∥u(t)∥Ḣ3 on ∥u(t)∥Ḣ3 in
Euler flows with the optimal initial conditions η̃N

75 for t ∈ [0, 75] and different resolutions N3

and (b) the corresponding exponent α(t) in (4.4) for t ∈ [0, 75] with N = 1024. The straight
lines in both panels represent α = 1.

larger than 1 over a sufficiently long time with the prefactor C(t) bounded away from zero, then
there will be a finite-time blow-up of the norm ∥u(t)∥Ḣ3 , and thus formation of a singularity
in the corresponding Euler flow, cf. Theorem 1.1. To obtain further insights about these
quantities, in figure 13(a) we plot (d/dt)∥u(t)∥Ḣ3 versus ∥u(t)∥Ḣ3 with t ∈ [0, 75] using log-
log scaling for the optimal flows computed with different resolutions, such that the exponent
α(t) can be inferred from the slope of the tangent to the curves at ∥u(t)∥Ḣ3 . The evolution
of the exponent α(t) determined by a local fitting procedure applied to ansatz (4.4) with
time t ∈ [0, 75] is shown for N = 1024 in figure 13(b), where a decreasing trend is evident
and we have α(t) > 1 for t ∈ [0, 53.495] while the computation becomes under-resolved at
t ≈ 51.25. As regards the prefactor C(t) in (4.4), it reveals a slow growth with time t (and

with ∥u(t)∥Ḣ3) which is well approximated by the expression C(t) = 0.0568
(
ln ∥u(t)∥Ḣ3

)0.5742
with parameters determined via a least-squares fit. We thus conclude that the time evolution
of the norm ∥u(t)∥Ḣ3 in the flow with the optimal initial condition η̃1024

75 remains consistent
with the singularity formation as long as the computation remains well-resolved.

Finally, we analyze the physical-space structure of the extreme flow, beginning with the
vorticity field of the optimal initial condition ω̃1024

75 = [ω1, ω2, ω3] = ∇× η̃1024
75 . In figure 14, we

show the three components of ω̃1024
75 and observe that the optimal initial condition has the form

of three perpendicular pairs of distorted anti-parallel vortex tubes. If we define the component-
wise enstrophy as Ei := 1

2

∫
T3 ω

2
i (x) dx, i = 1, 2, 3, then we have E1 = 6.34 × 10−5 ≈ E2 =

6.35× 10−5 < E3 = 8.03× 10−5, which is a signature of the symmetry of the flow with respect
to the plane x1 = x2. The helicity of the optimal flow defined as H(t) =

∫
T3 h(x, t) dx, where

h(x, t) := u(x, t) · ω(x, t) is the helicity density, vanishes (it is an invariant of the evolution).
The helicity density h(x, 0) of the optimal initial condition η̃1024

75 is shown in figure 14(d)
revealing that the vanishing of the helicity H(t), t ≥ 0, is a consequence of the aforementioned
symmetry. In fact, this initial condition possesses a similar physical-space structure as the one
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found in Kang et al. (2020), where the authors searched for singularities in Navier-Stokes flows
by maximizing the total enstrophy at a prescribed final time. While, unlike here, no evidence
for singularity formation was revealed in that earlier study.

Next, in figure 15(a), we analyze the optimal initial condition η̃1024
75 in more detail with the

corresponding terminal state u1024
(
75; η̃1024

75

)
shown in figure 15(b). In both figures we show

the isosurfaces of |ω| and log10
(∣∣|D|3u

∣∣) together with selected streamlines passing through
a small neighborhood of the origin (see also Movie 1 available in Supplementary Material).
We observe that throughout its evolution the optimal flow has the form of two jets colliding
head-on with the vorticity concentrating into two strongly flattened vortex rings as time goes
on. The region with large values of log10

(∣∣|D|3u
∣∣), which is the quantity that matters in

our objective functional (2.7), evolves into a flat disc located in the middle of the two rings.
The vorticity field at the final time t = 75 has three symmetry planes: x1 = x2, x1 = x3
and x2 = x3, in addition to discrete rotation symmetries with respect to the body diagonal
passing through the center of the two rings. Without loss of generality, we focus our discussion
on the symmetry plane x1 = x2, and in figures 16(a) and 16(b) we visualize the vorticity

component ω⊥ := ω · n normal to that plane (n =
[
− 1√

2
, 1√

2
, 0
]T

is the unit vector normal

to the symmetry plane), at t = 0 and t = 75 (see also Movie 2 available in Supplementary
Material). The streamline pattern in figure 15 (b) indicates that as t approaches 75, the flow
in the two jets colliding near the origin sharply transitions towards a radial outflow through
the gap between the two vortex rings. At the same time, this gap becomes very narrow,
which results in a sharp transition between the regions of the symmetry plane characterized by
opposite signs of the normal vorticity ω⊥, cf. figure 16(b). This appears to be the mechanism
responsible for the possible singularity formation in the extreme flow considered here.

5 Discussion and conclusions

In this paper, we study the problem concerning the possibility of spontaneous formation of
singularities in solutions of the 3D Euler equations (1.1) on a periodic domain. Based on
the local well-posedness results by Kato (1972) stated in Theorem 1.1, we formulate a PDE-
constrained optimization problem to search for initial conditions η with unit Ḣ3 seminorm such
that the corresponding optimal solution achieves a maximum Ḣ3 seminorm at a prescribed time
T . Since we focus on smooth (real-analytic) initial data, the optimization problem is formulated
in a suitable Gevrey space (2.4). It is then solved in the “optimize-then-discretize” setting using
a state-of-the-art Riemannian conjugate gradient method (3.20) where the search direction at
every iteration depends on the gradient of the objective functional at the current iteration
as well as on the previous search direction; the former is obtained by solving the adjoint
system (3.8) backward in time. The required regularity of the gradient is ensured by the use of
the Riesz representation theorem, cf. (3.4). An analogous approach has been successfully used
to solve PDE-constrained optimization problems formulated to elucidate extreme behaviors in
1D Burgers (Ayala and Protas, 2011) and 3D Navier-Stokes flows (Kang et al., 2020; Kang
and Protas, 2021).

Problem 2.2 is non-convex and we have found evidence for the presence of nonunique local
maximizers corresponding to different initial guesses listed in § 3.3.2. However, iterations
performed with most initial guesses were found to converge to the same (up to rotation and
translation) local maximizer, with the exception of the initial guess ηK, which was designed
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(a) (b)

(c) (d)

Figure 14: [Long time window, T = 75] Isosurfaces of the components (a) ω1, (b) ω2 and (c)
ω3 of the vorticity field and of (d) the helicity density h(x, 0) corresponding to the optimal
initial condition η̃1024

75 .

(a) (b)

Figure 15: [Long time window, T = 75] Isosurfaces of |ω| and log10(||D|3u|) in (a) the optimal
initial condition η̃1024

75 and (b) the corresponding terminal state u1024
(
75; η̃1024

75

)
together with

selected streamlines. The same color ranges are used in both panels. An animated version
of these figures (without streamlines) showing the time evolution for t ∈ [0, 75] is available as
Movie 1.
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(a) (b)

Figure 16: [Long time window, T = 75] The vorticity component ω⊥ normal to the symmetry
plane x1 = x2 in (a) the optimal initial condition η̃1024

75 and (b) the corresponding terminal
state u1024

(
75; η̃1024

75

)
. The same color range is used in both panels. An animated version of

these figures showing the time evolution for t ∈ [0, 75] is available as Movie 2.

to produce significant growth of various regularity indicators at times much longer than the
intervals [0, T ] considered in this study.

We adopt an indirect approach to determine whether a singularity may occur within the
time interval [0, T ] based on sequential refinements of the numerical resolution. Specifically,
we solve Problem 2.2 with T = 25 and T = 75 using spatial resolutions increasing from 1283

to 10243. For T = 25, we observe that the maximum attained values of
∣∣∣∣uN

(
75; η̃N

75

)∣∣∣∣
Ḣ3

converge to a finite limit for the optimal solutions obtained with increasing resolutions, which
indicates that the Euler system (1.1) is well-posed on [0, 25]. However, for T = 75, the
maximum values of

∣∣∣∣uN
(
75; η̃N

75

)∣∣∣∣
Ḣ3 attained in the optimal solutions diverge upon resolution

refinement, which suggests a possible formation of singularity for some t ∈ [0, 75]. As shown
in figure 13, the growth of the norm ∥u(t)∥Ḣ3 in the flows corresponding to the optimal
initial condition obtained for T = 75 using the highest numerical resolution proceeds at a rate
consistent with a finite-time blow-up as long as the solution remains well-resolved, although this
rate slows down with time. With the limited numerical resolution we could use, it is impossible
to conclude whether this depletion of growth rate would eventually prevent a singularity from
appearing in a finite time. We add that the largest resolution we used (10243) is smaller
than the largest resolutions available to-date in simulations of the Navier-Stokes and the Euler
systems. However, we emphasize that in the present study we solve a family of optimization
problems which are much more costly to solve than simply computing the evolution of the
solution on the same time interval. In fact, solution of Problem 2.2 typically requires O(100)
solutions of the Euler system (1.1) and O(10) solutions of the adjoint system (3.8).

We add that under-resolved computations of Euler flows lead to “thermalization” of solu-
tions, a process where after a sufficiently long time the kinetic energy is equidistributed among
the finite number of Fourier modes used in the computation. Thermalization is related to
the appearance of the so-called “tygers” and inevitably occurs when using numerical methods
based on Galerkin truncation to compute the time evolution of inviscid systems, such as 1D
Burgers equation (Rampf et al., 2022) and 3D incompressible Euler equations (Murugan and
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Ray, 2022).
Figures 7 and 12 show that, as compared to flows obtained with different initial guesses,

the optimal flows demonstrate a more significant growth in both ∥u(t; η̃)∥Ḣ3 and ∥ω(t; η̃)∥L∞

throughout the optimization time windows [0, T ] with T = 25 and T = 75. We further notice
that the growth of the norm ∥ω(t)∥L∞ in the extreme flows obtained by solving Problem 2.2
with T = 75 is weaker than the growth of the norm ∥u(t)∥Ḣ3 in the same flow, cf. figures
12(a) and 12(b). However, estimate (1.4) shows that an unbounded growth of the latter norm
implies such a growth for the former norm as well, and the doubly-exponential structure of the
upper bound in this estimate explains why in a blow-up scenario the growth of ∥ω(t)∥L∞ may
be weaker than that of ∥u(t)∥Ḣ3 . As regards the behavior of the width δ(t) of the analyticity
strip in these flows, we note that the decay rate of this quantity accelerates and becomes faster
than exponential around the time when computations become under-resolved.

In regard to the structure of the extreme flows in the physical space, it is interesting to see
in figure 15(b) that some key features of these flows are close to being axisymmetric, to the
extent that this may be possible for a flow evolving on a 3D periodic domain. More specifically,
the region where the largest values of

∣∣|D|3u
∣∣ are concentrated has the form of a circular disc

embedded between the two colliding vortex rings, which becomes more irregular further away
from the axis of symmetry. The center of this disk, located on the symmetry plane of the
extreme flows, is a stagnation point; in this sense, the extreme flows are similar to the infinite-
energy solutions of the Euler system constructed by Gibbon et al. (1999), which are known to
exhibit finite-time singularities (Mulungye et al., 2016). We emphasize that the extreme flows
we found here are fairly robust in the sense that they have been found consistently using several
different initial guesses in (3.20), albeit not with all initial guesses we used. We add that a
head-on collision of two vortex rings has served as a classical paradigm in recent experimental
and numerical studies of turbulence generation (McKeown et al., 2018; Lim and Nickels, 1992;
McKeown et al., 2020). At high Reynolds numbers, these two vortex rings break down into
smaller antiparallel secondary and tertiary filaments, eventually forming a turbulent cloud due
to the elliptic instability (McKeown et al., 2020).

As concerns future work, the properties of the optimal flows found in the present study
suggest looking for extreme behaviors among initial conditions constrained by some symme-
tries, such as axial and/or reflection symmetries, as was pursued by Luo and Hou (2014a,b);
Hou (2022). In addition, given that spectral methods have a limited ability to resolve localized
small-scale features of potentially singular flows, further progress will likely require the use of
adaptive discretization techniques.
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Thomas Chen and Nataša Pavlović. A lower bound on blowup rates for the 3D incompressible
euler equation and a single exponential Beale-Kato-Majda type estimate. Commun. Math.
Phys., 314(1):265–280, 2012.

C. Cichowlas and M. E. Brachet. Evolution of complex singularities in Kida-Pelz and Taylor-
Green inviscid flows. Fluid Dynamics Research, 36:239–248, 2005.

Peter Constantin, Weinan E, and Edriss S. Titi. Onsager’s conjecture on the energy conser-
vation for solutions of Euler’s equation. Communications in Mathematical Physics, 165(1):
207 – 209, 1994. doi: cmp/1104271041. URL https://doi.org/.

Peter Constantin, Charles Fefferman, and Andrew J Majda. Geometric constraints on poten-
tially singular solutions for the 3-D Euler equations. Communications in Partial Differential
Equations, 21(3-4), 1996.

Ionut Danaila and Bartosz Protas. Computation of Ground States of the Gross–Pitaevskii
Functional via Riemannian Optimization. SIAM Journal on Scientific Computing, 39
(6):B1102–B1129, 2017. doi: 10.1137/17M1121974. URL https://doi.org/10.1137/

17M1121974.
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