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Abstract

We consider the stability of periodic map with period-2 in linear fractional
difference equations where the function is f(x) = ax at even times and
f(x) = bx at odd times. The stability of such a map for an integer order map
depends on product ab. The conditions are much complex for fractional maps
and depend on ab as well as a+ b. There are no superstable period-2 orbits.
These conditions are useful in obtaining stability conditions of asymptotically
periodic orbits with period-2 in the nonlinear case. The stability conditions
are demonstrated numerically. The formalism can be generalized to higher
periods.

1. Introduction

The stability analysis of the fixed point is extremely helpful in the study
of nonlinear maps of integer order. The stability of periodic orbits is no less
important. In fact, one of the definitions of chaos is as follows: if V is a
set and F : V → V is chaotic if it has a) sensitive dependence on initial
conditions, b) is topologically transitive and c) the periodic points of F are
dense on V [1]. It has been shown that conditions b) and c) imply a). Thus
periodic points are crucial in the theory of chaos. Several invariant properties
of the chaotic attractor can be computed using unstable periodic orbits[2].
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The multifractal spectrum of the attractor can be computed using unsta-
ble periodic orbits[3]. In a very striking result, it has been shown that the
statistical properties of turbulence can be computed using only one unsta-
ble periodic orbit[4, 5]. We can compute Lyapunov exponent of the system
using unstable periodic orbit[6]. Several dynamic quantities can be com-
puted using eigenvalues of a few short fundamental cycles because they are
structured hierarchically. Longer cycles only offer higher order corrections to
these quantities[2]. Apart from invariant density, fractal dimension and Lya-
punov exponents, we can compute the topological and metric entropy of the
attractor[7]. Periodic orbits form a skeleton of chaotic attractors and control
schemes such as the Ott-Grebogi-Yorke scheme have been used in controlling
chaos and stabilizing a particular periodic orbit[8]. Several bifurcations in
the system, such as crisis, can be explained by understanding the periodic
orbits and their stable and unstable manifold[9]. (We note that unstable
periodic orbits are an important theoretical tool in studying quantum chaos
as well[10].) They have important applications, including control of cardiac
chaos[11]. Methods based on the detection of unstable periodic orbits have
been used to establish low dimensional chaos in crayfish caudal photorecep-
tor [12]. They are used in the characterization, control and prediction of
experimental systems [13, 14]. In short, the importance of periodic orbit in
the theory of nonlinear dynamics and chaos cannot be overemphasized.

In fractional order systems, the chaos theory is not as well developed as
in integer order systems. However, specific results about the stability of the
fixed point are obtained. We linearize around the fixed point and ensure
stability if the eigenvalues are inside the unit circle. In integer order maps,
the chain rule is applicable. Thus, we can study the stability of fixed points
of the function fn(x) for n-period orbits. We again linearize and the stability
of the n-period orbit (x1, x2, . . . , xn) of 1-d map is dictated by the condition
that |f ′(xn)f ′(xn−1) . . . f

′(x1)| < 1.
Unfortunately, these conditions do not work for fractional order maps

even for fixed points and the stability is ensured if the eigenvalues are inside
the cardioid-shaped stability region in the complex plane[? ]. This work
shows that the conditions are even more complicated for periodic points. (In
fractional maps, we have only asymptotically periodic points, not strictly
periodic ones). While it is indeed true that the fixed points are given by
f(x) = x even for fractional order map, the period-n orbit is not given by
roots of equation fn(x) = x. The fixed points of the twice iterated nonlinear
map f 2(x) do not give the 2-period orbit for the fractional order map, which
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is reached asymptotically. We will explicitly solve the system for an asymp-
totically 2-period orbit. Besides, the stability of orbit (x1, x2) is not given
by product f ′(x1)f

′(x2). It is also dependent in f ′(x1) + f ′(x2). Thus the
stability analysis of higher period orbits for fractional maps is much more
complicated than integer order maps. The bifurcation diagrams can be com-
plicated as well. In integer order maps, we observe a period doubling cascade.
When certain period becomes unstable, we obtain the stable solution with
twice the period. In fractional order maps, the fixed point and period two
orbit can both be stable at same parameter value.

In this work, we first derive the analytic conditions for the stability of the
periodic map. The map is linear. However, it is different for odd and even
times. We find that the same conditions work for linearized asymptotically
period-two orbits of fractional nonlinear maps.

2. Preliminaries

In this section, we present some basic definitions and results. Let h >
0, a ∈ R, (hN)a = {a, a+ h, a+ 2h, . . .} and Na = {a, a+ 1, a+ 2, . . .}.

Definition 2.1. (see [15, 16, 17]). For a function x : (hN)a → R, the
forward h-difference operator if defined as

(∆hx)(t) =
x(t+ h)− x(t)

h
,

where t ∈ (hN)a.

Throughout this paper, we take a = 0 and h = 1.

Definition 2.2. [17] For a function x : N◦ → R the fractional sum of order
α > 0 is given by

(∆−αx)(t) =
1

Γ(α)

n∑
s=0

Γ(α + n− s)
Γ(n− s+ 1)

x(s), (1)

where, t = α + n, n ∈ N◦.

Definition 2.3. [17, 18] Let µ > 0 and m − 1 < µ < m, where m ∈ N,
m = dµe. The µth fractional Caputo-like difference is defined as

∆µx(t) = ∆−(m−µ) (∆mx(t)) , (2)
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where t ∈ Nm−µ and

∆mx(t) =
m∑
k=0

(
m

k

)
(−1)m−kx(t+ k). (3)

Note: The discrete dynamical system x(t + 1) = f(x(t)) can be written
equivalently as a difference equation ∆x(t) = f(x(t)) − x(t) by subtracting
the term x(t) from both sides. Further, we can generalize this difference
equation by replacing the operator ∆ with the operator ∆α, where 0 < α < 1.
If we consider the difference equations in the higher dimensions and if the
function f is linear, then we get the systems of the form Equation (??).
This is the motivation behind the term A − I. Of course, we can write the
matrix A′ = A− I and use the results discussed in the literature (e.g., [19])
to analyze this system.

Definition 2.4. [17] The Z-transform of a sequence {y(n)}∞n=0 is a complex
function given by Y (z) = Z[y](z) =

∑∞
k=0 y(k)z−k where z ∈ C is a complex

number for which the series converges absolutely.

Definition 2.5. [17] Let φ̃α(n) be a family of binomial functions defined on
Z, parametrized by α defined by

φ̃α(n) =
Γ(n+ α− 1)

Γ(α)Γ(n)

=

(
n+ α− 1

n

)
= (−1)n

(
−α
n

)
. (4)

Then

Z(φ̃α(t)) =
1

(1− z−1)α
, |z| > 1.

Definition 2.6. [17] The convolution φ ∗ x of the functions φ and x defined
on N is defined as

(φ ∗ x) (n) =
n∑
s=0

φ(n− s)x(s) =
n∑
s=0

φ(s)x(n− s).

Then the Z-transform of this convolution is

Z (φ ∗ x) (n) = (Z (φ) (n)) (Z (x) (n)) . (5)
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3. The Model and Characteristic Equation

Let x : N◦ → R and f be a map defined by

f (x(t)) =

{
ax(t), if t is even

bx(t), if t is odd,
(6)

where a and b are real numbers.
We define the fractional order discrete dynamical system using this map as

x(t+ 1) = x(0) +
t∑

j=0

Γ(t− j + α)

Γ(α)Γ(t− j + 1)
[f (x(j))− x(j)] . (7)

The traditional way to obtain the characteristic equation of the systems of
the form (7) is to take Z-transform and equate the coefficient of Z[x(t)] to
zero. The map f defined in (3) can also be written as

f (x(t)) =
a+ b+ (−1)t(a− b)

2
x(t).

Applying Z-transform to (7), we get

X(z)−zx(0) =
x(0)

1− z−1
+

1

(1− z−1)α

(
a+ b

2
− 1

)
X(z)+

1

(1− z−1)α

(
a− b

2
− 1

)
X(−z).

(8)
Note that the equation (8) cannot be used to find the characteristic equation
because of X(−z) in the last term.
An elegant way to get the solution to this problem is to separate the terms
x(t) with even t from odd values of t. Let us define p(t) = x(2t) and q(t) =
x(2t+ 1). The system (7) can now be written in an equivalent form as

p(t+ 1) = x(0) +
t∑

k=0

Γ(2t+ 1− 2k + α)

Γ(α)Γ(2t− 2k + 2)
[(a− 1)p(k)]

+
t∑

k=0

Γ(2t− 2k + α)

Γ(α)Γ(2t− 2k + 1)
[(b− 1)q(k)] ,

q(t+ 1) = x(0) +
t∑

k=0

Γ(2t+ 2− 2k + α)

Γ(α)Γ(2t− 2k + 3)
[(a− 1)p(k)]

+(a− 1)p(t+ 1) +
t∑

k=0

Γ(2t+ 1− 2k + α)

Γ(α)Γ(2t− 2k + 2)
[(b− 1)q(k)] .(9)
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If we define φ1(t) = φ̃α(2t), φ2(t) = φ̃α(2t + 1) and φ3(t) = φ̃α(2t + 2) then
the system (9) can be written as

p(t+ 1) = x(0) + (a− 1) (φ2 ∗ p) (t) + (b− 1) (φ1 ∗ q) (t), (10)

q(t+ 1) = x(0) + (a− 1) (φ3 ∗ p) (t) + (a− 1)p(t+ 1) + (b− 1) (φ2 ∗ q) (t).

With a few computations, we get the Z-transforms as

Z (φ1(t)) =
(
√
z − 1)

−α
+ (
√
z + 1)

−α

2z−α/2
,

Z (φ2(t)) =
(
√
z − 1)

−α − (
√
z + 1)

−α

2z(−α−1)/2
,

Z (φ3(t)) = −z +
(
√
z − 1)

−α
+ (
√
z + 1)

−α

2z−1−α/2
,

Z (p(t+ 1)) = zP (z)− zp(0), Z (q(t+ 1)) = zQ(z)− zq(0), (11)

where Z(p(t)) = P (z), Z(q(t)) = Q(z), p(0) = x(0) and q(0) = x(1) = ax(0).
Applying Z-transform to the system (10) and using (11), we get[

z − (a− 1)
(
√
z − 1)

−α − (
√
z + 1)

−α

2z(−α−1)/2

]
P (z)

−(b− 1)
(
√
z − 1)

−α
+ (
√
z + 1)

−α

2z−α/2
Q(z) =

−z2

1− z
x(0),

(a− 1)
(
√
z − 1)

−α
+ (
√
z + 1)

−α

2z−1−α/2
P (z)

+

[
(b− 1)

(
√
z − 1)

−α − (
√
z + 1)

−α

2z(−α−1)/2
− z

]
Q(z) =

z2

1− z
x(0). (12)

The characteristic equation of the system (9) (and hence of the system (7))
can now be obtained by equating the determinant of coefficients of the terms
P (z) and Q(z) in the system (12) to zero as below:

−z(z−1)α−1

2
(a+b−2)z

1+α
2

[(√
z − 1

)−α − (√z + 1
)−α]

+(a−1)(b−1)zα = 0.

(13)

4. Stable Region

The zero solution of system (7) is locally asymptotically stable if and only
if all the roots z of the characteristic equation (13) satisfy |z| < 1. Therefore,
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the boundary of the stable region of the system (7) can be obtained by
substituting z = eιt in the characteristic equation (13). We have,

z − 1 = eιt − 1 = 2 sin(t/2)eι(π+t)/2,
√
z − 1 = eιt/2 − 1 = 2 sin(t/4)eι(2π+t)/4,
√
z + 1 = eιt/2 + 1 = 2 cos(t/4)eιt/4. (14)

Using (14), we can rewrite the characteristic equation (13) as

−2α (sin(t/2))α eι[t+α(π+t)/2] + (a− 1)(b− 1)eιαt (15)

−1

2
(a+ b− 2)eιt(1+α)/22α

[
(sin(t/4))α eια(2π+t)/4 − (cos(t/4))α eιαt/4

]
= 0.

Separating real and imaginary parts in (15), we get

−2α (sin(t/2))α cos

(
α(π + t)

2
+ t

)
+ (a− 1)(b− 1) cos(αt)

−2α−1(a+ b− 2) (sin(t/4))α cos

(
απ

2
+ t

(
1

2
+

3α

4

))
+2α−1(a+ b− 2) (cos(t/4))α cos

(
t

(
1

2
+

3α

4

))
= 0, (16)

−2α (sin(t/2))α sin

(
α(π + t)

2
+ t

)
+ (a− 1)(b− 1) sin(αt)

−2α−1(a+ b− 2) (sin(t/4))α sin

(
απ

2
+ t

(
1

2
+

3α

4

))
+2α−1(a+ b− 2) (cos(t/4))α sin

(
t

(
1

2
+

3α

4

))
= 0. (17)

Equation (17) is identically satisfied for t = 0. For this value of t, the equation
(16) gives

b =
2 (2α − 1) + 2a (1− 2α−1)

2 (a− 1 + 2α−1)
. (18)

This boundary curve (18) can also be written as(
a−

[
1− 2α−1

]) (
b−

[
1− 2α−1

])
= 4α−1. (19)

Let us call this boundary curve as Γ1. The lines a = 1−2α−1 and b = 1−2α−1

are asymptotes for Γ1.
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If we substitute t = π, then the equations (16) and (17) generate the following
common boundary curve Γ2

b = −1 + 2α − a+ 2α/2(a− 2) sin (απ/4)

a− 1 + 2α/2 sin (απ/4)
. (20)

Equivalently,(
a−

[
1− 2α/2 sin (απ/4)

]) (
b−

[
1− 2α/2 sin (απ/4)

])
= −2α (cos(απ/4))2 .

(21)
The lines a = 1− 2α/2 sin (απ/4) and b = 1− 2α/2 sin (απ/4) are asymptotes
for Γ2.
Furthermore, the system (16)-(17) can be solved for a and b as parametric
functions of t ∈ [0, 2π]. We proceed as below:
Let us define s1 = sinα (t/2) , s2 = sin (t+ α(π − t)/2), s3 = sinα (t/4), s4 =
sin (t(α− 2)/4), s5 = cosα (t/4), s6 = sin (((α− 2)t− 2απ)/4). Then

a(t) = 1 +
−s1s2 +

√
s1 (2α(−s3s4 + s5s6)(s5s4 − s3s6) + s1s22)

s5s4 − s3s6
,

b(t) = 1− s1s2 +
√
s1 (2α(−s3s4 + s5s6)(s5s4 − s3s6) + s1s22)

s5s4 − s3s6
(22)

is required parametric representation of the boundary curve, which we call
Γ3.

Theorem 4.1. For 0 < α < 1, the region inside the boundary curves Γ1, Γ2

and Γ3 is bounded in the ab-plane. For any pair (a, b) in this bounded region,
the zero solution of system (7) is locally asymptotically stable.

Proof: We assume that 0 < α < 1. The intersection points between the
curves Γ1 and Γ2 are obtained by equating the right sides of the equations
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(18) and (20). This gives the following two points:

(a1, b1) =

(
21+α/2 − 2 sin(απ/4)−

√
2α + 4α − 21+3α/2 sin(απ/4)

2α/2 − 2 sin(απ/4)
, (23)

21+α/2 − 21+α sin(απ/4)− (2− 2α)
√

2α + 4α − 21+3α/2 sin(απ/4)

21+α/2 + 23α/2 − 21+α sin(απ/4)− 2
√

2α + 4α − 21+3α/2 sin(απ/4)

)
,

(a2, b2) =

(
21+α/2 − 2 sin(απ/4) +

√
2α + 4α − 21+3α/2 sin(απ/4)

2α/2 − 2 sin(απ/4)
, (24)

21+α/2 − 21+α sin(απ/4) + (2− 2α)
√

2α + 4α − 21+3α/2 sin(απ/4)

21+α/2 + 23α/2 − 21+α sin(απ/4) + 2
√

2α + 4α − 21+3α/2 sin(απ/4)

)
.

As the curves Γj are symmetric about the line a = b, so are these intersection
points. The point (a1, b1) is above whereas (a2, b2) is below the line a = b and
both are in the first quadrant. This also shows that there is no intersection
between the curves Γ1 and Γ2 for the negative values of a or b.
The curves Γ2 and Γ3 intersects each other at the points (a3, b3) and (b3, a3),
where

a3 = 1 + 2α/2
2− α +

√
2(2− 2α + α2) cos2(απ/4)

α cos(απ/4) + (α− 2) sin(απ/4)
,

b3 = 1 + 2α/2
2− α−

√
2(2− 2α + α2) cos2(απ/4)

α cos(απ/4) + (α− 2) sin(απ/4)
. (25)

Note that a3 < 0 and b3 > 0.
Furthermore, for any negative values of a or b, the curve Γ3 lies between
the corresponding branches of the curves Γ1 and Γ2. This shows that the
region inside the boundary curves Γ1, Γ2 and Γ3 is bounded in the ab-plane.
Since the change in stability can occur only at these boundary curves and
the system (7) is stable at the origin, the bounded region mentioned above
is the stable region for the system (7). This proves the result.

The curves Γ1 (blue color), Γ2 (red color), Γ3 (black color) and the stable
region for α = 0.5 is shown in Figure 1. The stable orbit of the system (7)
with α = 0.5 and (a, b) = (0.6, 0.7) inside the stable region in Figure 1 is
shown in Figure 2. On the other hand, the unstable orbit of this system with
(a, b) = (−2.5, 3.6) outside the stable region in Figure 1 is shown in Figure
3.
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Figure 1: The stable region of system (7) with α = 0.5
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Figure 2: The stable orbit of system (7) with α = 0.5 and (a, b) = (0.6, 0.7)
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Figure 3: The unstable orbit of system (7) with α = 0.5 and (a, b) = (−2.5, 3.6)
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Note: If α = 1, then the curve Γ3 merges with the branch of Γ1 in
the third quadrant of ab-plane. Furthermore, the curves Γ1 and Γ2 do not
intersect each other in this case and they get reduced to the curve |ab| = 1.
Note that |ab| = 1 is the boundary of the stable region for the classical map
i.e., the system x(t + 1) = f (x(t)), where f is defined by (3). This shows
that our system and stability analysis are the continuous generalization to
the classical map and the corresponding stability.

5. Application to the nonlinear systems with period-2 limit cycles

It is proved that [20] the continuous-time fractional order autonomous
systems of differential equations cannot have periodic solutions. However,
such systems can have “asymptotic” periodic solutions or a limit cycle [20,
21]. In this section, we show that the discrete-time fractional order systems

x(t+ 1) = x(0) +
t∑

j=0

Γ(t− j + α)

Γ(α)Γ(t− j + 1)
[f (x(j))− x(j)] (26)

also have the same property. Further, we propose a necessary and sufficient
condition for the existence of a period-2 limit cycle in the system (26).

Theorem 5.1. The system (26) cannot have a period-2 orbit.

Proof: If there exists the points u and v such that u, v is a period-2 orbit of
system (26) then x(2k) = u, x(2k + 1) = v for k = 0, 1, 2, · · · . Therefore, for
t = 0, 1 and 2, the system (26) gives

f(u) = v, (27)

f(v) = (1− α)v + αu, (28)

v = u+

(
α(α + 1)

2
+ 1

)
(f(u)− u) + α (f(v)− v) , (29)

respectively. Using (27) and (28) in (29), we get(
α− α + 1

2

)
(u− v) = 0. (30)

This implies either u = v or α = 1. This contradiction shows that there
cannot be a period-2 orbit of the system (26).
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5.1. The necessary and sufficient condition for the period-2 limit cycle u, v
in the system (26)

As in (9), we can split the system (26) as

p(t+ 1) = x(0) +
t∑

k=0

Γ(2t+ 1− 2k + α)

Γ(α)Γ(2t− 2k + 2)
[f(p(k))− p(k)]

+
t∑

k=0

Γ(2t− 2k + α)

Γ(α)Γ(2t− 2k + 1)
[f(q(k))− q(k)] , (31)

q(t+ 1) = x(0) +
t∑

k=0

Γ(2t+ 2− 2k + α)

Γ(α)Γ(2t− 2k + 3)
[f(p(k))− p(k)]

+(a− 1)p(t+ 1) +
t∑

k=0

Γ(2t+ 1− 2k + α)

Γ(α)Γ(2t− 2k + 2)
[f(q(k))− q(k)] ,(32)

where p(t) = x(2t) and q(t) = x(2t+ 1). If there exists a period-2 limit cycle
u, v in the system (26) then

lim
t→∞

p(t) = u

and
lim
t→∞

q(t) = v

.
If t is very large and k is very small, then the ratios of Gamma functions
in (31) and (32) become zero. On the other hand, if k is very large in such
cases, then p(k) ≈ u and q(k) ≈ v. Therefore, taking limit as t → ∞ and
subtracting (31) from (32), we get

u− v = (f(u)− u) lim
t→∞

(
t−1∑
k=0

Γ(2t− 2k − 1 + α)

Γ(2t− 2k)Γ(α)
−

t∑
k=0

Γ(2t− 2k + α)

Γ(2t− 2k + 1)Γ(α)

)

+(f(v)− v) lim
t→∞

(
t−1∑
k=0

Γ(2t− 2k − 2 + α)

Γ(2t− 2k − 1)Γ(α)
−

t−1∑
k=0

Γ(2t− 2k − 1 + α)

Γ(2t− 2k)Γ(α)

)
= −[(f(u)− u)− (f(v)− v)]2−α. (33)

Similarly, taking limit as t→∞ and adding (31) and (32), we get

u+v = 2x(0)+2[(f(u)−u)+(f(v)−v)]×[ lim
t→∞

2t∑
k=0

Γ(2t− k + α)

Γ(2t− k + 1)Γ(α)
]. (34)
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Since the limit in the equation (34) tends to infinity, and all other terms are
finite, we must have

u+ v = f(u) + f(v). (35)

Solving equations (33) and (35), we get

f(u) = u+ 2α−1(v − u) (36)

f(v) = v + 2α−1(u− v). (37)

Note that for α = 1, the conditions (36)–(37) get reduced f(u) = v, f(v) = u,
the conditions for classical map x(t+ 1) = f(x(t)) to have a period-2 orbit.
Recall that the period-2 orbit u, v of the classical map is stable if |ab| < 1,
where a = f ′(u), b = f ′(v). Furthermore, there are only an asymptotic
period-2 orbits in the fractional order system (26) and f(p(k)) ≈ f(u)+ap(k),
f(q(k)) ≈ f(v) + bq(k). Therefore, heuristically we can use the linearized
stability analysis and expect that the point (a, b) = (f ′(u), f ′(v)) should lie
inside the stable region of the system (9).

Thus the necessary and sufficient condition for the period-2 limit cycle
u, v in the system (26) is
(i) f(u) = u+ 2α−1(v − u), f(v) = v + 2α−1(u− v), and
(ii) The point (a, b) = (f ′(u), f ′(v)) lies inside the stable region bounded by
the curves Γ1, Γ2 and Γ3 defined in the Section 4. We verify this result with
various well-known systems in the subsection below.

5.2. Examples

Example 5.1. Consider the fractional order logistic map. In this case, we
take the equation (26) with f(x) = λx(1− x), λ is a real parameter.

The conditions (36) and (37) give

(u, v) =

(
(2α − 1) + λ+

√
(λ− (1− 2α))(λ− (1 + 2α))

2λ
,

(2α − 1) + λ−
√

(λ− (1− 2α))(λ− (1 + 2α))

2λ

)
.

These points are real if λ > 1 + 2α.
Now, the point

(a, b) = (f ′(u), f ′(v))

=
(

1− 2α +
√

(λ− (1− 2α))(λ− (1 + 2α)), 1− 2α −
√

(λ− (1− 2α))(λ− (1 + 2α))
)
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Figure 4: The points (a, b) = (f ′(u), f ′(v)) on the line L1 indicates the period-2 limit cycle
in the fractional order logistic map with α = 0.4.

forms a straight line L1, a parametric curve in λ that intersects the curve Γ1

at λ = 1 + 2α and Γ2 at λ = 1 +
√

2α + 21+2α − 21+3α/2 sin(απ/4) (cf. Figure
4 for α = 0.4). This shows that the fractional order logistic map has period-2
limit cycle if and only if 1 + 2α < λ < 1 +

√
2α + 21+2α − 21+3α/2 sin(απ/4).

If α = 0.4 then we need λ ∈ (2.31951, 2.96595) for period-2 limit cycle. For
λ < 2.31951, the trajectory settles down to an equilibrium point. We can
observe period-2 limit cycles when λ ∈ (2.31951, 2.96595) as expected (cf.
Figure 5). Period-doubling is observed for λ > 2.96595.

Example 5.2. Now, we consider the fractional order cubic map. We take
the equation (26) with f(x) = βx(6− x2), where β < 0 is a real parameter.

We get the three expressions (u0, v0), (u1, v1) and (−u1,−v1) for the points

15
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Figure 5: Period-2 limit cycle in the fractional order logistic map with α = 0.4 and λ = 2.8.

(u, v) by using the conditions (36) and (37), where

u0 =
√

(6β + 2α − 1)/β, v0 = −u0,

u1 =
1

2

√
12 +

2α − 2

β
− z,

v1 =
2−1−αu1 ((2α − 2)β + (12 + z)β2)

β
,

z =
−
√

4− 22+α − 3× 4α + 24(2α − 2)β + 144β2

β
.

Note that, the points (a0, b0) = (f ′(u0), f
′(v0)) form a straight-line L2 in the

ab−plane, where a0 = b0 = −12β−3(2α−1). This line L2 intersects both the
branches of boundary curve Γ1 at the parameter values β0 = (2− 3× 2α)/12
and β1 = (1 − 2α)/6. For α = 0.7, we have β0 = −0.23946 and β1 =
−0.104084 respectively. If β > β1 then the numbers a0 and b0 are not real;
whereas if β < β0 then the points (a0, b0) are outside the stable region and
hence the corresponding points (u0, v0) don’t form period-2 limit cycle for
this system.

The points (a1, b1) = (f ′(u1), f
′(v1)) form a curve L3 defined by 4 (a2 + b2)+

(9× 2α − 18) (a+ b) + 10ab+ 18− 9× 21+α = 0 in the ab−plane. This curve
L3 intersects the boundary curves Γ1 and Γ2 at the parameter values β0 and

16



β2, where

β2 =
1

384

(
64− 33× 2α + 21+α/2 sin(απ/4) + 2α/2ν1 − 3

√
2ν2

−3× 2(2+α)/4
(
179× 2α/2 + 189× 21+3α/2 − 19× 2α/2 cos(απ/2)

−25× 3α+3 sin(απ/4) + 21+α/2 sin2(απ/4) + 5(22+α/2 − 21+α)ν1

+3× 2(1+α)/2ν2 − 3
√

2ν1ν2 − 6
√

2 sin(απ/4)ν2

)1/2)
,

ν1 =
(
34 + 81× 2α − 2 cos(απ/2)− 9× 22+α/2 sin(απ/4)

)1/4
,

ν2 = 2α/2
(
18 + 9× 2α − 2 cos(απ/2)− 2α/2ν1 + 2(−5× 21+α/2 + ν1) sin(απ/4)

)1/2
.

For α = 0.7, β2 = −0.277584.
Thus, the condition for the existence of period-2 limit cycle in the frac-

tional order cubic map is β ∈ (β2, β1). Figure 6 shows the curves L2 and L3

in the stable region for α = 0.7 and −0.277584 < β < −0.104084.
For α = 0.7, the trajectory of fractional order cubic map converges to

the period-2 point (u0, v0) = (1.6963,−1.6963) when β = −0.20 ∈ (β0, β1)
(cf. Figure 7) and to the period-2 point (u1, v1) = (1.45647,−2.14495) when
β = −0.26 ∈ (β2, β0) (cf. Figure 8). Note that the point (−u1,−v1) indicates
the existence of “coexisting” asymptotic period-2 orbits as shown in Figure
9.

Example 5.3. In this example, we discuss the conditions for asymptotic
period-2 orbits in the fractional order Gauss map (26), where f(x) = e−7.5x

2
+

β and β is a real parameter.

Due to the transcendental nature of the function f , we cannot have the
exact expressions for the points (u, v) and (a, b), unlike the previous exam-
ples. Therefore, we verify the results using numerical approximations. It
is observed that, for −0.05 ≤ β ≤ 0.56 and α = 0.6, the points (a, b) =
(f ′(u), f ′(v)) form a curve L4 that remains inside the stable region as shown
in Figure 10. The system shows asymptotic period-2 orbits for all these pa-
rameter values, as expected. We did not observe period-2 limit cycles outside
this range.

6. Discussion

We have obtained the analytic conditions for the stability of periodic
linear map in fractional difference equations. We show that the same condi-
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Figure 6: The curves L2 and L3 in the stable region for α = 0.7 and −0.277584 < β <
−0.104084.
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Figure 7: Asymptotic period-2 orbit in the fractional order cubic map for α = 0.7 and
β = −0.20.
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Figure 8: Asymptotic period-2 orbit in the fractional order cubic map for α = 0.7 and
β = −0.26.
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Figure 9: Coexisting asymptotic period-2 orbits in the fractional order cubic map for
α = 0.7 and β = −0.24.
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Figure 10: The points on the curve L4 for −0.05 ≤ β ≤ 0.56 show asymptotic period-2
orbits in the fractional order Gauss map with α = 0.6.

tions help us infer the stability of asymptotically periodic orbits of period-2 in
nonlinear fractional difference equations. This formalism can be potentially
generalized to higher periods.

Unstable periodic orbits form the skeleton of chaotic attractors in integer
order systems. They are useful in characterization, prediction and control.
Analysis of stable and unstable manifolds of periodic orbits is an indispens-
able tool in the theory of dynamical systems. The presence of chaos or the
presence of stable or unstable manifolds of periodic orbits are open questions
in fractional order systems. However, finding basic stability conditions for
periodic orbit can be a useful step in formulating an analogous theory for
fractional systems.
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