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Abstract
We consider a viscous incompressible fluid interacting with a linearly elastic shell
of Koiter type which is located at some part of the boundary. Recently models with
stochastic perturbation in the shell equation have been proposed in the literature but
only analysed in simplified cases. We investigate the full model with transport noise,
where (a part of) the boundary of the fluid domain is randomly moving in time. We
prove the existence of a weak martingale solution to the underlying system.

Keywords Incompressible Navier–Stokes equation · Transport noise ·
Fluid–structure interaction

Mathematics Subject Classification 76D05 · 76D09 · 74F10 · 60H15

1 Introduction

The mathematical analysis of systems of partial differential equations arising from
fluid–structure interaction has seen a vast progress in the last two decades. This is
motivated by a variety of applications, for instance, in biomechanics Bodnár et al.
(2014), hydro-dynamics Chakrabarti (2002), aero-elasticity Dowell (2015) and hemo-
mechanics Formaggia et al. (2001).

Communicated by Eliot Fried.

Dominic Breit, Prince Romeo Mensah and Thamsanqa Castern Moyo contributed equally to this work.

B Dominic Breit
dominic.breit@tu-clausthal.de

Prince Romeo Mensah
prince.romeo.mensah@tu-clausthal.de

Thamsanqa Castern Moyo
thamsanqa.castern.moyo@tu-clausthal.de

1 Institute of Mathematics, TU Clausthal, Erzstraße 1, 38678 Clausthal-Zellerfeld, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-023-10012-4&domain=pdf


34 Page 2 of 45 Journal of Nonlinear Science (2024) 34 :34

1.1 Deterministic Models

We are interested in the case where a viscous incompressible fluid interacts with an
elastic structure located at a part of the boundary of the fluid’s domainO ⊂ R

3 denoted
by�. The structure reacts to the forces imposed by the fluid at the boundary. Assuming
that this deformation only acts in the normal direction and denoting by n the outer unit
normal at the reference domain, O is deformed to the domain Oη(t) defined through
its boundary

∂Oη(t) := {y + η(t, y)n(y) : y ∈ �}. (1.1)

Here η : (t, y) : I × � �→ η(t, y) ∈ R describes the deformation of the structure and
I := (0, T ), for some T > 0 denotes a time interval. For technical simplification we
will suppose that � is the whole boundary and identify it with the two-dimensional
torus (the precise geometric set-up is presented in Sect. 2.2).

As a prototype, let us consider the following problem where the equation for the
shell can be seen as a linearised version of Koiter’s model (neglecting lower order
terms for simplicity and setting all positive physical constants to 1). In the unknowns

u : (t, x) : I × Oη �→ u(t, x) ∈ R
3,

π : (t, x) : I × Oη �→ π(t, x) ∈ R,

accounting for the fluid’s velocity field and pressure, respectively (defined on amoving
space-time cylinder ), it reads as (for simplicity we neglect volume forces in the fluid
equations)

divxu = 0, (1.2)

∂tu + (u · ∇x)u = �xu − ∇xπ, (1.3)

∂2t η + �2
yη = −n�(T(u, π)nη) ◦ ϕη| det(∇yϕη)|. (1.4)

The system is complemented by the kinematic boundary condition

u ◦ ϕη = n∂tη on I × � (1.5)

at the fluid–structure interface as well as initial conditions for (1.3)–(1.4) and periodic
boundary conditions for (1.4). Here T(u, π) = (∇xu + ∇xu�) − πI3×3 is the stress
tensor of the fluid. The vectors n and nη denote the normal vectors on O and Oη,
respectively. The function ϕη gives the coordinate transform from � → ∂Oη. The
existence of a weak solution to (1.2)–(1.5) has been shown in Lengeler and Ružička
(2014) (see also Muha and Canić (2013) for the case of a cylindrical shell model). It
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satisfies the energy balance

1
2

∫
Oη

|u(t)|2 dx +
∫ t

0

∫
Oη

|∇xu|2 dx ds + 1
2

∫
�

|∂tη(t)|2 dy + 1
2

∫
�

|�yη(t)|2 dy

≤ 1
2

∫
Oη(0)

|u(0)|2 dx + 1
2

∫
�

|∂tη(0)|2 dy + 1
2

∫
�

|�yη(0)|2 dy
(1.6)

for a.a. t ∈ I , fromwhich one can easily deduce the function spaces in which the weak
solution lives. The easier case of an elastic plate (where the reference geometry is flat)
has been studied before in Grandmont (2008). The main advancement in Lengeler and
Ružička (2014) is a new compactness method which eventually allows to establish
compactness of the velocity field. On account of the deformed space-time cylinder
on which the problem is posed, it is impossible to apply the standard Aubin-Lions
compactness lemma in order to pass to the limit in the convective term of approx-
imate solutions. Interestingly, this issue is ultimately linked to the divergence-free
constraint (1.2). Without it, the compactness can simply be localised thus completely
removing the difficulties posed by the moving boundary, see Breit and Schwarzacher
(2018) where the compressible Navier–Stokes equations are studied. In Muha and
Schwarzacher (2022) (where even the fully nonlinear Koiter model is considered),
the compactness argument from Lengeler and Ružička (2014) has been replaced by
an abstract compactness criterion which is more in the spirit of the classical Aubin-
Lions result and thus allows for wider applications. Let us finally remark that all the
results just mentioned hold under the assumption that there is no self-intersection of
the structure (which can always be avoided if ‖η‖L∞

y
is not too large).

1.2 Stochastic Models

It was recently suggested in Kuan and Čanić (2022) to consider a stochastic perturba-
tion in (1.4) to account for random effects in real-life problems and uncertainty in the
data. A first step towards a well-posedness theory for such stochastic fluid–structure
interaction models is done in Kuan and Čanić (2023), where the 2D time-dependent
Stokes equations are linearly coupled to a structure described by a stochastic 1D wave
equation. Although this is only a simplified model (and the boundary is not moving in
time) the analysis is already quite advanced. As already indicated above, the geometry
breaks down if η causes a self-intersection of the domain. In the simplified case, where
the reference domain is a box and the deformation only occurs in the vertical direction,
this happens exactly when the value of −η coincides with the height of the box. If
η has a Gaussian distribution as in Kuan and Čanić (2023), this can always happen
(though maybe only with a low probability) no matter how short the time horizon is.
This issue may be circumvented by studying the local-in-time well-posedness of the
problem which is done in Tawri and Čanić (2023). The authors of Tawri and Čanić
(2023) study the interaction of an elastic plate (the reference geometry is flat) with the
2D Navier–Stokes equation. The existence time is a random variable about which the
only available information is P-a.s. positivity.
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In this paper, we aim for the natural next step by considering the full model (1.2)–
(1.5) globally in time, where (1.4) is subject to some Gaussian noise.1 We take a
different perspective to Kuan and Čanić (2022, 2023); Tawri and Čanić (2023) and do
not consider stochasticity entering as an external force but as an intrinsic property of
the system.Thuswe consider transport noise in the shell Eq. (see (1.9) below). It has the
very appealing feature of being energy conservative. If the initial data are deterministic
(or simply bounded in probability), we have a pathwise control over the energy and the
restrictions on the time interval are the same as in previous deterministic papers such
as Grandmont (2008), Lengeler and Ružička (2014), Muha and Schwarzacher (2022).
Transport noise has a clear physical meaning in fluid mechanical transport processes,
see Cotter et al. (2017) and Holm (2015; 2020) as well as Chen et al. (2023), Crisan
et al. (2019), Flandoli and Pappalettera (2021). Depending on the particular structure,
it can be conservative with respect to several important quantities such as energy,
enstrophy and circulation. Note that this is excluded in the case of an Itô noise. Also,
it has been observed that transport noise has regularising effects on certain ill-posed
PDEs, see Flandoli et al. (2010) and Flandoli and Luo (2021). Nevertheless, the role of
transport noise for elastic materials must be further explored. Understanding the role
of noise in the shell Eq. (1.9) is motivated by Kuan and Čanić (2022, 2023); Tawri
and Čanić (2023) and we are only at the beginning stages.

Our goal is to construct on random space-time cylinders�× I×Oη and�× I×�, a
global weak solution triple (note that the pressure does not enter the weak formulation)

u : (ω, t, x) : � × I × Oη �→ u(ω, t, x) ∈ R
3,

π : (ω, t, x) : � × I × Oη �→ π(ω, t, x) ∈ R,

η : (ω, t, y) : � × I × � �→ η(ω, t, y) ∈ R,

representing the fluid’s velocity, the fluid’s pressure and the structure displacement of
the coupled fluid–structure system given by

divxu = 0, (1.7)

∂tu + (u · ∇x)u = �xu − ∇xπ, (1.8)

d∂tη + (�2
yη + gη) dt + ((κ · ∇y)∂tη) ◦ dBt = 0, (1.9)

with gη = −n�(T(u, π)nη) ◦ ϕη| det(∇yϕη)|. Here, � is a sample space of a filtered
probability space (�,F, (Ft )t≥0, P) with associated expectation E(·). Equation (1.9)
contains a Stratonovich differential of a real-valued Brownian motion (Bt ) and κ is
a given solenoidal (incompressible) vector field (i.e. divyκ = 0)2 in R

2. The initial
conditions for (1.7)–(1.9) are

η(·, 0, ·) = η0(·, ·), ∂tη(·, 0, ·) = η1(·, ·) in � × �, (1.10)

u(·, 0, ·) = u0(·, ·) in � × Oη0 . (1.11)

1 One can very well add a suitable stochastic term in (1.3). This is covered by our analysis as long as it is
energy conservative.
2 One can allow a (possibly infinite) sum of stochastic transport terms in (1.9) without affecting the analysis.
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With regards to boundary conditions, we supplement the shell Eq. (1.9) with periodic
boundary conditions and impose

u ◦ ϕη = n∂tη on � × I × � (1.12)

at the fluid–structure interface. Note that (1.7)–(1.12) is a free-boundary problem
where the boundary of the fluid domain is moving randomly in time.

In the 3D case, regularity and uniqueness of solutions to (1.7)–(1.12) is certainly
out of reach (at least globally in time) so that one can only hope for the existence of
weak martingale solutions. Here weak refers to the analytical concept of distributional
derivatives, whereas martingale solutions refers to solutions which are weak in the
probabilistic sense (they do not exist on a given stochastic basis; the latter becomes an
integral part of the solution). Such a concept is very common in stochastic evolutionary
problems (even on the level of ordinary stochastic differential equations), whenever
uniqueness of the underlying system is unavailable.

1.3 TheWeak Formulation

A first rather philosophical question is to come up with an analytically weak for-
mulation for the problem. In fluid–structure interaction problems, the space of test
functions typically depends on the structure displacement η (the test function for the
fluid sub-problem and the structure sub-problemmust match at the interface as in (1.5)
and (1.12)). On the other hand, in stochastic PDEs it is common to work with spatial
test functions. This is also our preferred point of view as an η-dependence of the test
functions in our case means that they depend on time and are also random. The idea
now is to start with a pair of test functions (φ,φ) on the reference domain (that is
φ : � → R and φ : O → R

3) with the correct boundary condition and transform
φ to the moving domain. An obvious choice, therefore, is the Hanzawa transform
�η : O → Oη which we formally introduce in Sect. 2.2. Unfortunately, it has the
disadvantage of destroying the divergence-free constraint on the test functions. At the
level of weak solutions this cannot be remedied through the recovery of the pressure
function as the latter only exists as a distribution on the solenoidal test functions. Thus,
we use instead the Piola transform

Jηv = (∇x�η(det∇x�η)
−1v
) ◦ �−1

η , (1.13)

which preserves the solenoidability of a function O → R
3. Using now (ιηφ,Jη(t)φ)

with ιη = (det∇x�η)
−1 we obtain the following weak formulation

d

(∫
Oη

u · Jη(t)φ dx +
∫

�

∂tη ιηφ dy
)

=
∫

�

(
∂tη ∂t (ιηφ) − �y(ιηφ)�yη

)
dy dt

+
∫
Oη

(
u · ∂t (Jη(t)φ) + ((u · ∇x)Jη(t)φ) · u − ∇xu : ∇xJη(t)φ

)
dx dt

−
∫

�

∂tη((κ · ∇y)ιηφ) dy ◦ dBt (1.14)
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for all test functions (φ,φ) (which clearly depend only on space), see Sect. 2.4 for the
derivation. One easily shows that a dense set of pairs of test functions (φ,φ) with the
correct boundary condition leads to a dense set of pairs of test functions (ιηφ,Jη(t)φ)

on the moving domain with the right boundary condition, see (Lengeler and Ružička
2014, page 237). Thus our weak formulation is consistent with the strong formulation.
However, the Piola transform behaves like ∇x�η and inherits the regularity of ∇yη

so that we require more regularity on η. Since the embedding W 2,2(�) ↪→ W 1,∞(�)

fails in two dimensions, ∇x�η is not bounded. Thus the information from (1.6) is
not sufficient to give a meaning to all the terms in (1.14). Hence we need additional
regularity. A crucial point in our approach is, therefore, to establish an estimate for
the L2(I ;W 2+s,2(�))-norm of η for all s ∈ (0, 1/2). One can easily check by using
Hölder’s inequality andSobolev’s embedding that this information, togetherwith (1.6),
is sufficient to define all integrals appearing in (1.14). Different to (1.6) this estimate
is not independent of the transport noise and hence only holds in expectation. As it
turns out, the regularity of the terms arising from the transport noise have just enough
regularity to close the estimate. Details can be found in Sect. 5.1. Concluding this
discussion, the additional fractional differentiability of the shell displacement must be
included in the definition of a solution, see Definition 2.

1.4 Plan

This work straddles different fields of mathematics including fluid mechanics, partial
differential equations, differential geometry and stochastic analysis. In order to make
this work as self-contained as possible, we collect in Sect. 2 useful results in the
different fields of mathematics that are essential in establishing our result. We begin
by giving a rigorous interpretation of the Stratonovich integral in (1.9) after which
we introduce the geometric setup for the fluid–structure system (1.7)–(1.9). We also
present the functional analytic framework (function spaces on moving domains) and
present some key results necessary for our analysis (extension operators). Finally, we
make precise, the notion of a solution that we are interested in (Definition 2) and state
our main result (Theorem 5).

The proof of our main result can be summarised into three main steps. In Sect. 3, we
consider an extension of thefluid–structure system that incorporates ‘artificial’ regular-
ising terms in the shell Eq. (1.9). We then construct a solution to the linearised version
of this extended system using a Galerkin approximation and stochastic compactness
tools. We then move to Sect. 4 where we use a fixed-point argument to remove the
linearisation performed in the previous section and obtain a solution to the fully non-
linear system (with the extra regularising terms in the shell equation). To complete the
proof of the main result, we pass to the limit in the regularisation parameter in Sect. 5
to finally obtain a solution for (1.7)–(1.12). In each stage we apply a refined stochas-
tic compactness method which is based on Jakubowski’s extension of the Skorokhod
representation theorem Jakubowski (1998). In our case, it is crucial to re-interpret the
compactness lemma from Muha and Schwarzacher (2022) in the context of tightness
of probability measures (see Sects. 3.2 and 4.1).
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Remark 1 (The 2D case) One might wonder whether it is possible to show the global-
in-time existence of strong pathwise solutions to (1.7)–(1.12) (solutions existing on
a given stochastic basis). In the 2D case, the existence of global-in-time strong solu-
tions to (1.2)–(1.5) has been shown in Breit (2022) with additional dissipation (see
also Grandmont and Hillairet (2016) for previous results for elastic plates) and in
Schwarzacher and Su (2023) for the case of plates (but without dissipation). In all
cases, the approach is heavily based on taking temporal derivatives of u and ∂tη,
which is not possible for (1.7)–(1.12). Hence, it is unclear whether one should even
expect such a result here.

2 Mathematical Framework and theMain Result

2.1 Stratonovich Integrals

Let (�,F, (Ft )t≥0, P) be a stochastic basis with a complete, right-continuous filtration
and let (Bt ) represent a real-valued Brownian motion relative to (Ft ). We consider
a smooth solenoidal vector field κ : � → R

2. If ξ ∈ L2(�;C(I ;W 1,2(�))) is
(Ft )-adapted, the stochastic integral

∫ t

0
κ · ∇yξ dBs

is well defined in the sense of Itô with values in L2(�). If we only have ξ ∈
L2(�;C(I ; L2(�))) one can use the identity (κ · ∇y)ξ = divy(κξ) and define the
stochastic integral

∫ t

0
divy(ξκ) dBs

with values in W−1,2(�). We define the Stratonovich integrals in (1.9) by means of
the Itô-Stratonovich correction, that is

∫ t

0

∫
�

ξκ · ∇yφ dy ◦ dBs =
∫ t

0

∫
�

ξκ · ∇yφ dy dBs

+ 1

2

〈〈 ∫
�

ξκ · ∇yφ dy, Bt

〉〉
t

(2.1)

for φ ∈ W 1,2(�). Here 〈〈·, ·〉〉t denotes the cross variation. We compute now the
cross variations by means of (1.9). If ξ = ∂tη, where η solves (1.9), we have for all
φ ∈ W 2,2(�) and t ∈ I ,

∫
�

∂tηκ · ∇yφ dy =
∫

�

∂tη(0)κ · ∇yφ dy −
∫ t

0

∫
�

�yη�y((κ · ∇y)φ) dy ds
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−
∫ t

0

∫
�

gη((κ · ∇y)φ) dy ds

+ 1

2

〈〈 ∫ t

0

∫
�

∂tη ((κ · ∇y)(κ · ∇y)φ) dy, Bt

〉〉
t

+
∫ t

0

∫
�

∂tη ((κ · ∇y)(κ · ∇y)φ) dy dBs .

Only the last term on the right contributes to the cross-variation when inserted in (2.1).
Plugging the previous considerations together, we obtain

∫ t

0
(κ · ∇y)∂tη ◦ dBs =

∫ t

0
(κ · ∇y)∂tη dBs − 1

2

∫ t

0
(κ · ∇y)(κ · ∇y)∂tη ds.

to be understood inW−1,2(�) orW−2,2(�), respectively, depending on the regularity
of ∂tη.

2.2 Geometric Setup

The spatial domain O is assumed to be an open bounded subset of R
3 with smooth

boundary ∂O and an outer unit normal n. We assume that ∂O can be parametrised by
an injective mapping ϕ ∈ Ck(�; R

3) for some sufficiently large k ∈ N, where � is
the two-dimensional torus. We suppose for all points y = (y1, y2) ∈ � that the pair of
vectors ∂iϕ(y), i = 1, 2, is linearly independent. For a point x in the neighbourhood
of ∂O, we define the functions y and s by

y(x) = argmin
y∈�

|x − ϕ(y)|, s(x) = (x − p(x)) · n(y(x)),

where we used the projection p(x) = ϕ(y(x)). We define L > 0 to be the largest
number such that s, y and p are well defined on SL , where

SL = {x ∈ R
n : dist(x, ∂O) < L}. (2.2)

Due to the smoothness of ∂O for L small enough we have |s(x)| = miny∈� |x−ϕ(y)|
for all x ∈ SL . This implies that SL = {sn(y)+y : (s, y) ∈ (−L, L)×�}. For a given
function η : I × � → R, we parametrise the deformed boundary by

ϕη(t, y) = ϕ(y) + η(t, y)n(y), y ∈ �, t ∈ I . (2.3)

With an abuse of notation, we define the deformed space-time cylinder as I × Oη =⋃
t∈I {t} × Oη(t) ⊂ R

4. The corresponding function spaces for variable domains are
defined as follows.
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Definition 1 (Function spaces) For I = (0, T ), T > 0, and η ∈ C(I × ω) with
‖η‖L∞(I×�) < L , we define for 1 ≤ p, r ≤ ∞

L p(I ; Lr (Oη)) := {v ∈ L1(I × Oη) : v(t, ·) ∈ Lr (Oη(t)) for a.e. t,

‖v(t, ·)‖Lr (Oη(t)) ∈ L p(I )
}
,

L p(I ;W 1,r (Oη)) := {v ∈ L p(I ; Lr (Oη)) : ∇xv ∈ L p(I ; Lr (Oη))
}
.

To establish a relationship between the fixed domain and the time-dependent domain,
we introduce the Hanzawa transform �η : O → Oη defined by

�η(x) =
{
p(x) + (s(x) + η(y(x))φ(s(x))

)
n(y(x)) if dist(x, ∂O) < L,

x elsewhere.
(2.4)

for any η : ω → (−L, L). Here φ ∈ C∞(R) is such that φ ≡ 0 in a neighbourhood of
−L and φ ≡ 1 in a neighbourhood of 0. The other variables p, s and n are as defined
earlier in this section. A straightforward verification shows that the inverse of �η(t) is
�−η(t).

In order to obtain a weak formulation for the fluid–structure system, we also intro-
duce the Piola transform

Jζv = (∇x�ζ (det∇x�ζ )
−1v
) ◦ �−1

ζ (2.5)

of a vector field v : O → R
3 with respect to a mapping ζ : � → R. The Piola

transform is invertible with inverse

J −1
ζ v = ((∇x�ζ )

−1(det∇x�ζ )v
) ◦ �ζ . (2.6)

It preserves vanishing boundary values as well as the divergence-free property of a
function. In order to compensate for the additional factor (det∇x�ζ )

−1 in the trace of
Jζv, we define the mapping

ιζ φ := (det∇x�ζ ◦ ϕζ )
−1φ

for a function φ : � → R. If φ ◦ ϕ = φ on � it follows that (Jηφ) ◦ ϕη = ιηφ on
�. Thus a pair of test functions (φ,φ) with the correct boundary condition leads to
a pair of test functions (ιηφ,Jη(t)φ) on the moving domain with the right boundary
condition. Also, a dense set of test functions on the reference domain leads to a dense
set of test functions on the moving domain; see (Lengeler and Ružička 2014, page
237).

We finish this section by recalling the following Aubin-Lions type lemma which is
shown in (Muha and Schwarzacher 2022, Theorem 5.1. & Remark 5.2.) and slightly
reformulated for our purposes.

Theorem 1 Let X , Z be two Banach spaces, such that X ′ ⊂ Z ′. Assume that fn :
I → X and gn : I → X ′, such that gn ∈ L∞(I ; Z ′) uniformly. Moreover assume the
following:
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(a) The boundedness: for some s ∈ [1,∞] we have that ( fn) is bounded in Ls(X)

and (gn) in Ls′(X ′).
(b) The approximability-condition is satisfied: For every κ ∈ (0, 1] there exists a

fn,κ ∈ Ls(I ; X) ∩ L1(I ; Z), such that for every ε ∈ (0, 1) there exists some
κε ∈ (0, 1) (depending only on ε) such that

‖ fn − fn,κ‖Ls (I ;X) ≤ ε for all κ ∈ (0, κε]

and for every κ ∈ (0, 1] there is some C(κ) such that

‖ fn,κ‖L1(I ;Z) dt ≤ C(κ).

(c) The equi-continuity of gn: We require that there exists some α ∈ (0, 1], functions
An with An ∈ L1(I ) uniformly, such that for every κ > 0 that there exist some
C(κ) > 0 and some nκ ∈ N such that for τ > 0, n ≥ nκ and a.e. t ∈ [0, T − τ ]

∣∣∣τ−1
∫ τ

0
〈gn(t) − gn(t + s), fn,κ (t)〉X ′,X ds

∣∣∣ ≤ C(κ)τα(An(t) + 1).

(d) The compactness assumption is satisfied: X ′ ↪→↪→ Z ′. More precisely, every
uniformly bounded sequence in X ′ has a strongly converging subsequence in Z ′.

Then there is a subsequence, such that

∫ T

0
〈 fn, gn〉X ,X ′ dt →

∫ T

0
〈 f , g〉X ,X ′ dt .

2.3 Solenoidal Extension

In this section, we present a linear solenoidal extension operator that maps boundary
elements of a spatial domain into the interior. For this end, we first consider the
corrector map

Kη : L1(�) → R, Kη(ξ) =
∫
Aκ

ξ(y(x))λη(t, x) dx∫
Aκ

λη(t, x) dx
,

where λη ≥ 0 for (t, x) ∈ I × Aκ is an appropriately chosen weight function, cf.
(Muha and Schwarzacher (2022), Eq. (3.3)), and Aκ := Sκ/2 \ Sκ . It satisfies

‖Kη(ξ)‖Lq (I ) � ‖ξ‖Lq (I ;L1(�))

‖∂tKη(ξ)‖Lq (I ) � ‖∂tξ‖Lq (I ;L1(�)) + ‖ξ∂tη‖Lq (I ;L1(�))

for all q ∈ [1,∞]. The corrector Kη above preconditions the boundary data to be
compatible with the interior solenoidality. The following is proved in (Muha and
Schwarzacher (2022), Prop. 3.3) and it provides a solenoidal extension. For that, we
introduce the solenoidal space W 1,1

divx
(O ∪ Sα) := {w ∈ W 1,1(O ∪ Sα) : divxw = 0}.
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Proposition 2 For a given η ∈ L∞(I ;W 1,2(�)) with ‖η‖L∞(I×�) < α < L, there is
a linear operator

F η : {ξ ∈ L1(I ;W 1,1(�)) : Kη(ξ) = 0} → L1(I ;W 1,1
divx

(O ∪ Sα)),

such that the tuple (F η(ξ − Kη(ξ)), ξ − Kη(ξ)) satisfies

F η(ξ − Kη(ξ)) ∈ L∞(I ; L2(Oη)) ∩ L2(I ;W 1,2
divx

(Oη)),

ξ − Kη(ξ) ∈ L∞(I ;W 2,2(�)) ∩ W 1,∞(I ; L2(�)),

(F η(ξ − Kη(ξ)) ◦ ϕη = n(ξ − Kη(ξ)),

∂t (F
η(ξ − Kη(ξ)) ∈ L2(I ; L2(Oη)),

F η(ξ − Kη(ξ))(t, x) = 0 for (t, x) ∈ I × (O \ Sα)

provided we have ξ ∈ L∞(I ;W 2,2(�))∩W 1,∞(I ; L2(�)). In particular, we have the
estimates

‖F η(ξ − Kη(ξ))‖Lq (I ;W 1,p(O∪Sα)) � ‖ξ‖Lq (I ;W 1,p(�))

+ ‖ξ∇yη‖Lq (I ;L p(�)), (2.7)

‖∂tF η(ξ − Kη(ξ))‖Lq (I ;L p(O∪Sα)) � ‖∂tξ‖Lq (I ;L p(�))

+ ‖ξ∂tη‖Lq (I ;L p(�)), (2.8)

for any p ∈ (1,∞), q ∈ [1,∞].
The following result is a consequence of Proposition 2.

Corollary 3 Let the assumptions of Proposition 2 be satisfied and in addition, let
a, r ∈ [2,∞], p, q ∈ (1,∞) and s ∈ [0, 1], and assume that η ∈ Lr (I ;W 2,a(�)) ∩
W 1,r (I ; La(�)). Let ξ ∈ Ws,p(�) and let ξδ be a smooth approximation of ξ in �.
Then Eη

δ (ξ) := F η(ξδ − Kη(ξδ)) satisfies all the conclusions in Proposition 2. In
particular,

‖∂tEη
δ (ξ)‖Lr (I ;La(O∪Sα)) � ‖(ξδ)∂tη‖Lr (I ;La(�))

and

‖Eη
δ (ξ) − F η(ξ − Kη(ξ))‖L p(O∪Sα) � ‖ξδ − ξ‖L p(�)

holds uniformly in t ∈ I .

For the final statement of this subsection, borrowed from (Muha and Schwarzacher
(2022), Lemma 3.5), we first introduce the following fractional difference quotient in
space in the direction ei given by�s

h f (y) = h−s( f (y+ei h)− f (y)) for some h > 0.
Now, we define

Ds,K
−h,hη := �s

−h�
s
hη − Kη(�

s
−h�

s
hη),
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where s ∈ (0, 1
2 ) and the result is as follows:

Lemma 4 Let the assumptions of Proposition 2 be satisfied and in addition, let p, ã ∈
(1,∞) be such that p′ < ã ≤ 3p′

3−p′ if p′ < 3, and p′ < ã < ∞ otherwise.

Furthermore, assume that η ∈ C0,θ (�) ∩ W 1, ã p
ã p−ã−p (�) and u ∈ W 1,p′

(Oη). Then

∣∣∣∣
∫
Oη

u · F η(Ds,K
−h,hξ) dx

∣∣∣∣ ≤
(
hθ−s + ‖�s

hη‖
W

1, ã p
ã p−ã−p (�)

)
‖u‖W 1,p′ (Oη)

‖ξ‖L p(�)

and when ∂tξ ∈ L p(�),

∣∣∣∣
∫
Oη

u·∂tF η(Ds,K
−h,hξ) dx

∣∣∣∣ �
(
hθ−s + ‖�s

hη‖
W

1, ã p
ã p−ã−p (�)

)
‖u‖W 1,p′ (Oη)

‖∂tξ‖L p(�)

+
(∥∥ |�s

hξ(t)| |∂tη| ∥∥Lã(�)
+ ∥∥�s

hξ(t)
∥∥
L1(�)

∥∥∂tη|∥∥L1(�)

)
‖u‖W 1,p′ (Oη)

.

Here, the constants only depends on α, L and ‖η‖C0,θ (�).

2.4 WeakMartingale Solutions

We are interested in a solution to (1.7)–(1.9) that is weak in the probabilistic sense and
also weak in the deterministic sense. From the probabilistic point of view, this means
that the stochastic basis is also an unknown of the system and from the deterministic
angle, wewant a distributional solution of the system integrated against a deterministic
test function pair (φ,φ) ∈ W 2,2(�)×W 1,2

divx
(O) that satisfies φ ◦ϕ = φn at the fluid–

structure interface �.
We are now deriving the weak formulation of the coupled system assuming we

have a sufficiently regular solution at hand. Since the momentum Eq. (1.8) is merely
a random PDE rather than a SPDE, and advected by the large-scale incompressible
vector field, we can directly apply Reynolds transport theorem Harouna and Mémin
(2017) to obtain for (ιηφ,Jη(t)φ) (recalling the definitions from Sect. 2.2)

d
∫
Oη

u · Jη(t)φ dx =
∫
Oη

∂tu · Jη(t)φ dx dt +
∫
Oη

u · ∂t (Jη(t)φ) dx dt

+
∫
Oη

(u · ∇x)(u · Jη(t)φ) dx dt .

We can now use the momentum Eq. (1.8) and the divergence-free condition on φ

(which transfers to Jη(t)φ) to obtain

∫
Oη

∂tu · Jη(t)φ dx dt = −
∫
Oη

((u · ∇x)u) · Jη(t)φ dx dt −
∫
Oη

∇xu : ∇xJη(t)φ dx dt

+
∫
Oη

divx(T(u, π)Jη(t)φ) dx dt
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with the latter satisfying

∫
Oη

divx(T(u, π)Jη(t)φ) dx dt =
∫

∂Oη

nη · (T(u, π)Jη(t)φ) dH2 dt

=
∫

�

gηφ dy dt .

To obtain a distributional formulation for the shell Eq. (1.9), we first transform it into
the Itô equation

d∂tη + [�2
yη + gη − 1

2 ((κ · ∇y)(κ · ∇y)∂tη)
]
dt + ((κ · ∇y)∂tη) dBt = 0,

cf. the discussion in Sect. 2.1. If we now use Itô’s formula, we obtain

d
∫

�

∂tη ιηφ dy = −
∫

�

ιηφ

[
�2

yη + gη − 1
2 ((κ · ∇y)(κ · ∇y)∂tη)

]
dy dt

+
∫

�

∂tη ∂t (ιηφ) dy +
∫

�

((κ · ∇y)∂tη)ιηφ dy dBt ,

where due to the periodicity of the boundary of �,

∫
�

ιηφ�2
yη dy dt =

∫
�

�yιηφ�yη dy dt .

If we now use the identity (v1 · ∇x)(v2 · v3) − ((v1 · ∇x)v2) · v3 = ((v1 · ∇x)v3) · v2,
it follows that

d

(∫
Oη

u · Jη(t)φ dx +
∫

�

∂tη ιηφ dy
)

=
∫

�

(
∂tη ∂t (ιη)φ − �yιηφ�yη

)
dy dt

+
∫
Oη

(
u · ∂t (Jη(t)φ) + ((u · ∇x)Jη(t)φ) · u − ∇xu : ∇xJη(t)φ

)
dx dt

+ 1

2

∫
�

∂tη ((κ · ∇y)(κ · ∇y)(ιηφ)) dy dt

−
∫

�

∂tη ((κ · ∇y)ιηφ) dy dBt .

(2.9)

Note that divx(Jη(t)φ) = 0 and thus, no pressure term appears in theweak formulation.
The term containing ∂tJη is still not well defined and needs to be rewritten. First of
all, we have

Jηφ = ∇x�η ◦ �−1
η (det∇x�η ◦ �−1

η )−1φ ◦ �−1
η

= ∇x�
−1
η (det∇x�

−1
η )−1φ ◦ �−1

η

= ∇x�−η(det∇x�−η)
−1φ ◦ �−η
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so that

∂t (Jηφ) = ∂t∇x�−η(det∇x�−η)
−1φ ◦ �−η

− ∇x�−η(det∇x�−η)
−2tr((cof∇x�−η)

�∂t∇x�−η)φ ◦ �−η

+ ∇x�−η(det∇x�−η)
−1∇xφ ◦ �−η∂t�−η.

By using Gauß theorem, we obtain

∫
Oη

u · ∂t∇x�−η(det∇x�−η)
−1φ ◦ �−η dx

=
∫

∂Oη

((u · ∂t�−η)(det∇x�−η)
−1φ ◦ �−η) · nη dH2

−
∫
Oη

∂t�−η · divx
(
u ⊗ (det∇x�−η)

−1φ ◦ �−η

)
dx

and similarly

∫
Oη

u · ∇x�−η(det∇x�−η)−2tr((cof∇x�−η)�∂t∇x�−η)φ ◦ �−η dx

=
∫
Oη

3∑
j=1

3∑
i=1

((cof∂ j�
i−η)∂t∂ j�

i−η)u · ∇x�−η(det∇x�−η)−2φ ◦ �−η dx

=
∫
Oη

3∑
j=1

∂ j

( 3∑
i=1

((cof∂ j�
i−η)∂t�

i−η)u · ∇x�−η(det∇x�−η)−2φ ◦ �−η

)
dx

−
∫
Oη

3∑
j=1

3∑
i=1

∂t�
i−η∂ j

(
(cof∂ j�

i−η)u · (∇x�−η(det∇x�−η)−2φ ◦ �−η)
)
dx

=
∫
∂Oη

3∑
j=1

( 3∑
i=1

((cof∂ j�
i−η)∂t�

i−η)u · ∇x�−η(det∇x�−η)−2φ ◦ �−η

)
n j
η dH2

−
∫
Oη

3∑
j=1

3∑
i=1

∂t�
i−η∂ j

(
(cof∂ j�

i−η)u · (∇x�−η(det∇x�−η)−2φ ◦ �−η)
)
dx

where � i−η is the i-th component of �−η and n j
η that of nη. The last term of ∂t (Jηφ)

does not require such an integration by parts. Combining Hölder’s inequality with
Sobolev’s embedding and using that �η has the same regularity as η, one easily
checks that for a weak solution with regularity as below, all terms are well defined.

With this preparation, we now give the precise notion of a solution.
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Definition 2 (Weak martingale solution) Let (η0, η1,u0, κ) be a dataset such that

η0 ∈ W 2,2(�) with ‖η0‖L∞(�) < L, η1 ∈ L2(�),

u0 ∈ L2
divx(Oη0) is such that u0 ◦ ϕη0

= η1n on � × �,

‖κ‖W 1,∞(�) � 1.

(2.10)

We call ((�,F, (F)t≥0, P), η,u) a weak martingale solution of (1.7)–(1.9) with data
(η0, η1,u0, κ) provided that the following holds:

(a) (�,F, (F)t≥0, P) is a stochastic basis with a complete right-continuous filtration;
(b) Bt is an (Ft )-Brownian motion;
(c) the shell function η is (Ft )-adapted with ‖η‖L∞(I×�) < L a.s. and for all s ∈

(0, 1/2)

η ∈ L∞(I ;W 2,2(�) ∩ L2(I ;W 2+s,2(�))
)
, ∂tη ∈ Cw

(
I ; L2(�)

)
a.s.;

(d) the velocity u is (Ft )-adapted with u ◦ ϕη = n∂tη on I × � a.s.

u ∈ Cw

(
I ; L2

divx(Oη)
) ∩ L2(I ;W 1,2(Oη)

)
a.s.;

(e) Equation (2.9) holds a.s. for all (φ,φ) ∈ W 2,2(�) × W 1,2
divx

(O) with φ ◦ ϕ = φn
on �.

(e) The energy inequality holds in the sense that

1
2

∫
Oη(t)

|u(t)|2 dx +
∫ t

0

∫
Oη(s)

|∇xu|2 dx ds + 1
2

∫
�

|∂tη(t)|2 dy + 1
2

∫
�

|�yη(t)|2 dy

≤ 1
2

∫
Oη0

|u0|2 dx + 1
2

∫
�

|η1|2 dy + 1
2

∫
�

|�yη0|2 dy (2.11)

a.s. for a.a. t ∈ I .

The following is our main result.

Theorem 5 Let (η0, η1,u0, κ) be a dataset such that (2.10) holds. Then there is a
weak martingale solution of (1.7)–(1.9) with data (η0, η1,u0, κ) in the sense of Def-
inition 2. The interval of existence is of the form I = (0, t), where t < T only if
lims→t ‖η(s)‖L∞(�) = L a.s. in �0 for some �0 ⊂ � with P(�0) > 0.

3 The Linearised Problem

In the first instant, we wish to construct a weak solution to a system with a regularised
geometry and a regularised convection term. Here, by a regularised geometry, we
mean a regularization of a solution to a given shell equation and not the solution to
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our anticipated shell Eq. (1.9). Thus, we aim at solving the system

divxu = 0, (3.1)

∂tu + (uε · ∇x)u = �xu − ∇xπ, (3.2)

d∂tη + (εL′(η) + ε∂t�
2
yη + �2

yη + gηε ) dt + ((κ · ∇y)∂tη) ◦ dBt = 0, (3.3)

in I × Oηε where

gηε = n�(T(u, π)nηε ) ◦ ϕηε
| det(∇yϕηε

)|, T(u, π) = (∇xu + ∇xu�) − πI3×3,

L′ is the operator given
∫
�
L′(η)φ dy = ∫

�
∇3
yη : ∇3

yφ dy for all φ ∈ W 3,2(�), and
ε > 0 is a fixed regularisation parameter. With some slight abuse of notation we
denote by fε the regularisation of a function on the fluid domain (which is previously
extended by zero to the whole space) as well as the regularization of a function defined
on I×�. The regularisation is takenwith respect to space and time, where the temporal
regularization is taken backwards in extending functions to (−∞, T ) by their values at
time 0. Amartingale solution to (3.1)–(3.3) can be defined analogously to Definition 2.
We aim to show the following result (the proof of Theorem 6 can be found in the next
section).

Theorem 6 Let (η0, η1,u0, κ) be a dataset such that (2.10) holds and we have addi-
tionally η0 ∈ W 3,2(�). Then there is a weak martingale solution of (3.1)–(3.3) with
data (η0, η1,u0, κ). The interval of existence is of the form I = (0, t), where t < T
only if lims→t ‖η(s)‖L∞(�) = L a.s. in �0 for some �0 ⊂ � with P(�0) > 0.

In order to solve (3.1)–(3.3), we linearise the problem by replacing the regularised
velocity in the convective term with a regularization of a given velocity field v ∈ R

3.
We also replace the regularised geometry with a regularised geometry with respect to
a given structure displacement ζ with an initial state ζ(0, ·) = η0. The corresponding
regularization of the pair (ζ, v) is denoted by (ζε, vε). The solution we seek will be
constructed as the limit N → ∞ of the solution (ηN ,uN ) to a finite dimensional
Galerkin approximation system incorporating these regularizing terms. Since this is
a linear system we aim to construct a probabilistically strong solution defined on a
stochastic basis (�,F, (Ft )t≥0, P) anddrivenby agivenBrownianmotion (Bt ) relative
to (Ft ). Suppose that (ζ, v) (and thus its regularization (ζε, vε)) are a given pair of (Ft )-
progressively measurable3 random variables with values inC(I ×�)× L2(I ; L2(O∪
Sα)) belonging to L p(�) for some sufficiently large pwherewe suppose that ε is small
enough such that ‖ζε‖L∞(I×�) < α < L a.s. We now look for an (Ft )-progressively
measurable process (η,u) with values in the space

W 1,2(I ;W 2,2(�)) × L∞(I ;W 3,2(�)) ∩ W 1,∞(I ; L2(�))

× L∞(I ; L2(�ζε )) ∩ L2(I ;W 1,2
divx

(�ζε ))
(3.4)

3 To be understood in the sense of random distributions, cf. (Breit et al. (2018), Chapter 2.8).
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such that

d

(∫
Oζε

u · Jζε(t)φ dx +
∫

�

∂tη ιζεφ dy
)

=
∫

�

(
∂tη ∂t (ιζε φ) − �yιζε φ �yη − ε�yιζε φ ∂t�yη

)
dy dt

− ε

∫
�

∇3
y ιζε φ : ∇3

yη dy dt +
∫

�

(
1

2
nζε · nιζε φ ∂tζε ∂tη | det(∇yϕζε

)|
)
dy dt

+
∫
Oζε

(
u · ∂t (Jζε(t)φ) − 1

2
((vε · ∇x)u) · (Jζε(t)φ)

)
dx dt

+
∫
Oζε

(1
2
((vε · ∇x)Jζε(t)φ) · u − ∇xu : ∇x(Jζε(t)φ)

)
dx dt

+ 1

2

∫
�

((κ · ∇y)(κ · ∇y)∂tη)ιζε φ dy dt +
∫

�

((κ · ∇y)∂tη)ιζε φ dy dBt (3.5)

for all (φ,φ) ∈ W 3,2(�) × W 1,2
divx

(O) with φ ◦ ϕ = φn on �. Moreover, we require
u ◦ ϕζε

= n∂tη on I × �.

Theorem 7 Let (η0, η1,u0, κ) be a dataset such that (2.10) holds and we have addi-
tionally η0 ∈ W 3,2(�). Let (�,F, (Ft )t≥0, P) be a stochastic basis with a complete,
right-continuous filtration and let (Bt ) be an (Ft )-Brownian motion. Then there is a
unique probabilistically strong solution of (3.5)with data (η0, η1,u0, κ). The interval
of existence is of the form I = (0, t), where t < T only if lims→t ‖η(s)‖L∞(�) = L
a.s. in �0 for some �0 ⊂ � with P(�0) > 0.

It will turn out that the solution from Theorem 7 satisfies the energy equality

1
2

∫
Oζε

|u(t)|2 dx +
∫ t

0

∫
Oζε

|∇xu|2 dx ds + ε

∫ t

0

∫
�

|∂s�yη|2 dy ds

+
∫

�

(
1
2 |∂tη(t)|2 + 1

2 |�yη(t)|2 + ε|∇3
yη(t)|2

)
dy

= 1
2

∫
Oζε (0)

|u0|2 dx +
∫

�

(
1
2 |η1|2 + 1

2 |�yη0|2 + ε|∇3
yη0|

)
dy

(3.6)

a.s. for a.a. t ∈ I .
The aim of the following subsection is to construct a Galerkin approximation of

(3.1)–(3.3) on a given stochastic basis (�,F, (F)t≥0, P), while its limit passage (and
thus the proof of Theorem 6) can be found in the next section.

3.1 The Linearised Galerkin Problem

Let us now explain in which function spaces we seek the finite dimensional objects
(ηN ,nN ). Let (Yi )i∈N be a basis ofW 2,2(�) and let (Xi )i∈N be a basis ofW 1,2

0,divx
(O).
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Clearly, there exists divergence-free vector fields Yi that are solving Stokes systems
in the reference domain O with boundary data (Yin) ◦ ϕ−1. We then set

wi =
{
Xi : i even,
Yi : i odd (3.7)

and set wi = wi ◦ ϕ|� · n. Now we take the pair (ζ, v) from

L∞(�;C(I × �)) × L∞(�; L2(I ; L2(R3)))

being (Ft )-progressively measurable. We search for (αN
i )k,N∈N : � × I → R

n such
that

uN =
N∑
i=1

αN
i (Jζε(t)wi ) and ηN (t, ·) =

N∑
i=1

∫ t

0
αN
i ιζεwi ds + η0

solve the equations4

d

(∫
Oζε

uN · Jζε(t)w j dx +
∫
�

∂tη
N ιζε

w j dy
)

=
∫
�

(
∂tη

N ∂t (ιζε
w j ) − �yιζε

w j�yη
N − ε�yιζε

w j ∂t�yη
N ) dy dt

− ε

∫
�

∇3
y ιζε

w j : ∇3
yηN dy dt +

∫
�

(
1

2
nζε

· n�ιζε
w j ∂t ζε ∂tη

N | det(∇yϕζε
)|
)
dy dt

+
∫
Oζε

(
uN · ∂t (Jζε(t)w j ) − 1

2
((vε · ∇x)uN ) · (Jζε(t)w j )

)
dx dt

+
∫
Oζε

(1
2
((vε · ∇x)Jζε(t)w j ) · uN − ∇xuN : ∇x(Jζε(t)w j )

)
dx dt

+ 1

2

∫
�
((κ · ∇y)(κ · ∇y)∂tη

N )ιζε
w j dy dt +

∫
�
((κ · ∇y)∂tη

N )ιζε
w j dy dBt (3.8)

for 1 ≤ j ≤ N with an initial condition αN
i (0) which is such that

∂tη
N (0, ·) → η1 in L2(�), (3.9)

uN (0, ·) → u0 in L2(Oζε(0)). (3.10)

Note that the derivation of the weak formulation (3.8) is slightly different to the
derivation of (2.9) due to the differences in their respective advective terms. The

4 We neglect the dependency of the unknown (ηN , uN ) on ε at this point for simplicity.
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treatment of the former advection term goes as follows. By using the trivial identity

∫
Oζε

((vε · ∇x)Jζε(t)w j ) · uN dx dt = 1

2

∫
Oζε

((vε · ∇x)Jζε(t)w j ) · uN dx dt

+ 1

2

∫
Oζε

((vε · ∇x)Jζε(t)w j ) · uN dx dt

we rewrite the last term as follows

∫
Oζε

((vε · ∇x)Jζε(t)w j ) · uN dx dt =
∫
Oζε

divx(vε ⊗ Jζε(t)w j ) · uN dx dt

=
∫
∂Oζε

nζε
· ([vε ⊗ Jζε(t)w j ]uN ) dH2 dt −

∫
Oζε

(vε ⊗ Jζε(t)w j ) : ∇xuN dx dt

=
∫
∂Oζε

nζε
· ([vε ◦ ϕζε

◦ ϕ−1
ζε

((Jζε(t)w j ) ◦ ϕζε
◦ ϕ−1

ζε
)�]uN ◦ ϕζε

◦ ϕ−1
ζε

) dH2 dt

−
∫
Oζε

((vε · ∇x)uN ) · Jζε(t)w j dx dt

=
∫
�
nζε

· n�ιζε
w j ∂t ζε ∂tη

N | det(∇yϕζε
)| dy dt

+
∫
Oζε

((vε · ∇x)uN ) · Jζε(t)w j dx dt

where we have used uN ◦ ϕζε
= n∂tη

N and Jζε(t)w j ◦ ϕζε
= ιζεw jn in the last step.

This explains the presence of the Jacobian determinant in (3.8). Moving on, we note
that Eq. (3.8) is equivalent to

d

[ N∑
i=1

αN
i

(∫
Oζε

Jζε (t)wi · Jζε (t)w j dx +
∫
�

ιζε wi ιζε w j dy
)]

=
N∑
i=1

∫
Oζε

αN
i

(
Jζε (t)wi · ∂t (Jζε (t)w j ) − 1

2
((vε · ∇x)Jζε (t)wi ) · (Jζε (t)w j )

)
dx dt

+
N∑
i=1

∫
Oζε

αN
i

( 1
2
((vε · ∇x)Jζε (t)w j ) · (Jζε (t)wi ) − ∇x(Jζε (t)wi ) : ∇x(Jζε (t)w j )

)
dx dt

+
N∑
i=1

αN
i
2

∫
�
nζε · n�ιζε w j ∂t ζε ιζε wi | det(∇yϕζε )| dy dt −

∫
�

�yη0 �yιζε w j dy dt

−
N∑
i=1

∫
�

∫ t

0
αN
i (s)�yιζε wi (s) �yιζε w j (t) ds dy dt − ε

∫
�

∇3
yη0 : ∇3

y ιζε w j dy dt

− ε

N∑
i=1

∫
�

∫ t

0
αN
i (s)∇3

y ιζε wi (s) : ∇3
y ιζε w j (t) ds dy dt − ε

N∑
i=1

∫
�

αN
i �yιζε wi�yιζε w j dy dt

+
N∑
i=1

αN
i
2

∫
�
((κ · ∇y)(κ · ∇y)ιζε wi )ιζε w j dy dt +

N∑
i=1

αN
i

∫
�
((κ · ∇y)ιζε wi )ιζε w j dy dBt .
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To simplify notations, we drop the summation signs by employing Einstein’s sum-
mation convention. Then for

(ai j (t)) :=
∫
Oζε

(Jζε (t)wi ) · (Jζε (t)w j ) dx +
∫
�

ιζε wi ιζε w j dy,

(bi j (t)) :=
∫
Oζε

(
(Jζε (t)wi ) · ∂t (Jζε (t)w j ) − 1

2
((vε · ∇x(Jζε (t)wi ) · (Jζε (t)w j )

)
dx,

+
∫
Oζε

( 1
2
((vε · ∇x(Jζε (t)w j ) · (Jζε (t)wi ) − ∇x(Jζε (t)wi ) : ∇x(Jζε (t)w j )

)
dx

+ 1

2

∫
�
nζε · n�ιζε w j ∂t ζε ιζε wi | det(∇yϕζε )| dy − ε

∫
�

�yιζε wi �yιζε w j dy

+ 1

2

∫
�
((κ · ∇y)(κ · ∇y)ιζε wi )ιζε w j dy,

(ci j (t, s)) := −
∫
�

�yιζε wi (s) �yιζε w j (t) dy − ε

∫
�

∇3
y ιζε wi (s) : ∇3

y ιζε w j (t) dy,

(d j (t)) := −
∫
�

�yη0 �yιζε w j dy − ε

∫
�

∇3
yη0 : ∇3

y ιζε w j dy,

(ei j (t)) :=
∫
�
((κ · ∇y)ιζε wi )ιζε w j dy,

we can rewrite the above as the following system of SDEs

∫
I
d
[
αN
i (t)(ai j (t))

] =
∫
I
αN
i (t)(bi j (t)) dt −

∫
I

∫ t

0
αN
i (s)(ci j (t, s)) ds dt

−
∫
I
(d j (t)) dt +

∫
I
αN
i (t)(ei j (t)) dBt .

(3.11)

Since the coefficient matrix (ai j (t)) is symmetric and positive definite, it is invertible.
As the problem is linear, we can infer the existence of a unique global solution,
cf. (Prévôt and Röckner (2007), Theorem 3.1.1.). Moreover, we have the following
energy estimate which is obtained by applying Itô’s formula5 to the process t �→
1
2

∫
Oζε

|uN (t)|2 dx + 1
2

∫
�

|∂tηN (t)|2 dy: it holds

1
2

∫
Oζε

|uN (t)|2 dx +
∫ t

0

∫
Oζε

|∇xuN |2 dx ds + ε

∫ t

0

∫
�

|∂s�yη
N |2 dy ds

+
∫

�

(
1
2 |∂tηN (t)|2 + 1

2 |�yη
N (t)|2 + ε|∇3

yη
N (t)|2

)
dy

= 1
2

∫
Oη0

|u0|2 dx +
∫

�

(
1
2 |η1|2 + 1

2 |�yη0|2 + ε|∇3
yη0|

)
dy

(3.12)

5 This can be rewritten in terms of the αN
i , cf. (3.11), such that a finite dimensional version is sufficient.

Note that the coefficients in (3.11) are random but differentiable in time.
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a.s. for a.a. t ∈ I . From the above, we then obtain

sup
I

(
‖ηN‖2W 2,2(�)

+ ε‖ηN‖2W 3,2(�)

)
� 1, (3.13)

sup
I

‖∂tηN‖2L2(�)
� 1, (3.14)

ε

∫
I
‖∂tηN‖2W 2,2(�)

dt � 1, (3.15)

sup
I

‖uN‖2L2(Oζε )
� 1, (3.16)

∫
I
‖∇xuN‖2L2(Oζε )

dt � 1. (3.17)

In addition, for any s ∈ (0, 1
2 ), it follows from uN ◦ϕζε

= n∂tη
N , (3.17) and the trace

theorem that

∫
I
‖∂tηN‖2Ws,2(�)

dt � 1 (3.18)

holds.

3.2 Tightness of@t�N

The effort of this subsection is to prove tightness of the law of ∂tη
N on L2 in order

to pass to the limit in the stochastic integral. We define the projection PN and the
extension F ζε

N (for a given ζ : ω → (−L, L))

PNb =
N∑

k=1

αk(b)ιζε wk, F ζε

N b =
N∑

k=1

αk(b)Jζε wk,

where αk(b) = 〈b, ιζε wk〉W 3,2(�) ifwk = Y� for some � ∈ N and αk(b) = 0 otherwise.

Obviously, we haveF ζε

N b◦ϕζε
= nPNb for any b ∈ W 3,2(�). We have by definition,

‖PNb‖2W 3,2(�)
≤ ‖b‖2W 3,2(�)

∀b ∈ W 3,2(�). (3.19)

The eigenvalue equation for the basis vectors implies additionally that

‖PNb‖2L2(�)
� ‖b‖2L2(�)

∀b ∈ L2(�). (3.20)

By interpolation, we obtain an estimate on Ws,2(�) for any s ∈ [0, 3], that is

‖PNb‖Ws,2(�) � ‖b‖Ws,2(�). (3.21)
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Finally, for ζε ∈ W 3,2(�) with ‖ζε‖L∞(�) < α for α ∈ (0, L) we have

‖F ζε

N b‖2Ws+1/2,2(O∪Sα)
=
∥∥∥∥

N∑
k=1

αk(b)Jζεwk

∥∥∥∥
2

Ws+1/2,2(O∪Sα)

�
∥∥∥∥

N∑
k=1

αk(b)ιζε wk

∥∥∥∥
2

Ws,2(�)

≤ ‖b‖2Ws,2(�)
(3.22)

for all b ∈ Ws,2(�) and for any s ∈ [0, 3]. Here we used that
∑N

k=1 αk(b)wk solves
the homogeneous Stokes problem with boundary datum

∑N
k=1 αk(b)wkn in O and

well-known elliptic estimates (see (Galdi (2011), Chapter IV)). Similarly, we obtain
for ζ 1

ε , ζ 2
ε ∈ W 1,2(�)

‖F ζ 1ε
N b − F

ζ 2ε
N b‖2L2(O∪Sα)

=
∥∥∥∥(Jζ 1ε

− Jζ 2ε
)

N∑
k=1

αk(b)wk

∥∥∥∥
2

L2(O∪Sα)

� ‖(ζ 1
ε , ζ 2

ε )‖4W 1,∞(�)
‖ζ 1

ε − ζ 2
ε ‖2L2(�)

∥∥∥∥
N∑

k=1

αk(b)wk

∥∥∥∥
2

W 1,∞(O)

+ ‖(ζ 1
ε , ζ 2

ε )‖2W 1,∞(�)
‖∇y(ζ

1
ε − ζ 2

ε )‖2L2(�)

∥∥∥∥
N∑

k=1

αk(b)wk

∥∥∥∥
2

L∞(O)

� (1 + ‖(ζ 1
ε , ζ 2

ε )‖4W 1,∞(�)
)‖ζ 1

ε − ζ 2
ε ‖2W 1,2(�)

∥∥∥∥
N∑

k=1

αk(b)wk

∥∥∥∥
2

W 3,2(O)

� (1 + ‖(ζ 1
ε , ζ 2

ε )‖4W 1,∞(�)
)‖ζ 1

ε − ζ 2
ε ‖2W 1,2(�)

∥∥∥∥
N∑

k=1

αk(b)wk

∥∥∥∥
2

W 3,2(�)

≤ (1 + ‖(ζ 1
ε , ζ 2

ε )‖4W 1,∞(�)
)‖ζ 1

ε − ζ 2
ε ‖2W 1,2(�)

‖b‖2W 3,2(�)
(3.23)

for all b ∈ W 3,2(�). Following Lengeler and Ružička (2014), we write

∫
I

∫
Oζε

|uN |2 dx dt +
∫
I

∫
�

|∂tηN |2 dy dt

=
∫
I

∫
O∪Sα

IOζε
uN · F ζε

N ∂tη
N dx dt +

∫
I

∫
�

|∂tηN |2 dy dt

+
∫
I

∫
O∪Sα

IOζε
uN · (uN − F ζε

N ∂tη
N ) dx dt . (3.24)
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We consider the space X := L2(�) × W−s,2(O ∪ Sα) with s ∈ (0, 1/4). In order
to apply Theorem 1 yielding tightness of the corresponding laws we need to equip
L2(I ; X ′ × X) with an unconventional topology which we denote by τ� and define
the convergence →� as follows. We say that

((ζ N , vN ), (ξ N ,wN )) →� ((ζ, v), (ξ,w)) in L2(I ; X ′ × X)

provided that

((ζ N , vN ), (ξ N ,wN ))⇀((ζ, v), (ξ,w)) in L2(I ; X ′ × X)

and it holds

∫
I
〈vN ,wN 〉Ws,2,W−s,2 dt +

∫
I

∫
�

ζ N ξ N dy dt

−→
∫
I
〈v,w〉Ws,2,W−s,2 dt +

∫
I

∫
�

ζ ξ dy dt .
(3.25)

Since this topology is finer than the weak topology on L2(I ; X ′ × X), it is clear that
(L2(I ; X ′ × X), τ�) is a quasi-Polish space such that Jakubowski’s version of the
Skorokhod representation theorem applies. We obtain the following result concerning
tightness.

Lemma 8 The laws of

((∂tη
N , IOζε

uN ), (∂tη
N ,F ζε

N ∂tη
N )) and ((∂tηn, IOζε

uN ), (0,uN − F ζε

N ∂tη
N ))

on (L2(I ; X ′ × X), τ�) are tight.

Proof According to Theorem 1, we first need boundedness in L2(I ; X ′ × X). By
(3.13)–(3.18) and the properties of the projection and extension operators above this
follows immediately (even uniformly in probability). Note that the extension by zero
is a bounded operator onWs,2 for s < 1

4 . For (b) we observe that we may assume that
a regulariser b �→ (b)κ exists such that for any s, a ∈ R

‖b − (b)κ‖Wa,2(�) � κs−a‖b‖Ws,2(�), b ∈ Ws,2(�). (3.26)

The estimate is well known for a, s ∈ N0, while the general case follows by interpola-
tion and duality. Next we introduce the mollification operator on ∂tη

N by considering
for κ > 0 and N ∈ N, fN (t) := (PN (∂tη

N (t)),F ζε(t)
N (PN (∂tη

N (t)))) and set

fN ,κ (t) := (PN ((∂tη
N (t))κ),F ζε(t)

N (PN ((∂tη
N (t))κ))).

We find by the continuity of the mollification operator from (3.26), the continuity of
the projection operator from (3.21) and the estimate for the extension operator (3.22)
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that for a.e. t ∈ I and s < s0 < 1/2

‖ fN ,κ − fN‖L2(�)×Ws,2(O∪SL/2)
� κs0−s‖∂tηN‖Ws0,2(�), (3.27)

which can be made arbitrarily small in L2 by choosing κ appropriately, cf. (3.18).
Similarly, we have

‖ fN ,κ‖W 1,2(�)×W 1,2(O∪SL/2)
� κ−1‖∂tηN‖L2(�).

Clearly, if fN⇀ f in L2(I ; X) then we can deduce a converging subsequence such
that fN ,κ⇀ fκ (for some fκ ) in L2(I ; X) for any κ > 0, which implies (b).

For (c) we have to control 〈gN (t) − gN (s), fN ,κ (t)〉, where gN (t) :=
(∂tη

N (t), IOζε (t)u
N (t)) and hence we decompose

〈gN (t) − gN (s), fN ,κ (t)〉
= (〈gN (t), (PN ((∂tη

N (t))κ),F ζε(t)
N (PN ((∂tη

N (t))κ)))〉
− 〈gN (s), (PN ((∂tη

N (t))κ),F ζε(s)
N (PN ((∂tη

N (t))κ)))〉)
+ 〈gN (s), (0,F ζε(s)

N (PN ((∂tη
N (t))κ)) − F ζε(t)

N (PN ((∂tη
N (t))κ))〉

=: (I ) + (I I ).

We begin estimating (I I ) to find that

(I I ) =
∫
Oζε (s)

uN (s) ·
(
F ζε(s)

N (PN ((∂tη
N (t))κ)) − F ζε(t)

N (PN ((∂tη
N (t))κ)

)
dx

� ‖uN (s)‖L2(Oζε (s))
(1 + ‖ζε‖2L∞(I ;W 1,∞(�))

)‖ζε(t) − ζε(s)‖W 1,2(�)

× ‖PN ((∂tη
N (t))κ)‖W 3,2(�)

using (3.23). By (3.26) and (3.21) the last term can be estimated by

‖PN ((∂tη
N (t))κ)‖W 3,2(�) ≤ c‖(∂tηN (t))κ‖W 3,2(�) ≤ cκ−3‖∂tηN (t)‖L2(�),

which is bounded by (3.14). Due to this as well as (3.14) and (3.16) we further have
that

|(I I )| ≤ c(κ)|t − s|(1 + ‖ζε‖3W 1,∞(I ;W 1,∞(�))
)

≤ c(κ, ε)|t − s|(1 + ‖ζ‖3
C(I×�)

).

In the last step, we used standard properties of the mollification recalling that ε is a
fixed parameter on this level. It follows by Markov’s inequality for K > 0

P
(|t − s|−1|(I I )| ≥ K

) ≤ c(κ, ε)

K
E

[
1 + ‖ζ‖3

C(I×�)

]
≤ c(κ, ε)

K
,
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which can be made arbitrarily small for large K provided ζ ∈ L3(�;C(I × �)). The
term (I ) is estimated using the test function fN ,κ obtaining

∫ s

t
(I ) dr

= −
∫ s

t

∫
�

�y(PN ((∂tη
N (t))κ)�yη

N dy dr

− ε

∫ s

t

∫
�

(
�y(PN ((∂tη

N (t))κ)∂t�yη
N + ∇3

y (PN ((∂tη
N (t))κ) : ∇3

yη
N
)
dy dr

+
∫ s

t

∫
�

(
1

2
nζε · n�(PN ((∂tη

N (t))κ)∂tζε ∂tη
N | det(∇yϕζε

)|
)
dy dr

+
∫ s

t

∫
Oζε

uN · ∂rF
ζε(r)
N (PN ((∂tη

N (t))κ)) dx dr

−
∫ s

t

∫
Oζε

1

2
((vε · ∇x)uN ) · F ζε

N (PN ((∂rη
N (t))κ)) dx dr

+
∫ s

t

∫
Oζε

1

2
((vε · ∇x)F

ζε

N (PN ((∂tη
N (t))κ))) · uN dx dr

−
∫ s

t

∫
Oζε

∇xuN : ∇xF
ζε

N (PN ((∂tη
N (t))κ)) dx dr

+ 1

2

∫ s

t

∫
�

((κ · ∇y)(κ · ∇y)∂tη
N )(PN ((∂tη

N (t))κ) dy dr

+
∫ s

t

∫
�

((κ · ∇y)∂tη
N )(PN ((∂tη

N (t))κ) dy dBr . (3.28)

Due to (3.26), (3.21) and (3.22) and the uniform estimates (3.13)–(3.18), it is clear that
all terms can be estimated by c(κ, ε)|t − s|1/2(1 + ‖ζ‖C(I×�) + ‖∇xuN‖L2(I×Oζε ))

except for the last one. Here we have by Markov’s inequality and Itô-isometry (using
also divyκ = 0)

P

(
|t − s|−1/2

∣∣∣∣
∫ s

t

∫
�

((κ · ∇y)∂tη
N )PN (∂tη

N (t))κ dy dBr

∣∣∣∣ ≥ K

)

≤ 1

K 2 E

∣∣∣∣|t − s|−1/2
∫ s

t

∫
�

∂tη
N ((κ · ∇y)PN (∂tη

N (t))κ) dy dBr

∣∣∣∣
2

= 1

K 2 E

[
|t − s|−1

∫ s

t

∣∣∣∣
∫

�

∂tη
N ((κ · ∇y)PN (∂tη

N (t))κ) dy

∣∣∣∣
2

dr

]

� 1

K 2 E

[
|t − s|−1

∫ s

t
‖∂tηN‖L2(�)‖∇yPN (∂tη

N (t))κ‖L2(�) dr

]

� κ−1

K 2 E

[
|t − s|−1

∫ s

t
‖∂tηN (r)‖L2(�)‖∂tηN (t)‖L2(�) dr

]
� κ−1

K 2
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using (3.14). This can be made arbitrarily small for K large. Now we set Z :=
Ws0,2(�) × Ws0,2(O ∪ Sα), where s0 ∈ (s, 1

4 ). Noticing that property (d) from The-
orem 1 follows by the usual compactness in (negative) Sobolev spaces, we conclude
tightness of the law of ((∂tη

N , IOζε
uN ), (∂tη

N ,F ζε

N ∂tη
N )) on (L2(I ; X ′ × X), τ�).

The tightness for ((0, IOζε
uN ), (0,uN −F ζε

N ∂tη
N )) follows along the same line, the

only difference being the regularisation of

fN := (0,uN − F ζε

N ∂tη
N ).

While F ζε

N ∂tη
N can be replaced by F ζε(s)

N (PN ((∂tη
N (t))κ)) as above, we need to

regularise uN accordingly to preserve the homogeneous boundary conditions of fN .
Recalling the definition of wi from (3.7), we define Xκ

i ∈ W 1,2
0,divx

(O) as a spatial
regularisation of Xi and Yκ

i as the solution to the Stokes problem with boundary
datum Y κ

i n (which inherits the regularity of Y κ
i ). Then we set

wκ
i =

{
Xκ
i : i even,

Yκ
i : i odd. (3.29)

If uN =∑N
i=1 αN

i Jζεwi we set

fN ,κ =
(
0,

N∑
i=1

αN
i Jζεw

κ
i − F ζε

N (PN ((∂tη
N (t))κ))

)
.

Hence fN ,κ has zero boundary conditions and thus only the fluid part is seen in the
expression 〈gN (t) − gN (s), fN ,κ (t)〉 (where gN := (∂tη

N , IOζε
uN ) as above). In

particular, the noise is not seen and we conclude

〈gN (t) − gN (s), fN ,κ (t)〉 ≤ c(κ, ε)|t − s|1/6(1 + ‖ζ‖C(I×�) + ‖∇xuN‖L2(I×Oζε ))

obtaining again the claimed tightness. ��

3.3 Stochastic Compactness

With the bounds from (3.13)–(3.18) in hand, we wish to obtain compactness. For this,
we define the path space

χ = χB × χ2
u × χ∇u × χη × χζ × χ2

f ,g

where

χB = C(I ), χu = (L2(I ; L2(O ∪ Sα)), w
)
, χ∇u = (L2(I ; L2(O ∪ Sα)), w

)
,

χη = (W 1,∞(I ; L2(�)), w∗) ∩ (L∞(I ;W 3,2(�)), w∗) ∩ (W 1,2(I ;W 2,2(�)), w
)
,

χζ = C(I × �), χ f ,g = (L2(I ; X ′ × X), τ�

)
.
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From (3.13)–(3.18) (together with Alaoglu–Bourbaki Theorem) we obtain the follow-
ing.

Lemma 9 For fixed ε > 0, the joint law

{
L
[
Bt , IOζε

uN , v, IOζε
∇xuN , ηN , ζ,

(
((∂tη

N , IOζε
uN ), (∂tη

N ,F ζε

N ∂tη
N ))

((∂tη
N , IOζε

uN ), (0,uN − F ζε

N ∂tη
N ))

)]]
; N ∈ N

}

is tight on χ .

Now we use Jakubowski’s version of the Skorokhod representation theorem, see
Jakubowski (1998), to infer the following result (we refer to (Ondreját (2010), Theo-
rem A.1) for a statement which combines Prokhorov’s and Skorokhod’s theorem for
quasi-Polish spaces) which one obtains after taking a non-relabelled subsequence.

Proposition 10 There exists a complete probability space (�̃, F̃, P̃) with χ -valued
random variables

�̃
N :=

⎡
⎢⎣B̃N

t , IO
ζ̃Nε

ũN , ṽN , IO
ζ̃Nε

∇xũN , η̃N , ζ̃ N ,

⎛
⎜⎝

((∂t η̃
N , IO

ζ̃Nε
ũN ), (∂t η̃

N ,F
ζ̃ Nε
N ∂t η̃

N ))

((∂t η̃
N , IO

ζ̃Nε
ũN ), (0, ũN − F

ζ̃ Nε
N ∂t η̃

N ))

⎞
⎟⎠
⎤
⎥⎦

for N ∈ N and

�̃ :=
[
B̃t , IO

ζ̃ε
ũ, ṽ, IO

ζ̃ε
∇xũ, η̃, ζ̃ ,

(
((∂t η̃, IO

ζ̃ε
ũ), (∂t η̃,F ζ̃ε ∂t η̃))

((∂t η̃, IO
ζ̃ε
ũ), (0, ũ − F ζ̃ε ∂t η̃))

)]

such that

(a) For all n ∈ N the law of �̃
N
on χ is given by

L
[
Bt , IOζε

uN , v, IOζε
∇xuN , ηN , ζ,

(
((∂tη

N , IOζε
uN ), (∂tη

N ,F ζε

N ∂tη
N ))

((∂tη
N , IOζε

uN ), (0,uN − F ζε

N ∂tη
N ))

)]

(b) �̃
N
converges P̃-almost surely to �̃ in the topology of χ , i.e.

B̃N
t → B̃t in C(I ) P̃-a.s.,

IO
ζ̃Nε
ũN , ṽN⇀IO

ζ̃ε
ũ, ṽ in L2(I ; L2(O ∪ Sα)) P̃-a.s.,

IO
ζNε

∇xũ
N⇀IO

ζ̃ε
∇xũ in L2(I ; L2(O ∪ Sα)) P̃-a.s.,

η̃N⇀∗η̃ in L∞(I ;W 3,2(�)) P̃-a.s.,

η̃N⇀∗η̃ in W 1,∞(I ; L2(�)) P̃-a.s.,

η̃N⇀η̃ in W 1,2(I ;W 2,2(�)) P̃-a.s.,

ζ̃ N → ζ̃ in C(I × �) P̃-a.s.,

(3.30)
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as well as (recalling the definition of τ� from (3.25))

∫
I

∫
O∪Sα

IO
ζ̃Nε
uN · F ζ̃ N

ε

N ∂t η̃
N dx dt +

∫
I

∫
�

|∂t η̃N |2 dy dt

−→
∫
I

∫
O∪Sα

IO
ζ̃ε
ũ · F ζ̃ε ∂t η̃ dx dt +

∫
I

∫
�

|∂t η̃|2 dy dt
(3.31)

and
∫
I

∫
O∪Sα

IO
ζ̃Nε
ũN · (ũN − F

ζ̃ N
ε

N ∂t η̃
N ) dx dt

−→
∫
I

∫
O∪Sα

IO
ζ̃ε
ũ · (ũ − F ζ̃ε ∂t η̃) dx dt

(3.32)

P̃-a.s.

Now we introduce the filtration on the new probability space, which ensures the cor-
rect measurabilities of the new random variables. Let (F̃t )t≥0 and (F̃N

t )t≥0 be the

P̃-augmented canonical filtration on the variables �̃ and �̃
N
, respectively, that is6

F̃t = σ
[
σt (B̃t ) ∪ σt (IO

ζ̃ε
ũ) ∪ σt (ṽ) ∪ σt (IO

ζ̃ε
∇xũ) ∪ σt (η̃) ∪ σt (ζ̃ )

]

for t ∈ I and similarly for F̃N
t . By (Breit et al. (2018), Theorem 2.9.1) the weak

equation continuous to hold on the new probability space. Combining (5.13) and
(3.32) we have

∫
I

∫
O

ζ̃Nε

|ũN |2 dx dt +
∫
I

∫
�

|∂t η̃N |2 dy dt

−→
∫
I

∫
O

ζ̃

|ũ|2 dx dt +
∫
I

∫
�

|∂̃tη|2 dy dt

P̃-a.s. By uniform convexity of the L2-norm this implies

∂t η̃
N → ∂t η̃ in L2(I ; L2(�)) P̃-a.s.

This is sufficient to pass to the limit in the weak formulation of the equations (note
that all terms except for the stochastic integral can be treated by using (3.30)).

Since we have a linear problem at hand, we may now take appropriate subsequence
and pass to the limit in (3.8). Thus we obtain a martingale solution to (3.5). In order
to obtain a probabilistically strong solution we prove in the following subsections
pathwise uniqueness as well as convergence in probability of the original sequence.

6 Some of the variables are not continuous in time, for those one can deifne σt as the history of a random
distribution, cf. (Breit et al. (2018), Chapter 2.8)
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3.4 Pathwise Uniqueness

We are now going to prove that any martingale solution satisfies the energy equality
(3.6). Pathwise uniqueness is then a direct consequence of the linearity of the problem.

Proposition 11 Suppose that (η,u) is a weak martingale solution to (3.5). Then it
holds P-a.s.

1
2

∫
Oζε

|u(t)|2 dx +
∫ t

0

∫
Oζε

|∇xu|2 dx ds + ε

∫ t

0

∫
�

|∂s�yη|2 dy ds

+
∫

�

(
1
2 |∂tη(t)|2 + 1

2 |�yη(t)|2 + ε|∇3
y η(t)|2

)
dy

= 1
2

∫
Oζε (0)

|u0|2 dx +
∫

�

(
1
2 |η1|2 + 1

2 |�xη0|2 + ε|∇3
xη0|

)
dy

for a.a. t ∈ I .

Proof We rewrite (3.5) as an equation for (∂t η̄, v̄), where η̄ := ∫ t0 ιζε ∂tη ds and

v̄ := ∇x�
�
ζε

(|det(∇x�ζε )|−1∇x�ζε )ū

with ū := J −1
ζε

u which reads as

d

〈 (
∂t η̄

v̄

)
·
(

φ

φ

) 〉
H

= L

(
φ

φ

)
+
∫

�

((κ · ∇y)∂tη)ιζεφ dy dBt

:=
∫

�

(
∂tη ∂t (ιζε )φ − �yιζε φ�yη − ε�yιζε φ ∂t�yη

)
dy dt

−ε

∫
�

∇3
y ιζε φ : ∇3

yη dy dt +
∫

�

(
1

2
nζε · n�ιζε φ ∂tζε ∂tη | det(∇yϕζε

)|
)
dy dt

+
∫
Oζε (t)

(
u · ∂t (Jζε(t))φ − 1

2
((vε · ∇x)u) · (Jζε(t)φ)

)
dx dt

+
∫
Oζε (t)

(1
2
((vε · ∇x)Jζε(t)φ) · u − ∇xu : ∇x(Jζε(t)φ)

)
dx dt

+1

2

∫
�

((κ · ∇y)(κ · ∇y)∂tη)ιζεφ dy dt −
∫

�

((κ · ∇y)∂tη)ιζεφ dy dBt (3.33)

where

H := {(ξ,w) ∈ W 2,2(�) × W 1,2
divx

(O) : w ◦ ϕ = ξn on�
}
.

Note that H is a Hilbert space (as closed subset of the Hilbert space W 2,2(�) ×
W 1,2

divx
(O)) and L ∈ H

′. Hence we get from Itô’s formula in Hilbert spaces (see

123



34 Page 30 of 45 Journal of Nonlinear Science (2024) 34 :34

(Da Prato and Zabczyk (2014), Theorem 4.17)) applied to the mapping

t �→ 1
2

∫
O
v̄ · |det(∇x�ζε )|(∇x�

�
ζε

∇x�
�
ζε

)−1v̄ dx + 1
2

∫
�

∣∣∣ ∂t η̄ιζε

∣∣∣2 dy,

noticing that |det(∇x�ζε )|(∇x�
�
ζε

∇x�
�
ζε

)−1v̄ = ū,

1
2

∫
Oζε (t)

|u|2 dx + 1
2

∫
�

|∂tη|2 dy

= 1
2

∫
O
v̄ · |det(∇x�ζε )|(∇x�

�
ζε

∇x�
�
ζε

)−1v̄ dx + 1
2

∫
�

∣∣∣ ∂t η̄ιζε

∣∣∣2 dy

= 1
2

∫
O
v̄(0) · ū(0) dx + 1

2

∫
�

|η1|2 dy +
∫ t

0
L

(
ι−2
ζε

∂t η̄

ū

)
ds

+
∫ t

0

∫
�

((κ · ∇y)∂tη)∂tη dy dBs + 1
2

∫ t

0

∫
�

|(κ · ∇y)∂tη|2 dy ds

+ 1
2

∫
O
v̄ · ∂t

(|det(∇x�ζε )|(∇x�
�
ζε

∇x�
�
ζε

)−1)v̄ dx −
∫

�

|∂t η̄|2
ι3ζε

∂t ιζε dy.

Noticing various cancellations such as

∫
O
v̄ · ∂t

(|det(∇x�ζε )|(∇x�
�
ζε

∇x�
�
ζε

)−1)v̄ dx =
∫
Oζε (t)

u · (∂tJζε(t)ū) dx

∫
�

|∂t η̄|2
ι3ζε

∂t ιζ dy =
∫

�

∂tη (∂t ιζε )ι
−2
ζε

∂t η̄ dy

we obtain

1
2

∫
Oζε (t)

|u|2 dx + 1
2

∫
�

|∂tη|2 dy = 1
2

∫
Oζε (0)

|u0|2 dx + 1
2

∫
�

|η1|2 dy

−
∫

�

�yιζε ∂t η̄ �yη dy

−
∫ t

0

∫
Oζ

∇xu : ∇x(Jζε(t)ū) dx ds.

The claim follows on noticing that u = Jζε(t)ū and �y(ιζε ∂tη) = ∂t�yη̄. ��

3.5 Convergence in Probability

In order to complete the proof of Theorem 6, we make use of (Breit et al. (2018),
Chapter 2, Theorem 2.10.3) which is a generalization of the Gyöngy–Krylov charac-
terization of convergence in probability introduced in Gyöngy and Krylov (1996) to
quasi-Polish spaces. It applies to situations where pathwise uniqueness and existence
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of amartingale solution are valid and allows to establish existence of a probabilistically
strong solution.We consider two sequences (Nn), (Nm) ⊂ N diverging to infinity. Let

ϑN :=
[
IOζε

uN , IOζε
∇xuN , ηN ,

(
((∂tη

N , IOζε
uN ), (∂tη

N ,F ζε

N ∂tη
N ))

((∂tη
N , IOζε

uN ), (∂tη
N ,uN − F ζε

N ∂tη
N ))

)]
,

for N ∈ N and set

ϑn := ϑNn , ϑm := ϑNm .

We also set un := uNn , ηn := ηNn and um := uNm , ηm := ηNm . We consider the
collection of joint laws of (ϑn,ϑm, v, ζ, Bt ) on the extended path space

χext := (χu × χ∇u × χη × χ2
f ,g

)2 × χu × χη × χB .

Similarly to Lemma 9 we obtain tightness of

{L[ϑn,ϑm, v, ζ, Bt ); n,m ∈ N}

on χext. Let us take any subsequence (ϑnk ,ϑmk , v, ζ, Bt ). By the Jakubowski-
Skorokhod representation theorem we infer for a non-relabelled subsequence the
existence of a probability space (�̄, F̄, P̄) with a sequence of random variables

(ϑ̂
nk

, ϑ̌
mk

, vk, ζ
k
, B

k
t ) converging almost surely in χext to a random variable

(ϑ̂, ϑ̌, v, ζ , Bt ). Moreover,

L[ϑ̂nk
, ϑ̌

mk
, vk, ζ

k
, B

k
t ] = L[ϑnk ,ϑmk , vk, ζ k, Bk

t ]

on χext for all k ∈ N. Observe that, in particular, L[ϑ̂nk
, ϑ̌

mk
, vk, ζ

k
, B

k
t ] con-

verges weakly to the measure L[ϑ̂, ϑ̌, v, ζ , Bt ]. As in Sect. 3.3 we can show that
the limit objects are martingale solutions to (3.5) defined on the same stochas-
tic basis (�̄, F̄, (F̄t ), P̄), where (F̄t )t≥0 is the P̄-augmented canonical filtration of
(ϑ̂, ϑ̌, v, ζ , Bt ). We employ the pathwise uniqueness result from Proposition 11.
Therefore, the solutions (η̂, û) and (η̌, ǔ) coincide P̄-a.s. and we have

L[ϑ̂, ϑ̌, v, ζ , Bt ]
(
(ϑ1, ϑ2, v, ζ, Bt ) ∈ χext : (η1, u1) = (η2, u2)

)
= P̄((η̂, û) = (η̌, ǔ)) = 1.

Now, we have all in hand to apply the Gyöngy–Krylov theorem from (Breit et al.
(2018), Chapter 2, Theorem 2.10.3). It implies that the original sequence ϑN defined
on the initial probability space (�,F, P) converges in probability in the topology of
χu × χ∇u × χη × χ2

f ,g to the random variable

ϑ :=
[
IOζε

u, IOζε
∇xu, η,

(
((∂tη, IOζε

u), (∂tη,F ζε ∂tη))

((∂tη, IOζε
u), (0,u − F ζε ∂tη))

)]
.

Therefore, we finally deduce that (η,u) is a probabilistically strong solution to (3.5).
This completes the proof of Theorem 7.
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4 The Nonlinear Regularised Problem

The aim of this section is to obtain a solution of the regularised problem thus com-
pleting the proof of Theorem 6. This is done via a fixed point argument for which the
main point is proving compactness of the mapping (ζ, v) �→ (η,u). Given a bounded
sequence (ζn, vn) this is achieved in three steps:

• Wefirst need to establish tightness of the probability laws,where themain difficulty
arises for the velocity field.

• We apply the stochastic compactness method based on Jakubowski’s extension
of the Skorokhod representation theorem. This yields a.s. convergence on a new
probability space.

• We apply a Gyöngy–Krylov type argument to obtain convergence in probability of
the original sequence on the original probability space. This requires the pathwise
uniqueness from Proposition 11.

Suppose there is a sequence of processes (ζ n, vn) which are (Ft )-progressively mea-
surable and bounded in

L p(�;C(I × �)) × L p(�; L2(I ; L2(O ∪ Sα)))

for some sufficiently large p. Now apply Theorem 7 yielding a sequence (ηn,un) of
solutions to (3.5). By the energy equality from Proposition 11 we obtain

sup
I

‖ηn‖2W 2,2(�)
+ ε sup

I
‖ηn‖2W 3,2(�)

� 1, (4.1)

sup
I

‖∂tηn‖2L2(�)
� 1, (4.2)

ε

∫
I
‖∂tηn‖2W 2,2(�)

dt � 1, (4.3)

sup
I

‖un‖2L2(Oζnε
)
� 1, (4.4)

∫
I
‖∇xun‖2L2(Oζnε

)
dt � 1. (4.5)

In addition, for any s ∈ (0, 1
2 ), it follows from un ◦ ϕζ nε

= n∂tη
n , (4.5) and the trace

theorem that
∫
I
‖∂tηn‖2Ws,2(�)

dt � 1 (4.6)

holds.

4.1 Tightness of the Velocity Sequence

The effort of this subsection is to prove tightness of the law ofun . Similarly to Lemma8
we obtain the following result.
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Lemma 12 The laws of

((∂tη
n, IOζnε

un), (∂tηn,F ζ nε ∂tη
n)) and ((∂tη

n, IOζnε
un), (0,un − F ζ nε ∂tη

n))

on (L2(I ; X ′ × X), τ�) are tight.

Proof As in Lemma 8 we must verify the assumptions from Theorem 1. First of all,
boundedness in L2(I ; X ′ × X) follows from By (4.1)–(4.6) and the properties of the
extension F ζn from Proposition 2. For (b) we consider again the regularisation of
∂tη

n with parameter κ > 0 and set for n ∈ N

fn,κ (t) := ((∂tη
n(t))κ , Eζ nε

κ (∂tη
n(t))),

where Eζ nε
κ is given in Corollary 3. We find by the continuity of the mollification

operator from (3.26) and the continuity of Eζ nε
κ from Corollary 3 that for a.e. t ∈ (0, T )

and s < 1/2

‖ fn,κ − fn‖L2(�)×L2(O∪Sα) ≤ cκs‖∂tηn‖Ws,2(�), (4.7)

which can be made arbitrarily small in L2 by choosing κ appropriately, cf. (4.6).
Similarly, we have

‖ fn,κ‖W 1,2(�)×W 1,2(�∪Sα) ≤ cκ−1‖∂tηn‖L2(�).

Clearly, if fN⇀ f in L2(I ; X) then we can deduce a converging subsequence such
that fN ,κ⇀ fκ (for some fκ ) in L2(I ; X) for any κ > 0, which implies (b).

For (c) we have to control 〈gn(t) − gn(s), fn,κ (t)〉, where gn := (∂tη
n, IOζnε

un)
and hence decompose

〈gn(t) − gn(s), fn,κ (t)〉
= (〈gn(t), (∂tηn(t))κ , Eζ nε (t)

κ (∂tη
n(t)))〉

− 〈gn(s), (∂tηn(t))κ , Eζ nε (s)
κ (∂tη

n(t))〉)
+ 〈gN (s), (0, Eζ nε (t)

κ (∂tη
n(t))) − Eζ nε (s)

κ (∂tη
n(t))〉 =: (I ) + (I I ).

We begin estimating (I I ) to find that

(I I ) =
∫
Oζnε (s)

un(s) ·
∫ s

t
∂rEζ nε (r)

κ (∂tη
n(t)) dr dx

≤ c‖un(s)‖L2(Oζnε (s))
‖∂t (ζ n

ε )κ‖L∞(I×�)‖∂tηn(t)‖L∞(I ;L2(�))|t − s|
≤ c(κ)‖un(s)‖L2(Oζnε (s))

‖∂tζ n
ε ‖L∞(I ;L2(�)‖∂tηn(t)‖L∞(I ;L2(�))|t − s|.
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using Corollary 3. By (4.2) and (4.4) we thus get

|(I I )| ≤ c(κ)‖∂tζ n
ε ‖L∞(I ;L2(�)|t − s|

≤ c(κ, ε)‖ζ n‖L∞(I ;L2(�)|t − s|.

As in the proof of Lemma 8 we conclude for K > 0 that

P
(|t − s|−1|(I I )| ≥ K

) ≤ c(κ, ε)

K
,

provided ζ ∈ L1(�; L∞(I ; L2(�)). The term (I ) is estimated using (3.5) obtaining
(this can be justified by Itô’s formula similarly to the proof of Proposition 11)

(I ) = −
∫ s

t

∫
�

(
ε�y(∂tη

n(t))κ ∂t�yη
n + �y(∂tη

n(t))κ �yη
n) dy dr

− ε

∫ s

t

∫
�

∇3
y (∂tη

n(t))κ : ∇3
yηn dy dr

+
∫ s

t

∫
�

1

2
nζnε

· n(∂tη
n(t))κ ∂t ζε ∂tη

n | det(∇yϕζε )| dy dr

+
∫ s

t

∫
Oζε

(
u · ∂rEζnε (r)

κ (∂tη
n(t))) − 1

2
((vε · ∇x)u) · Eζnε (r)

κ (∂tη
n(t))

)
dx dr

+
∫ s

t

∫
Oζ

( 1
2
((vε · ∇x)Eζnε (r)

κ (∂tη
n(t))) · u − ∇xu : ∇xEζnε (r)

κ (∂tη
n(t)))

)
dx dr

+ 1

2

∫ s

t

∫
�
((κ · ∇y)(κ · ∇y)∂tη)(∂tη

n(t))κ dy dr

−
∫ s

t

∫
�
((κ · ∇y)∂tη

n)(∂tη
n(t))κ dy dBr .

(4.8)

Due to (3.26), Corollary 3 and the uniform estimates (4.1)–(4.6), it is clear that all
terms can be estimated by c(κ)|t − s|1/2(1 + ‖ζ n‖C(I×�) + ‖∇xun‖L2(Oζnε

)) except
for the last one. As in the proof of Lemma 8 it can be controlled via

P

(
|t − s|−1/2

∣∣∣∣
∫ s

t

∫
�

((κ · ∇y)∂tη
n)(∂tη

n)κ dy dBr

∣∣∣∣ > K

)

� κ−1

K 2 E

[
|t − s|−1/2

∫ s

t
‖∂tηn(r)‖L2(�)‖∇y(∂tη

n(t))κ‖L2(�) dr

]

� 1

K 2 E

[
|t − s|−1/2

∫ s

t
‖∂tηn(r)‖L2(�)‖∂tηn(t)‖L2(�) dr

]
� κ−1

K 2

using (4.2). This can be made arbitrarily small for K large. Noticing that property
(d) from Theorem 1 follows by the usual compactness in (negative) Sobolev spaces,
we conclude tightness of the law of ((∂tη

n, IOζnε
un), (∂tηn,F ζ nε ηN )) on (L2(I ; X ′ ×

X), τ�).
The tightness for ((∂tηn, IOζnε

un), (0,un−F ζ nε ∂tη
n)) follows along the same lines,

the only difference being the regularisation of

fn := (0,un − F ζ nε ∂tη
n).
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WhileF ζ nε ∂tη
n can be replaced by Eζ nε (s)

κ (∂tη
n(t)) as above, we need to regularise un

accordingly to preserve the homogeneous boundary conditions on fn , which can by
done by using (Lengeler andRužička (2014), Proposition 2.28 and LemmaA.13). This
leads to a function fn,κ which has zero boundary conditions and thus only the fluid
part is seen in the expression 〈gn(t) − gn(s), fn,κ (t)〉 (where gn := (∂tη

n, IOζnε
un) as

above). In particular, the noise is not seen and we conclude that

〈gn(t) − gn(s), fn,κ (t)〉 ≤ c(κ)|t − s|1/2(1 + ‖ζ n‖C(I×�) + ‖∇xun‖L2(Oζnε
))

and we obtain again the claimed tightness. ��

4.2 Passage to the Limit

With the bounds from (4.1)–(4.6) at hand, wewish to obtain compactness.We consider
the same path space χ as in Sect. 3.3. From (3.13)–(3.18) (together the Alaoglu-
Burbaki Theorem) and Lemma 8 we obtain similarly to Proposition 10:

Proposition 13 There exists a complete probability space (�̃, F̃, P̃) with χ -valued
random variables7

�̃
n :=

⎡
⎣B̃n

t , IO
ζ̃nε
ũn, ṽn, IO

ζ̃nε
∇xũ

n, η̃n, ζ̃ n,

⎛
⎝ ((∂t η̃

n, IO
ζ̃nε
ũn), (∂t η̃n,F ζ̃ nε ∂t η̃

n))

((0, IO
ζ̃nε
ũn), (∂t η̃n, ũ

n − F ζ̃ nε ∂t η̃
n))

⎞
⎠
⎤
⎦ ,

for n ∈ N and

�̃ :=
[
B̃t , IO

ζ̃ε
ũn, ṽ, IO

ζ̃ε
∇xũ, η̃, ζ̃ ,

(
((∂tη, IOζε

un), (∂t η̃,F ζ̃ε ∂t η̃))

((0, IOη̃
ũ), (∂t η̃, ũ − F ζ̃ε ∂t η̃))

)]

such that

(a) for all n ∈ N the law of �̃
n
on χ is given by

L
[
Bt , IOζnε

un, vn, IOζnε
∇xun, ηn, ζ n,

(
((∂tη

n, IOζnε
un), (∂tηn,F ζ n∂tη

n))

((0, IOζnε
un), (∂tηn,un − F ζ nε ∂tη

n))

)]

7 The fact that the variable F ζ̃nε ∂t η̃
n can be represented in that form follows from the measureability of

F on the pathspace, cf. Proposition 2.
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(b) �̃
n
converges P̃-almost surely to �̃ in the topology of χ , i.e.

B̃n
t → B̃t in C(I ) P̃-a.s.,

IO
ζ̃nε
ũn, ṽn⇀IO

ζ̃ε
ũ, ṽ in L2(I ; L2(O ∪ Sα)) P̃-a.s.,

IO
ζ̃nε

∇xũ
n⇀IO

ζ̃ε
∇xũ in L2(I ; L2(O ∪ Sα)) P̃-a.s.,

η̃n⇀∗η̃ in L∞(I ;W 3,2(�)) P̃-a.s.,

η̃n⇀∗η̃ in W 1,∞(I ; L2(�)) P̃-a.s.,

η̃n⇀η̃ in W 1,2(I ;W 2,2(�)) P̃-a.s.,

ζ̃ n → ζ̃ in W 1,2(I × �) P̃-a.s.,

(4.9)

as well as (recalling the definition of τ� from (3.25))

∫
I

∫
O∪Sα

IO
ζ̃nε
un · F ζ̃ nε ∂t η̃

n dx dt +
∫
I

∫
�

|∂t η̃n|2 dy dt

−→
∫
I

∫
O∪Sα

IO
ζ̃ε
ũ · F ζ̃ε ∂tη dx dt +

∫
I

∫
�

|∂t η̃|2 dy dt
(4.10)

and
∫
I

∫
O∪Sα

IO
ζ̃nε
ũn · (ũn − F ζ̃ nε ∂t η̃

n) dx dt

−→
∫
I

∫
O∪Sα

IO
ζ̃ε
ũ · (ũ − F ζ̃ε ∂t η̃) dx dt

(4.11)

P̃-a.s.

Now we introduce the filtration on the new probability space, which ensures the cor-
rect measurabilities of the new random variables. Let (F̃t )t≥0 and (F̃n

t )t≥0 be the
P̃-augmented canonical filtration on the variables �̃ and �̃

n
, respectively, that is8

F̃t = σ
[
σt (B̃t ) ∪ σt (IO

ζ̃ε
ũ) ∪ σt (ṽ) ∪ σt (IO

ζ̃ε
∇xũ) ∪ σt (η̃) ∪ σt (ζ̃ )

]

for t ∈ I and similarly for F̃n
t . By (Breit et al. (2018), Theorem2.9.1) theweak equation

continuous to hold on the new probability space. Combining (4.10) and (4.11) we have

∫
I

∫
O

ζ̃nε

|ũn|2 dx dt +
∫
I

∫
�

|∂t η̃n|2 dy dt

−→
∫
I

∫
O

ζ̃ε

|ũ|2 dx dt +
∫
I

∫
�

|∂t η̃|2 dy dt

8 Some of the variables are not continuous in time. For those, one can define σt as the history of a random
distribution, cf. (Breit et al. (2018), Chapter 2.8)
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P̃-a.s. By uniform convexity of the L2-norm this implies

η̃n → η̃ in W 1,2(I ; L2(�)),

IO
ζ̃nε
ũn → IO

ζ̃ε
ũ in L2(I ; L2(O ∪ Sα)) P̃-a.s..

We can now apply Proposition 11 and argue as in Sect. 3.5 to obtain convergence of
the original sequence, in particular,

ηn → η in C(I × �) in probability,

IOζnε
un → IOζε

u in L2(I ; L2(O ∪ Sα)) in probability.

This yields due the uniform-in-probability estimates (for arbitrary p < ∞)

ηn → η in L p(�;C(I × �)),

IOζnε
un → IOζε

u in L p(�; L2(I ; L2(O ∪ Sα))),

which gives the desired compactness of the fixed-point map.

5 The Limit � → 0

For fixed ε > 0, Theorem 6 yields the existence of a probabilistically strong solution
(ηε,uε) to the regularised fluid–structure system defined on a given stochastic basis.
Using the energy balance we obtain

(
sup
I

‖ηε‖2W 2,2(�)
+ ε sup

I
‖ηε‖2W 3,2(�)

)
� 1, (5.1)

sup
I

‖∂tηε‖2L2(�)
� 1, (5.2)

ε

∫
I
‖∂tηε‖2W 2,2(�)

dt � 1, (5.3)

sup
I

‖uε‖2L2(O(ηε )ε )
� 1, (5.4)

∫
I
‖∇xuε‖2L2(O(ηε )ε )

dt � 1. (5.5)

In addition, for any s ∈ (0, 1
2 ), it follows from uε ◦ϕ(ηε)ε

= n∂tη
ε , (4.5) and the trace

theorem that

∫
I
‖∂tηε‖2Ws,2(�)

dt � 1. (5.6)

Moreover, we can argue as in Proposition 12 to obtain:
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Lemma 14 The laws of

((∂tη
ε, IO(ηε )ε

uε), (∂tη
ε,F ηε

∂tη
ε)) and ((∂tη

ε, IO(ηε )ε
uε), (∂tη

ε,uε − F ηε

∂tη
ε))

on (L2(I ; X ′ × X), τ�) are tight.

Unfortunately, (5.1)–(5.6) is no longer sufficient which is why we first improve the
regularity of the shell by adapting a method from Muha and Schwarzacher (2022)
(which we also applied in Breit and Mensah (2021)).

5.1 Higher Regularity

As already explained in the introduction, the regularity arising from (5.1)–(5.6) is not
sufficient to control the terms involving the Piola transform in the weak equation. Thus
we aim at improving the spatial regularity of η implementing ideas from Muha and
Schwarzacher (2022). Finally, for some h > 0, we let �s

h f (y) = h−s( f (y + ei h) −
f (y)) for i = 1, 2 represent the fractional difference quotient in space in the direction
ei . Now, for

Ds,K
−h,h f := �s

−h�
s
h f − Kη(�

s
−h�

s
h f ),

where s ∈ (0, 1
2 ), we consider the following as test function

(φ, φ) = (J −1
ηε

(
F (ηε)ε (Ds,K

−h,hη
ε)
)
, ι−1

ηε Ds,K
−h,hη

ε
)
.

in the weak formulation of the regularised fluid–structure system (this can be justified
by Itô’s formula similarly to the proof of Proposition 11). By making the fourth order
term the subject, we obtain

∫
�

�yKη(�
s
−h�

s
hη

ε)�yη
ε dy dt −

∫
�

�y(�
s
−h�

s
hη

ε)�yη
ε dy dt

+ ε

∫
�

∇3
yKη(�

s
−h�

s
hη

ε) : ∇3
yη

ε dy dt − ε

∫
�

∇3
y (�

s
−h�

s
hη

ε) : ∇3
yη

ε dy dt

+ ε

∫
�

�yKη(�
s
−h�

s
hη

ε)∂t�yη
ε dy dt − ε

∫
�

�y(�
s
−h�

s
hη

ε)∂t�yη
ε dy dt

= d
∫
O(ηε )ε

uε · F (ηε)ε (Ds,K
−h,hη

ε(t)) dx + d
∫

�

∂tη
ε(Ds,K

−h,hη
ε(t)) dy

−
∫

�

∂tη
ε∂t (D

s,K
−h,hη

ε) dy dt

− 1

2

∫
�

nηε · n�(Ds,K
−h,hη

ε) ∂t (η
ε)ε ∂tη

ε | det(∇yϕ(ηε)ε
)| dy dt

−
∫
O(ηε )ε

uε · ∂t (F
(ηε)ε (Ds,K

−h,hη
ε)) dx dt
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+ 1

2

∫
O(ηε )ε

(((uε)ε · ∇x)uε) · F (ηε)ε (Ds,K
−h,hη

ε) dx dt

− 1

2

∫
O(ηε )ε

(((uε)ε · ∇x)F
(ηε)ε (Ds,K

−h,hη
ε)) · uε dx dt

+
∫
O(ηε )ε

∇xuε : ∇xF
(ηε)ε (Ds,K

−h,hη
ε) dx dt

− 1

2

∫
�

((κ · ∇x)(κ · ∇x)∂tη
ε)Ds,K

−h,hη
ε dy dt+

∫
�

((κ · ∇x)∂tη
ε)Ds,K

−h,hη
ε dy dBt

=: I1 dt + . . . + I10 dt . (5.7)

a.s. First of all, note that

∫
�

(
�y(�

s
−h�

s
hη

ε)�yη
ε + ε∇3

y (�
s
−h�

s
hη

ε) : ∇3
yη

ε + ε�y(�
s
−h�

s
hη

ε)∂t�yη
ε
)
dy dt

= −
∫

�

|�y�
s
hη

ε |2 dy dt − ε

∫
�

|∇3
y�

s
hη

ε |2 dy dt − ε

2
d
∫

�

|�y�
s
hη

ε |2 dy

and since the corrector Kηε is spatially independent,

∫
�

�yKηε (�s
−h�

s
hη

ε)�yη
ε dy dt = 0.

Similarly, the two remaining ε-terms are zero. We now wish to take the p-th moment
of the time integral of (5.7) where p ≥ 1. To begin with, we have

E

( ∫
I
I1 dt

)p
� E

(
sup
I

‖uε‖L2(O(ηε )ε ) sup
I

‖�s
−h�

s
hη

ε‖L2(�)

)p

� E sup
I

‖uε‖2p
L2(O(ηε )ε )

+ E sup
I

‖ηε‖2p
W 2,2(�)

by Proposition 2, where the right-hand side is uniformly bounded by (5.1) and (5.4).
Moreover,

E

( ∫
I
I2 dt

)p
� E

(
sup
I

‖∂tηε‖L2(�)

[
sup
I

‖�s−h�s
hηε‖L2(�) + sup

I
|Kηε (�s−h�s

hηε)|
])p

� E

(
sup
I

‖∂tηε‖L2(�)

[
sup
I

‖ηε‖W 2,2(�) + sup
I

‖�s−h�s
hηε‖L1(�)

])p

� E sup
I

‖∂tηε‖2p
L2(�)

+ E sup
I

‖ηε‖2p
W 2,2(�)

which is again uniformly bounded. Since we assume that η (and consequently also
∂tη) has mean value zero and Kηε maps to spatially independent functions we have
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∫
�

∂tη
ε ∂tKηε (�s

−h�
s
hη

ε) dy = 0. Thus it holds

−I3 =
∫

�

|∂t�s
hη

ε |2 dy � ‖∂tηε‖2Ws,2(�)
,

which is uniformly bounded in L p(�; L1(I )) by (5.6). Recalling the definition of ϕη

from (2.3) we further have by (5.1), (5.2) and 2D Sobolev embeddings

E

( ∫
I
I4 dt

)
� E

( ∫
I
‖�s

−h�
s
hη

ε‖L∞(�)

(
1 + ‖∇yη

ε‖L3(�)

)‖∂tηε‖2L3(�)
dt
)p

� E

( ∫
I
‖ηε‖W 2,2(�)‖∂tηε‖2Ws,2(�)

dt
)p

� E

( ∫
I
‖∂tηε‖2Ws,2(�)

dt
)p

which is again bounded by (5.6). By using Lemma 4 (with p = p′ = 2, θ = s and
ã = 6), and (5.1)–(5.5) (together with the embedding W 2,2(�) ↪→ C0,θ (�) for all
θ < 1) we have that (for δ > 0 arbitrary)

E

( ∫
I
I5 dt

)p

� E

(∫
I

(
1 + ‖�s−h�s

hηε‖W1,3(�)

)
‖∂tηε‖L2(�)‖uε‖W1,2(O(ηε )ε

) dt

+
∫
I
‖(�s−h�s

hηε)∂tη
ε‖L6/5(�)

‖uε‖W1,2(O(ηε )ε
) dt

)p

� E

(
sup
I

‖∂tηε‖L2(�)

∫
I

(
1 + ‖�s

hηε‖Ws+1,3(�)

)‖uε‖W1,2(O(ηε )ε
) dt

+ sup
I

‖∂tηε‖L2(�)

∫
I
‖�s−h�s

hηε‖L3(�)‖uε‖W1,2(O(ηε )ε
) dt

)p

� E

(∫
I

(
1 + ‖�s

hηε‖Ws+1,3(�) + ‖ηε‖W2s,3(�)

)‖uε‖W1,2(O(ηε )ε
) dt

)p

≤ δE

(∫
I
‖�s

hηε‖2
W2,2(�)

dt

)p
+ c(δ)

(∫
I

(‖ηε‖2
W2,2(�)

+ ‖uε‖2
W1,2(O(ηε )ε

)

)
dt

)p

where we have used the continuous embedding W 2,2(�) ↪→ Ws+1,3(�), s ∈ (0, 1
2 ).

The first term can be absorbed for δ small enough, while the second done is uniformly
bounded, cf. (5.1) and (5.5). Next, it follows from Proposition 2 that

sup
I

‖F (ηε )ε (Ds,K
−h,hηε)‖W1,2(O(ηε )ε

) � sup
I

(
‖�s−h�s

hηε‖W1,2(�) + ‖(�s−h�s
hηε)∇yη

ε‖L2(�)

)

� sup
I

(
‖ηε‖W2,2(�) + ‖�s−h�s

hηε‖L∞(�)‖ηε‖W1,2(�)

)

� sup
I

(
‖ηε‖W2,2(�) + ‖ηε‖2

W2,2(�)

)
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therefore,

E

( ∫
I
(I6 + I7 + I8) dt

)p

� E

(
sup
I

‖F (ηε )ε (Ds,K
−h,hηε)‖W1,2(Oηε )

∫
I

(‖uε‖2
W1,2(O(ηε )ε

)
+ ‖uε‖W1,2(O(ηε )ε

)

)
dt

)p

� E sup
I

‖ηε‖4p
W2,2(�)

+ E

(∫
I
‖uε‖2

W1,2(O(ηε )ε
)
dt

)p
.

This is uniformly bounded by (5.1) and (5.5). Furthermore, since Kηε is spatially
independent, and � is endowed with periodic boundary condition,

E

( ∫
I
I9 dt

)p = E

(∫
I

∫
�

∂tη
ε (κ · ∇y)(κ · ∇y)�

s
−h�

s
hη

ε dy dt
)p

� E

(∫
I
‖∂tηε‖Ws,2(�)‖(κ · ∇y)(κ · ∇y)�

s
−h�

s
hη

ε‖W−s,2(�) dt

)p

≤ δE

(∫
I
‖�s

hη
ε‖2W 2,2(�)

dt

)p

+ c(δ) E

(∫
I
‖∂tηε‖2Ws,2(�)

dt

)p

, (5.8)

where δ > 0 is arbitrary. Lastly, since Kηε is spatially independent,

∫
I
I10 dt = −

∫
I

∫
�

∂tη
ε((κ · ∇y)�

s
−h�

s
hη

ε) dy dBt .

Therefore, by the Burkholder–Davis–Gundy inequality

E sup
I

∣∣∣
∫
I
I10 dt

∣∣∣p � E

(∫
I

( ∫
�

∂tη
ε((κ · ∇y)�

s
−h�

s
hη

ε) dy
)2

dt

) p
2

� E

(∫
I
‖∂tηε‖2L2(�)

‖∇y�
s
−h�

s
hη

ε‖2L2(�)
dt

) p
2

� E

((
sup
I

‖∂tηε‖2L2(�)

) p
2
(
sup
I

‖∇y�
s−h�

s
hη

ε‖2L2(�)

) p
2
)

� E sup
I

‖∂tηε‖2p
L2(�)

+ E sup
I

‖ηε‖2p
W 2,2(�)

, (5.9)

bounded by (5.1) and (5.2). If we combine everything, we obtain for s ∈ (0, 1
2 ),

E

( ∫
I
‖�s

hη
ε‖2Ws+2,2(�)

dt
)p+εE

( ∫
I
‖�s

hη
ε‖2W 3,2(�)

dt
)p

+ εE

(
sup
I

‖�s
hη

ε‖2W 2,2(�)

)p
� 1 (5.10)
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uniformly in h and thus

E

( ∫
I
‖ηε‖2Ws+2,2(�)

dt
)p + εE

( ∫
I
‖ηε‖2Ws+3,2(�)

dt
)p

+ εE

(
sup
I

‖ηε‖2Ws+2,2(�)

)p
� 1 (5.11)

for all p ≥ 1.

5.2 Passage to the Limit

With the bounds from (5.1)–(5.6) at hand, we wish to obtain compactness. For this,
we define the path space

χhigh = χB × χu × χ∇u × χhigh
η × χ2

f ,g

where

χhigh
η =(W 1,∞(I ; L2(�)), w∗) ∩ (L∞(I ;W 2,2(�)), w∗) ∩ (L2(I ;Ws+2,2(�)), w

)
∩ (W 1,2(I ;Ws,2(�)), w

)

with s ∈ (0, 1
2 ). From (5.1)–(5.6), Lemma 14 and (5.11) we obtain similarly to Propo-

sition 13:

Proposition 15 There exists a complete probability space (�̃, F̃, P̃) with χ -valued
random variables

�̃
εn :=

[
B̃n
t ,IO(η̃εn )ε

ũεn , IO(η̃εn )ε
∇xũ

εn , η̃εn ,

(
((∂t η̃

εn , IO(η̃εn )ε
ũεn ), (∂t η̃

εn ,F (η̃εn )ε ∂t η̃
εn ))

((∂t η̃
εn , IO(η̃εn )ε

ũεn ), (0, ũεn − F (η̃εn )ε ∂t η̃
εn ))

)]
,

for n ∈ N and

�̃ :=
[
B̃t , IOη̃

ũ, IOη̃
∇xũ, η̃,

(
((∂t η̃, IOη̃

ũ), (∂t η̃,F η̃∂t η̃))

((0, IOη̃
ũ), (∂t η̃, ũ − F η̃∂t η̃))

)]

such that

(a) For all n ∈ N the law of �̃
εn on χ is given by

L
[
Bn
t , IO(ηεn )εn

uεn , IO(ηεn )εn
∇xuεn , ηεn ,

⎛
⎝ ((∂tη

εn , IO(ηεn )εn
uεn ), (∂tη

εn ,F (ηεn )εn ∂tη
εn ))

((0, IO(ηεn )εn
uεn ), (∂tη

εn , uεn − F (ηεn )εn ∂tη
εn ))

⎞
⎠
]
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(b) �̃
εn converges P̃-almost surely to �̃ in the topology of χhigh, i.e.

B̃n
t → B̃t in C(I ) P̃-a.s.,

IO(η̃εn )ε
ũεn⇀IOη̃

ũ in L2(I ; L2(O ∪ Sα)) P̃-a.s.,

IO(ηεn )ε
∇xũ

εn⇀IOη̃
∇xũ in L2(I ; L2(O ∪ Sα)) P̃-a.s.,

η̃εn⇀∗η̃ in L∞(I ;W 2,2(�)) P̃-a.s.,

η̃εn⇀∗η̃ in W 1,∞(I ; L2(�)) P̃-a.s.,

η̃εn⇀η̃ in W 1,2(I ;Ws,2(�)) P̃-a.s.,

η̃εn⇀η̃ in L2(I ;Ws+2,2(�)) P̃-a.s.,

(5.12)

as well as (recalling the definition of τ� from (3.25))

∫
I

∫
O∪Sα

IO(η̃εn )ε
uεn · F (η̃εn )ε ∂t η̃

εn dx dt +
∫
I

∫
�

|∂t η̃εn |2 dy dt

−→
∫
I

∫
O∪Sα

IOη̃
ũ · F η̃∂tη dx dt +

∫
I

∫
�

|∂t η̃|2 dy dt
(5.13)

and
∫
I

∫
O∪Sα

IO(η̃εn )ε
ũεn · (ũεn − F (η̃εn )ε ∂t η̃

εn ) dx dt

−→
∫
I

∫
O∪Sα

IOη̃
ũ · (ũ − F η̃∂t η̃) dx dt

(5.14)

P̃-a.s.

Similar to the analysis after Propositions 10 and 13, we can define the P̃-augmented
canonical filtrations (F̃t )t≥0 and (F̃ε

t )t≥0 on the variables �̃ and �̃
ε
, respectively,

which ensures the correct measurabilities of the new random variables.
By (Breit et al. (2018), Theorem 2.9.1) the weak equation continuous to hold on

the new probability space. Combining (5.13) and (3.32) we have

∫
I

∫
O(η̃εn )ε

|ũεn |2 dx dt +
∫
I

∫
�

|∂t η̃εn |2 dy dt

−→
∫
I

∫
Oη̃

|ũ|2 dx dt +
∫
I

∫
�

|∂̃tη|2 dy dt

P̃-a.s. By uniform convexity of the L2-norm this implies

η̃εn → η̃ in W 1,2(I ; L2(�)),

IO(η̃εn )ε
ũεn → IOη̃

ũ in L2(I ; L2(O ∪ Sα)) P̃-a.s..
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This is sufficient to pass to the limit and the weak formulation of the equations (note
that all terms except for the convective term can be treated by (4.9)). As far as the
energy balance is concerned, this is even easier since there is no noise. By (4.9) and
the lower semi-continuity of the involved quantities we can pass to the limit (obtaining
only an inequality).
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