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Abstract

The parametric nonlinear Schrödinger equation models a variety of parametrically forced
and damped dispersive waves. For the defocusing regime, we derive a normal velocity for the
evolution of curved dark-soliton fronts that represent a π-phase shift across a thin interface.
We establish a simple mechanism through which the parametric term transitions the normal
velocity evolution from a curvature driven flow to motion against curvature regularized by
surface diffusion of curvature. In the former case interfacial length shrinks, while in the
later the interface length generically grows until self-intersection followed by a transition to
chaotic motion.

1 Introduction

The parametric nonlinear Schrödinger (PNLS) equation is a general model for parametrically
forced surface waves and for pattern formation. It has been derived in the context of Faraday
waves [12] where increased driving force drives transitions to zigzag patterns and chaotic be-
havior. The PNLS has also be derived as a model of phase sensitive amplifiers [1] and in the
large detuning limit of optical parametric oscillator systems [8, 11, 5, 3]. More recently it has
been proposed as a model for dissipative self organization [9] and as a template for second-order
phase transitions between degenerate and non-degenerate regimes, [10].

We present an analysis of the evolution of curved dark soliton fronts in the 1+2D PNLS
equation. These fronts represent π-phase shifts in the optical field. We consider interfaces that
have bounded curvatures and derive a normal velocity that describes the temporal evolution of
the front. In particular if the parametric strength decreases through a critical value the normal
velocity transitions from a curvature driven flow to motion against curvature regularized by
surface diffusion of curvature. Specifically in the limit in which the ratio of dispersive length
scale to domain size is small (ϵ≪ 1) we identify a bifurcation parameter µ for which the normal
velocity of the dark soliton interface admits the expansion

V = −α0κ0 + ϵ2(ν∆sκ0 + ζκ30) +O(ϵ4). (1)

Here κ0 is the curvature of the interface, ∆s is the Laplace-Beltrami surface diffusion operator,
and α0, ν and ζ are µ-dependent real coefficients. The leading order coefficient α0 has the same
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sign as µ, its sign change encodes the transition between motion with and against curvature.
Crucially we establish the existence of µ∗ > 0, independent of ϵ, such that ν > 0 if |µ| < µ∗.
This allows the surface diffusion to regularize the motion against curvature that arises for µ < 0.
Moreover the transition flips the system from one in which interface length shortens suggest-
ing a convergence to equilibrium, to one in which interface length grows without bound, with
meandering evolution that generically leads to self-intersection. Indeed numerical observations
show that after self-intersection the dark fronts form cells that engage in a chaotic jostling. Such
curvature flow transitions have been studied in dissipative systems such as polymer melts, [2]
but their presence in a dispersive system are here-to-for unstudied. The analysis presented here
is formal but is complemented with a sharp characterization of the transverse spectrum of the
wave which shows that the curvature transition is not associated to any transverse instability of
the dark soliton.

The paper is organized as follows. In section 2 the PNLS system and the analysis of the 1D
transfer spectral problem are presented. In section 3 the inner and outer asymptotic formulations
of the system are developed and normal velocity is resolved. Section 4 presents consequences of
the normal velocity and compares these to simulations of the full system.

2 PNLS and One-dimensional Spectral Analysis

The PNLS system describes the evolution of a complex phase Θ ∈ H2(Ω),

iΘt +
ϵ2

2
∆Θ− |Θ|2Θ+ (i+ a)Θ− γΘ∗ = 0, (2)

on a spatially periodic domain Ω = [0, L]2. Here 0 < ϵ≪ 1 is a small parameter that characterizes
the ratio of the dispersive lengthscale to domain size, a is a phase rotation and γ is the parametric
pump strength. We rescale the complex phase Θ, time t

Θ =
2√
β
u(x̃)eiθ,

τ = 2t/β,

(3)

and space x̃ = 2x/
√
β where

β :=
4

a+
√

γ2 − 1
> 0,

and the phase angle θ as the solution of

γe−2iθ = −
√

γ2 − 1 + i.

We drop the tilde’s and introduce the real vector function U = (ℜu,ℑu)t which satisfies

Uτ = F (U) :=

(

0 −(ϵ2∆− 2|U |2 + 1− µ)
(ϵ2∆− 2|U |2 + 2) −β

)

U, (4)

where the bifurcation parameter

µ := −a− 3
√

γ2 − 1

a+
√

γ2 − 1
,
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lies in [−1, 3]. In what follows, a shift from µ > 0 to µ < 0 will trigger the transition in curvature
motion.

Posed on the line R, in the scaled coordinate z = x/ϵ, and the PNLS system has a dark-
soliton steady-state solution

Φ0(z) =

(

ϕ(z)
0

)

, (5)

where ϕ(z) = tanh(z), solves
∂2zϕ− 2ϕ3 + 2ϕ = 0. (6)

The linearization of the 1D PNLS system about Φ0 yields the system

Wτ = LW, (7)

where the 1D linear operator L is given by

L =

(

0 D
−C −β

)

, (8)

with
C = −∂2z − 6ψ2 + 4,
D = −∂2z − 2ψ2 + µ+ 1,

(9)

and ψ(x) = sech(x). These operators have point spectrum-eigenfunction pairs

σp(C) = {(0, ϕ′), (3, ϕψ)},
σp(D) = {(µ, ψ)}. (10)

The operators C and D may have other point spectrum in their respective gaps (3, 4) and
(µ, 1+µ) between their largest point spectrum and the branch point of their essential spectrum.
The characterization of these ground state eigenvalues and the essential spectrum show that
C ≥ 0 and D > 0 if µ > 0, while the dimension n(D) of the negative space of D satisfies
n(D) ≥ 1 if µ < 0. A structural point of the analysis arises from the generic fact that that
ground states of the Sturmian operators C and D are both non-zero with full support, and
hence can not be orthogonal.

2.1 Essential Spectrum of L

To characterize the essential spectrum of L substitute W = eλτeisxV into (7) to obtain an
eigenvalue problem for V,

λV =

(

0 s2 + 2(1 + µ)
−s2 − 4 −β

)

V, (11)

which has nontrivial solutions for

λ =
−β ±

√

β2 − 4(s2 + 1 + µ)(s2 + 4)

2
. (12)

The maximum of ℜλ occurs at s = 0, and hence all λ ∈ σess(L) satisfy

ℜλ ≤ λM := ℜ
(

−β +
√

β2 − 16(1 + µ)

2

)

< 0. (13)

3



2.2 The Kernel of L

The operator C has a kernel and from Lemma 3.5 of [8] we know that λ = 0 is a simple eigenvalue
of L, for all µ. For µ ̸= 0 the kernel of L and L† are spanned by

Ψ0 =

(

ϕ′

0

)

Ψ†
0 =

(

βD−1ϕ′

ϕ′

)

. (14)

For µ = 0 the kernel remains simple and

Ψ0 =

(

ϕ′

0

)

Ψ†
0 =

(

ψ
0

)

. (15)

When written with unit norm, the eigenfunctions are smooth in µ.
The inverse of L is given by

L−1 =

(

−βC−1D−1 −C−1

D−1 0

)

. (16)

When C and D have kernels care is required to insure that the inverses act on their domain.

2.3 Point Spectrum of L

Theorem 3.6 of [8] establishes the existence of λM > 0 such that

σ(L) ⊂ {λ
∣

∣ℜλ < −λM} ∪ {0}.

We provide an alternate proof that generalizes more readily from operators that act on H2(R)
to operators that act on the multidimensional space H2(Ω). The L2 inner product and norm on
R are denoted ⟨f, g⟩ and ∥f∥ for f, g : R 7→ R

n for n ≥ 1.
The point spectrum of L is comprised of eigenfunctions localized in x that solve

λP =

(

0 D
−C −β

)

P. (17)

As two equations for the two unknowns P = (P1, P2)
t satisfies

λP1 = DP2,
(λ+ β)P2 = −CP1.

(18)

Assuming that λ ̸= 0 then P ⊥ Ψ†
0. For µ ̸= 0 we combine this with the first equation of (14)

and deduce that either λ = −β < 0 or

P1 ⊥ D−1ϕ′ and P2 ⊥ ϕ′.

For µ ̸= 0 the operator D > 0 is invertible and we may solve for P1,

CP1 + λ(λ+ β)D−1P1 = 0.

Taking the complex-valued inner product with P1 yields the relation

λ(λ+ β) = − ⟨CP1, P1⟩
⟨D−1P1, P1⟩

=: ρ1. (19)
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The quadratic formula shows that

λ =
−β ±

√

β2 − 4ρ1
2

. (20)

In particular we deduce that σp(L) resides in the range of the right-hand side over the possible
values of ρ1. In particular if ρ1 > 0 then ℜλ < −ρ1/β < 0. For µ ̸= 0 this motivates the definition
of X∗(µ) = {D−1ϕ′}⊥ and the real number,

ρ∗(µ) := min
P1∈X∗

⟨CP1, P1⟩
⟨D−1P1, P1⟩

. (21)

Lemma 1. There exists µ∗, d+ > 0 such that D
∣

∣

X∗

> d+ for all µ ∈ [−µ∗, 3].

Proof. We apply Proposition 5.3.1 of [6] to the operator D constrained to act on X∗. Taking
µ∗ < 0 with |µ∗| sufficiently small, then D has negative index n(D) ≤ 1 for all µ ∈ [−µ∗, 3]. We
deduce that

n
(

D
∣

∣

X∗

)

= n(D)− n(A), (22)

where A = ⟨D−1(D−1ϕ′),D−1ϕ′⟩ ∈ R. Recalling that ψ is the ground state of D with eigenvalue
µ, we write

ϕ′ =
⟨ϕ′, ψ⟩
∥ϕ′∥∥ψ∥ψ + ψ⊥, (23)

where ψ⊥ ∈ XD := {ψ}⊥ satisfies ∥ψ⊥∥ ≤ ∥ϕ′∥. In particular we have the relation

D−3ϕ′ =
⟨ϕ′, ψ⟩
∥ϕ′∥∥ψ∥

ψ

µ3
+D−3ψ⊥.

Since XD is a spectral subspace of D it follows that σ
(

D
∣

∣

XD

)

= σ(D)\{µ}. Hence there exists

µ∗ > 0 and a constant d̃+ > 0 such that D
∣

∣

XD

≥ d̃+ for µ ∈ [−µ∗, 3]. We deduce that

∣

∣

∣

∣

A− |⟨ϕ′, ψ⟩|2
∥ϕ′∥∥ψ∥

1

µ3

∣

∣

∣

∣

≤ d̃−3
+ ∥ϕ′∥2.

It follows that A < 0 if µ ∈ [−µ∗, 0) for µ∗ > 0 sufficiently small. Moreover we have the limit

A→ −∞ at µ→ 0−. The index relation (22) implies that n
(

D
∣

∣

X∗

)

= 0 for µ ∈ (−µ∗, 0]. Since
D > 0 for µ > 0, the negative index of D is zero for µ ∈ [−µ∗, 3]. The lower bound of D

∣

∣

X∗

is
given by its ground state eigenvalue. The ground state eigenvalue is continuous in µ, and the
existence of d+ > 0 follows.

Proposition 2. There exists µ∗ > 0 such that ρ∗(µ) > 0 for µ ∈ [−µ∗, 3].

Proof. The operator C has a simple kernel spanned by ϕ′ and is strictly positive on {ϕ′}⊥. The
operator C

∣

∣

X∗

is strictly positive so long as

⟨D−1ϕ′, ϕ′⟩ ≠ 0.
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This is obvious for µ > 0 since D is positive there. For µ < 0 we use the decomposition (23) to
write

∣

∣

∣

∣

⟨D−1ϕ′, ϕ′⟩ − ⟨ϕ′, ψ⟩2
∥ϕ′∥∥ψ∥

1

µ

∣

∣

∣

∣

≤ d̃+∥ϕ′∥2. (24)

This implies the existence of µ∗ > 0 for which the inner product is not zero for all µ ∈ [−µ∗, 3].
That is there exists a constant c+ > 0 such that C

∣

∣

X∗

≥ c+ for all values of µ ∈ [−µ∗, 3]. For
these µ we deduce that for all P1 ∈ X∗

⟨CP1, P1⟩ ≥ c+∥P1∥2,
⟨D−1P1, P1⟩ ≤ d−1

+ ∥P1∥2.
It follows that ρ∗ > c+d+ > 0 for these µ.

Theorem 3. There exists µ∗, λM > 0 such that for all µ ∈ [−µ∗, 3] the spectrum of L satisfies

σ(L) ⊂ {0} ∪ {ℜλ < −λM}. (25)

Moreover the kernel of L is simple.

Proof. The essential spectrum of L lies strictly in the left-half complex plane. If λ ∈ σp(L)\{0},
then the relation (20) holds with ρ1 as defined in (19). By definition of ρ∗ we have ρ1 > ρ∗ > 0.
From the Taylor expansion of the right-hand side of (20)

ℜλ < −ρ∗
β
.

Defining λM = ρ∗/β completes the proof.

3 Curvature Driven Flow

We consider a smooth, closed interface Γ = {γ(s)
∣

∣s ∈ [0, L]} that breaks Ω into two regions
{Ω+,Ω−} and introduce the local Frenet coordinates

x = γ(s) + n(s)z/ϵ, (26)

where n(s) is the unit outward normal to the curve Γ at point γ(s) and z is signed, ϵ-scaled
distance to Γ. If the interface γ has smooth, bounded curvatures and is far from self-intersection
then the change of variables from x = (x1, x2) to (s, z) is well defined on a neighborhood of Γ.
Indeed there exists ℓ > 0 such that the neighborhood contains all points x ∈ Ω for which the
scaled distance to Γ satisfies z(x) < ℓ/ϵ. We introduce ϕ which is a smooth function that agrees
with ϕ for |z| < ℓ/(2ϵ) and is identically 1 for z > ℓ/ϵ and identically −1 for z < −ℓ/ϵ. The
truncated function ϕ to induces a smooth function Φ defined on Ω,

Φ(x) :=

(

ϕ(z(x))
0

)

|z| < ℓ/ϵ, (27)

and Φ(x) = ±1 if z > ℓ/ϵ or z < −ℓ/ϵ respectively. Since ϕ decays exponentially to constant
values at an O(1) rate in z, this modification induces exponentially small perturbations the do
not impact the analysis. The overbar on ϕ is dropped in the sequel. The evolution of U is
tracked via its interface map γ = γ(s, τ) whose motion prescribed by the normal velocity which
controls the evolution of the curvature through the relation (49). Knowledge of the curvatures
is equivalent to prescribing γ up to rigid body motion.
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3.1 Outer Expansion

The outer region is divided into inside z < 0 and outside z > 0 sets, Ω±. These regions are
described by Cartesian variables. We expand the ansatz as

U =

(

p
q

)

= u0 + ϵu1 + ϵ2u2 +O(ϵ3),

where each term has a vector decomposition

ui =

(

pi
qi

)

, i = 0, 1, 2, . . . .

To match with the ansatz (27) we impose

u0 =

(

p0
q0

)

=

(

IΩ+
− IΩ−

0

)

,

where IE denotes the indicator function of the set E. This yields an expansion of the residual
F (U) in the form

F (U) =

(

0
2(1− p20)p0

)

+ ϵ

(

(2p20 − 1− ϵ)q1
−βq1 − 4p20p1

)

+ ϵ2
(

(2p20 − 1− ϵ)q2 + 4p0p1q1
−βq2 − 4p0p

2
1 + L2p0

)

+O(ϵ3). (28)

Since p20 = 1 in both domains this affords the reduction

F (U) = ϵ

(

(1 + µ)q1
−βq1 − 4p1

)

+ ϵ2
(

(1 + µ)q2 + 4p0p1q1
−βq2 − 4p21 − 4p2 − 2(p21 + q21)p0

)

+O(ϵ3).

The leading order outer dynamics reduces to a family of uncoupled ODEs,

∂τ

(

p1
q1

)

=

(

(1 + µ)q1
−βq1 − 4p1

)

,

that induce exponential decay on the fast τ = O(1) timescale. Setting u1 = 0 yields an equivalent
system for u2. We assume that u1 and higher order outer terms are zero on the relevant time
scales. Correspondingly all matching of the inner system for i ≥ 1 is to the outer value 0.

3.2 Inner expansion

The inner expansion uses the Frenet coordinates, for which in R
n the scaled Laplacian takes the

form
ϵ2∆ = ∂2z + ϵκ0(s)∂z + ϵ2(zκ1(s)∂z +∆s) + ϵ3(∆s,1 + z2κ2(s)∂z) +O(ϵ4).

Here ∆s is the Laplace-Beltrami operator on the interface Γ and κ0 =
∑n−1

j=1
kj is the total

curvature expressed in terms of the n − 1 curvatures {k1, . . . , kn−1} of Γ. The higher order
curvatures satisfy

κi = (−1)i
n−1
∑

j=1

kij ,
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for i ≥ 1 see [4][eqn (2.8)] for details. In two space dimensions, with n = 2, these relations
reduce to κi = (−1)iκi0. The inner expansion of the vector field residual

F̃ (Ũ) = F̃0 + ϵF̃1 + ϵ2F̃2 + ϵ3F̃3 +O(ϵ4), (29)

requires an expansion of Ũ ,
Ũ = Ũ0 + ϵŨ1 + ϵ2Ũ2 +O(ϵ3),

where

Ũ0 =

(

ϕ
0

)

.

Since the higher order outer expansion is uniformly zero, the matching conditions to the outer
solution devolve into requiring that each Ũi(s, ·) ∈ L2(R) for all values of s and all i ≥ 1. The
leading order residual has the form

F̃0 =

(

0

Ẽ0ϕ

)

= 0, (30)

where we have introduced the operator

Ẽ0 := ∂3z − 2ϕ2 + 2.

This leading order residual is zero since ϕ solves (6) which is equivalent to Ẽ0ϕ = 0. For i ≥ 1
the inner vector field residuals take the upper-triangular form

F̃i = LŨi + R̃i, (31)

where L is given in (8). The lower order residuals R̃i depend only upon Ũk for k = 0, . . . i − 1,
and are given by

R̃1 =

(

0
κ0∂z p̃0

)

, (32)

R̃2 =

(

−Ẽ1q̃1
Ẽ2p̃0 + Ẽ1p̃1

)

, (33)

and

R̃3 =

(

−Ẽ1q̃2 − Ẽ2q̃1
Ẽ1p̃2 + Ẽ2p̃1 + Ẽ3p̃0

)

, (34)

where
Ẽ1 = κ0∂z − 4p̃0p̃1,

Ẽ2 = zκ1∂z +∆s − 2|Ũ1|2,
Ẽ3 = ∆s,1 + z2κ2(s)∂z − 4Ũ1 · Ũ2.

To extract the curvature dynamics we develop a quasi-steady manifold U parameterized by
the interface Γ through the scaled distance function z and the curvature κ0. These quantities
evolve on the slow time T = ϵ2τ for which ϵ2∂T = ∂τ . The chain rule gives

DT Ũ =
∂Ũ

∂z

∂z

∂T
+
∂Ũ

∂T
. (35)
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The normal velocity V of the curve is scaled as V := −ϵ−1 ∂z
∂T
. This affords the reduction

∂τ Ũ = ϵ2DT Ũ = −ϵV ∂Ũ
∂z

+ ϵ2
∂Ũ

∂T
. (36)

This is further expanded in terms of the normal velocity

V = V0 + ϵV1 + ϵ2V2 +O(ϵ3),

and the T partials of Ũ ,
∂T Ũ = ϵ∂T Ũ1 + ϵ2∂T Ũ2 +O(ϵ3),

for which ∂T Ũ0 = 0. Combining these expansions yields the inner expansion of the left-hand side
of (4),

∂τ Ũ = −ϵV0∂zŨ0 − ϵ2(V0∂zŨ1 + V1∂zŨ0)− ϵ3(V0∂zŨ2 + V1∂zŨ1 + V2∂zŨ0 − ∂T Ũ1) +O(ϵ4) (37)

Using (37) and (31) in (29) we match the O(ϵ) terms in (4). This yields the system

−
(

V0
κ0

)

ϕ′ = LŨ1. (38)

This is an elliptic problem in z for the leading order normal velocity V0 = V0(s) and Ũ1. The
linear operator L has a kernel, so Fredholm’s solvability condition requires

(

V0
κ0

)

ϕ′ ⊥ Ψ†
0 =

(

βD−1ϕ′

ϕ′

)

.

This holds if the leading order normal velocity satisfies

V = −α0κ0, (39)

where the curvature coefficient α0 = α0(µ) ∈ R satisfies

α0 :=
∥ϕ′∥2

β⟨D−1ϕ′, ϕ′⟩ . (40)

This coefficient satisfies α0 > 0 so long as µ > 0, corresponding to motion by curvature. It is
instructive to expand α0 in powers of µ. From the relation (24) we find

α0 = µ
∥ϕ′∥3∥ψ∥
β⟨ϕ′, ψ⟩2 +O(µ2). (41)

We deduce that α0 < 0 for µ small and negative, which implies an ill-posed motion against
curvature. In the sequel this flow is regularized by higher order terms in the normal velocity
expansion.
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3.3 Regularization of the normal velocity

The first step to identify higher order terms in the normal velocity is to solve the system (38)
for Ũ1. The inversion formula (16) applies if µ ̸= 0, and the system can be solved directly if
µ = 0. In either case the correction terms have a tensor-product structure

Ũ1(s, z) = κ0(s)U1(z) = κ0

(

p1
q1

)

, (42)

in terms of s-dependent curvature and z-dependent vector valued function U1 which satisfies

U1 =

(

C−1
(

1− βα0D
−1
)

ϕ′

α0D
−1ϕ′

)

= α0

(−βC−1Π⊥
φ′D

−1ϕ′

D−1ϕ′

)

, µ ̸= 0,

U1 =





C−1

(

ϕ′ − ∥φ′∥2

⟨φ′,ψ⟩

)

∥φ′∥2

β⟨φ′,ψ⟩ψ



 =
∥ϕ′∥2
β⟨ϕ′, ψ⟩

(−βC−1Π⊥
φ′ψ

ψ

)

, µ = 0.

(43)

Here we have introduced the L2(R) orthogonal projection

Π⊥
φ′f := f − ⟨f, ϕ′⟩

∥f∥∥ϕ′∥ϕ
′, (44)

which maps onto the orthogonal complement of the kernel of C. The formulas are smooth since

α0D
−1ϕ′ → ∥ϕ′∥2

β⟨ϕ′, ψ⟩ψ,

as µ → 0. In particular the function U1 is uniformly bounded as µ → 0 and has even parity in
z. Returning to (4), we use (37) and (29) at O(ϵ2). The form (33) yields the balance

LŨ2 = −R̃2 − (V0∂zŨ1 + V1∂zŨ0) =

(

Ẽ1q̃1 − V0∂z p̃1 − V1∂z p̃0
−Ẽ1p̃1 − Ẽ2p̃0 − V0∂z q̃1

)

. (45)

The solvabilty condition for Ũ2 is the same as for Ũ1, however all the terms on the right-hand
side of (45) have odd parity about z = 0 except for ∂z p̃0. This implies that the system is
solvable for V1 = 0. In two space dimensions κ1 = −κ20 so that Ẽ2 can be written in terms of
κ20. Consequently the system for Ũ2 has the tensor product formulation

LŨ2 =

(

ω1

ω2

)

= κ20

(

ω1

ω2

)

,

where we have introduced
ω1 := ∂z(q1 + α0p1)− 4ϕp1q1, (46)

and
ω2 := ∂z(α0q1 − p1) + 4ϕp21 + 2|Ũ1|2ϕ+ zϕ′.

The functions ω1 and ω2 have odd parity about z = 0, in particular D−1ω1 is well defined and
uniformly bounded as µ→ 0. Inverting L we determine that

(

p̃2
q̃2

)

= κ20

(

−C−1(βD−1ω1 + ω2)
D−1ω1

)

. (47)
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This allows us to write

Ũ2 =

(

p̃2
q̃2

)

= κ20(s)

(

p2(z)
q2(z)

)

= κ20U2,

where U2 has odd parity in z. To determine V2 we proceed to the O(ϵ3) matching in the inner
expansion of (4). Equating (34) with the O(ϵ3) terms in (37) yields

(

−V0∂z p̃2 − V2∂z p̃0
−V0∂z q̃2

)

+ ∂Tκ0U1 = LŨ3 + R̃3.

The solvability conditions require that the terms without Ũ3 are orthogonal to Ψ†
0, which has

even parity about z = 0. This yields the system

(

−V0∂z p̃2 − V2ϕ
′ + ∂Tκ0p1 + Ẽ1q̃2 + Ẽ2q̃1

−V0∂z q̃2 + ∂Tκ0q1 − Ẽ1p̃2 − Ẽ2p̃1 − Ẽ3p̃0

)

⊥ Ψ†
0, (48)

to be solved for V2. From Pismen, [7] in two space dimensions the co-moving coordinates imply
the relation between normal velocity and evolution of the curvature,

∂Tκ0 = −(∆s + κ20)V = α0(∆sκ0 + κ30) +O(ϵ2). (49)

This allows the left-hand side of (48) to be expressed as a tensor product of ∆sκ0 and κ30 and
vector valued functions W 1 and W 2 of z-only dependence,

(

∆sκ0W 1 + κ30W 2 − V2∂zU0

)

⊥Ψ†
0.

These z-only vector-valued functions take the form

W 1 =

(

α0p1 + q1
−p1 + α0q1

)

, (50)

and

W 2 =

(

α0 (∂zp2 + p1) + ∂zq2 − 4ϕp1q2 − z∂zq1 − 2|U1|2q1
α0 (∂zq2 + q1)− ∂zp2 + 4ϕp1p2 + z∂zp1 + 2|U1|2p1 − zϕ′ + 4U1 · U2ϕ

)

. (51)

Solving for V2 yields the higher order corrections to the normal velocity,

V2 = ν∆sκ0 + ζκ30. (52)

where the coefficients are defined by

ν :=
⟨W 1,Ψ

†
0⟩

β⟨D−1ϕ′, ϕ′⟩ , (53)

and

ζ :=
⟨W 2,Ψ

†
0⟩

β⟨D−1ϕ′, ϕ′⟩ . (54)

Parity considerations imply that V3 = 0 as they did for V1, and hence the normal velocity has
no O(ϵ3) terms and

V = −α0κ0 + ϵ2
(

ν∆sκ0 + ζκ30
)

+O(ϵ4). (55)
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Moreover the O(ϵ4) terms are bounded relative to 1−∆s and hence reflect regular perturbations.
The sign of ν is essential to the wellposedness of the normal velocity system. In particular

it requires ν > 0. The definition of Ψ†
0, (15), yields the formula,

ν =
⟨α0p1 + q1, βD

−1ϕ′⟩+ ⟨−p1 + α0q1, ϕ
′⟩

β⟨D−1ϕ′, ϕ′⟩ , (56)

however p1⊥ϕ′ so their inner product is zero. Using (43) to expand U1 we find

ν = −
∥ϕ′∥4β⟨C−1Π⊥

φ′D
−1ϕ′,Π⊥

φ′D
−1ϕ′⟩

⟨D−1ϕ′, ϕ′⟩3 +
∥ϕ′∥2∥D−1ϕ′∥2
β⟨D−1ϕ′, ϕ′⟩2 +

∥ϕ′∥4
β3⟨D−1ϕ′, ϕ′⟩2 . (57)

For |µ| small the asymptotic inverse formula

D−1ϕ′ =
⟨ϕ′, ψ⟩
∥ϕ′∥∥ψ∥

ψ

µ
+O(1), (58)

shows that the second term in (57) is dominant for small µ,

ν =
∥ϕ′∥2∥ψ∥2
⟨ψ, ϕ′⟩2 +O(µ) (59)

which is positive for |µ| < µ∗, for µ∗ > 0 sufficiently small, independent of ϵ. This establishes
the main result (1).

Assuming that the curvatures are uniformly bounded, the ϵ2ζκ30 term in (55) is asymptoti-
cally small compared to α0κ0 unless ζ is bounded away from zero and α0 = O(ϵ2). This occurs
when µ = O(ϵ2). Since ζ = ζ(µ) is smooth in µ it remains to approximate ζ(0). The terms U1

and U2 are smooth in µ and in particular are bounded as µ → 0. The denominator of ζ scales
like µ−1 as µ → 0 so only the terms ⟨W 21, βD

−1ϕ′⟩ can give a non-zero contribution to ζ(0).
That is, for |µ| ≪ 1 the inverse formula (58) yields

ζ =
⟨W 21,D

−1ϕ′⟩
⟨D−1ϕ′, ϕ′⟩ +O(µ) =

⟨W 21, ψ⟩
⟨ψ, ϕ′⟩ +O(µ).

Since α0 → 0 smoothly as µ → 0 terms in W 21 containing α0 are also O(µ). We introduce the
z-only reductions of the operators Ẽ1 and Ẽ2,

E1 := ∂z − 4ϕp1,

E2 := z∂z − 2|U1|2,
and observe that (46) can be written as ω1 = E1q1 +O(µ). This allows W 21 to be expanded in
the symmetric form

W 21 =
∥ϕ′∥2
⟨ϕ′, ψ⟩

(

E1D
−1E1 + E2

)

ψ +O(µ),

and hence

ζ =
∥ϕ′∥2
⟨ϕ′, ψ⟩2

(

⟨D−1E1ψ,E
†
1ψ⟩+ ⟨E2ψ, ψ⟩

)

+O(µ),

=
∥ϕ′∥2
⟨ϕ′, ψ⟩2

(

−⟨D−1ψ′, ψ′⟩+ 16⟨D−1(ϕp1ψ), ϕp1ψ⟩ −
1

2
∥ψ∥2 − 2⟨|U1|2, ψ2⟩

)

+O(µ).

The coefficient ζ at µ = 0, is a sum of three negative and one positive term, and hence is sign
indefinite.
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4 Conclusions and Numerical Confirmation

The length of a closed interface Γ evolving under a normal velocity V satisfies

∂T |Γ| =
∫

Γ

V κ0 ds. (60)

For the system (55) following an integration by parts this reduces to

∂T |Γ| = −
∫

Γ

(

α0|κ0|2 + ϵ2ν|∇sκ0|2 − ϵ2ζ|κ0|4
)

ds+O(ϵ4). (61)

If the curvature is uniformly bounded by M > 0, then the interfacial length decreases
if α0 > ϵ2ζM2. In particular a circular interface Γ with an an O(1) radius R = R∗ is an
equilibrium if and only if α0, ζ > 0, α0 = O(ϵ2) and

R∗ = ϵ

√

ζ

α0

. (62)

Conversely if α0 < 0 is O(1) and the curvature is not zero, then the length of a smooth interface
will grow. The curvature dynamics follow the complicated system

∂Tκ0 = (∆s + κ20)(α0κ0 − νϵ2∆sκ0 − ϵ2ζκ30) +O(ϵ4),

in which surface diffusion acts as a singular perturbation. Generically a simple closed interface
will grow, buckle (meander), and self-intersect. Subsequent to self-intersection the front dynam-
ics leave the regime in which the curvature driven flow was derived and the flow drives a chaotic
jostling of front-type cells.

These results are supported by simulations of (2) shown in Figure 1. Images of |Θ| from
the PNLS system are zero on the interface and tend to an identical constant value in both Ω±

domains. Each simulation starts with the same initial data,

Θ0(x) = A tanh((|x| − r(θ))/ϵ),

where A ∈ C is the complex equilibrium of (2), θ is the angle x makes to the horizontal, and

r(θ) = 3 +
1

10

(

sin(3θ)− sin2(7θ)
)

,

is a closed perturbation of a circular interface. The function |Θ0| is depicted in the left-most
image in each row of Figure 1. The dispersive ratio ϵ = 0.3 in all simulations. The top row
shows the results for µ = −0.503 and β = 3.50 which is well into the motion against curvature
regime. The interface lengthens and buckles, and self-intersects soon after the last t = 520 time
depicted. Subsequent evolution generates chaotic motion of front-type cells. The second row
depicts the simulations for µ = −0.208 and β = 3.21. This has weaker motion against curvature,
the maximum curvature attained is smaller and the interface growth just yielded self-intersected
(across the periodic boundary) at t = 1600, although the interface has filled the domain. The
third row corresponds to µ = 0.0405 which is positive but smaller than ϵ2 = 0.09. This is in the
curvature driven flow regime, and the interface evolves into a circle with limiting radius R = 3.75.
The computed values ζ = 0.576 and α0 = 0.0121 yield the equilibrium radius R∗ = 3.78, in good
agreement. Computations with positive µ = 0.159 and β = 2.84 (not shown) yield a circular
interface that shrinks and approaches an O(ϵ) radius where it remains until t = 3000 at which
time the interface collapses and the function u becomes spatially constant. Circular interfaces
of O(ϵ) radius are near self-intersection and their analysis is outside the scope of this work.
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t = 0 t = 310 t = 520

t = 0 t = 1000 t = 1600

t = 0 t = 104

Figure 1: Plots of |Θ| as simulated by (2) for (top row) µ = −0.503 and β = 3.50, (middle row)
µ = −0.208 and β = 3.21, (bottom row) µ = 0.0405 and β = 2.96. In all simulations ϵ = 0.3
and unscaled time t is as indicated.
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