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Abstract

A main goal in the field of statistical shape analysis is to define computable and informative
metrics on spaces of immersed manifolds, such as the space of curves in a Euclidean space.
The approach taken in the elastic shape analysis framework is to define such a metric by
starting with a reparameterization-invariant Riemannian metric on the space of parame-
terized shapes and inducing a metric on the quotient by the group of diffeomorphisms.
This quotient metric is computed, in practice, by finding a registration of two shapes over
the diffeomorphism group. For spaces of Euclidean curves, the initial Riemannian metric
is frequently chosen from a two-parameter family of Sobolev metrics, called elastic met-
rics. Elastic metrics are especially convenient because, for several parameter choices, they
are known to be locally isometric to Riemannian metrics for which one is able to solve
the geodesic boundary problem explictly—well-known examples of these local isometries
include the complex square root transform of Younes, Michor, Mumford and Shah and
square root velocity (SRV) transform of Srivastava, Klassen, Joshi and Jermyn. In this
paper, we show that the SRV transform extends to elastic metrics for all choices of param-
eters, for curves in any dimension, thereby fully generalizing the work of many authors
over the past two decades. We give a unified treatment of the elastic metrics: we extend
results of Trouvé and Younes, Bruveris as well as Lahiri, Robinson and Klassen on the
existence of solutions to the registration problem, we develop algorithms for computing
distances and geodesics, and we apply these algorithms to metric learning problems, where
we learn optimal elastic metric parameters for statistical shape analysis tasks.
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1. Introduction

Shape is a fundamental physical property of objects and a key characteristic of their
appearance in images. As a result, shape analysis plays a central role in various applica-
tions including computer vision, medical imaging, graphics, biology, bioinformatics and
anthropology, among others. In these applications, one generally first extracts objects of
interest from the imaging data, and then studies their shapes via appropriate mathematical
representations and metrics. In statistical shape analysis, each observed shape is treated
as a random object with the primary goal of developing tools for shape registration, com-
parison, statistical summarization, exploration of variability, clustering, classification and
other statistical procedures. Each of the aforementioned statistical tasks heavily depends
on the underlying representation and associated metric chosen for shape analysis.

There is a rich literature on shape analysis that considers various representations of
shape including deformable templates [19], ordered and unordered point sets [12], level
sets [39], medial axes [18], and others. However, perhaps the most natural representation
of a boundary of an object captured in an image is a parameterized curve. While account-
ing for the shape preserving transformations of rigid motion and scaling is fairly standard
in this setting [40], one must additionally deal with parameterization variability inherent
in the given data. Some past methods standardize parameterizations of observed curves
to arc-length [S1], but this has been shown to be suboptimal in many applications [40]].
A better solution is to determine optimal reparameterizations in a pairwise manner via a
process referred to as registration. This, in turn, requires a metric on the space of parame-
terized curves that is invariant to reparameterizations. The metric plays a key role in shape
analysis as it is used for joint registration and comparison of shapes. Further, it serves as a
backbone of other statistical procedures for shape data including averaging and principal
component analysis.

In this article, we focus on shapes which are represented as curves in Euclidean space
RY, d > 2. Our shape metrics arise as geodesic distances with respect to Riemannian met-
rics on the (infinite-dimensional) manifold 7 (D, Rd), whose points are immersions, with
domain D either an interval or a circle. That is, each element of 7(D, ]Rd) 1s a smooth
parameterized curve ¢ : D — RY with nowhere-vanishing derivative. In order to induce a
metric on the shape space of unparametrized curves, one requires the Riemannian metric
on 7(D,RY) to be invariant under reparameterizations. To be precise, the group D(D) of
diffeomorphisms of D acts on 7(D,RRY) by precomposition, and this action should be by
isometries for the chosen Riemannian metric. Due to this property, the metric then de-
scends to the quotient space 7 (D, RY/D(D) of curves considered up to precomposition
with a diffeomorphism—that is, the quotient space can be considered as the space of un-
parameterized curves. The process of computing geodesic distances in that quotient space
naturally involves solving a registration problem, so that the estimated geodesic distance
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eventually provides a meaningful metric for shape comparison. Moreover, the Riemannian
formalism gives powerful tools for demonstrating the existence of optimal registrations,
along with well-defined notions of tangent spaces, means, principal components, and other
statistical concepts.

In this setup, a variety of different Riemannian metrics have been proposed in the
literature. The arguably simplest one, the invariant L>-metric, has a surprising degeneracy:
it induces vanishing geodesic distance on both parametrized [1] and unparametrized [34]
curves; i.e., any two curves (shapes) are regarded the same under the corresponding path-
length distance. This behavior renders the L?-metric unsuitable for any applications in
shape analysis. Subsequently, several stronger Riemannian metrics have been proposed,
that consequently induce a meaningful measure of similarity on shape space. This includes
the class of almost local metrics [34], but also the family of (higher order) Sobolev type
metrics, see e.g. [32,13,141}42] and the references therein. In particular, Sobolev metrics of
order one have attracted a large body of work and a two-parameter family of Riemannian
metrics G*?, a,b > 0, has been proposed [33]]; elements of this family are usually called
elastic metrics, for reasons that are highlighted in[Appendix Al The goal of this paper is to
develop a comprehensive theoretical and computational framework for the G*® metrics on
I(D,R% and the quotient 7 (D, R/ D(D), for all parameters a, b > 0 and all dimensions
d > 2. Before precisely stating our main contributions, we first give an overview of related
work to provide appropriate context.

A crucial component of an efficient algorithm for computing the desired geodesic
distances in the quotient space 7 (D, R%/D(D) is a method for computing distances in
the space Z7(D,R?). The family of elastic metrics is special: it has been shown that,
for several values of the parameters a, b and d, the geodesic boundary value problem,
and consequently the induced geodesic distance, can be solved explicitly. The typical
method in the literature for deriving such explicit solutions is to construct an isometry
(I(D,RY),G*") - (M, G), for particular values of a, b and d, to some Riemannian man-
ifold with explicit formulas for geodesics, and to then describe geodesics in the source
space via pulling back. For the choice of parameters @ = 1 and b = %, such an isometry
is given by the well known square root velocity transform, as developed in [41]] for arbi-
trary d > 2. Fora = b = % and d = 2, an isometry is given by the complex square root
mapping constructed in [S50], which is based on identifying R* with the complex plane.
The complex square root mapping was generalized to curves in R* by replacing complex
constructions with their quaternionic counterparts in [35, 37]. Fora < 2b andd = 2, a
related construction has been developed in [2], where the target manifold is a space of
curves in a Euclidean cone. Finally, for curves with values in R?, the transformations of
[50; 41} 2] have been extended to general values of the parameters a and b using a local
isometry defined, once again, via the identification of R? with the complex plane [38].



We can now state our main contributions and outline the structure of the paper.

o Simplifying isometry for general elastic metric parameters (Section2). We show
that the square root velocity transform mentioned above can, in fact, be used as a
simplifying isometry of G*’ for general parameters a and b and for curves in arbi-
trary dimension (Theorem [2.1)), thereby fully generalizing the results of [41} 2, [38]
and completing the story started over a decade ago in [S0]. We use this result to
characterize the metric completion of the space of curves and give an explicit for-
mula for the distance in this space (Theorem [2.1)). This completion includes curves
of lower regularity—in particular, it includes the class of piecewise linear curves,
which is important for representing smooth curves in a discrete computational set-
ting. We also present a (to our knowledge, novel) relation between elastic metrics

and classical elasticity theory (Appendix Al).

¢ Existence of optimal reparameterizations (Section [3). To obtain the distance on
the quotient shape space, one needs to consider the following problem: given two
curves ¢y, ¢, € I(D,R?), find a reparameterization y € D(D) such that the geodesic
distance between c; and c; o y, with respect to a given elastic metric G*?, is mini-
mized. It has been shown that a minimizer exists (within certain extensions of the
set D(D)) for parameters a = 1 and b = % (the original setting of the square root
velocity transform), under certain regularity assumptions on the curves c; [28, [6].
We extend these results to general parameters a,b > 0, under technical regularity
assumptions (Theorems and and lay out some precise open questions re-
garding dependence on regularity. Our proof uses classical results of Trouvé and
Younes [44]]

e Computational framework (Section ). We develop a comprehensive framework
for computing geodesics in the quotient space 7(D,R?)/D(D). This computation
involves optimizing geodesic distance over reparameterizations, as was described
in the previous paragraph. We give an explicit polynomial-time algorithm to find
exact solutions in the setting of piecewise linear curves (Theorem {.T)) and a faster
dynamic programming algorithm for approximating the optimizer (Section4.2)). We
illustrate this approach with several computational examples (Section[4.3). Our code
is available under an open source licenseﬂ

e Metric Learning (Section [S)). Finally, we consider the following question: given a
dataset of shapes, which metric from the family of elastic metrics gives the best per-
formance on various statistical analysis tasks? We frame this as a metric learning

'https://github.com/charoncode/Gab_metrics
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problem. A general approach to learning the appropriate parameters for a given
dataset is suggested (Section [5.I)), based on foundational work in metric learn-
ing [46]. We also give an alternative approach to parameter estimation with the
aim of training for geometric protein classification (Section[5.2).
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2. Simplifying Transform for General Elastic Metrics

In this section, we will introduce the basic concepts and spaces under consideration
and introduce the class of Riemannian metrics that will be of central interest. We then
define a new family of transforms for simplifying these Riemannian metrics.

2.1. Spaces of curves and elastic metrics
In the following, assume d > 2 and let

I(D,RY = {c e C*(D,RY) : '(u) £ 0 Yu € D},

where D is either the interval I = [0, 1] for open curves or the unit circle S! for closed
curves. This space is an open subset of the Fréchet space C*(D, R?), and is thus an infinite-
dimensional manifold with tangent space 7.7 (D,R%) at a curve ¢ € I(D,R?) satisfying
T.I(D,RY) ~ C®(D,R%); specifically, the identification is made by taking C*(D,R?) to
be the space of smooth vector fields (or deformation fields) along c.

This article is concerned with the family of elastic G**-metrics on 7(D, R?), indexed
over pairs of positive constants a, b > 0:

G“*(h, k) = f a*(Dsh* - Dk*) + b*(Dsh™ - Dk ds, (1)

D
where h, k € T.IT(D,R?) are deformation fields (tangent vectors) to the curve ¢ € 7(D, R?),
- denotes the Euclidean inner product with norm | - | (evaluated pointwise), D, = |Cl_|£

and ds = |c’|du are differentiation and integration with respect to arc length, respectively
(u denoting the parameter of ¢), and " and e denote projection onto the normal and
tangential part of a tangent vector, 1.e.,

D" = (Dih- &) & and Dt =Dh- D

lc'l ) el



The terminology of "elastic metrics" for (I)) often used in the literature [49] 33, 23] 36]
can be in fact justified from the theory of linear material elasticity, specifically as the limit
of the linear elastic energy of a deforming shell as it becomes infinitely thin. Such a
connection was recently emphasized in [8] for the class of first order metrics on surfaces.
We provide in[Appendix Ala similar and more direct derivation in the case of parametrized
planar curves.

The group R acts on 7(D, RY) by rigid translations. Each bilinear form (T]) is degen-
erate on the space of all curves and therefore only defines a Riemannian metric on the
quotient 7 (D, R%)/ R?, which can be identified with the space 1 (D, R?) of curves starting
at the origin. Once we have defined a Riemannian metric, we can consider the correspond-
ing geodesic distance function

1
da,b(c()a cl) = lnff V GC(CI’ ct)dt9
0

where the infimum is taken over all paths ¢ : [0, 1] — Z(D, RY ;1 ¢ interpolating
between the curves ¢y and c¢;. For finite-dimensional Riemannian manifolds, geodesic
distance is indeed a true metric, but this is not necessarily true in infinite dimensions:
there are Riemannian metrics such that the corresponding geodesic distance function is
degenerate or might even vanish identically [34, 4]]. For the G**-metrics this misbehavior
has been ruled out [34, 41], which consequently renders them as viable candidates for
shape analysis.

On the space of immersions, there is a natural action by the orientation-preserving
diffeomorphism group D(D) of the domain D: the reparametrization action. Given a curve
¢ € Iy(D,RY) and a diffeomorphism ¢ € D(D) this action is given by composition from
the right, i.e.,

Io(D,RY x D(D) — Io(D,RY), (c,p) - co.

A straightforward calculation shows that the G*P-metrics are invariant under this action,
i.e.,

GeP(h k) = G2 (ho ko),  hkeT.IoD,RY), ¢eDD).
Consequently, they descend to Riemannian metrics on the quotient shape space of immer-
sions modulo parametrizations S(D, RY) := (D, RY/D(D). On the quotient space, the

corresponding geodesic distance function can be calculated via
dS.([col, [c1]) = inf d,,(co,c1 0 ).
wo(lcols [e1]D) . ap(Co, C1 © @)

2.2. The square root velocity transform for general elastic metrics
As we overviewed in the introduction, there have been many approaches in the litera-
ture to understanding elastic metrics through simplifying transformations [30, 41} 2, |38]].
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That is, these works establish (local) isometries of the form (Z(D, RY), G**) — (M, G), for
some choice of parameters a, b, and d, where the target space is some Riemannian man-
ifold with an easy-to-describe geodesic structure. Such a transformation allows efficient
computations involving the elastic metric by transferring them to the simple target space.
Of particular interest for this paper is the square root velocity transform of Srivastava et
al., which we denote as

R : T,([0,1],RY) — C>([0, 1], R4\ {0})
bod 2)

il

It was shown in [41] that R is an isometry of the elastic metric G and the standard L2
metric on C*([0, 1], R¥\{0}), for any d > 2. Our first main result below will show that R is,
for general parameters a, b, an isometry of G“? and a Riemannian metric on C*([0, 1], R¢\
{0}) which is non-Euclidean, but still simple enough to admit explicit geodesic distances.

In order to formulate this result, we first introduce a Riemannian metric on R \ {0}.
For g € R?\{0}, we identify 7, (R \{0}) with R? in the obvious way. We then decompose
the tangent space via T, (Rd \ {()}) = V& W, where V= Rgand W = V*, where the
orthogonal complement is with respect to the standard dot product on RY. We then define
a Riemannian metric g* on 7, (R \{0}) as follows:

g, w) = 2t wh) + (0" - wh),

where, in analogy with the notation used in Section w' = %

onto V and wt = w — wT is the projection of w onto W. For A = 1, this is just a restriction
of the standard Euclidean metric on R?; for A < 1, it makes R¢ \{0} isometric to a dense
subset of a cone in R**! with an acute angle at the cone point; for 4 > 1, (RY\{0}, g") does
not isometrically embed in RY*".

The metric g* induces an L?>-metric on the space of smooth curves in R?\{0}:

q is the projection of w

L3 L
G,'(q1,q2) = 8,(q1, q2)du.
0

We now state our first main result, whose proof is postponed to

Theorem 2.1. For A = 57, the square root velocity transform R, defined in [2), is an isom-
etry of (IO([O, 1], R9), G“’b) and (C‘X’([O, 1], R4\ {0}),4b2GL/21>. Furthermore, for each
co € To([0, 1], RY) there exists a neighborhood U(cy) such that the geodesic distance be-

tween cy and any c; € U(cy) is given by:

dist,p(c1,¢2) = 2b \/ Coy+ ey =2 f Vel liey) cos (£6) du, 3)
D
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where
6(u) = cos™ (R(cy) - R(c2)/IR(c)IIR(ca)])-

If d > 3, then the formula for the geodesic distance holds globally, i.e., for arbitrary
c1 € ITy([0, 11, RY), after replacing the formula for 6 by

6(u) = min (cos™ (R(c1) - R(e2)/IR(DIR(e))), 22) .

To deal with the difficulty in the d = 2 case (the formula of the geodesic distance being
only valid locally), we can extend geodesics across the origin and obtain C*(/,R?) as the
geodesic completion in the sense of [26,[6]. This allows us to interpret (3] as the geodesic
distance on the geodesic completion. We will now extend the formula for the geodesic
distance of Theorem [2.1] to the metric completion, which will be important in the next
section where we will prove the existence of optimal reparametrizations.

Corollary 2.1. The completion (in the sense of Lemma of To([0, 11, RY) with the G**
metric is the space of absolutely continuous open curves ACy([0,1],R%). For any two
curves ci, ¢, € ACy([0, 11, RY) their corresponding geodesic distance is given by

1
dist,(c1, c2) = 2b \/ by + e, =2 f \lcilichl cos (£6) du.
0

where €., is the length of the curve c; and

2bn
a

otherwise.

6 = {min (cos‘l(c’l(u) AN EAD]ADI) 22—”) if ¢} (u), ¢, (u) # 0

2.3. Relation to previous work

In this subsection, we pin down the precise relationship between Theorem [2.1] and
previous work on simplifying transforms [50, 41, 2| 138].

The transform in the literature which is most relevant to our result is obviously the
square root velocity transform (2)), which was shown in [41] to be an isometry of G'2 and
the standard L2 metric on C*([0, 1], R? \{0}) for arbitrary d > 2. This result is recovered
directly from Theorem [2.1]

The complex square root map of [S0] takes an immersion c in the plane to the curve
V¢, where the square root is computed pointwise by considering ¢ as a complex-valued
function—there is some ambiguity here, so the square root curve is chosen in a way to
make it continuous. This transform was shown to be a local isometry of G2 with the
standard L2 metric on C*([0, 1], C) ~ C=([0, 1], R?). In [38], it was shown that the com-
plex square root map fits into a family of maps F,;, defined on a smooth plane curve ¢ by
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F.p(c) = 2b|c’|% (c’/ |c’|)ﬁ, with exponentiation once again performed using the identifica-
tion of R? with the complex plane and choosing a continuous curve as the image; when
a=b= %, F,, reduces to the complex square root map. It was shown in [38] that F,,
defines a local isometry between G** and the L? metric, for any choices of a,b > 0. In
fact, the F,;, transform factors as

(Immo(0. 11,©), ") —F» (€10, 11, €, 402G ) (c=(0.11,C"),G*)
Fa,b

where C* = C\{0}, A = T GL* = GH is the standard L2 metric and S .. 18 a local isometry
defined by S,,(q) = 2b|g|''g'—the local isometry claim can be seen via calculations
in complex coordinates, similar to the proof of [38, Theorem 2.3]. The takeaway from
Theorem is that the geometry of the metric GLi is simple enough that we can work
in the middle space of this diagram, allowing us to avoid technical issues with isometries
only being local, while simultaneously allowing the result to be generalized to arbitrary
dimension.

We should also mention [2]], which gave a similar family of generalizations of the
complex square root map for plane curves, valid for G with a < 2b. In this case, a curve
c in C is mapped to the curve in R® ~ C x R given by

/
Ruy(c) = |2 (a;,l, Vap? — az) .

The image of R,; lies on a certain cone in R? and it is shown in [2] that the transform
is an isometry of G** and the metric on the cone induced from the ambient Euclidean
metric. As in the case of the F,; transform described above, one can factor R,; as the
SRV transform R followed by an isometry between the space of curves in the plane and
the space of curves in the cone.

3. Existence of Optimal Reparameterizations

3.1. Existence of optimal reparametrizations for open curves

In the previous section we saw that the set of absolutely continuous functions provides
the natural space for studying the geodesic distance function of the family of elastic met-
rics. In the following, we aim to prove the existence of optimal reparametrizations in this
space. Let distib be the induced distance of the elastic G*-metric on the space of ab-
solutely continuous, unparametrized and open curves S(/, RY) := ACy(I, RY)/T’, which is
defined by

dist; ,([c1], [c2]) = inf,er disty(c1, 2 0 ), (4)
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where dist,;, denotes the geodesic distance function on the space of parmetrized open
curves ACy(I,R%), and where I" denotes the group of absolutely continuous diffeomor-
phisms on /, i.e.,

F={yeACU,D: y0)=0, y()=1,7 >0 ael.

We will also need the closure (with respect to the norm topology) of this group I', which
is the semigroup of weakly increasing, absolutely continuous functions, i.e.,

I'={yeACU,D): y0)=0, y(1)=1,y >0 a.e.}.

With this notation, the induced distance distib on the quotient space S(I, R?) can be equiv-
alently expressed via
distS,([c1], [c2]) = inf dist,p(ci,c2 0y) = inf_dist,,(ci 0 y1,¢2 0 y2)
’ yel Y1,72€l
= inf _dist,;(c1 0 y1,¢2 0%2). (5)
Y1,y2€l

Here, the second equality in the first line follows from the invariance of the distance,
whereas the third equality follows from the density of I"in I'. Our main result of this section
concerns the existence of optimal reparametrizations, i.e., the existence of reparametriza-
tion functions such that the infimum is attained. We will see that for a < b we really need
two reparametrization functions in [, while for ¢ > b the infimum can attained by one
reparametrization function. Before we formulate the theorem we need to introduce the
function space of piecewise differentiable functions:

PC'(I,RY :={ce CU,RY):T0=tg<t) <...<1, =1
S.t. Clai) € C! ((li, ti1), R )} .

Note that PC'(I,RY) c AC(I,R?). We also need to introduce the space D of all functions
that can be written as
¢(s) = ([0, s

where u is a probability measure on /. These are equivalently (c.f. [10], Chapter 4)
bounded variation (BV) functions, which are non-decreasing and left-continuous on /. We
will denote the right limit of ¢ at x by ¢(x + 0%). Furthermore, we recall that since ¢ is
nondecreasing, ¢ is differentiable almost everywhere. For ¢ € D*, we also introduce a
generalized inverse ¢~ € D" defined by:

¢ (y) = sup{x € [0, 1], ¢(x) <y},

where we use the convention sup @) = 0; c.f. [44) Section 5.2.3].
We are now able to formulate the main result of this section.
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Theorem 3.1. Let ¢;,c; € PC'(I,R?). Then the distance distib on the quotient space
S(I,RY) is equivalently given by a supremum over the space D, i.e.,

distib([cl], [c.]) =2b \/fc1 + L., —2 sup f \ &) fup (x, d(x)) dx,
I

PpeD*
where f,, : I X 1 — R is defined by
: : a -1/ ¢1(x)-¢2() roa —17 ¢1(x)-E2() T
fun(x,y) = { Vicille2 ()l cos (E cos (\cl(x>||cz(y>|)> if 25 €08™ (g comeaco) < 2 6)

0 otherwise.

We have the following statements concerning the existence of optimal reparametrizations:

1. a<b:foranyc,,c, € PC'(I,R?) there exists a strictly increasing homeomorphism
such that the infimum in (4) is attained. If the derivatives ¢, ¢, are Lipschitz contin-
uous then vy € Diffc1(D), i.e., the optimal reparametrization is a C'-diffeomorphism.

2. a>b:forc,c, € PC', RY) there exists a pair of generalized reparametrizations
¥1,v2 € [ such that the infimum in (3)) is attained. On the other hand, there exists a
pair of curves cy, ¢, € AC(I, R?) such that the infimum in () is not attained in T and
consequently neither in I" or D".

Our proof of this result, which makes repeated use of results by Trouve and Younes [44]]

is presented in

Remark 3.1 (Open questions). This result suggests the following questions, which remain
open for future research.

e Counterexample for a < b: The proof of the non-existence result for a > b will
be based on constructing curves cy,c, such that f,,(x,x) < 0 for x € B, where B
is a closed but nowhere dense subset. For a < b, f,, is positive and thus the same
strategy fails.

e Higher regularity: One would hope that a higher regularity of the curves ¢, and
¢, would lead to a higher regularity of the obtained optimal reparametrization func-
tions. To deduce this result from the theorem of Trouve and Younes [44] one would
need that a higher regularity of the curves c; also leads to a higher regularity of the
function f,,. This function is, however, at best Lipschitz continuous and only locally
of a higher regularity. One can use the local regularity of f,, and localize the ar-
guments of [44]to show that the optimal reparametrization functions are locally of
class C*! provided that the curves are of class C*, but as of now we do not know
how one could go a step further and obtain a global regularity result.
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Remark 3.2. In the limit (and degenerate) case a = 0, one can further show that for any
regular curves ci,c, € PC'(I,RY) the infimum in {@) is attained by the constant speed
reparametrizations of ¢; and c», i.e.:

distS,([c1], [e2]) = distyp(cr 0 ' 0 Yy, 02)

where Y .(u) = fou |c(s)|ds. Indeed, let us first assume that ¢, and c, are both constant speed
parametrized, i.e. |¢1| and |&;| are constant on I and equal to the curve lengths €., and €.,,
respectively. Therefore f,, is just constant, and the optimization problem becomes:

distib([cl], [c2]) =2b \/&., + €., = 2f25(0,0) sup f \/ d(x)dx.
1

peD*

We have by Cauchy-Schwarz

<f\/<%dx)231'f¢(x)dxsl-1:1
! 1

and for ¢ = 1d, the previous inequality is an equality. The result follows and we also obtain
that the (pseudo-)distance is given by:

distS(lerl [ea) = Ve, + by =2l le = | Vo = Ve

In the general case where cy,c; € PC'(I,R?), one has that ¢, oy and c; o Y} have
constant speed, and

dist} ,([c1], [e2]) = distyp(cr 0 Y. 0 Yy, ).

3.2. Existence of optimal reparametrizations on the space of closed curves

We will now extend the previous result to the case of closed curves, i.e. when D =
S!. For closed parametrized curves, there does not exist anymore an explicit formula for
the geodesic distance associated to general elastic G*-metrics—to our knowledge, the
only G** metric with explicit geodesics for closed curves is the a = b case for plane
curves [50]] and space curves [37]], both of which rely on specific constructions involving
Hopf maps. Nevertheless, the formula we obtained for open curves in Theorem [2.1] still
defines a reparametrization invariant distance function on the space of closed, parametrized
curves: the next result follows by the same analysis applied in the open curve setting.

Corollary 3.1. Forc;,c, € ACy(S',R?) let dist,;(c1, ¢2) be given by the same formula as
in (B) with integration over I replaced by integration over S'. Then dist,, defines a metric
on the space of closed, absolutely continuous curves ACy(S ', R?).

12



As previously, this allows us to construct a distance on the quotient space of un-
parametrized closed curves by defining

a,

dist>([e1], [e2]) 1= inf disty(c1, 2 09),
cl

where dist,;, is given by (3) and where I';; denotes the group of absolutely continuous
reparametrizations on the circle, i.e.,

Iy={yeACS"',S" : yisbijectiveandy >0 a.e.}

We introduce the shift operator on S :

s _{Sl - S
L6 - 0+71

where 7 € S!. Then we can rewrite the group of absolutely continous reparametrizations
on the circle as

Fd:{S,oy:yeFandTeSl},

and we also need, as before, the closure of this group 'y = {S; 0y :y € Tand 7 € S'}.
Then, the induced distance disti’bCl can be expressed as

dist>([c,], [c2]) = inf dist,,(ci,co09) = inf  dist,p(c; 0 Y1, ¢ 0¥2)

ab vela Y1526l
= inf_dist,;(c1 0 y1,¢20%2). (7)
Y1,y2€l

We can now formulate the existence result of optimal reparametrizations for closed
curves. Our proof, which will use the same method as [21]] where the result was shown for

the SRV metric, is postponed to

Theorem 3.2. Let ¢i,c, € PCY(S',RY). We have the following statements concerning the
existence of optimal reparametrizations:

1. a<b: for any c|,c, € PC'(S',RY) there exists a strictly increasing homeomor-
phism such that the infimum in is attained. If the derivatives ¢, ¢, are Lips-
chitz continuous then y € Diff 1(S1), i.e., the optimal reparametrization is a C'-
diffeomorphism..

2. a>b:forc,c, € PCY(S', RY) there exists a pair of generalized reparametrization
Y1, V2 € 'y such that the infimum in (/) is attained.

13



4. Algorithms for the computation of quotient distances and geodesics

In the following, we will describe two different algorithms for the numerical compu-
tation of the optimal reparametrization on the space of open curves: an exact algorithm
based on the work of Lahiri, Robinson and Klassen [28] and a faster dynamic program-
ming based approximation. Solving the registration problem on the space of closed curves
simply requires an additional optimization over the starting point, i.e., one has to solve
the registration problem on the space of open curves for any choice of starting point.
Consequently, the numerical solution on the space of closed curves is significantly more
expensive.

4.1. Exact algorithm for piecewise linear curves

By the results of the previous section, we obtain the existence of optimal reparametriza-
tions in the case of open, piecewise linear curves. Furthermore, using a result of Lahiri
et. al. [28]] we obtain an explicit algorithm for the optimal reparametrizations y; and 7;.
We have the following result that follows directly from the corresponding analysis for the
SRV-metric.

Theorem 4.1. Let c|, c; be two piecewise linear curves with values in R?. Then the pair
of generalized reparametrizations yy,y, € I that attains the infimum in (3) consists of two
piecewise linear maps.

Proof. First we note that piecewise linear curves, are piecewise smooth and thus in par-
ticular piecewise C'. This guarantees the existence of optimal reparametrization by the
results of Theorem 3.1l

Next, we introduce a notion from [28] and let f : I X I — R. We call f rectangular if
there exist partitions 0 = iy < i} <---<i, =1and 0= jy <i; <--- < j, = 1 such that f
is constant on each rectangle of the form [i,_1, i,] X [Js-1, jsl-

Using again Theorem [3.1] we have shown that finding optimal reparametrizations for
the geodesic distance is equivalent to the optimization problem

sup_f\/ Y1) y2(u) fap (v1(w), y2(u)) du,
yi.y2el VI

where f,, is defined in (6). It is clear that the function f,, is rectangular if the curves ¢,
and ¢, are piecewise linear. From here, the proof given in [28] goes through verbatim. [

Consequently, the exact algorithm from [28]] can be adapted to find optimal reparametriza-
tions in our setting. This algorithm can find the optimal piecewise linear trajectory vy, y»

14



that maximizes f]x . W(yi(u), v2(u)) \/¥1(u)y»(u) for general W € L*(Ix1,R). For the G*'-
metrics, we simply have W = f,,. We use the implementation from Martins Bruverisﬂ that
computes reparametrization for the usual G"'/>-metric, i.e. with W(x,y) = ¢q,(x) - ¢>(y).
Recall that closed curves require an additional optimization step to determine the starting
point. For each vertex of the piecewise linear curve c¢;, we simply compute the resulting
distance with ¢, and choose the minimum.

4.2. Dynamic programming approach

The previous algorithm gives the exact optimal piecewise linear reparametrization, but
is in practice very slow to compute. An alternative method is to use a dynamic program-
ming scheme to estimate an approximation of the optimal reparametrization, similar to the
approach proposed in [43] 33].

We define a discretization 7 = {xy, ..., x,,} of the intervall [0, 1] and restrict the search
to piecewise linear functions on the grid 7 x 7. We denote by PL; the set of piecewise
linear increasing functions with vertices on 7 X 7. For k < i,l < jand ¢ € PLz, we define
the partial cost function

E@Lm:f”vammumex

Let Ly, j(x) = x;) and (x;, x;), and with a slight
abuse of notation, we shall write E(k, 1,1, j) = E(k,l, Ly,; ;) as the energy of the segment.
By additivity, if ¢ € PLy is defined by the segments Ly, 1, t,.1,> Liy b ks 135 > Ly 1,1 k1> thE
total energy of ¢ is

p-1
E@) =Y Eky biskust, lus)-
n=1
We thus have to find the sequence of nodes (k,, /,) that minimizes the energy. We define
the partial value function to reach node (i, j) by

H(, j) = kr<I}1]I<1] E(k,1,i, j) + H(k,I)

with H(0,0) = 0; in other words, H is defined recursively. Due to the specific additive
form of E, if for all k < i,l < j, H(k,[) is the minimal energy between (0, 0) and (k, [),
then by definition H(i, j) is the minimal energy between (0, 0) and (i, j). Consequently, the
global minimal energy that we aim to find is given by H(1, 1).

Zhttps://github.com/martinsbruveris/libsrvf
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The algorithm proceeds in two steps. First, we compute the different values of H on
the grid 7 x 7 using equation (4.2). Then, we determine the optimal path by backtracking
from vertex (1, 1): if (x;, x;) is a vertex of the optimizer, we compute the node that joins
(x;, x;) by solving the problem:

(k,1) = argminE(k, 1,1, j) + H(k, ]).

k<il<j

To speed-up the computation of the value function and optimal reparametrization, a stan-
dard approach [33] is to restrict the search of the node that connects to (i, j) to a smaller
set than {k,[ : k < i,l < j}. In our case, we define

Nij=1{kl:i-6<k<i,j—6<I<j}
and the corresponding partial energy

H(@, j) = <kf§)122,,,. E(k, 1,1, j) + H(k, ).

This will lead to a restriction of the admissible slopes and in general to a less precise ap-
proximation of the reparametrization. Nevertheless, in all of our experiments, this restric-
tion still yields good approximations of the true reparametrization functions, c.f. Figure[2]

4.3. Examples

Figure I shows several geodesics between pairs of plane curves—a pair of simple syn-
thetic curves and a pair of real leaf shapes. Geodesics are computed for a variety of elastic
metrics G**; we fix b = % and compute geodesics for a € {0.1,0.5,1,5}. All geodesics
in this figure were computed using our dynamic programming algorithm. These first ex-
amples clearly illustrate that the intermediate shapes along the geodesics strongly depend
on the choice of metric parameters. Figure [2] compares the estimated reparametrization
functions found via the dynamic programming algorithm to those found by the exact algo-
rithm. We see here that the dynamic programming algorithm typically returns registrations
which are close to the true optimal ones, while incurring a lower numerical burden. In-
deed, for the synthetic example, the average computational times for exact registrations
were 306s, 269s, 40s, and 0.2s, respectively, for a = 0.1, 0.5, 1, 5; their counterparts com-
puted using the dynamic programming algorithm were orders of magnitude smaller: 0.23s,
0.09s, 0.07s, and 0.06s. A similar trend held for the leaf shapes, where we got 299s, 253s,
34s, and 0.19s for the exact algorithm and 0.22s, 0.03s, 0.025s, and 0.021s for dynamic
programming. In the figure, we report the performance of the dynamic programming algo-
rithm by giving its relative error (dayn — dex)/dex, Where dgy, is geodesic distance (for given
metric parameters) computed via dynamic programming and d.y is the exact distance.
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Figure 1: Geodesics between open plane curves. Each panel shows several geodesics between a pair of
curves, with each row corresponding to a different choice of parameters in the elastic metric. In the left
panel, the source and target curves are simple synthetic curves, designed to clearly illustrate the dependence
of the geodesic on the metric parameters. In the right panel, the source and target curves are real leaf
shapes—although the source and target curves are actually closed, we compute each geodesic in the space
of open curves. In both the left and right panels, the metric parameters vary by row and are given by G*1,
with a = 0.1, 0.5, 1 and 5, respectively.
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Figure 2: Comparison of registrations via the exact and dynamic programming algorithms. The top row
shows the registrations (i.e., optimal diffeomorphisms of [0, 1]) between the synthetic curves from Figure|[I]
with respect to metric parameters b = % and a = 0.1,0.5,1,5, respectively. In each figure, the exact
registration is plotted in blue and the dynamic programming registration is plotted in red. The last graph
in the row plots the relative error of dynamic programming versus the exact algorithm (see the text) for a
finer range of parameters a € {0,0.1,0.2,...,2}, b = % The bottom row shows the same experiment for the
registrations between the leaf shapes of Figure[I] Observe that the relative error is generally on the order of
a single digit percentage in each case.
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Figure 3: Geodesics between space curves. Each row shows a geodesic between the same pair of protein
backbones, modeled as space curves, for a particular choice of elastic metric. The elastic metric parameters
for the rows are b = %, a=0.1, 0.5, 1, 5, respectively.

Figure (3| applies our framework to compute geodesics between 3D curves (protein
backbones), for a variety of elastic metric parameters. These geodesics were computed,
once again, using the dynamic programming algorithm.

5. Metric learning

The numerical experiments of the previous section illustrate both the influence and
importance of the choice of metric when comparing and matching shapes. While certain
heuristics may sometimes guide the selection of the parameters a and b of the elastic
metric for a given dataset and application, it is often done via empirical trial and error
approaches. Thus, in recent years, there has been a growing interest in developing methods
for automatically estimating metrics on shape spaces.

Obviously, there is a priori no natural criterion to prefer one metric over another for
the basic task of matching two shapes. However, when considering shape datasets and
problems such as clustering or classification, it should be expected that different metrics
will lead to different ways of quantifying differences across samples and consequently
different properties from a statistical perspective. This suggests the idea of attempting to
optimize (or learn) the choice of metric in order to improve the statistical power of shape
analysis methods. The elastic framework of this paper appears quite amenable to such a
task as learning the metric here reduces to learning a single parameter (the ratio of a and b).
In this section, we consider the issue of metric learning for shape classification using two
different models. Our primary focus is on demonstrating the feasibility and advantages of
optimizing the choice of the metric in such a context; we leave an in depth study of the
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issue of developing efficient numerical algorithms for metric learning for future work.

The literature on metric learning is vast, and we only summarize some main ideas
here—for more details, there are several surveys on the topic, e.g., [47, 15, 27, 25]. Gener-
ally, metric learning is a supervised machine learning technique for choosing a metric from
a parametric family which optimally separates data coming from different classes. Clas-
sically, the data consists of Euclidean feature vectors, and the metrics under consideration
are Mahalanobis distances [46, 11, 48], which allows training via standard techniques
from convex optimization theory. Closer to the topic of this paper, there has also been
recent interest in metric learning on parametric families of Riemannian metrics on mani-
folds, such as spaces of SPD matrices [45]], spaces of histograms [29] and graphs [22].

A common paradigm in metric learning is to represent data via pairwise constraints,
where the training data consists of two sets S = {(x;, x;)} and D = {(x, x,)} so that each
pair (x;,x;) € S consists of similar points (coming from the same class) and each pair
(xx, x7) € D consists of dissimilar points (coming from different classes). One then designs
a loss function on the metric parameter space which encourages distances between similar
points to be small and distances between dissimilar points to be large—the particulars of
the loss function are application-dependent, and several choices are described in the survey
papers cited above. An optimal metric with respect to a given loss can then be used for
downstream distance-based analysis tasks, such as clustering, dimension reduction and k-
nearest neighbors classification. This is the approach that we take in Section [5.1] where
we us the pairwise constraints method to train metrics for various 2-dimensional shape
datasets. On the other hand, if one has a particular classification task in mind then it is
sensible to learn the metric which optimizes performance on this task directly. We take
this approach in Section [5.2] to learn a metric which optimally classifies 3-dimensional
protein backbone curves.

5.1. Pairwise Constraints

Let us first consider the goal of estimating, in a supervised fashion, the metric that
will best separate 2-dimensional shapes according to the pairwise constraints paradigm
described above. In other words, suppose that we have training data consisting of a col-
lection of unparametrized curves X = {c j}?’= , together with known labels y = {y j}?/: , with
eachy; € {1,..., K} (thatis, there are K distinct classes). We seek to determine the optimal
parameters (a, b) for the elastic metric G’ so that the geodesic distance distib optimally
separates those classes. By a simple normalization argument, we may fix one of the two
metric parameters, which we shall do in the following by setting » = 1/2 and optimize
over a > 0.

The above task can be stated formally by introducing an adequate pairwise constraint

loss function depending on the distances distib(c,-, c;j) between the curves of the training

19



set. There have been various families of such loss functions appearing most notably in the
machine learning literature. As a proof-of-concept, we choose here a simple loss which
we can loosely think of as the ratio of the intra-class variance by the inter-class variance
of the shape distances. Specifically, let S C X X X be the collection of ordered pairs (c;, ¢;)
of curves with the same label (y; = y;) and D C X X X the collection of ordered pairs with
different labels (y; # y;). We define our loss function by:

1

. _1
1 1 3
L = i - .S ) ) 2 ) . .S 5 .
(a) S| Z dlSta,l/z(Cn Cj) <_|D| E dlStg,]/z(Ck, Cr) ) (8)

(cicj)ES (ck,c0)ED

Minimizing L(a) should be achieved when one strikes a balance between concentrating
curves from the same class close to one another, while giving a large separation between
different classes. As was recently observed in [16, [15], minimizing this loss function is
essentially equivalent to solving the metric learning optimization problem described in the
pioneering work of Xing et al. [46].

For a given value of a, this loss function is calculated by first computing each of the
N(N — 1)/2 pairwise distances {distf’1 n(ci, ¢j)}, which requires solving each of the cor-
responding registration problems. In our experiments, this is done using the dynamic
programming scheme for the sake of computational efficiency. For the purpose of this
work, we evaluate the loss function over a range of different values for a in order to deter-
mine the approximate value of the minimizer. Note that, while the expression of the loss
when reparametrizations are fixed is relatively simple and could be optimized easily with
respect to a, the difficulty is that the optimal reparametrizations leading to each pairwise
distance value also depend on a. This makes the derivation of more sophisticated and ef-
ficient schemes for the minimization of (§]) a non-trivial problem that we leave to future
investigation, c.f. the discussion below.

Results. We tested our metric learning pipeline on two shape datasets. Results from
the first dataset are reported in Figure 4 Here, the data consisted of leaf shapes coming
from four classes with 20 samples in each class. We chose 7 random examples from each
class as training data and created pairwise data .S and D, with S consisting of all pairs from
the same class and D consisting of all pairs from different classes. We then minimized the
loss function () via a grid search over the one-dimensional parameter space (a gradient
descent algorithm was also implemented, which gave the same results). The efficacy of
the learned metric was validated by testing the ability of the resulting geodesic distance
to separate shapes from different classes. We measured this by computing the pairwise
distance matrices for both the training and testing data, partitioning each dataset into four
classes by applying complete linkage hierarchical clustering to the distance matrices and
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Figure 4: Metric learning on the leaf dataset. The left panel shows representatives of each of the four
classes in the leaf dataset. The middle and right panels show MDS (multidimensional scaling) plots of the
pairwise distance matrices with respect to the learned metric for the training and testing data, respectively.
The optimal metric parameter learned for the loss function (8) is @ = 0.71. The Rand indices (see text for a
full description) for the training and testing sets are 1 and 0.93, respectively.

Figure 5: Metric learning on the animal dataset. Similar to Figure [5] from left to right the panels show
representative shapes from each of the four classes, an MDS plot for the training data and an MDS plot
for the testing data, both with respect to the pairwise distance matrices computed with the optimal metric
parameter. For this experiment, the optimal parameter was ¢ = 0.52 and the Rand indices for the training
and testing sets were both equal to 1 (i.e., perfect clustering).

computing the Rand index of the inferred clusters against the ground truth classes. Similar
results for the second dataset, consisting of shapes of four different species of animals, are
reported in Figure[5] Notably, the optimal metrics computed for the two datasets are quite
different, indicating that the choice of optimal metric is data-dependent.

5.2. Metric learning for shape classification

As an alternative to optimizing the metric parameters with respect to the loss (8)), one
may instead consider trying to maximize classification scores on the training set in a cross-
validation fashion. A simple approach could be, for example, to evaluate leave-one-out
nearest neighbor classification scores for varying values of a. A usually more robust way
however is to rather rely on the estimation of conditional probabilities for the different
classes. We present one possible approach in the following description.

With the same notation as in the previous section, we introduce a leave-one-out scheme
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in which for each j = 1,..., N, we denote by p;(¢ X ;) the probability of c; to be in the
class £ € {1,...,K} knowing only the curves in X; = {c;},» and their labels. In order
to estimate the conditional probabilities, we adapt a standard approach in many machine
learning works, see e.g. [17], Chapter 6.2. Namely, we set p’(£|X;) = o(z”), where the
vector z) € R* is defined by

@), = dist*(c;, ¢ ;)
Hi#jryi= #%1 ’

and o is the softmax function given by

eﬁzi

0@ =———
2521 ebe

with 8 > 0 a fixed (or tunable) parameter. Then, for each j = 1,...,N, pY(y;|X;) gives an
estimate of the probability for the correct class y; of curve j. Thus, we seek to maximize
the sum of the log-likelihoods over all instances of the leave-one-out scheme. In other
words, we define the loss function to minimize to be:

N
L(a) = = ) log(p(j1%).
j=1

Note that — log(p"(y ]|X 1)) can also be interpreted as the Kullback-Leibler divergence be-
tween the true probability distribution 6,, and the estimated one P IX ). As in the pre-
vious section, we can calculate the above loss for each value of the metric parameter a by
first solving all pairwise matching problems to obtain the set of distances {dist“(c;, ¢;)}.

Results. We used data from the 3D Shape Retrieval Contest 2010 (SHREC’10) [31]
which contains a training dataset of 1000 protein structures from 100 classes, each class
containing 10 proteins. Only the 3D curves representing the protein backbones were ex-
tracted and used in our experiments; two examples of such protein shapes were shown
earlier in Figure [3] In addition, 50 more proteins from random classes formed the testing
dataset that we used to evaluate the metric learning process. Our goal is to compare results
obtained with the above approach to the methods from [31]. We calculated the classifica-
tion loss for a sample of values of the metric parameter a between 0 and 2 (Figure [6)) and
found the optimal value to be a = 0.73.

For evaluation, we use this optimal parameter to compute a matrix of the distances
between the 50 proteins in the testing set and each of the proteins in the training set. The
performance of the method is measured in the same two ways as in the original contest.
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Figure 6: Scores for different values of a. In the left panel we show the loss function described in Section
[5.2] For comparison, on the right, we also evaluate the cross-validation leave-one-out accuracy based on

nearest neighbor classification.

e Nearest neighbor: for each of the 50 proteins, we find the closest protein from the

training dataset to predict the class of the testing protein. We calculate the overall
percentage of correct predictions. For the optimal value of the metric parameter
determined by our method — a = 0.73 — we obtain 82% of correct predictions, which
beats all methods from [31] (the best method in the paper reaches 80%).

Receiver operating characteristic (ROC) curve: for each of the 50 proteins in the
testing dataset, we create a ranked list of the proteins from the training dataset, from
the closest protein to the most distant. This ranked list contains 10 proteins in the
actual class of the testing protein (the true positives) and 990 proteins in a different
class (the true negatives). The ranked list is traversed sequentially and we plot the
cumulative rate of true positives against the cumulative rate of true negatives. Figure
shows aggregate ROC curves for all of the 50 test protein curves, for different
parameters of the metric. For the optimal value of a, we also compute the area
under the curve (AUC) for the ROC curves of each testing protein and plot it in the
right panel of the figure.
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Figure 7: Left: Aggregate ROC curves for different metric parameters: a = 2 (green), a = 1 (blue), and
the optimal value a = 0.73 (red). Right: Bar chart showing the AUC for optimal metric parameter value
a = 0.73 for each testing protein.
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Appendix A. An interpretation from linear elasticity theory

With the definitions and notations of Section let us consider a portion of an open
smooth curve which is parametrized on an interval we will denote I, i.e. ¢ : I — R?
is an immersion of class C®, and define the thin shell domain Q c R? of “thickness”
0 > 0 around that curve. Specifically, we take  as being given by the parametrization
w:[-0/2,6/2] x I — Q defined by w(t,u) = c(u) + tn(u) where n(u) is the unit normal
vector to the curve c at u. It is easy to see that for 6 small enough, w is a diffeomorphism
that we can view as a foliation of Q. Indeed, we note that w(0,-) = c¢(-) and for any
t€[-6/2,6/2], w; : u — w(t,u) defines a parametrized curve which corresponds to layer
t of the foliation. Moreover, w;(u) = ¢’(u) + tn’(u) and, as n(u) is a unit vector orthogonal
to ¢’(u), we get that w;(u) is parallel to ¢’(«) which implies that n(u) is also the unit normal
vector to w, at u. Thus, for any x = w(t,u) € Q, we can define the orthonormal vector
frame F(x) = (7(x), n(x)) by:

) = wiu) 0wt u)

S ol B "YW

See the illustration given in Figure [A.T]

Now, we model Q as a linear elastic material which undergoes an infinitesimal defor-
mation given by a smooth vector field v : Q — R We shall further assume that this
deformation field is uniform along the transversal direction, in other words that it takes the
following form: for any x = w(t, u), v(x) = h(u) where h is a vector field defined along
the curve ¢ as in the previous section, c.f. again Figure [A.1] for visualization. Note that
this is a natural assumption in the small thickness laminar model that we are interested in
here. Then, following the approach of classical linear elasticity [20, 9], one introduces the
(2 x 2) symmetric tensor field defined for all x € Q as &(x) = M. This is known
as the strain tensor associated to the deformation field v and expressed in the canonical
basis. Given the specific laminar structure of the domain here, it will be more convenient
to instead consider the strain tensor relative to the above orthonormal frame F(x), which is
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Figure A.1: Illustration of the thin shell elastic domain model.

specifically S (x) = F(x)T&(x)F(x). The linear elastic energy associated to the deformation
field is obtained from Hooke’s law and take the general form:

EWw) = f U(x,S (x))dx
o)

where U(x,-) is a quadratic form on the space of symmetric (2 X 2) matrices which is
usually referred to as the elastic or stiffness tensor. In the present context, we will restrict
the class of such elastic tensors by making a few additional assumptions. First, we will
consider the elastic properties of the material to be uniform in the sense that U(x, -) does
not depend on x € Q. Then, viewing any symmetric matrix § = (s;;); =12 as the (3 X
1) vector (s11, 522, s12)7, the quadratic form U can be identified with a single symmetric
positive definite (3 X 3) matrix which we write as:

Ui U2 U
U=\ wy wp uyp
Uz U212 U2

The coeflicients in U assign weights to the different terms in the elastic energy in the fol-
lowing way. Both coefficients u;; and u,, correspond to spring-like stiffness coefficients
in the tangential and normal directions respectively. Coeflicient u;,, on the other hand,
weighs the relative compression/stretching between tangential and normal direction. The
coefficient u;, 1, can be associated with bending energy that results from a change of angle
between the two directions. We will make some further symmetry assumptions on the ma-
terial, namely that it is orthotropic with respect to the two directions 7(x) and n(x) at each
point x. This leads to the conditions u; 12 = u 12 = 0. Note that the orthotropy assumption
is relatively common in many materials (with the exception of certain crystals) and include
in particular fully isotropic materials, c.f. Remark [A.T|below.
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Going back more specifically to the deformation of the foliated domain €2, due to the
particular form of the vector field v, we can see that for any x = w(¢, u) € Q, dv(x)-n(x) = 0.
This implies that the strain tensor is of the form:

o () dv(x) - T(x)  2@v(x) - T(x) n(x)
$(0 = (%(dvm-r(x)fn(x) i 0 )

and so, identified as a (3x 1) vector, we have S (x) = (s1;(x), 0, s12(x))!. Under the previous
assumptions on the elastic tensor, we find the the following elastic energy:

E®v) = f(ul,lsu(x)2 + U2 12512(%)?)dx
o

= fa_ fl(u1,1S11(w(I, w)* + up 1a812(w(t, 0)*) (1, w)| dudt.
2
where J,, denotes the Jacobian determinant of w. We have seen that 0,w(t, u) = n(u) and
0,w(t,u) = ¢’(u)+1tn’(u) with ¢’ (1) and n’(u) being parallel vectors both orthogonal to n(u).
Thus, for all (¢, u), |J,(, uw)| = |c’(u) + tn’ (u)).

Now, using the continuity with respect to ¢ of the inside integral and the mean value
theorem, we obtain that:

1
}Sﬁ% EE(V) = f(ul,lsll(w(o’ W) + Ui, 12512(w(0, w)?)|c’ (w)ldu.
- I

In addition, from v(w(0, u)) = h(u), we get by differentiating that dv(w(0, u)) - T(w(0, u)) =
h(u)/|c’(u)|. We can then rewrite the above expressions of s;; and sy, as:

h’(u)) _ <c’(u) )T I (1)

s11(w(0, w) = T(w(0, u))" <

e (u) lc’@l/ - Ie’'(w)
1 n(w(0, u))" 1’ (1)
0,u) ==
s12(w(0, u)) > o)
which finally leads to:
.1 3 T U2 0
lim ~E(v) = fl [uu(Dsh P+ SR D2 ds

In summary, we have shown that the expression of the Riemannian metric G**(h, h) of
(1) is obtained as the limit of the elastic energy of an orthotropic laminar thin shell domain
as the thickness § — 0, in which a* = u;; and b* = u12,12/4 can be interpreted as stretching
and bending energy coefficients respectively.
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Remark A.1. In the special case of an isotropic elastic domain C (still with respect to the
frame vectors T(x) and n(x)), the elastic tensor takes the particular form:

2u+ A A 0
U= A 2u+a 0
0 0 2u

in which A, > 0 are the so called Lamé coefficients of the material. This leads to G**
metric for which a®> = 2u + A and b*> = u/2 i.e.

b_1 [ 2u 1

a 2\|2u+a1" 2
It is thus interesting to note that this stronger isotropy assumption on the elastic domain
imposes the constraint that b < a/2, the limiting case b = a/2 corresponding precisely to
the square root velocity (SRV) metric of [41].

Remark A.2. The previous derivations can be extended to curves in higher dimensions
relatively easily. In the case of a 3D curve for example, one can introduce a tubular
neighborhood of small radius 6 around that curve that is again deformed by a vector field
uniform in the transverse direction. Then, assuming a material with transversely isotropic
elastic properties, one can show that, as 6 goes to 0, the resulting elastic energy is again

given by (T)).

Appendix B. Proof of Theorem 2.1 and Corollary 2.1]

To derive the formula for geodesic distance (3]), we will first prove a lemma on dis-
tances in the finite-dimensional space (R\{0}, gY). Clearly R? \ {0} is incomplete with
respect to g* for any A4 > 0. We can complete it as a metric space by reinserting the origin.
Let Ri denote the metric space that is the completion with respect to the g* metric. Note
that, as a point set, R‘j is just RY, but R‘j is not a Riemannian manifold when A # 1, as the
Riemannian metric g* cannot be smoothly extended to the origin in this case. We obtain
the following explicit formula for the distance d, on this completion:

Lemma B.1. For q,,q; € Rﬁ. we let

di(q1, ) = Vg1 + g2 - 2lg1llgal cos(26),

where

o= min (Cos‘l(ql - q2/19111921), %) if g1 and g, are both non-zero
3 if ¢\ or q, is zero

Then (Rff, d,) is the metric completion of the Riemannian manifold (R \ {0}, g").
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Proof. First we consider the case d = 2. Without loss of generality, assume that g, = (A, 0)
and ¢ = (kcos6,ksinf), where h,k > 0 and 0 < § < n. (This can easily be arranged,
since reflections in the x-axis and rotations about the origin are isometries of R3.) Define
the sector Vy, € R, by Vy = {(rcosa,rsine) : 0 < a < fand r > 0}. Define a function
F:V,— R*by
F(rcosa,rsina) = (rcos Aa, r sin Aa).

We now consider the case A0 < 7, and we show that F is an isometry from V, with metric
given by the completion of the Riemannian manifold (Vj, g*) into R? with the Euclidian
metric. In the following computations, we fix a basepoint ¢ = (rcosa,rsina) in the
interior ‘79, andv,we T, 179. We can easily see that FoO_, = O_;,0F where Oy : R? > R?
is rotation by angle ¢. Therefore, as rotations are isometries for the Euclidian metric g!,
we have

r dgF (), dgF W) = 80 or((dF()O-1a © dgF (v), diigyO-aq © dyF ()
= 8re0_ (oo F 0 dg0_o(v),do i F © dyO_o(W))
= 8140y 0y F (), diroy F(W))
with ¥ := d,0_,(v) = O_o(v) and W := d,0_,(w) = O_,(w). We can easily compute that
di0)F(¥) = (¥, A7), and putting this together with the calculation above yields
i dgF ), dgF(W)) = grirgy (77, A7), (07, 4WH))
=7+ ATt
= 80/ W)
As g% is invariant under rotations, we have

o0y W) = 850/ (0a(»), Oa(W)) = g4 (v, W)

and it follows that F is a Riemannian isometric embedding from (Vy, g) into (R2, g"). It
extends to a metric isometric embedding from Vj into R? by completion.

F is also injective and F(Vy) is a convex subset of R?, so the geodesic (i.e. straight line)
in F(Vy) joining F(q,) to F(g,) remains in F(Vj). Thus if we apply F~! to this straight line,
we obtain a geodesic in Ri joining u to v. Since F' is an isometry, the length of the geodesic
in Rﬁ is the same as the length of the straight line, and is given by the desired formula, as
a simple application of the law of cosines in R? shows.

In case that A6 > m, let A’ = 179. We have A’ > 1. We consider once again F z Vo — V,:

. T LT
Fg(r cosa, rsina) = (rcos ga, 7 sin 504)
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Then F z is an isometry from (Vj, g*) to (V,, gg), and therefore :
distg ((h,0), (rcos 6, rsin 0)) = dist,r ((h,0), (-1, 0))

Because A’ > 1, for all w € R?, g¥(w, w) > |w'[2,., and therefore dist,r > diste,c. But
taking the straight line between (h,0) and (-r,0), we then have dist,v ((h,0),(-r,0)) <
h + r, and therefore distgy ((h,0),(=r,0)) = h + r. This yields again the desired formula.

Having proved the theorem for d = 2 it follows for general d, since any pair of elements

u, v is contained in a totally geodesic copy of R3 C ]R‘j. ]

Proof of Theorem [2.1|and Corollary[2.1] The statement that R is a diffeomorphism is clear
from the definition of the involved spaces; see also [6, 28]]. It remains to show that R is a

Riemannian isometry. To this end, we calculate the derivative of R at ¢ € 7o([0, 1], R?) in
the direction h € T.1y([0, 1], R?) as

1 1 c\ ¢
sy (=L (5. 2) <)
Ic’| 2 I’/ |c']

The component of d.R(h) tangential to R(c) is

lc’| ( 1 c’) ¢’ lc’| .
) S =Xy
2\l el el 2

Similarly, the orthogonal component is given by (a’cR(h))L = +|c’|Dsh*. Therefore, for
h,k € T I,([0, 1], R%), we have

1 ’
(d.R(h),d.R(k)) = 4b* f 2|c'|(Dsh* - Dgk™) + 'Z-'(DshT -Dyk") du
0

2~
4b°G
1
= f a’(Dsh* - Dk*) + b*(Dsh" - Dok™) ds = G&(h, k),
0

where, in the last line, we use that 1 = %
isometry.

It remains to derive the geodesic distance formula. To do so, we recall a general fact
about geodesics in path spaces. Let (M, g) be a (finite-dimensional) Riemannian manifold

and consider the space

and ds = |c’(u)|du. The proves that R is an

M= C([0, 1], M).
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By [7]], a path in M given by ¢ — ¢, is a length minimizing geodesic with respect to the
L*-Riemannian metric (defined by

1
G (h, k) = fo 2ot (hCa), k()

for h,k € T.M parameterized smooth vector fields along c) if and only if for (almost all)
fixed ug, the curve given by ¢t — ¢,(up) is a length-minimizing geodesic in M. Conse-
quently, the geodesic distance between ¢, c; € M is given by

1
\/ f dist™ (co(w), c1(u))?du,
0

where dist” denotes geodesic distance in the finite-dimensional manifold M.

We can now apply the above result with (M, g) = (R?\{0}, g*). Letco, ¢; € To([0, 1], R%)
such that the geodesic in (R?, g') between R(c,)(«) and R(c,)(u) does not pass through the
origin for any u € [0, 1]. Then the formula for the geodesic distance follows directly by
the formula from Lemma and the above considerations — note that in this case the
minimum in the definition of € is always given by the arccos term. This proves the lo-
cal formula for the geodesic distance. To obtain the global formula one needs to smoothly
perturb any path that passes through the origin in such a way that the perturbed path avoids
the origin. It is easy to see that this is possible if d > 3, which shows the global formula
for the geodesic distance. For d = 2 and 4 = 1 a counterexample, i.e., two curves where
the minimizing path can not be perturbed to avoid the origin, has been constructed in [6].
A similar argument works for general A and thus the formula for the geodesic distance is
only valid locally in this case. []

To prove the statements on the metric completion we will first study these completions
in the space of R-transforms, i.e., on C*(I, R4 \ {0}):

Lemma B.2. For q,,q, € L*([0, 1], RY) we let

1
d 2(q1,92) = \/fo lg1 @) + lg2)* = 2lq,(W)llg2(w)| cos(A0(u))du,
where

Bu) = {min (cos™ (g1 () - g2() /|1 Wllg2@)), 5)  if q1(w), g2(u) # O

’—; otherwise.
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We have the following two statements regarding the completion of the space of smooth
functions: The space (LZ([O, 1], R‘j), dc%) is the metric completion of the geodesic com-

pletion C*([0, 1], ]Rﬁ). Ifd > 3, then (LZ([O, 1], Rﬁ), dGL/Zl ) is also the metric completion of
(C=(10. 1, R\ {0}, GH).

Proof. This follows directly from the definition of the geodesic distance on C*([0, 1], R\
{0}), the proof of Theorem [2.1] and Lemma O

Now corollary 2.1 follows from the results above and the formula for R.

Appendix C. Proof of Theorem 3.1}

The main ingredient for the existence proof is the following result by Trouve and
Younes, concerning the existence of minimizers for a wide class of optimization prob-
lems:

Theorem C.1 (Theorem 3.1 and Prop. 5.1 in [44]). Let f : [0,1] X [0,1] — Ry be a
bounded measurable function that satisfies the following condition

(H1) There exists a finite family of closed segments ([a;, b;])je; such that each of them is
horizontal or vertical and f is continuous on [0, 1%\ jeslaj, bjl

Then there exists an non-decreasing BV-function ¢ € D* that maximizes the functional

¢ fD \/g(x) f(x,¢(x))dx. Let f; be defined by

jeJ

fi(xo.y0) = lim (inf {f(x, W16y € [0, 11\ Jlaj,bil,1 (63 = (0,30 | < 5})

Assume that f; satisfies in addition the condition:

(H2) There does not exist any nonempty open vertical or horizontal segment la, b such
that f, vanishes on la, b|.

Then the optimizer ¢* € D* is a strictly increasing homeomorphism.

For the statements regarding the higher regularity case, we will in addition need the
following technical result:

Theorem C.2 (Theorem 3.3 in [44]). Let f be a nonnegative measurable function on
[0, 11%, and assume that U D >R fD Vo(xX) f(x, p(x))dx reaches its maximal
value at a strictly increasing continuous function ¢* € D*. Then for any xo € [0, 1], if
f(x0,d(x0)) > 0 and if f is locally Holder continuous, then ¢* is differentiable at x,, with
strictly positive derivative, and ¢* is continuous in a neighborhood of x,.
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Proof of Theorem 3.1, 'We start by proving the formula for the geodesic distance. Using
the explicit formula for parametrized curves that was obtained in Theorem 2.1 we can
write the geodesic distance as

diStib([Cl]’ [c2]) = 2b \/fcl + €., —2 sup f V1@ y2w) fup (yi(w), y2())) du,
I

y1.y2€0

where f,;, : I x I — R is defined by

_ ; ; a o=l E1)-¢0) ) g o=l C1(0)-6(y)
fab(x,y):{ VIEWoTeamlcos (5 cos™ (RERZE) i 55 cos™ (RGN < 7

-1 otherwise.

This formulation is, however, not convenient for us, as the function f;,b 1S not non-negative
and thus one cannot directly apply the results of [44]. Thus we will first show that the the
above optimization problem does not change when we substitute £, , by the non-negative
function f, ,, as defined in (B). Since f,, = max (f,;,0), we have

sup j; V@2 fap (1), y2(u))) du
')/1,')/26F
< sup f\/ Y1@y2() fa (Y1 (W), y2(w))) du
I

y1.y2€l

Lety,,y, €I,andlet A = {u € I, fa,b (y1(u),y2(un))) < 0} the open set of negative parts
of f,,. We can write A as an at most countable disjoint union of open intervals A = | J,, 1,
with 7, =]Ju,, u;[. Now let us construct reparametrizations ¥, ¥, with derivatives equal to
zero on A. We set y1(u) = y1(u), ¥2(u) = y2(u) foru € I\A and :

B v1Qu—-u,) foruce€lu,,1/2(u, +u))l
Yi(u) = + - N
vi(u;) foru €]1/2(u,, + u,)), u;, [

3 Y2(u,) for u €lu,, 1/2(u, + u,)[
Y2(u) = . S e
v2Qu —u)) foru €]1/2(u, +u,), u,[

We clearly have %,,%, € I and for u € I,,, \/1(u)y>(u) = 0, so
f VY1 @2 w) fop 31 (W), ¥2(w))) du = f\ ) V1@ yaw) fup (y1(w), ya(u)))
1 1
= fl V1@ @) fup (1), y2(w)))
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which proves the equivalence of the two optimization problems.
Next we will prove the equivalent definition of the distance, where the infimum is taken
over one BV function in the space D*. Thus we consider the two functionals

D —- R

6 = [ VI fup(x PO (C.1)

and
I'xlT - R
iy =, V@R fus i), y2(w) du.

We will show a slightly stronger statement, namely the following claim:
Claim A: For ¢ € D", there exist y,, v, € I, such that

f] VY1) fap (Y1), y2(w)) du = f] \ B0 fap(x, $(x))dx.

Conversely, for yi,v, € T, there exists ¢ € D* such that

f] V ) fu(x, (x))dx = fl VY1) y2(u) fap Cyi(w), y2(w)) du.

To show Claim A, let ¢ € O* and u the corresponding probability measure given by
By Lebesgue’s decomposition theorem, we may write i = wydx + vy + ey A0y,
where wydx is the absolutely continuous part of u with respect to the Lebesgue measure,
v, the singular continuous part, and for all n € N, x, € I and a, > 0. The latter part can
be seen as the (at most countable) jumps of ¢ located at the points x,, and of amplitude a,,.
We then consider the set

C = Graph(9) U |_J{x:} X [¢(x,), 6(x,) + ]

neN

Then C is compact as it is clearly bounded and its closedness can be shown from the
definition using the left continuity of ¢. Furthermore, C is connected and H,(C) < oo,
since ¢ is of bounded variation and ) ,a, < 1 < co. Therefore C is the image of a
rectifiable curve, that can be reparametrized as an injective, Lipschitz continuous curve vy,
cf. [13, Lemmas 3.1 and 3.12]. We write

.{[0,1] - [0,1]°
& u = (yiw),y(u) °
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where y; and vy, are Lipschitz continuous, non-decreasing and differentiable almost every-
where (and we will let y;(u) = 0 if y; is not differentiable in ). We then calculate:

fl V1) y2(u) fap Cyi(u), y2(w)) du
= fl VY1) Y2 (1) fap (Y1), y2 () 1y, >0(u)du

- f Yi(u) %]‘a,k(%(u),yz(u))1y.l(u)>0(u)du
1
:f; Z %fa’h(%(u)’YZ(M))171(M)>0(M)dx,

ueyy! (x)
where yl‘l(x) = {u € I,y,(u) = x} and 1, denotes the indicator function for condition C.
The last equality follows from the area formula [[14, Theorem 3.2.3]. Indeed, given the
assumptions on 71, it is differentiable almost everywhere and we have by ([30], p.103) that
{y1(u),71(u) = 0} is of Lebesgue measure zero. Thus, for almost all x € [0, 1], yl‘l(x) is
reduced to a single point. Then, by setting x = y;(u), we have (y;(«), y>2(u)) = (x, ¢(x))
with ¢(x) = y2(y;' (x)).
It follows that for almost all u such that y,(u#) > 0, one has:

d . ;
V2(u) = E@P o 1) = p(y1w)y1(u) = ¢(x)y1(u),

and thus ¢(x) = 22 Going back to the original equality, this leads to

Y1)’
[ Vs o= [0 372 010, @) o
ueyy! (%)

= f V @) fap(x, p(x))dx,
I

which proves the first direction of Claim A.

To prove the converse direction of Claim A, we let y,,y, € I, where we can choose
Y1,7Y2, Up to a reparametrization, to be Lipschitz continuous. We consider the generalised
inverse y; € D", and let ¢ =y, o y]. By [44, Lemma 5.8] the generalized inverse is again
an element of O*. Since 7y, is Lipschitz continuous, and since composition with Lipschitz
functions keeps D" invariant, we have that ¢ € D, see e.g. [24, Theorem 4]. Now one
can obtain the desired equality

fl V ) fu(x, p(x))dx = fl V1)) fap Cyi(w), y2(u)) du,
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by a similar computation as above, which concludes the proof of Claim A.

Now the first statement of item 1 —a < b and ¢y, ¢, € PC'(I, RY)—follows directly from
Theorem : since ¢; and ¢, are assumed to be piecewise C', the function f,;, is bounded
and continuous when ¢, and ¢, are continuous. For x (resp. y) a point of discontinuity of
¢y (resp. ¢2), fap 1s not continous on the vertical segment {x} X [0, 1] (resp. the horizontal
segment [0, 1] X {y}. Thus f,; satisfies (H1). For a < b we have in addition that f,;, > ¢
where ¢ > 0 and thus we also have f; > ¢ does not vanish. By Theorem [C.I] this implies
that the minimizer exists in " and is a strictly increasing homeomorphism.

It remains to prove the statements assuming additional smoothness of the curves ¢,
and c,, namely that ¢; are Lipschitz continuous. Therefore we show that in this case
the function f,; is also Lipschitz continuous: the application 6 — cos(3; cos~1()) is
differentiable on ] — 1, 1[, and its derivative is bounded, therefore 6 — cos(s; cos™1(0))
is Lipschitz continuous on [—1,1]. As ¢; and ¢, are Lipschitz continuous, the function
X,y % is also Lipschitz continuous. Therefore by composition, f,;, is Lipschitz
continuous and thus also Holder continuous since we are working on a compact domain.
We have already shown that the minimizer ¢ is strictly increasing and continuous. As f,;
is strictly positive everywhere we obtain by Theorem that ¢ is of class C! on all of I,
which concludes the proof of the second statement of point 1.

For the second item, a > b, there may exist areas where f,;, = 0, which leads to opti-
mizers that have jumps and are thus not continuous. To deal with these difficulty, we will
follow the same approach as in [6] and consider a pair of generalized reparametrization
functions, that might have vertical parts but no jumps. Using Claim A we can still focus
on maximizing (C.I]) on the space of BV functions, which allows us to use again the result
of Trouvé and Younes [44]. In particular by Theorem [C.1] cf. [44] Proposition 5.1], there
exists ¢ € D" that maximizes (C.I), and thus by Claim A there exist y;,y, € I such that
distib([cl], [c2]) = dist,,(cy 0 y1, 2 © y2), which proves the existence result in item 2.

Finally, we shall construct a counter-example when a > b if the curves ¢, and ¢, are
only in the space AC(I, R?). To that end, we adapt the counter-example from [6, Section
6]. Let 0 < € < ¢ and define

o (COS 2;—”6 cos 43“—5 d cos 43“—;

Vi = - %am . Vo = . dan | > an V3 = - Adar | -
Sin TEt Sin A — Sin 3

vi(D)v (1)

willv; @)l
vectors. We define two curves ¢, ¢c; € AC(I, R?) such that :

Then we have that 2 cos™(

) > 5 foreach i # j, and therefore f,, < O for those

cr(u) = vi(w)L4(u) + valp(u)
Co(u) = vi(u) L4 (u) + v31p(u)
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where B C I a modified Cantor set such that B is closed, nowhere dense with A(B) = %,
and A = I\B. Following the same proof as in [6} section 6], we have that

sup f Jar (1), y2(w)) dt = A(A)
y1.y260 VI

and is not attained. ]

Appendix D. Proof of Theorem [3.2]

Proof. For ci,c, € PC'(S!,R? and a, b > 0 we define the functional
{ St - R
F: . .
T > inf, , pdist,(cy 0oy, 208 03)
We aim to show that F' is continuous, which will directly lead to the desired conclusion.
Therefore let € > 0,7,7 € S'. Then

|F(t) = F(7)| = | inf _dist,(c1 0 y1,c20870y2) = inf_dist,p(ci 0¥|,c2087 0opy)l

Y1726l Y1-75€l
= |disty,([c1], [e2 © S 1) = dist, ([e1], [e2 0 S ¢ DI< dist ([e2 © S, [e2 0 S ]

< inf dist,,(cp0S:0y,c008 0v') = inf distaren (Q(cz 08:0%),0(c;08 0 ’y'))
vy el y.y'el

< dist“e (Q(c2 0 51), 0(c2 0 51)) .

., 2
By definition, we have that Glaen < max(%, 1)? GLZ, therefore we can deduce that
a

- 1)10(e2 052 = Ofez o Sl

Since the space C(I,R9) is dense in L?>(I,R?%), we can choose g € C(I,R?) such that
|O(c2) — gllz2 < €/3. By change of variable, we also have ||Q(c;) oS —goS.||;2 < €/3 and
|Q(c2) oS+ —goSy|l2 < €/3. Since g is continuous and / is compact, g is also uniformly
continuous by the Heine-Borel theorem. Thus we have, for |t — 7’| small enough,

dist“se» (Q(cy © S+), O(cz 0 S+)) < max (

lgoS:—goSrllz<€/3

Finally we have:
IF(0) = F@)l < max (5.1)10(e2 o $0) = Ofez o S o)z
) (10205~ g o Sl
+llgoS.—goSolliz+lgo Sy - Oz oS ellz)

a a
< F— = —
< max <2b,1)(e/3+e/3+6/3) e

< ma <a 1
X\ 57>
a 2b
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Thus we have shown that F is continuous function on the compact set S'. Consequently
there exists an optimal 7 € S! such that F(r) = infgi F. Now the remaining statement
follows directly from Theorem [3.1] O
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