2303.04981v1 [math.PR] 9 Mar 2023

arXiv

MODULATION ANALYSIS OF THE STOCHASTIC CAMASSA-HOLM
EQUATION WITH PURE JUMP NOISE

YONG CHEN?!, JINQIAO DUANZ2, HONGJUN GAO3, AND XINGYU GUO?

ABSTRACT. We study the stochastic Camassa-Holm equation with pure jump noise.
We prove that if the initial condition of the solution is a solitary wave solution
of the unperturbed equation, the solution decomposes into the sum of a randomly
modulated solitary wave and a small remainder. Moreover, we derive the equations
for the modulation parameters and show that the remainder converges to the solution
of a stochastic linear equation as amplitude of the jump noise tends to zero.

1. INTRODUCTION
1.1. Background. The Camassa-Holm (CH) equation
Ut — Ugpt + SUUL + 2kUy — 2Uglpy — Ulgpry = 0, £ >0, v € R, (1.1)

with k& > 0, was derived by Camassa and Holm in [13] as a model of shallow water waves.
Here u denotes the fluid velocity in the x direction or, equivalently, the height of the
water’s free surface above a flat bottom [13, 61]. Eq. (1.1) was originally derived by
Fuchssteiner and Fokas [48, 49] as a bi-Hamiltonian generalization of KdV. A rigorous
justification of the derivation of Eq. (1.1) as an approach to the governing equations
for water waves was recently provided by Constantin and Lannes [35]. Eq. (1.1) was
also arisen as an equation of the geodesic flow for the H' right-invariant metric on the
Bott-Virasoro group (if & > 0) [69] and on the diffeomorphism group (if k¥ = 0) [33, 34].

The CH equation (1.1) is completely integrable [13, 27], which has the bi-Hamiltonian
structure [13, 48]

0H 0H.
R AL (1.2

T = —(0um +m0, + 2k0,), Jo = —(0, — 02) (1.3)
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with a momentum density m := u — u,, and the two Hamiltonians
1 9 9 1
Hy[m]=Hi(u) == [ w(z)+ui(x)de == [ umdz, (1.4)
2 Jr 2 Jr
1
Hy[m] = Hy(u) = 3 / ud(z) + u(x)u?(z) + 2ku’(x)dz. (1.5)
R
The CH equation (1.1) can be written in Hamiltonian form as

The Cauchy problem for the CH equation (1.1) has been studied extensively. For
initial data ug € H*(R),s > 3/2, Eq. (1.1) is locally well posed [28, 40, 65]. Moreover,
Eq. (1.1) has global strong solutions [28, 26] and also finite time blow-up solutions
[28, 29, 26, 31, 40, 65]. On the other hand, it has global weak solutions in H!(R)

(7,8, 23, 30, 36, 53, 54, 55, 78]. The ill-posedness of the CH equation in H*/? and in the

3/2

critical space By,

1 < r < oo is proved in [51].

The CH equation (1.1) possesses smooth solitary-wave solutions called solitons if & > 0
[14] or peaked solitons if k¥ = 0 [13]. In particular, when k > 0, Eq. (1.1) possesses the
smooth soliton with the expression u(t,z) = @.(xv — ¢t + xg),¢ > 2k,z9 € R, in a

parametric form as follows [62, 66]

c—2k
14 (2k/c)sinh? @’

u(t,z) =
where

1 2k y cosh(6 — 6y)
2k c (v —eVkt), = VEk i cosh(0 + 6p)’ c

The soliton ¢, satisfies the following equation

3 1
—CPc + CPcga + 5905 + 2kpe = pPerz + 5‘%73:5’ zeR.

It is shown in [14, 38] that the CH equation (1.1) admits the smooth and positive solitary
wave solution . with an even profile decreasing from its peak height ¢ — 2k. Moreover,

|©L] < ¢. and as |z| — oo,
2k
pela) = Olexp(— /1~ 2 jap). (1.7

The CH equation (1.1) has even more complex solutions, such as multi-solitons which

can be given also in a parametric form like one soliton [12, 32, 66, 68].
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Some kinds of the stability of solitons of the CH equation are considered in [38, 46, 76].
In [38], the nonlinear stability of the 1-solitons is proved by applying the general spectral
method. In [46], the orbital stability of the train of N solitary waves of the CH equation in
energy space H' is investigated . In [76], the dynamical stability of smooth N-solitons of
the CH equation in Sobolev space HY and the orbital stability of smooth double solitons
in the space H? are proved for all the time. The stability of peakons and multipeakons

of the CH equation are established in [37, 47].

1.2. Stochastic Camassa-Holm equation. Since there are some uncertainties in geo-
physical and climate dynamics [4, 57, 45], it is widely recognized to take random effect
into account in mathematical models. Using stochastic variational method [57, 58], the
following stochastic CH equation with Brownian motion was derived in [39],
dm + (Oym + mdy)v =0, (1.8)
where m = u — u,, and the stochastic vector field v, defined by
N
v(x,t) = u(z, t)dt + Z{l(x) o dW;.
i=1

The vector v(t, z) represents random spatially correlated shifts in the velocity, the func-
tions &;(x),i = 1,2,..., N are the spatial correlations, W/ i = 1,2,..., N are indepen-
dent Brownian motions and o is the Stratonovich product. Eq. (1.8) admits peakon
solutions and isospectrality [39]. Applying a finite element discretization, the authors in
[6] reveal that peakons can still form in the presence of stochastic perturbations. The
local existence and uniqueness of strong solution of (1.8) is proved in [2]. The well-
posedness of stochastic CH equation with the initial value ug € H®,s > 3/2 is proved
in [16, 74]. The martingale solution in H'! is established in [18] under the condition
that mg = wp — ugze is a positive regular Borel measures, which is improved in [50]
with ug € H'. The global well-posedness of the viscous Camassa-Holm equation with
gradient noise is established in [56].

The analysis of the Lévy noise is different from [57, 58] and is motivated by the require-
ment that the noise must preserve some invariance properties of stochastic Hamiltonian

structure. Thus, it needs to find an analogue of the Stratonovich integral with respect
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to compensated Poisson random measure. The work of Marcus [67], developed later by
Applebaum [3], Kunita [64], Chechkin and Pavlyukevich [15], provides a framework to
resolve this technical issue. Using stochastic variational method [57, 58], we derive the

following stochastic CH equation with pure jump noise [19],
dm 4 (umg + 2mugy)dt + m o dL(t) = 0, (1.9)

where ” ¢” is the Marcus product and L(t) is a Lévy motion with pure jump. The local
well-posedness and large deviations of (1.9) with the initial value ug € H®,s > 3/2 are
given in [17] as an example. The global existence, the wave breaking phenomena and
moderate deviations of (1.9) with ug € H®, s > 3/2 are proved in [19].

Consider the following stochastic Hamiltonian

1
Hy[m|dt = 5 / u(t, x)m(t, z)dxdt + / m(t, z)o(x) o dL(t),
R R
where 0 = o(z) depends on x € R, 7 ¢” is the Marcus product and L(t) is a Lévy motion

with pure jump, defined as

¢
L(t) = / /z/\/(dt,dz). (1.10)
0 Jz
Here Z = {z : |z| < 1} is a locally compact Polish space, and N is the compensated
Poisson random measure. Let N be a Poisson random measure on [0,7] X Z with a
o-finite intensity measure Ay ® ¢, where Ay is the Lebesgue measure on [0,7] and ¢ is

a o-finite measure on Z, such that

/62H%”L°"|Z|19(dz) < 00, /z219(dz) < 0. (1.11)
z z
Then, for A € B(Z) with 9(A) < oo,

N([0,t] x A) = N([0,t] x A) —tI(A).

We derive the stochastic CH equation

dm :jlwdt = J1(udt + o o dL(t))
om
= — (umy 4 2muy + 2ku,)dt — (omg + 2mo, + 2ko,) o dL(t). (1.12)

By the relation between the advective form u and the moment m, applying (1 — 92)~*

to both sides of (1.12) to yield

du + (uuy + Pyp)dt + ((u) o dL(t) = 0, (1.13)
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(1-0%)P=1u>+ %ui + 2ku, (1.14)

where
C(u) = 30uy — 20,u+ (1 — 0%) "1 (20,u — ud30 + oppty) + 2k(1 — 02) " Yo,.  (1.15)

The elliptic equation for P can be solved to supply

1 1
P =K x*(u®+ §u926 + 2ku), K(x) = Eefm.

Mathematically, as explained in Remark 2.1, the nonlocal part and the part 2uo, of the
noise term in (1.15) offers no new (essential) difficulties compared to 3ocu,. For the sake
of clarity, we will therefore focus on the following stochastic CH equation with gradient

pure jump noise
du + (vuy, + Pp)dt + ou, o dL(t) = 0, (1.16)

where P is given by (1.14). For fixed z € Z,w € L?, let ®(t, z,w) be the solution of the

following partial differential equation
dy(t) = —zoys(t)dt, y(0) = w.

Then ®(t, z,w) = w(xz — ozt). Hence, the stochastic integration in equation (1.16) with

Marcus form can be written with ®(1, z,u) as follows [3]

du + (uug + Pp)dt = /Z[u(t—, z—o0z)—u(t—, z)|N(dt,dz)

+ / [tz — 02) — u(t,z) + zouald(d)dt.  (1.17)

z
The literature on stochastic partial differential equations driven by Lévy noise in the
”Marcus” canonical form is very limited and such work has recently been initiated by
Brzezniak et al. in [10, 11]. The noise intensity o is a constant in [20]. The operator in
the Murcus integral in [10, 11] is bounded, while it is unbounded here. Moreover, in this

form of noise, it can maintain the invariants H;(u) and Ha(u).

1.3. Our aims. Our aim is to investigate the influence of random perturbations with
the form given in Eq. (1.17) to the smooth solitary wave of the CH equation. More

precisely, we study the stochastic CH equation

du + (uu, + Py)dt + eou, o dL(t) =0, (1.18)
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where P is given by (1.14) and € > 0 is a small parameter. The stochastic integration in

equation (1.16) with Marcus form can be written as follows [3]

du + (v, + Pp)dt = /Z[u(t—, x —eoz) — u(t—, x)|N(dt,dz)

+ /[u(t, x —e0z) —u(t,x) + ezouz|d(dz)dt. (1.19)
z

We will use the collective coordinate approach to investigate the influence of random
perturbations on the propagation of deterministic standing waves (e.g. [42, 43, 75]).
This approach consists in writing that the main part of the solution is given by a mod-
ulated soliton and in finding then the modulation equations for the soliton parameters.
The modulation theory, in general, provides an approximate and constructive answer to
questions on concerning the location of the standing wave and the behavior of its phase
for ¢t > 0. The random modulations of solitons of the stochastic Korteweg-de Vries equa-
tion and stochastic Schrédinger equation under the influence of the Brownian motion
have been studied in [42, 43, 75]. As far as we know, it’s the first paper to consider the

influence of the pure jump noise to the solitions.
Let ¢, (z) with ¢ > 0 fixed be a smooth solitary wave solution of equation (1.18)

with € = 0. Define the functional
H.(u) = cHy(u) — Ha(u),u € H, (1.20)

where H; and Hy are given in (1.4) and (1.5) respectively. Note ., is a critical point

of H.,, that is

H(, (¢ey) = coHi(pe,) — Hy(e,) =0, (1.21)
where H| and H} are the Fréchet derivatives of H; and Hs in H'(R) respectively. The

linearized Hamiltonian operator L. of cH] + H) around ¢ is defined by
Lo=—0((2¢c — 2¢.)0;) — 6pc + 2020 + 2(c — 2k). (1.22)

Denote u€(t, x) be the solution of equation (1.18) with the initial value u€(0,x) = @¢, ().
We prove that u(t, ) can be decomposed into the sum of a randomly modulated solitary
wave Q. (¢)(2¢(t)) and a small remainder en®(t), which is randomly modulated in its phase
2¢(t) and frequency c¢(t). Then, we study more precisely the behavior at order one in €

of the remaining term 7 in the preceding decomposition as e goes to zero.
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1.4. The main results. Now, we give the main results of the paper. The first one
is that the main part of the solution of equation (1.18) is a solitary wave, randomly

modulated in its phase z¢(¢) and frequency c(t) as follows.

Theorem 1.1 (Stochastic modulated solitary wave). For e > 0, let u(t,x) be the
solution of equation (1.18) with ug(z) = @¢,(x) and ¢y > k. Then, there exists oy > 0
such that for 0 < a < ay, there is a stopping time 75, a.s. and there are semi-martingale
processes c*(t) and x¢(t) defined a.s. for t < 75, with values respectively in R and R.

The solution u(t,z) can be decomposed as
u(t, @) = pee(y (x — (1)) + en®(t, x — x(t)).
Let n°(t,x) = L[u(t,x+x(t)) — pee sy (x)]. Then it satisfies the orthogonality conditions
(1%, (1= 02)¢e,) =0, and (1%, (1 = 02)Dz0c,) = 0. (1.23)
Moreover, for t <75,
llen(®)|| g < «, and [c(t) — o] < @, a.s.
In addition, for any T > 0 and o < «, there is a €y > 0, for € < €,
Plrs < T) < Cb(e), (1.24)

where b(e) = [, ((ec?lozlle —1)2 4 (e3clzlllozllee _ 1)2)9(dz).
The second one is the convergence of 71 as € goes to zero.

Theorem 1.2. Let 1, ¢ and z¢ be given by Theorem 1.1, with o < «g fixed. Then,
for any T > 0, the process ¢ converges in probability in the space D([0,T A 7¢]; L?), as

€ goes to 0, to a process n satisfying the linear eqaution
= (1= 32)7 00 Logndt + (y(1)Duspes — (1), )t
+ (0(2)0zpey + Oxipeoi(t) — Detpey b(t)) © dL(1), (1.25)
with n(0) = 0, where
§(0) = = 5 Ouiten, (1= 02)0uipe) ™ (OuLgn, Doy, (1.26)

p(t) = = (Ozpey, (1 — 55)(%(,000)_1(05:55000, (1- 6%)819000)7 (1.27)
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a(t) =— %(8090007 (1- 65)9000)_1(‘%5007% Peo)s (1.28)
b(t) :(8C<P607 (1 - 82)900(071(081(/760’ (1 - 85)‘/760)' (129)

Moreover, the modulation parameters may be written as
dxf(t) = c*(t)dt + ey®(t)dt + eus(t) o dL(t), (1.30)
dc(t) = ea“(t)dt + €b®(t) o dL(t), (1.31)

for some adapted processes y¢, u¢, a,b¢ with values in R satisfying: (y¢,a¢,b¢, u¢) —

(y,a,b, 1) in probability in D([0,T]) as € — 0.

This paper is organized as follows. In Section 2, we justify the existence of the
modulation parameters and give an estimate on the time up to which the modulation
procedure is available. In Section 3, we give the equations of the modulation parameters.

In Section 4, we show the convergence of the remainder term as € to zero.

2. MODULATION AND ESTIMATES ON THE EXIT TIME

In this section, we prove the existence of modulation parameters and the estimate on

the exit time. First, we present the following It6 formula.

Lemma 2.1 (It6 formula, [10], Theorem B.2). Assume that U is a Hilbert space. Let

Y be a U-valued process given by

Y(t) =Yy + / ds+//f ) odL(s), t>0,

where a, f : U — U are Fy-adapted random mappings. Let V' be a separable Hilbert
space. Let ¢ : U — V be a function of class C'' such that the first derivative ¢/ : U —

L(U;V) is (p — 1)-Hélder continuous. Then for every t > 0, we have P-a.s.
oY () =0(%0) + [ & (V()(aly (9)ds + / [ 160012 (5)) = oY (5l )
# [ [0 276 - 606D 20 0 (DS DN,

where y(t) := ®(t, z,yo) solves

a = zf(y),

with initial condition y(0) = yo.



STOCHASTIC CAMASSA-HOLM EQUATION 9

The following lemma gives the evolution of Hy and Ha by (1.18).

Lemma 2.2. Let u(t,x) be the solution of equation (1.18). Then, for Hy(u¢), Ha(u®)

given in (1.4) and (1.5), we have
S P T / L @012 (=) — 1 =)W (s, )

/ / [Hy(®(1, z,u(s—))) — Hy(u(s—, 2)) + e2(00, u? — us?)|9(dz)ds,
(2.1)

Hy(u®) =Hz(pe,) / / [Hy(®(1, 2,u(s—))) — Ha(u(s—, z))|N (ds, dz)
—i—/o /Z[Hg(@(l,z,u(s))) — Ho(uf(s—,x)) — ezHy(u)oul]I(dz)ds,  (2.2)
where ®(1, z,u(s)) = u(s,x — eoz), Hj (u®) = u® — uS,, and
H)(uf) = 3u? — u? — 2ucu’,, + 4ku’.

Proof. Since the initial value ¢, is smooth, we can use It formula to Hy(u€) and Ha(uc).
Since Hy(u®) and Ha(u¢) is the invariants of the CH equation (1.1), applying It6 formula

Lemma 2.1 to Hy(u®) and Hz(u®), we have (2.1) and (2.2). O

Lemma 2.3. Let u®(t,z) be the solution of equation (1.18) with u(0,2) = @¢,(x).

Then,
Hi(®(1,2,u)) = Hi(u) <(e17=le= — 1) luc| (2.3)
Ha(®(1, 2,u)) = Ha(u) <C(el 17l —1)||u 3 4 (e #o=le — 1y uc|,
(2.4)
where ®(1, z,u(s)) = u(s,x — ecz). Moreover,
E sup [[u < Cllee (@)]7- (2.5)

te[0,T]
Proof. Fixed z € Z,s € R, let y(t,z) = ®(t, z,u(s,z)) be the solution of the following

equation
dy(t,x) = —zo(x)y.(t,x)dt, y(0,2) =u(s,z).

Then y(t,2) = u(s,z — ozt) and

ly(t, )3 < llu(s, )| FpelIo=le=r, (2.6)
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By the mean value theorem and Hj(y) =y — Yz,
Hy(®(1,2,u)) — Hi(u) = Hi(y(1,z)) — Hi(y(0,2))

1 1
:/ j[Hloy]( )dr—/ (Hyoy) (r)dr

/ H(y / H(y(r))oya (r)dr

2 [ w0 < o / o0
0
1
<Jelllow s, 2) |2 / el g,
<(el#oelieee 1) |ju(s, z) )| 2. (2.7)
Since H) = 3y? — y2 — 2yy.. + 4ky, we also have
Hy(®(1, 2, u)) — / H (y(r)) oy ()
1
— z/ (3y2 — yi — 2YYra + 4ky, oy, ) (r)dr
0
1
=z / (02,y> — yy2 + 4ky?) (r)dr
0
1
<lelllowllze / (ol lyl1Z: + 4lyl|22)dr
1
<Czllloall = / (2 + 1l )dr
<C(ellloallee _1)|ju(s, 2) |2 + CedFllosli — Dyju(s,z)|3.  (28)

Next, we prove (2.5). Using Burkholder-Davis-Gundy (BDG) inequality, Holder in-

equality and (2.3), we have

E sup |/0 /Z[Hl(fb(l,z,ue))—Hl(ue)]ﬂ(ds,dzﬂ

0<t<T
T
<CE( / / (elloellzoe _ 1)2)1us(s, )|| s 9(dz)ds)
0
<CE sup ||u6||H1/ /||u6||2 (el#llozlice _ 1)29(dz)ds)/?

te[0,T]
1 E sup [|uc % + C]E/ 1252 ds, (2.9)
te[0,T]
Then, it follows from (2.1) and (2.9) that
T
B sup [u(0)lr < 20 (@)l +CE [ [u()[Fndr
te[0,7) 0

from which, the Gronwall inequality yields (2.5). The proof is complete. O
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Remark 2.1 (Full Euler-Poincaré structure in the noise). It can be verified that there
is no additional difficulty with the incorporation of full Euler-Poincaré noise of the form
C(u) o dL(t) in (1.13) in place of ou, ¢ dL(t) in (1.16).

We estimate (2.3) with the full Euler-Poincaré noise to explain it. Fixed z € Z,s € R,

let y(t,z) = ®(t, z,u(s, z)) be the solution of the following equation

dy(t,x) = —z((y)(t, x)dt, y(0,z) = u(s,x).
Then, using integration by parts and Holder inequality,
(e, = ~22((1 - )y, (o)
=—2z((1- 8§)y, 3oy, — 20,y + (1 — 8%)71(20903/ - y@i’a + Ouxla)
+2k(1—02) " oa)
<Clz|(lozllre + lozallzoe + 10zeallL=) [yl 7 + Clzllow] 2]yl L2
<Clzl(L + lozlze + lowsllzee + l|owasll L)yl + Clalllos]|Ze,
which implies, by Gronwall inequality
ly(t, )3 < luls, )| e 4 Ot — 1), (2.10)
where
Cr=C(1+ [|oz]lze + 0wzl Lo + [|ozaallL>)-
By the mean value theorem and H{(y) =y — Yza,
D(1,2,u)) — Hy(w) = Hy(y(1,2)) — Hy(5(0,2))

/ Hy )y (dr == [ i (y()C0) (e

0

- / (0 — ows () (P)dr

0

1 1
<l / ly(r)|2dr + C] / o [22dr

1 1
§01|z|||u(s,:1c)||§{1 / eCrlzlr gy 4 ClC|z|/ (ecl‘z‘r —1)dr+ C|z|||om||2Lz
0 0
<7 —1)|ju(s, z)||2n + C(eC1F —1) 4 C)z].

Hence, the only extra requirement is that o € W instead of o € W2,

Now, we give the proof of Theorem 1.1.
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Proof of Theorem 1.1. Denote B(pe,(z),2a) = {v € HY, ||[v(x) — ey (z)|| g1 < 2a} for

a > 0. Then, consider a C? mapping
Y :(co — 2a,co + 2a) x (—2a,2a) x B(pe, (2),20) — R?,
(Ca Ty, u) - (Y17 }/2)

defined by

Y1<c,w1,u>=/R<u<w+x1> o) (1 — 02)0y 0oy ()i,
Ya(e, 1, u) = / (ue + 1) — po(@))(1 — )iy ().

In the following, we verify that the function Y satisfies the properties:

(i) Y(CO7 0, o (CL‘)) = (07 0)'

(ii) By the dominated convergence theorem and the smoothness of ¢., the partial

derivatives ‘98Y1, 227 63; 2 % are continuous. Indeed,
oYy
5(007 73000 /60()00 1 - )amspco( )dw|(0070,<pq)(z))7
0Ys

T 0:0,a()) = = [ Oupul@)(1 = BE)pus () e .00y o)

- / Oe(Pe (2))? + (Daipes ())?)de 0,

83/1 (607 a@co / aqu) 1 — a )am</7c0( )dil? > 0,
(91:1
and
Y-
6—2(00,074%%0 / 819060 )(1 - 82)<P60( )d =0.
Z1

Hence, the determinant of the matrix Y(’c)ggl)(co,(),wc0 (x)) # 0. So, from the implicit
function theorem, we find that there exists ag > 0 and the uniquely determined C?2-

functions (c(u), x1(u)) defined for u € B(p.,(z), 2cr), such that
Y(C(U’)a Il(u)a u) =0.

Moreover, reducing again « if necessary, we may apply the implicit function theorem

uniformly around the points (¢, 0, ug) satisfying

Y(e,0,u0) =0, |c—co|l <, and |Jug — @, llgr < a.



STOCHASTIC CAMASSA-HOLM EQUATION 13

Applying this with v = u®(t), we get the existence of ¢°(t) = c(u(t)) and x°(t) =

x1(u(t)) such that the orthogonality conditions (1.23) hold with en®(t) = u(t,x +
(1)) = pee () (@)

Since u(t) is a H'-valued process, it follows that u¢(¢) is a semi-martingale process

in H-1. Noting that Y is a C! functional of u on H~!, the processes c(t) and z¢(t)

are given locally by a deterministic C? function of u¢(t) € H~!. Then the It6 formula

shows that ¢“(t) and x°(¢) are semi-martingale processes. Moreover, since it is clear that

Y (ec(¢), 2(t), u(t)) = 0, the existence of ¢(¢) and x(¢) holds as long as
|c(t) —co|l < a and [[u(t,z + 2°(t)) — Pee ) () || < . (2.11)
We now define two stopping times

To = nf{t 2 0,[c(t) = co| = a or [Ju(t,z + z°(t)) = ¢eo (¥) |t = a},

75 = inf{t > 0, |c(t) —co| > B or [[u(t,x +2(t)) — eet)(x) |52 > B}
Since the inequality |[@ee(¢) — @eo || g1 < Ca holds as long as [c“(t) — co| < o < ap, with
a constant C' depending only on ag and ¢y, it follows obviously that

T < %(€C+1)a < T(€C+1)2a'

Taking o sufficiently small again, the processes c*(t) and x¢(t) are defined for all t < 75, ,

and satisfy (2.11) for all t < 75, a < ap under the orthogonality conditions (1.23).

To prove (1.24) for any T > 0, let H. = ¢cH; — Hs. By Taylor formula, we have

HCO (ué(ta T+ xe(t))) - HCo (@ce(t))

=(H, (e (1)) en (1)) + (H, (@eeo)en(£), en (1)) + o([len® (B)[[7). (2.12)

Note that o(||en®(t)||3;) is uniform in w,e and ¢, since H. (¢.) and H! (p.) depend
continuously on ¢, and since |c*(t) —co| < o and [|u(t, 24+ 2(t)) — Yee )| a1 < a for all
t < 75. We then assume aq small enough so that the last term is less than & |len(t)[|%,
for all t < 75.

On account of the results on the spectrum of L., = H// (¢c0) derived in [38] (see also

(4.26) in Lemma 4.3 in [46]), there exist § > 0 and Cs > 0, such that if for ¢o > k,

[(w, (1= 32)peq )| + (w, (1 = 2D 0e,)| < Ol|wl| s,
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then
(Legw,w) > Csllwll3
It then follows that
(H ey (pee 1y )en®(£), en (1))
=(Hey (o) en”(t) = Heg (9eo Jen® (1), en®(1) + (He, (9eo Jen®(£), en(t))
>Csllenc|zpn — 1 He, (wesry) — Heg (0eo)ll o m-2)llenc |3
>Csllen‘llin — Cles(t) — colllencll3- (2.13)
Since Hl.(¢c<) = 0 by (1.21), Holder and Young inequalities yield
|(H ey (@ee ) en(0)] =[(HE, (pee) = Hee(pee), en(1))
=2((c — co)pes, enf)|
<O (D) — ol + Lllen 3 (214)
It follows from (2.12)-(2.14) that for all @ < ap < 7‘5, and for all t < 75, we have
Hoy (14 2(8))) = Hy (porcy) = 2 e ()3 — Cle(8) = col?.

for a constant C depending only on « and ¢g. Hence, using It6 formula to H,, (u(t, z)),

we have
llen®(t, @ — 2“ )7 < ClHey (u(t,2)) = Hey (e (1) (2 — 2(1))] + Clet(t) — cof
=C{Hey(Pey) — Heo (ee(r) (T — 7))
/ / o (P(1, 2, u(s—, x)) — Hey (u(s—, )N (ds, dz)
/ / o (P(L, 2z, u(s,2)) — Hey (uf(s,x)) — ezHéO(ue)au;]ﬁ(dz)ds}
+ Ol (t) — col?, (2.15)
where
HY, () = coHy () — H(u) = colu — ) — (36 — 42 — 2utigy + Aku).
We now estimate |c€(t) — c|?. The orthogonality conditions (1.23) imply
lu@)1I7 =llen® + e (o) 17

=llenllin + llece I + 2(en®, (1 = 02) (Pec) — Peo)) (2.16)
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and by (2.1),
t
()2 =llgeo 2 + / / G (u(s—, )N (ds, d2)

+ /Ot /Z[Gl (u(s,2)) + €2(00, u? — us?)|V(dz)ds, (2.17)
where
Gi(u(s, z)) = | (1, 2,u(s, 2)l[3n — [[u(s, 2) |7
Thus, it follows from (2.16)-(2.17) that for some constants C' and p, depending only on

ag and cg,

plet(t) — ol
<Ilpes o)l = llgeo 7|

t
<Nl + 2l (19ee ) — eollzr) + / / G (u (s, 2)) N/ (ds, dz)
t
—|—/ /[Gl(ue(s, z)) + ez(0g, u? — us?)]Y(dz)ds
0 7
t
<Jlenf |2 + Cale(t) — eof + / / G (u(s—, )N (ds, dz)
0 YA

—|—/O /Z[Gl(ue(s,x)) + ez(0p, u — us”)]Y(dz)ds. (2.18)

Hence, choosing «q sufficient small, we get
t
(0 — ol <Cllen i+ | [ [ Galu(s—, o)A (ds, o)
0 Jz

t
+ |/ /[Gl(uf(s,x)) ex(omu? — u2)]9(dz)ds[2]. (2.19)
0 Z
Because H, (¢c,) = 0, we have

[ Hey (0c0) = Heo(Pes ()] < Cligey = sy 7 < Clet(t) — col. (2.20)

Then, inserting (2.19)-(2.20) in the right hand of (2.15), we obtain
Jen' @l < Ul +1 [ [ Galut (o) as, )P
T / t [Ga (s, ) + extoru = otz asf
+ Até[HCO(@(l,z,ue(s—,x)) — HCO(ue(s—,;E))]N(ds,dz)

—I—/O /Z[Hco(q)(l,z,ué(s,:z:)) — He, (uf(s,x)) — ezHéO(uE)au;]ﬁ(dz)ds}. (2.21)
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Now, fix T" > 0 and set

QI = fw € 0,78 < T len(7) | = o,

Q5 ={we V15 <T,|c(5) — ol = )
so that

P(rS < T) < P(Q]9Y) + P(Q29%).

Let ap > 0 be small enough so that Ca2 < 1/2. Multiplying both sides of (2.21) by
1QlT,e,a, for o < ap and taking expectation with ¢t = 75 AT, we have

2
«@ T,e,cx
L)

SO{IE|/O /ZGl(UE(S—,x))N(dS,dz)lﬂlT,e,a|2
+E|/O /Z[Gl(uﬁ(S,;v))—l—ez(om,uQ —U§2)]19(dz)dslﬂf,s,a|2
+E[/O /Z[Hco(é(l,z,ue(s—,a:)) — He, (u(s5—, @)V (ds, dz)1r.c.a]

+E[/O /Z[Hco(q)(l,Z,ue(s,x)) — H,, (u(s,z)) — EZHéO(UE)UUfEW(dZ)dSlQIT,G,a]}_

Using Lemma 2.3,
Gi(uf(s,2)) < C(ePIo=le= —1)jlu(s, ) |7,
Heo(D(L, 2,u(s, @) — He,y (u(s, 7))
<C(e 7wl — 1) |lus(s, )3 + Cle ol —1)[lu(s, o) |3,
H, (u)oug < C(l[u||F + a3,

Then, by Cauchy inequality, BDG inequality and [[u¢||%,, < C a.s., we can get

Oé2

EP(QF{’S’Q)

<CT / (==l — )29 (dz)P(Q] )
Z
Lor / (el 1)9(d2)] + 2 os ] / 29(dz)[PP@QT4)
7 YA

n Cﬁ(/z(ee\zumnm C 1) 4 (edelellonlle _ 1y29(d2)) 1 2p(QF o)1/,

and it follows that, for e sufficient small

Pafe") < c XL gl

o?
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where b(e) = [, ((ecl#llo=llzee —1)2 4 (e2elzllloxllzoe — 1)2)9(dz), which implies
Te,a T
P(Q; %) < Cgb(e). (2.22)
Coming back to (2.19) and using the same argument as above, we can obtain
Q®P(Q37%) < C(P(Qy") + CVTH/2(e)P(Qy )2,
then, for e sufficient small, we have
Te,« T
P(Q, %) < Cgb(e). (2.23)

Hence, (1.24) follows from (2.22)-(2.23) for « and e sufficient small. O

3. MODULATION EQUATIONS

In this section, we derive the equation coupling the modulation parameters z¢, c¢ to

the remaining term 7°.

Lemma 3.1. Under the assumptions of Theorem 1.2, ¢ satisfies the equation

e :%(1 — ) O Loen dl + (Y Dppee — Deipera®)dt + eyndt + e f (1°)dt
+ [(00spce + Ozpec ) — Octpeeb® + €(omg + mgu)] o dL(t), (3.1)
where
F0r) = —nng — (1= 327 0.0 + o). (32)

Proof. We write (1.18) in the Hamiltonian form
du+ (1 — 02) 710, Hy(u)dt + eou, o dL(t).
Then, using (1.30)-(1.31), we have
du(t,z + %) = —(1 — 0%) L0, Hy(u)(t, x + 2)dt + eoquy (t, x + ) o dL(t)
+ ug(t, x4+ ) dt + eug (t, © + 2)y°dt + eu(t, © + ) p o dL(¢), (3.3)

dpee = €0eipeea’dl + €0epec b © dL(1). (3.4)
Replacing u(t, x 4+ z¢) by @ee (x) + en(¢, ) and using (1.21)-(1.22),

Hé(‘%’cé) = CEH{(@ce) = “(pee — 5%066)7
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we have
/ € 3 2 2 €
Hy(u)(t,x + x°) = (zu” — suy — gy + 2ku)(t, z + )
=Hy(pee) + Hy(n%) + 3en) pee — €1 opee — €n0upee — Ny pee
€2 1 2. €2 2 €, €

1 3
= (pee — Opipee) — FLer (en®) — ecng, +ecn + 56277 €N — €y

Hence,
— (1 =937 0 H(u)(t, z + z°)
€ - € € €, € €
25(1 - ai) 18m£c€ (77 ) —C aﬂc(pcé —€C ), + 62f(77 )a (35)
where f(n¢) is given by (3.2). Applying (1 —d2)~! to both sides of (3.3), then replacing

u(t,x + ) by pee(x) + en(t, ) and putting (3.4)-(3.5) into (3.3), we get (3.1). O

Lemma 3.2. Under the assumptions of Theorem 1.2, the modulation parameters

satisfy the system of the equation

AS(H)BE(t) = D(b), (3.6)
A()Y(t) = E<(b), (3.7)

where

e [ (Oppee +eng, (1 — 6%)6559000) —(Ocpee, (1 = 82)819000)
A (t) B ( (8m</7c€a (1 - 8%)‘/7&)) _(8c</7c€7 (1 - 8%)‘/7&)) )’ (38)
ro-() - ()
€ _(081 ce €0 aécv (1 - ag)az Co))
D= (o L) ), (810)
and

€(p) (—%Bwﬁcenf, Drpey) — e(f(n°), (1 — 6%)6559000)
B = (e L e )

Proof. Taking inner product of Eq. (3.1) with (1—02)p,, and (1—02)9,p., respectively,

(3.11)

and making the orthogonality conditions (1.23), we have

0= d(nev (1 - ai)@co) = (dnev (1 - 69%)9000)

1
=(0zpce, (1 — 35)@Co)yédt — (Ocpee, (1 — 8§)<p60)a€dt + (§az£cénéa @CO)dt
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(1), (1= 020t = D, (1= )i b 0 L)
+[00z e + €0, (1= 07)¢eq) + (Datper, (1= 0)pe, )] © dL(1),
and

0 =d(u, (1~ 02)uipes) = (A (1= )0,

= (Ouipers (1= 0200 )yt — Duspr, (1 = 020 )l + (50uLecr D)
+ (), (1= 2)0uspe, b + [0Duipee + €, (1 = 02)0ripey)
+ Dusper + €1, (1= 2)uipe, i 0 AL(E) = (Duper (1= 02)Dripey )" 0 AL(D).

Then, letting both the drift and martingale part of the above equations are identically

equal to zero, we get (3.6)-(3.7). O

Lemma 3.3. Under the assumptions of Theorem 1.2, there is a a; such that for a < an
and t < 75,
[ ()] + ()] < Cleo, @), (3.12)
ly ()] + |a“(8)] < Cleo, )07 as. (3.13)

Proof. We may write almost surely for ¢ < 7€ that A°(t) = Ag + O(|c® — co| + |lenc||g1),

where

m:(@%ﬂ—%&%) 0 )
0 (Octpe, (1 — 92)peo)

and O(|c® —co|+||en|| g1 ) holds uniformly in €, ¢ and w as long as t < 7¢. Hence, choosing

a < aq smaller, it follows that setting
A(t) = Ag + Lig,ro) (t)(A°(2) — Ao),
the matrix A¢(t) is invertible and
1(A($) Ml 22y < Cleo, @), aus.
Then, Eq. (3.6) may be solved as
BE(t) = (A°(t) "' D (1),

for t < 7¢, which implies

()] + [6°())] < Cleo, )| D(H)] < Cleo, a)([|pee

a1+ (e llms) < Cleo, @)
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Thus, (3.12) is obtained. By (1.22) and (3.2), for ¢t < 7¢
[E(6)] < Cllnfllz2llLes (Onpeo) 22 + Cell F ()| 22 | (1 = 92) s ey || L
L+ e+ Inll7p), a.s.
Using (1.31) and (3.12), we can get
Y ()] + a“ ()] < Clco, ) (1 + /Ot ja(s)lds + [7°]13), a-s.

Then the Gronwall inequality implies (3.13). O

Corollary 3.1. Under the assumptions of Theorem 1.2, for t < 75,, we have
T
€ — col < C’e(/ 7¢]13:ds + 1), a.s. (3.14)
0
Proof. Since

t t
c—cy = e/ a‘(s)ds + e/ be(t) o dL(t),
0 0

(3.14) is obtained by Lemma 3.3. O

4. ESTIMATES ON THE REMAINDER TERM AND CONVERGENCE

In this section, we prove the convergence of n¢. Firstly, we give some estimates of

7,y put, ac and b¢ in the following Lemmas 4.1-4.2.

Lemma 4.1. Let T > 0 be fixed. Under the assumption of Theorem 1.2, we have

E sup |[n|# <C, r=1,2. (4.1)
te[0,TATE]

Proof. Let y(t,z) = ®1(t, z,v) solves the following partial differential equation

d
d_:lli = Z(Uamgpce + 8m(pc€/f) - Zac(pcebe + GZ(U + /f)yﬂﬁ

with initial value y(0,2) = v(z). Then, using integrations by parts, Holder inequality

and (3.12), we have
t
ly(t, )13 = ly(0,2) 13 + 22/0 (002 pce + Oppee 1) — Detpeeb®, (1 — 02)y)ds
t
426 [ (04 1 (1 - B)ds
0

t
<[lv (@)l +C|z|/0 (lozll Lo 10z pee [l + ([0 pee || m [ + Ocspee || [0yl a1 ds
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t
4 Celz] / o 1y (¢, 2) 2 ds
0
t
2 2
<JJo(@) 2 + Cle| / (1+ ]2 ds
The Gronwall’s inequality implies
ly(t, )2 < (lo(@) |2 + Clzlt)eC!.

Similar to the estimate (2.7), using integrations by parts, Holder inequality and (3.12),

we have
Hi(®1(1,2,7%) / H (y(r))y (r)dr
1
:Z/ (Y = Yaa 002pce + Oppee i — Ocpeeb® + €(0 + p€)yz) (r)dr
0
1
<Cl| / Uy e + () 2 )dr

1 1
<CRII s, o) [ ar+Clap [ recrar

<Clz|(|ln* (s, 2)ll3 +1)- (4.2)
Using It6 formula Lemma 2.1 to ||n[|%,, of (3.1), we have
e = [ (0 = 327 00 1~ 02

#2 [ (W0upec — D). (- i

+2 /Ot(eyf 21"+ ef (n°), (1= 07)n°)ds

+ / / (11 (1, 2,1 (5—)) 20 — I (5=)|2 )7 (ds, d2)

w [ [z Ol —

—22((1 = 0%, (00,0cc + Oppec i) — Ooipec b + €(ons + npu))]9(dz)ds
5
=y I (4.3)
i=1
Using (1.22), integration by parts, Cauchy inequality and embedding theorem, we have
t
J1 :/ (OzLeen®,n )ds
0

t t
2 / (O2((¢" — e )Bar® ) )ds + 2 / (0 (=3eper + Poper + (¢ — 20) ), 1 )ds
0 0
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t

t
- / (Ospecs (Da)?)ds — 2 / (=3 + e, Dan)ds
0

0
t
<c [ I s
0

Lemma 3.3 and Cauchy inequality yield

t
T 2 C [ s
0

Using integration by parts, we obtain
t
Ja =2 [ (1= 02 0r).)ds
0
t
:26/ (30°0xn — 20,m° 020 — 020, n°)ds = 0.
0
By BDG inequality and (4.2), we have

T 1/2
B wp sy <OE [ (/ |z|2<||nﬁ<s,x>||%p+1>219<dz>) s
0 Z

te[0,TATE]
1 2 g 2
<3E sup [+ CE [ (ol + 1)ds.
t€[0,T7] 0
Similarly, we have
T
E swp ks <CO+E [ [[uds)
te[0,TATE] 0
It follows from (4.3)-(4.8) that
T
B swp il <COHE [ [iflads)
te[0,TATE] 0
from which and Gronwall inequality implies
E sup |ln|[7n <C.
te[0,TATE]

From (4.3), we have

5
InlI3e < Y 1.
i=1

Then, using Holder inequality and the estimates of (4.4)-(4.8), we can obtain

T/\T;
E sup  [nlin <CO+E / | e ds),
te[0,TATE] 0

from which and Gronwall inequality implies
E sup |93 <C.
te[0,TATE]

The proof is complete.

(4.4)

(4.6)
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Lemma 4.2. Let the adapted processes y¢, u¢, a¢,b¢,y, u,a and b be given in (1.30)-
(1.31) and (1.26)-(1.29). Then, for any positive T and t < 7,

ly () =y + (@) — p®)] + [a*(t) — a(t)] + [0°(t) — b(t))|

<Cln“(t) = n(®)lz2 + Ce(l+  sup |n“()]3)- (4.10)
te[0,TATE]

Proof. Denote

1 (02e, (1= 02)Dpipe,)t 0
A = < ! 0 : (Detpeqs (1 — 6%)9000)_1 > (4-11)
— _(0'89690607 (1 - 35)31%0))
= ol a T ) 412
and
_ ( a ‘Cconaazwco)
b= ( (230, Lo, Pec) ) (4.13)
Then
ASVE = ( 58 ) = Y(t) and A;'D = ( g(%) ) (4.14)
It follows from (3.7) and (4.14) that
Ye — < Z ) 1Ee AO—IE
=((A5) "' — AgYHES + Ay (E° - E)
=(A) "M (Ag — AYAGTES + A N (E° - B). (4.15)

Let v¢ = n° —n. Then, using (4.21)-(4.22), we get
E¢ — E _< (_%6TECE776 + %af‘cconv aﬂcspco) - E(f(ne)a (1 - 692)6;69000) >
(_anﬁcene + _a Econu SDCU) - e(f(n6)7 (1 - 6m)(p00)

_ (—lamﬁcovﬁ 819( ) 81%0) — e(f(ne)7 (1 . ag)awspco)
( (2_%5;55%1) 1(919( ), 0e0) — e(fF(n°), (1 = 82)pe, ) ) (4.16)

Similar to (4.27), (4.28) and (4.29), we obtain
[EC — B < Ce(1+  sup ||n]3n) + CJlv|| 7. (4.17)
te[0,TATE]
Since Ay — A€ = O(|¢€ — co| + ||ent||z1) = €O(||n|| 1), it follows from (4.15)-(4.17) that
ly =yl +la —a| < C|v|l72 + Ce(1+  sup |ln[3). (4.18)
te[0,TATE]

Now, we estimate (4.1). Similar to (4.15),

( % :ff ) =(A9) " (Ao — A)A ' D + Ay 1 (D - D).
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Since

¢ = _(an(spcs - ('0‘70) + 6077;7 (1 - 69%)6;69000)
D°—D = < — (00, (e — Pey) + €0ns, (1 — 02) ey ) (4.19)

we have, from (3.14) and Holder inequality,
D¢ = D| < CellnfI| - (4.20)

Thus, we can get (4.1) as that of (4.10). The proof is complete. O

Proof of Theorem 1.2. By (1.22), we have
Oy Leen® =05 Legn® + g(n), (4.21)
where
9(n°) = = 20:[(c" = co = pee + $eo)0un — 60z ((pee = $eo)1%)
+20,(02 (per = peo )1°)- (4.22)
Let v¢ = n° —n. Then by (3.1), (1.25) and (4.21)
dv® :%(1 — 03710, Le vt + %(1 — ) g(mO)dt + (Y 0ppee — YDuipe, )dt
— (a“Ocpee — aDepey )dt + ey nSdt + ef (n°)dt + he o dL(t), (4.23)
where
he = 00s(pee = Peq) + Onpee i = Oupeg it — Ocpeeb® + Depeyb + €(onf, + niuc).
By Holder inequality,
172 < C(le® = col 4 [b = b] + |u® — pl + €l 1) =7~ (4.24)
Let f(t,x) = ®a(t, 2z, v) solves the following differential equation
Ccli—f =zh¢, B(0,2) =v(x).
Then ®y(t, z,v) =v+ 2 fg he(r)dr. Using Holder inequality and (4.24), we have
806,201 = 150,291 +22 [ (3.0
t
<llv(@)lI7 +C|Z|/0 181 2P| L2ds

t
<lv(@)ll7- + CIZI/O 1172 + 1A Z2ds

t
<Jlv(@)IZ- +C|Z|”YE2+C|Z|/0 I1BI[72ds.
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The Gronwall’s inequality implies
18(t,2) |72 = @22, 2,0) |72 < ([v(@)[Z2 + Claly?)el=I.

(4.25)
Applying It6 formula Lemma 2.1, we have

t t
03 = [ (G- auLeur v s+ [ (5013 gl v)ds
0

0
t t
+ / (4 Batper — YDutpeg), v)ds — / (°Betper — aBepey), v°)ds
0

—/ ey Bart® + f (), v°)ds +/ /||q>2 (1,2, 0% (5-)) |2 — [[o (s—) |21 (ds, d2)

/ / 1@a(L, 2,05 (8) 22 — [[06]122 — 22(0°

ot

=1

h)]9(dz)ds

(4.26)
Using (1.22), we can write K1 = K11 + K12, where

t
Kin= [ (0= 87020 — e, 0,
0

t
Kiz = [ (=301 02) 0ulipegv?) + (1= 02)7 10, (02t
0
+ (co — 2k)(1 — 92)10,v°, v°)ds.
Since —(1-02)719? =T1—-(1-02)7 1,

using integration by parts, Cauchy inequality and
embedding theorem, we have

K, :/O ((co = ¢eo )00, v)ds _/0 (1 =02)""((co = pey)02v°), v )ds
1

t t
5 | o= dnge)or vy = [ (1= 82)0u(co = )0, v}
0 0
t
[ (=) (o0 = o)), )
0
t
CO1+ el [ 1ol
t
<c [ |3ds,
0

(4.27)
and

t
K12 SO/ ||’U€||%2d8.
0

(4.28)
(4.22), integration by parts, Corollary 3.1, Holder and Young inequalities

By

h S/ (¢ = co = #ee + Peo )l Loe 10en || 2|0 L2ds
0
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t
L N P T P
0
t
+ [ 1020 = Byl zods
0

t
<c / e — o2l 2 + [0 2ads
0

t
<Ce(t+ sup [ +C [ [o3ads. (4.29)
te[0,T] 0
It follows from (4.10) that
t
K3+ Ky < C/ [v¢||32ds + Ce(L+ sup |0 51)- (4.30)
0 (0,77

By Lemma 3.3, Holder and Young inequalities,
t t
Ko <0 [ (Pl 3+ 17l3)ds +C [ o[ ads
0 0

t
<Ce  sup 0|l +C’/ [|lv€]|2 2 ds. (4.31)
te[0,TATE] 0

By BDG inequality, (4.1) and (4.25), we have

E sup Kg
te[0,TATE]

1/2

TATE
<CB [ ([0 + Clab e 4 o o) ) s
0 Z

TATE
<CE~® + CE / 0°(s)| 2ads. (4.32)
0
Similarly, we have
TATE
E sup K;<CEy?+ CE/ [v€ ()] 2ds. (4.33)
te[0,TATE] 0

It follows from (4.26)-(4.33) that

TATE
E sup |72 SCE/ [0 Z2ds + Ce(1+E  sup  [[n||3) + CEA?,
te[0,TATE] 0 te[0,TATE]

from which and Gronwall inequality implies

E sup [vf)|%. <Ce(l1+E  sup ||n°]|3:2)e’T + CEx2 (4.34)
te[0,TATE] te[0,TATE]

Then, by Lemma 4.1, it follows that v — 0 as € — 0 in probability in the space
D([0, T A TE]; L?). O
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