
Hopf Bifurcation from Rotating Waves

and Patterns in Physical Space �

Martin Golubitsky

Department of Mathematics

University of Houston

Houston� TX ����������

USA

Victor G� LeBlanc

Department of Mathematics

University of Ottawa

Ottawa� ON K	N �N


CANADA

Ian Melbourne

Department of Mathematics

University of Houston

Houston� TX ����������

USA

January 	�� 	���

Revised version
 November �� 	���

Abstract

Hopf bifurcations from time periodic rotating waves to two frequency tori have been

studied for a number of years by a variety of authors including Rand and Renardy�

Rotating waves are solutions to partial di�erential equations where time evolution is

the same as spatial rotation� Thus rotating waves can exist mathematically only in

problems that have at least SO��� symmetry� In this paper we study the e�ect on

this Hopf bifurcation when the problem has more than SO��� symmetry� These e�ects

manifest themselves in physical space and not in phase space� We use as motivating

examples the experiments of Gorman et al� on porous plug burner �ames� of Swinney

et al� on the Taylor�Couette system� and of a variety of people on meandering spiral

�In press� J� Nonlin� Sci�
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waves in the Belousov�Zhabotinsky reaction� In our analysis we recover and complete

Rand�s classi	cation of modulated wavy vortices in the Taylor�Couette system�

It is both curious and intriguing that the spatial manifestations of the two frequency

motions in each of these experiments is di�erent and it is these di�erences that we

seek to explain� In particular� we give a mathematical explanation of the di�erences
between the nonuniform rotation of cellular �ames in Gorman�s experiments and the

meandering of spiral waves in the Belousov�Zhabotinsky reaction�

Our approach is based on the center bundle construction of Krupa with compact

group actions and its extension to noncompact group actions by Sandstede� Scheel�

and Wul��

� Introduction

Rotating waves are time periodic solutions to di�erential equations where time evolution is
the same as spatial rotation� It follows that rotating waves occur as solutions only in systems
of di�erential equations having at least SO��� symmetry� though� in general� rotating waves
occur in experiments whose models contain more than SO��� symmetry� In this paper we
consider bifurcations from rotating waves to two frequency modulated rotating waves and
make the point that the manifestation of the modulated waves in physical space depends
crucially on the full symmetry group� To illustrate this point� we introduce three experiments
where rotating and modulated rotating waves are observed� We then describe the symmetry
groups for models of these experiments and the types of modulated waves that are observed
in each experiment� We end this introduction with a description of the results that we have
obtained and how they bear on the three experiments�

Rotating Waves in Experiments

Rotating waves have been observed in a variety of experiments � both physical and nu�
merical� In particular� rotating waves occur in the Taylor�Couette system as wavy vortices
�see Andereck et al� 	�
 and Figure ��� in the Belousov�Zhabotinsky chemical reaction as
spiral waves �see Winfree 	��
 and Figure ��� and in laminar premixed 
ames as cellular
patterns �Gorman et al� 	��
 and Figure ��� Each of these rotating waves has also been
observed numerically as a patterned solution to PDE models for the corresponding exper�
iments� rotating waves have been observed in the Navier�Stokes equations modeling the
Taylor�Couette system 	��
� in reaction�di�usion equations loosely modeling BZ reactions
	�� ��
� and in reaction�di�usion models loosely modeling combustion 	�� ��
�
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Figure �� Flames on a circular burner� �Left� A circularly symmetric 
ame� �Right� A
steady �ve�cell 
ame with D� symmetry� Images courtesy of M� Gorman�

Symmetries in the Experiments

Since we view symmetry as a modeling assumption� it is important to understand how the
symmetry group � for models of each of these experiments is determined� Some of the
symmetries are clear� being based on the geometry of the apparatus and the homogeneity of
the experiment� other symmetries are less transparent�

For example� Gorman�s laminar premixed 
ame experiment is performed on a circular
burner and is modeled by � � O��� symmetry� Moreover� the transitions that are observed
in this experiment are consistent with the assumption of O��� symmetry� in the following
sense� It is well known that steady�state bifurcation from an invariant equilibrium with O���
symmetry on a circular domain leads to equilibria having a cellular structure and that Hopf
bifurcation leads to standing and rotating waves 	��
� All of these states are observed in the

ame experiment� and the cellular structures and the standing waves are observed as direct
transitions from a circularly symmetric 
ame 	��
�

The geometry is not always su�cient to detect all of the relevant symmetries� In the
Taylor�Couette experiment� the cylindrical geometry leads to the assumption of � � SO����
Z� symmetry� As Taylor 	��
 noted� the existence of Taylor vortices bifurcating from Couette

ow argues for the assumption of periodic boundary conditions in the axial direction �see
Figure ��� that is� the assumption of SO����O��� symmetry in the experiment� Moreover�
this symmetry is consistent with the observed Hopf bifurcation from Couette 
ow to spiral
vortices 	�� ��
�

In the BZ reaction� the situation is even more complicated� It seems best to model
these experiments by ignoring lateral boundaries� Barkley�s analysis 	�
 of resonant linear
drift of spiral waves in this experiment makes a compelling case for the assumption of full
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Figure �� Taylor�Couette Experiment� From left to right� Couette 
ow� Taylor vortices�
spiral vortices� and wavy vortices� Pictures courtesy of H�L� Swinney�

Euclidean � � E��� symmetry including translations� Moreover� the mathematical results
in 	��� ��� ��� ��
 support this assumption�

The rotating waves in each of these experiments have cyclic symmetry for the instan�
taneous pattern� We denote the symmetry group �or isotropy subgroup� of the pattern at
a given instant in time by �rot� The cellular 
ame pattern has k cells �see Figure ��� and
a spiral can have k arms � though one�armed spirals are what is usually observed in BZ
reactions �see Figure ��� See 	��
 and references therein for experimental observations of
multi�armed spirals �k � ��� For both 
ames and spirals� �rot � Zk� The wavy vortices
�see Figure �� have an azimuthal wave number k� and an additional symmetry � 
ip up
and down coupled with a half wave length azimuthal rotation �a glide re
ection symmetry��
The square of this symmetry is the generator of the pure azimuthal rotation symmetry �
so the isotropy subgroup of wavy vortices is Z�k� In Table � we present the relevant group
theoretic data for each experiment�

Experiment Rotating Wave � �rot

Taylor�Couette wavy vortices SO����O��� Z�k


ames rotating cells O��� Zk

BZ reaction ��armed spirals E��� �

Table �� Symmetry data for rotating waves�

�



Figure �� Belousov�Zhabotinsky Experiment� �Left� spiral waves with seven superimposed
images showing the tip traversing a circle �from 	��
�� �Center� meandering spiral waves
with eleven superimposed images showing the tip beginning to meander �from 	��
�� �Right�
Single image of a meandering spiral wave with superimposed tip trajectory showing a petals
in 
ower pattern �from 	��
�� Pictures courtesy of H�L� Swinney�

Hopf Bifurcations to Quasiperiodic Motions

In each of these experiments� Hopf bifurcation from rotating waves to a quasiperiodic motion�
or modulated rotating wave� has been observed� In the Taylor�Couette system� wavy vortices
bifurcate to modulated wavy vortices 	��� ��� �
� in the BZ reaction� spiral waves begin to
meander quasiperiodically �see Figure �� and even linearly drift 	��� ��� ��� ��� ��� ��� ��
�
and in laminar premixed 
ames� the cellular pattern appears to rotate rigidly but with an
angle of rotation that depends quasiperiodically on time 	��� �� �� ��
� In each of these
experiments� the basic Hopf bifurcation from a single frequency time periodic rotating wave
to quasiperiodic motion in phase space is now understood 	��� �� �
� Even the resonant Hopf
bifurcation to linear drifting spiral waves is understood 	�� ��� ��� ��
�

Hopf bifurcations from rotating waves to modulated rotating waves have been studied
by a number of authors including Rand 	��
 and Renardy 	��
� In addition� Rand classi�es
the various types of modulated waves that occur in systems with circular symmetry� This
classi�cation applies directly to the 
ame experiment �as pointed out in 	�
� and less directly
to the Taylor�Couette experiment �since wavy vortices have an additional glide re
ection
symmetry which is not taken into account in 	��
�� It is straightforward� as we show in
Section �� to complete Rand�s classi�cation of modulated wavy vortices to include the glide
re
ection symmetry� This extended classi�cation accounts for additional states that have
been observed in more recent experiments 	��� �
�

What is missing is an understanding of the way in which these modulated waves man�
ifest themselves in physical space� In this paper we use symmetry arguments to show why
cellular 
ames appear to rotate rigidly but nonuniformly� and why spirals exhibit 
ower�like
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meandering in the BZ reaction �see Figure ��� The classi�cation of Rand is driven by the
symmetry group �rot of the rotating wave state� In contrast� we show that the motion of
the pattern in physical space depends on both the symmetry �rot of the rotating wave and
the full symmetry group � of the experiment�

A De�nition of Spatial Pattern

In both the physical and numerical experiments� patterns are formed as follows� Let U�X� t�
be a solution to a partial di�erential equation or the state of an experiment where X is in
some physical domainD and t is time� For example� in the Taylor�Couette system� U consists
of the three velocity components of the 
uid and the pressure variable� and D � R� is the
region between the concentric cylinders� When we view the Taylor�Couette experiment�
we look at an observable scalar quantity u�x� t� which is the intensity of light re
ected o�
of silver platelets in the 
uid� here x lies in the surface of the outer cylinder� which we
denote by �� We call u an observable of the state U � For observables to be useful as a
vehicle for understanding pattern� the transformation from U to u must be continuous and
��equivariant�

Similarly� in the BZ reaction u is the concentration of an active chemical and � � R��
while in the 
ame experiment u is the intensity of light �or heat� produced by the 
ame and
� � R� is a circular disk� In PDE systems� u is some function of the solution vector �
perhaps one of its components�

We de�ne a pattern at time t to be the region in physical space

P�t� � fx � � � u�x� t� � cg

for some �xed scalar c� For example� in the BZ reaction� the pattern is the region where the
observed color is red �or blue�� This region consists of those points in the petri dish where
a chemical concentration is larger than some critical concentration�

Note that patterns associated to rotating wave solutions have a particularly elementary
structure

P�t� � RtP����

where Rt is rotation through angle t �in appropriate units�� So� for example� a spiral wave
is a pattern in the concentration of a �xed chemical in physical space that rigidly rotates at
constant speed as time evolves�

On bifurcation to quasiperiodic motion� the change in the pattern in time has two com�
ponents� shape change in the pattern and rigid motion of the pattern corresponding to the
symmetry group of the experiment� It is our contention that in Hopf bifurcation from a
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rotating wave the shape change is less important to the observed pattern evolution than is
the change in the rigid motion� To make this point precise� we introduce the notions of inner
and outer patterns�

Inner and Outer Patterns

Suppose that P�t� is the pattern of a modulated rotating wave� As we explain in Section ��
we can bound the temporal 
uctuation of P�t� in terms of an inner pattern Qinner and an
outer pattern Qouter� where

Qinner � P��� � Qouter�

These time independent bounds have two important properties� First� as the bifurcation
parameter approaches the point of Hopf bifurcation Qinner and Qouter limit on the �instan�
taneous time� pattern associated to the rotating wave� Second� for every time t� there is a
group element �t � � such that �t depends smoothly on t� �� � e� and

�t�Qinner� � P�t� � �t�Qouter��

For example� when � � O��� the pattern associated to the modulated wave is bounded
between two patterns that rotate rigidly with nonuniform speed� Within a small error� the
modulated wave pattern itself appears to rotate rigidly with nonuniform speed� the error
due to the shape change being bounded between the inner and outer patterns� See Figure ��
The corresponding patterns when � � E��� are shown in Figure �� In particular� note that
the spiral patterns in that �gure do not have a �xed center of rotation�

Center Bundles

As shown in Section � the formulation of inner and outer patterns relies on the mathematical
framework of center bundles� Center bundles were introduced by Krupa 	��
 in the analysis of
bifurcations from relative equilibria for ODEs with compact symmetry group �� The theory
was generalized by Sandstede et al� 	��� ��
 to include PDEs with noncompact symmetry
groups� In particular� their theory applies to the nonsmooth representations that occur� for
example� in reaction di�usion equations with Euclidean symmetry�

The geometric idea behind the center bundle is that when a relative equilibrium loses
stability there are a set of critical directions at each point on the group orbit of the relative
equilibrium� These unstable directions form a bundle over the group orbit� the center bundle�
The unstable directions correspond to changes in pattern shape in physical space while the
group orbit directions correspond to rigid motions of the pattern�
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Figure �� Inner and outer patterns for a nonuniformly rotating spiral wave in a circular do�
main �� � O����� The dashed contours show the boundaries of the inner and outer patterns�
The six snapshots show these contours rotating rigidly �but with nonuniform speed�� The
actual pattern �solid contour� is trapped between these boundaries� The snapshots show
how the additional 
uctuations in the shape change of the actual pattern are limited by the
inner and outer patterns�

Figure �� Inner and outer patterns for a meandering spiral wave in the plane �� � E�����
The interpretation of the Figure is the same as for Figure �� However� the inner and outer
patterns now rigidly meander �rotate with a moving center of rotation��
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The equations on the center bundle are often di�cult to solve directly� Fiedler et al� 	��

show how to lift the center bundle equations over the group orbit to skew product equations
on the group � itself� which are often easier to solve�

Tip Evolution Using Fourier�Bessel Functions

As described above� the arguments in this paper apply to the full patterned state in physical
space� However� to obtain a more convenient graphical representation of such results� it
is standard to plot the time evolution of some distinguished marker on the pattern �such
as the �tip� of a spiral�� Figure � is computed numerically in this manner using spiral�like
Fourier�Bessel functions� see Section � for details�

The time evolution of a rotating wave is shown in Figure ��a�� In this case� the �tip�
traces out a circle with uniform speed� Figure ��b� corresponds to Figure � and shows the
behavior of a modulated rotating wave in a circular domain� The tip no longer traces out
a circle� but the radial variation is negligible� The approximate circle is traced out with
nonuniform periodically varying speed� as shown in Figure ��

In contrast� Figure ��c� �which corresponds to Figure �� depicts the modulated rotating
wave of Figure ��b� but in an in�nite planar domain� The radial excursions are now appre�
ciable and correspond to the phenomenon known as meander� This supports our assertion
that quasiperiodic meander �even away from resonance� requires Euclidean symmetry �
without which the motion would resemble the nonuniform rotation that occurs in the 
ame
experiment Figure ��b�� More precisely� what distinguishes meandering from nonuniform ro�
tation is the quasiperiodic translation of the pattern� coupled with the quasiperiodic rotation
of the pattern�

Figure ��d���f� show the modulated rotating wave in an in�nite planar domain close to
resonance� The quasiperiodic translations are now of su�ciently large magnitude that well�
de�ned petals are observed close to the onset of the modulated rotating wave� Note that
in contrast to �c�� in �d���f� it is the petals that are of roughly the same size as the circle
in �a�� When the petals change from inwards �d� to outwards �e� � as a second parameter is
varied � the spiral tip appears to make circular excursions which drift linearly to in�nity �f�
	��� ��� �
� This resonance phenomenon has been seen in numerical solutions to reaction
di�usion systems 	�
 and in chemical experiments 	��
�
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�a� �b� �c�

�d� �e�

�f�

Figure �� �a� Uniform rotation� �b� Nonuniform rotation� �c� Meandering �away from res�
onance�� �d� Meandering near resonance �petals inwards�� �e� Meandering near resonance
�petals outwards�� �f� Linear drift
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Figure �� Nonuniformity of the rotation of the modulated rotating wave in Figure ��b�� The
graph shows angle plotted as a function of time

The remainder of the paper is organized as follows� The notions of inner and outer
pattern are formalized in Section �� In Section �� we analyze Hopf bifurcation from rotating
waves with trivial isotropy ��rot � �� in systems with O��� and E��� symmetry� We pay
particular attention to the contrasting behavior of nonuniform rotation �
ames� and meander
�spirals� in physical space� The corresponding bifurcations for states with nontrivial isotropy
��rot � Zk� are analyzed in Sections � and � respectively� In addition� we describe in
Section � how the �reversing states of Landsberg and Knobloch 	��
 �t into our analysis�
and we describe a scenario which may explain the �ratcheting states observed in the 
ames
experiment� Bifurcation to modulated wavy vortices in the Taylor�Couette system �SO����
O��� symmetry� is analyzed in Section �� The details for the numerically generated �gures
in this paper are given in Section �� Some of the more tedious proofs are postponed until
Section ��

� Inner and Outer Patterns

Suppose that � acts on some physical domain � � Rn where n � � or n � �� Let H be a
space of observables u � � � R corresponding to states U of an experiment or solutions U
to a system of di�erential equations� We assume that � acts on H by

�u�x� � u����x�� �����

where u � H and � � ��
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We de�ne the pattern associated to a function u � H to be the region in physical space

Pu � fx � � � u�x� � cg
for some �xed real number c� Note that the patterns associated to �u and u are related by
�� that is�

P�u � �Pu� �����

For a time dependent function u��� t� � H� de�ne the pattern at time t in an analogous way�

Pu�t� � fx � � � u�x� t� � cg�
For example� suppose that u is the observable of a rotating wave� that is�

u�x� t� � Rtu��x��

where u��x� � u�x� ��� It follows from ����� that

Pu�t� � RtPu����

that is� the pattern associated to the rotating wave rigidly rotates in space with constant
speed�

The Pattern of a Modulated Rotating Wave

Let

v�x� t� � Rtv��x�

be an observable of a rotating wave solution V �x� t� � RtV��x� with isotropy subgroup
�rot � �V� to the PDE

Ut � F�U�� �����

The center bundle theory �Krupa 	��
 for � compact and Sandstede et al� 	��� ��
 for non�
compact �� shows that in a neighborhood of this rotating wave the vector �eld F has the
decomposition

F � FN ! FT �

where FT is tangent to group orbits� FN is transverse to group orbits� and both vector �elds
are ��equivariant� Moreover� if we let N� be the normal section �in phase space� to the
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group orbit at V�� then FN restricts to g � N� � N� where g�V�� � �� Note that g is a �rot

equivariant vector �eld on N��
One result of the center bundle construction is that in a neighborhood of a rotating wave�

all solutions can be written as

U�X� t� � ��t�Y �X� t�

where ��t� � � is a smooth curve and Y �x� t� � N� is a solution to the normal vector �eld
equation

Yt � g�Y �� �����

Therefore� Hopf bifurcation from a rotating wave reduces to a Hopf bifurcation from an
equilibrium in ����� coupled with a drift along group orbits� The fact that the transformation
from states to observables is assumed to be ��equivariant leads to the identity

u�x� t� � ��t�y�x� t�� �����

where u is the observable of U and y is the observable of Y �
Suppose now that y�x� t� is time periodic with corresponding modulated rotating wave

solution u�x� t� � ��t�y�x� t�� as in ������ We obtain a time periodic pattern �originating
from the normal equations��

Py�t� � fx � � � y�x� t� � cg�
De�nition ��� The inner pattern associated to the modulated rotating wave u is the in�
tersection

Qinner �
�
t

Py�t� � fx � � � min
t

y�x� t� � cg�

The outer pattern associated to u is the union

Qouter �
�
t

Py�t� � fx � � � max
t

y�x� t� � cg�

It follows immediately from De�nition ��� that for every t

Qinner � Py�t� � Qouter�

Identity ����� implies that the patterns for the modulated rotating wave u satisfy

Pu�t� � ��t�Py�t��

from which it follows that

��t�Qinner � Pu�t� � ��t�Qouter� �����

Thus� the pattern of the modulated rotating wave evolves in time� bounded by a time
dependent rigid motion of the region between Qinner and Qouter�
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The Dependence of Pattern on the Bifurcation Parameter

In the preceding discussion we suppressed the dependence of the modulated wave on the
bifurcation parameter �� We now note that when � is near the bifurcation point� then
Qinner and Qouter will be approximately equal to Pv��� � the pattern of the rotating wave
at a �xed moment in time� Indeed� these sets are all equal at the bifurcation point of � as
y � v� there�

To see that the visible pattern associated with the modulated wave is virtually identical
to the visible pattern of the rotating wave at an instant in time� we need one �nal assumption�
We need to assume that the level contour fx � � � v��x� � cg is a manifold� If not� the
pattern can undergo a bifurcation just due to the observation process� Note that this last
assumption is valid generically�

� Nonuniform Rotations and Meandering

In the 
ame experiments and in the model equations� the bifurcation from the cellular
rotating wave produces a state that appears to rigidly rotate with speed varying periodically
in time �so that there are two independent frequencies�� Palacios et al� 	��
 call this a
�nonuniformly rotating state� Indeed� such a state cannot be exactly described this way
because a solution to a di�erential equation that lies exactly in a group orbit �in this case
the group orbit given by the rotation subgroup� must produce linear 
ow along the group
orbit� that is� the speed of rotation must be constant� In fact� careful observation of this
state shows 	��
 that the cellular pattern does vary periodically in time � but by a small
amount�

In contrast� the corresponding bifurcation for spirals in the BZ reaction leads to quasiperi�
odic meandering where the spiral pattern rotates and translates rigidly in space� Again� there
is a small periodic 
uctuation in the shape of the spiral�

In phase space� these modulated rotating waves are indistinguishable quasiperiodic mo�
tions� but their behavior in physical space� nonuniform rigid rotation and meandering� are
strikingly di�erent� We show that this behavior can be explained using center bundle reduc�
tion and the notion of inner and outer patterns� In particular� the quasiperiodic variation
decouples into a global rigid motion �along group orbits� and a local 
uctuation that is
bounded by the inner and outer patterns�

For simplicity of exposition� we restrict in this section to bifurcations from rotating
waves with no spatial symmetry� that is� we assume �rot � �� In circular domains� we
obtain modulated rotating waves that rotate almost rigidly but with nonuniform speed� In
unbounded planar domains� we obtain modulated rotating waves that meander�
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We remark that by ignoring translation symmetry� the work of 	�
 does not fully explain
the transition to quasiperiodic meandering of one�armed spirals� In a circular domain� Hopf
bifurcation from a rotating wave spiral solution leads to spirals that vary quasiperiodically in
time� but does not lead directly to the 
ower patterns characteristic of meander� �Compare
Figures ��b� and ��c�� also Figures � and ��� This additional structure arises from the
Euclidean symmetry in the in�nite plane�

Nonuniform Rotation in Circular Domains

In circular domains� the symmetry group is � � SO��� or � � O���� the analysis of these
two cases is identical� Let X be a rotating wave� so X is simultaneously an SO��� group
orbit and a periodic orbit� We assume that the points in X have trivial isotropy�

In the event of Hopf bifurcation� there is a three�dimensional center bundle and this is
a trivial bundle X � S� �C by 	��
� We choose coordinates ��� q� where � � S� measures
the angle of rotation along the SO��� group orbit and q � C measures the deviation of the
modulated rotating wave pattern from the basic rotating wave pattern� We shall refer to q
as the shape of the modulated rotating wave�

The action of an element � � SO��� on ��� q� � X is given by

� � ��� q� � ��! �� q��

and SO��� equivariance leads to equations on the center bundle of the form 	��


"� � F ��q� ���

"q � F q�q� ���

Let �rot and �bif be the frequencies for the rotating wave and the Hopf bifurcation respec�
tively� So F ���� �� � �rot and �dF q���� � i�bif � We claim that solutions to these equations
satisfy

��t� �� � �rot���t!
p
���t� ��� �����

q�t� �� �
p
�q��t� �� �����

where q��t� �� and ��t� �� are ��	�bif��� periodic� �bif��� � �bif and �rot��� � �rot�
To verify ����� and ����� solve the "q equation directly obtaining a branch of ��	�bif��� pe�

riodic solutions q�t� �� and then substitute ����� into the "� equation� We obtain a ��	�bif���
periodic vector �eld F ��q�t� ��� �� with zeroth Fourier coe�cient

�rot��� �
�bif���

��

Z ����bif���

�

F ��q�t� ��� ��dt�

In particular� �rot��� � F ���� �� � �rot� Integrating the vector �eld F ��q�t� ��� ��� we obtain
����� where ��t� �� is ��	�bif��� periodic�
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Implications of ����� and ����� for Patterns in Physical Space

The pattern approximately rigidly rotates with approximate speed �rot but speeds up and
slows down with approximate frequency �bif �

More precisely� if the shape change q�t� �� is regarded as negligible� then the time evolution
is rigid rotation through angle ��t� ��� Since the frequencies �bif��� and �rot��� are typically
independent� the time�dependence is quasiperiodic� hence the rigid rotation is nonuniform�
For � small� the speed is approximately �rot and the second frequency enters as a small
amplitude modulation of the basic frequency�

As already mentioned� the shape change q�t� �� is necessarily nonzero� Moreover� � and q
are each of order

p
� and hence might seem to be of equal signi�cance for the phenomena in

physical space� Nevertheless� it is our contention that the ��e�ect outweighs the q�e�ect� and
that the behavior of the modulated rotating wave in physical space is to a �rst approximation
as described above� Our reasoning is that the drift along the group orbit is an organized
controlled e�ect that can be analyzed as we have done above� Moreover� it results in a rigid
motion of the pattern globally in physical space� The notion of inner and outer pattern
formalizes this idea� see Figure �� In contrast� the shape change is a somewhat arbitrary
disorganized localized e�ect�

Further explanation of the subordinate role of shape change is possible on the grounds
that often the eigenfunctions that determine the shape change have steep vertical fronts �as
in spiral waves�� so shape change �idealized as a change in a level contour� has little e�ect
in the planar directions� �Indeed� spiral waves are sometimes modeled as having in�nitely
steep fronts� in which case our discussion is exact�� However� such steepness does not appear
to be required in practice� Figure ��b� was produced with smooth eigenfunctions and is at
the same scale as the remaining diagrams in Figure �� The arbitrary shape change could in
principle produce a radial 
uctuation even in Figure ��b� and could in principle cancel out
the radial 
uctuation of Figure ��c� � but this is not likely in practice� �A movie with time
t varying is more convincing� since it allows the visual distinction between global variation
�drift� and local variation �shape change� to be made� Snapshots from such a movie are
shown in Figure ���

Meandering in the Plane

We show that Euclidean symmetry accounts for the meandering of spiral waves �in contrast
to the nonuniform rigid rotation described in the previous subsection�� In addition� we
recover results of 	�� ��� ��
 on resonance and unbounded linear drift�

Again� the center bundle is a trivial bundle X � SE����C and� as in 	��� Lemma ���
�

��



equivariance implies that the equations on the center bundle are given by

"p � ei�f�q� ��

"� � F ��q� ��

"q � F q�q� ��

where �p� �� � C� S� �� SE��� denotes the group variables �translation and rotation� and
q � C denotes the Hopf or shape variables� We have f��� �� � �� F ���� �� � �rot and
�dF q���� � i�bif �

The solutions of the "q and "� equations are the same as in the circularly symmetric
situation in the previous subsection� We solve for a branch of ��	�bif��� periodic solutions
q�t� �� and obtain

��t� �� � �rot���t!
p
���t� ���

where ��t� �� is ��	�bif��� periodic�
The "p equation becomes

"p �
p
�ei�rot���tg�t� ��� �����

where g�t� �� is ��	�bif��� periodic�

Nonresonance versus Resonance

To determine the form of p�t� ��� we write g as a Fourier series

g�t� �� �
X
j�Z

gj���e
ij�bif���t�

Following 	��
 we integrate ����� term by term noting that the result depends on whether
the center bundle equations are nonresonant or resonant�

Recall that the center bundle equations are nonresonant if for every integer n

�rot��� ! n�bif��� �� ��

Assuming nonresonance� compute that

p�t� �� �
p
�
X
j�Z

�

i��rot��� ! j�bif����
gj���e

i��rot����j�bif����t�

which is quasiperiodic�
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Now suppose that for a speci�c value of �� there is an nth order resonance

�rot��� ! n�bif��� � �

for some n � Z� This time we compute that

p�t� �� �
p
�

�X
j ��n

�

i��rot��� ! j�bif����
gj���e

i��rot����j�bif����t ! gn���t

�
�

As shown in Fiedler and Turaev 	��
� the
p
�gn��� term is of order jnj	� in �� We rederive

this result as a special case of Proposition ����
To summarize� at nonresonance we have

p�t� �� �
p
�p��t� �� �����

which is quasiperiodic typically with two independent frequencies� and at nth order resonance�
we have

p�t� �� �
p
�p��t� �� ! �jnj��p����t� �����

where p��t� �� is periodic� Of course� at resonance the frequencies �rot��� and �bif��� are
rationally related so that p� is periodic instead of quasiperiodic�

Implications of ����� and ���	� for Patterns in Physical Space

Away from resonance� the quasiperiodic 
uctuation of the translation p�t� �� coupled with
the nonuniform rotation ��t� �� leads to quasiperiodic meander in the plane� In particular� as
we showed in Figure �� the translation p�t� �� forces petal type motion which is the de�ning
characteristic of meander� This motion in Figure ��c� �and Figure �� should be contrasted
with the nonuniform motion of Figure ��b� �and Figure �� where translation symmetry is
not present�

Near resonance� we now have linear drift �the term �jnj��p����t� superimposed on the
quasiperiodic meander� The e�ect of nth order resonance is present for all values of n� but
the time that it takes for the linear drift to be discernible grows with n�

� Modulated Waves in Circular Domains � Flames

In this section� we consider Hopf bifurcation from rotating waves with possibly nontrivial
isotropy �rot � Zk� k � �� in systems with symmetry group � � O��� �or � � SO�����
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Rand 	��
 classi�ed the various modulated rotating waves that occur in terms of their
spatial and spatiotemporal symmetries� We begin by rederiving Rand�s classi�cation� Then�
we proceed as in the case k � � to obtain further information about the behavior of these
solutions in physical space beyond their symmetry properties�

Classi�cation of Modulated Rotating Waves

Recall that Hopf bifurcation from a rotating wave corresponds to Hopf bifurcation from an
equilibrium for the �rot equivariant normal vector �eld g � N� � N�� Let z � C denote
coordinates for the critical eigenspace in N�� The action of the isotropy subgroup �rot � Zk

on z � C is generated by

R ��
k
� z � e��im�kz� �����

for some m � �� �� � � � � 	k	�
� Rand�s classi�cation of modulated rotating waves is essentially
given in terms of the integers k and m� One di�culty is that the integer m has no direct
physical interpretation� Following Rand �though with di�erent notation� we introduce the
derived integers d � � and 
 � f�� �� � � � � k

d
� �g where

d � gcd�k�m�� 
m 	 d mod k�

We show that the integers k� d and 
 are quantities that can be determined experimentally�
�The integers �k� d� 
� correspond to Rand�s integers �m� s� n���

Remark ��� We note that 
 is the multiplicative inverse of m	d modulo k	d� Hence� given
k� d and 
 � � we can recover m through the equation 
�m	d� 	 � mod �k	d�� �When

 � �� we have k � d and m � ���

The isotropy subgroup �bif of the bifurcating modulated rotating wave is given by the
kernel of the action ����� on the critical eigenspace� Hence� �bif � Zd where d � gcd�k�m��
Thus� the integers k and d correspond to the spatial symmetry �at a �xed moment in time�
of the rotating wave ��rot � Zk� and the modulated rotating wave ��bif � Zd��

Next� we show that the integer 
 determines the spatiotemporal symmetry of the mod�
ulated rotating wave� Let y�t� �� be the solution to the �in�nite�dimensional� normal vector
�eld equations on N�� Then y is T ��� periodic where T ��� � ��	�bif���� In addition� there
is the nontrivial spatiotemporal symmetry 	��


y
�
t !

m

k
T ���� �

�
� R ��

k
� y�t� ��� �����

We now compute the minimal spatiotemporal symmetry corresponding to these two sym�
metries� �We say that y�t! T � � �y�t� is a minimal spatiotemporal symmetry if T � � and
� � �rot such that T is minimal��
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Proposition ��� The normal vector �eld solution y has the minimal spatiotemporal sym�
metry

y

�
t!

d

k
T ���� �

�
�
�
R ��

k

��
� y�t� ��� �����

Proof Since d � gcd�k�m�� we have 
m ! �k � d for some � � Z� Hence�
d

k
T ��� � 


m

k
T ��� ! �T ����

It follows from T ��� periodicity and ����� that

y

�
t!

d

k
T ���� �

�
� y

�
t ! 


m

k
T ���� �

�
� �R���k�

� � y�t� ���

verifying that ����� is a spatiotemporal symmetry of y�
Next we show that ����� is the minimal spatiotemporal symmetry� Recall that in Hopf

bifurcation� T ��� is the minimal period of y�t� ��� From now on� we suppress the ��s� Suppose
that y�t! S� � �y�t� for some S � �� � � �rot� so

y�t! S� � �R���k�
j � y�t��

where j � �� We must show that S � d
k
T � Now�

y

�
t!

k

d
S

�
� �R���d�

j � y�t� � y�t��

since �bif � Zd� Hence
k
d
S is a multiple of T � Since S � �� we have S � d

k
T as required�

By the results of Krupa 	��
� the symmetry ����� corresponds to an exact spatiotemporal
symmetry of the full modulated rotating wave solution u�t� �� modulo the drift along the
SO����group orbit� Thus� in a suitable rotating frame� the modulated rotating wave reduces
to a periodic solution and the integer 
 in Proposition ��� determines the spatiotemporal
symmetry of that periodic solution�

Implications of the Classi�cation of Modulated Rotating Waves for Flames

As pointed out in 	�
� Rand�s classi�cation of modulated rotating waves applies directly to
Gorman�s 
ame experiment� Indeed� the �hopping modes or �ponies on a merry�go�round 
that are observed in the physical and numerical experiments seem to have the behavior
expected of modulated rotating waves�

��



In the 
ame experiments� Gorman et al� 	��
 observe modulated rotating waves in the
form of cellular states with k not quite identical cells� �Presumably� these states bifurcate
from a rotating wave with k identical cells� this transition has been observed in numerical
simulations 	�
 but not yet in the experiments�� The entire state is rotating but there
are additional �events� where successive cells �re one after the other in identical fashion�
In terms of the classi�cation� these modulated rotating waves bifurcate from a state with
k � � identical cells to a state with no identical cells d � � and a spatiotemporal symmetry
corresponding to 
 � �� States with d � k identical cells before and after bifurcation �the
nonsymmetry breaking case� are also observed�

The hopping modes of Gorman et al� 	��
 appear to be modulated rotating waves as
above� but with additional structure that is beyond the scope of this paper� See Palacios et
al� 	��
 for results concerning the additional structure of the hopping modes�

In numerical simulations� Bayliss et al� 	�
 obtain a number of modulated rotating waves
arising through symmetry breaking �m � � or equivalently d 
 k� bifurcations from rotating
waves� They particularly emphasize bifurcations from rotating waves with four identical cells
�k � �� and with seven identical cells �k � ���

According to the classi�cation� there are two distinct possibilities corresponding to k � ��
the cases m � � and m � �� The case m � � is shown in 	�� Figures � and �
 and corresponds
to the data d � �� � � � and 
 � �� Note that all of the symmetry is broken �d � �� and
that after passing to the rotating frame� time�shift by a quarter of the period �� � �� is the
same as a quarter rotation �
	k � �	��� The case m � � is the �half period modulated
rotating wave shown in 	�� Figure �
 and corresponds to the data d � �� � � �� and 
 � ��
This time� part of the symmetry is preserved �d � �� and in the rotating frame� time�shift
by half a period �� � �� is the same as a quarter rotation �
	k � �	��� The modulated
rotating wave in 	�� Figure �
 ��Pushmi�Pullyu � appears to have more structure than the
�breathing modulated rotating wave in 	�� Figure �
� Again� this additional structure lies
outside the scope of this paper�

The classi�cation yields three possibilities corresponding to k � �� m � �� m � � and
m � �� In each of these cases� d � �� k � �� and all the symmetry is broken� The case
m � � yields 
 � � as is shown in 	�� Figure ��
� The case m � � yields 
 � � as is shown
in 	�� Figure ��
� Finally� the case m � � yields 
 � � as is shown in 	�� Figure �
 �though
we note that the numbering is such that this case appears to correspond more closely to the
mathematically identical case m � � and 
 � ��� The last two cases have 
 � �� leading to
the terminology �jumping ponies on a merry�go�round �
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The Center Bundle Equations

The analysis of the �nonuniformly rotating nature of the modulated rotating waves bifur�
cating from rotating waves with isotropy Zk is similar to the analysis in Section � of the case
k � �� However� to solve the equations on the center bundle� it is necessary to pass to the
skew product construction of 	��
� These equations have the same form as the center bundle
equations for k � � except that there are the �rot equivariance conditions

F ���q� �� � �F ��q� ������ �����

F q��q� �� � �F q�q� ��� �����

for � � �rot� The right�hand�side of ����� reduces to F ��q� �� since SO��� is abelian� so that
the condition simply states that F � is �rot invariant�

F ���q� �� � F ��q� ��� �����

In ����� and ������ the action of � � �rot on q �and F q� corresponds to the action ����� on
the critical eigenfunctions� namely

R ��
k
� q � e��im�kq�

When m � � �so �bif � �rot � Zk�� there is no restriction on F � or F q and the results
are the same as when k � ��

In the remaining cases �m � ��� �bif is a proper subgroup of �rot� �bif � Zd where
d � gcd�k�m�� Set � � k	d and T ��� � ��	�bif����

Lemma ��� Generically�

F ��q�t� ��� �� � �rot��� ! �������t� ���

where ���t� �� has minimal period T ���	��

Proof By Proposition ���� the solution q�t� �� to the "q equation has the minimal spa�
tiotemporal symmetry

q

�
t !

�

�
T ���� �

�
�
�
R ��

k

��
� q�t� �� � e��i�m�kq�t� �� � e��i��q�t� ��� �����

This spatiotemporal symmetry combined with the invariance condition ����� implies that
F ��q�t� ��� �� has period T ���	�� Since F � is an arbitrary invariant function� generically this
period is minimal� Veri�cation of the exponent �	� of � is postponed until Section ��

It follows from the lemma that the rigid rotation along the group orbit is given by

��t� �� � �rot���t ! ������t� ��� �����

where ��t� �� has minimal period T ���	��
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Implications of ���
� for Patterns in Physical Space

From the point of view of this paper� the nonuniformly rotating states and the ponies on a
merry�go�round observed in the 
ame experiments 	��� ��
 and in numerical simulations 	�

can be studied together as modulated rotating waves bifurcating from a rotating wave� Near
onset� all of these states are nonuniformly rotating waves� the only distinction being the rate
�	� at which the nonuniformity in the rotation speed scales with the bifurcation parameter�
The nonuniformity is most visible when k � d �� � ��� This corresponds to the nonsymmetry
breaking case �bif � �rot�

In the symmetry breaking case �bif �� �rot �� � k	d � ��� the nonuniformity of the
rotation speed is less apparent �though careful experiments should still pick up this feature��
In addition� further away from the bifurcation point� the spatiotemporal symmetry becomes
dominant and leads to ponies on a merry�go�round� The scenario we envisage for the 
ame
experiment is that a uniformly rotating cellular state with k identical cells bifurcates to a
nonuniformly rotating state with k cells that are not all identical and then gradually �as the
bifurcation parameter is varied� transforms into ponies on a merry�go�round� It should be
noted that this second transition is not a dynamical bifurcation � neither the symmetry
nor the qualitative dynamics is altered� Rather� we have an exchange in dominance of the
drift variables �which drive the nonuniform rotation� and the shape variables �which drive
the spatiotemporal symmetry��

Reversing States

The nonuniformly rotating patterns that arise in the 
ame experiments should be contrasted
with the �direction�reversing traveling waves analyzed in Landsberg and Knobloch 	��
�
The setting in 	��
 is Hopf bifurcation from a circle of equilibria with re
ection symmetry�
so � � O��� and �rot � Z� where Z� is generated by a re
ection� Hopf bifurcation with
Z� symmetry 	��
 leads to branches of periodic solutions with no spatial symmetry but
where the re
ection symmetry reappears as a spatiotemporal symmetry �with a half period
phase shift�� Such solutions do not drift 	��
 and so we have periodic solutions �instead of
modulated rotating waves� in the full O����equivariant problem� In particular� there is zero
mean drift�

In the notation used in this paper� the results of 	��
 say that the rigid rotation variable
� has the form

��t� � ������t� ���

where ��t� �� has period ��	�bif���� In particular� �rot��� 	 �� Ignoring shape changes� the
reversing states are observed to rigidly rotate �or travel� in one direction and then in the
other direction� reversing direction periodically�
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Ratcheting States

In the 
ame experiments� �ratcheting states are observed 	��
 which have certain features in
common with ponies on a merry�go�round �or the hopping mode�� In particular� all of these
states are quasiperiodic and reduce to small amplitude periodic states in a rotating frame� In
the ratcheting state� however� the magnitude of the nonuniformity in rotation speed is large
compared to the the speed of the underlying rotating frame� indeed contragrade motions are
observed in ratcheting states� �Unlike the reversing states of 	��
� there is a nonzero but slow
mean drift��

The following scenario may explain the similarities and di�erences between ratcheting
states and ponies on a merry�go�round� Whereas ponies on a merry�go�round bifurcate from
a rotating wave� we propose that the ratcheting states bifurcate from a stationary solution�

Speci�cally� we propose that ratcheting states arise through a symmetry breaking Hopf
bifurcation from a Dk invariant steady state� Applying the results of Krupa 	��
� we �rst
consider Dk equivariant Hopf bifurcation and then allow for drifts along the SO����group
orbit�

Symmetry breaking Hopf bifurcation withDk symmetry is studied in 	��� Chapter XVIII
�
We de�ne the integers m� d� � just as for the Zk bifurcations considered so far� Provided that
� � �� there is a four dimensional critical eigenspace and three maximal isotropy subgroups
each with two dimensional �xed point subspace� The equivariant Hopf bifurcation yields
branches of periodic solutions for each of these isotropy subgroups�

The possibility of drifts along the SO��� group orbit means that some of these branches
yield quasiperiodic solutions� Two of the branches consist of periodic solutions with either
spatial or spatiotemporal re
ection symmetry� continuous drifts are then excluded and these
are ordinary periodic solutions� The third branch consists of solutions with rotation spa�
tiotemporal symmetry only �eZ� in the notation used in 	��
�� Hence� generically there is drift
along the SO����orbit and we have a two frequency modulated rotating wave�

The skew product equations for the modulated rotating wave have a form similar to
before� but �rot is replaced by Dk� In particular� F � satis�es a Dk equivariance condition
of the form ������ so that F ���q� �� � F ��q� �� when � � Dk is a rotation� and F ���q� �� �
�F ��q� �� when � � Dk is a re
ection�

Suppose that q�t� �� is the eZ� branch of periodic solutions in Dk Hopf bifurcation�

Lemma ��� Generically� Z T ���

�

F ��q�t� ��� ��dt � �����

and

F ��q�t� ��� �� � ����a��� ! �������t� ���

��



where ���t� �� has minimal period T ���	��

Proof Veri�cation of the periodicity of ��t� �� proceeds as in Lemma ���� The exponents
�� � and �	� of � are veri�ed in Section ��

It follows from the lemma that the rigid rotation along the group orbit is given by

��t� �� � ����a���t! ������t� ���

where ��t� �� has minimal period T ���	�� �Of course �rot � � in this bifurcation�� Observe
that the leading nonconstant term dominates the constant term� since � � �� leading to
contragrade motions as seen in the experiments�

� Modulated Rotating Waves in the Plane � Spirals

We consider the case of Hopf bifurcation from k�armed spirals� k � � following 	��
� The
classi�cation of modulated rotating wave spiral states is identical to that described in Sec�
tion � and we concentrate on the manifestation of the quasiperiodic dynamics as motions in
physical space� As pointed out in 	��
� both meandering and nonuniform rigid rotation is pos�
sible in bifurcation from k�armed spirals� depending on whether or not all of the symmetry
is broken in the bifurcation�

Remark 	�� In 	��
� we derived also the conditions for resonance for k�armed spirals� Unfor�
tunately� the conditions for resonance when k � �� stated in 	��� Theorem ���
� are incorrect�
We are grateful to Claudia Wul� for pointing this out to us�

The source of the errors in 	��
 is as follows� We introduced physical frequencies ��� ��

�corresponding to �rot and �bif in this paper� and frequencies e��� e�� corresponding to the
skew product equations� The complicated relations between these frequencies in 	��
 are
wrong and in fact e�� � ��� e�� � �� �as can be seen for example in the construction of 	��
��
Indeed� the correct conditions for resonance follow immediately from 	��� Theorem ���
 and
are given in ����� below�

Passing directly to the skew�product equations 	��
� we consider the system of ODEs

"p � ei�f�q� ��

"� � F ��q� ��

"q � F q�q� ��

where �p� �� � C� S� �� SE��� denotes the group variables �translation and rotation� and
q � C denotes the Hopf or shape variables�
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Just as in Section �� we introduce the integers m� d and �� The action of the isotropy
subgroup �rot � Zk is generated by q 
� e��im�kq where m � �� �� � � � � 	k	�
� We set d �
gcd�k�m� and � � k	d� De�ne �rot���� �bif��� as before and set T ��� � ��	�bif����

The skew�product equations are subject to the �rot equivariance conditions

f��q� �� � �f�q� ��� �����

F ���q� �� � F ��q� ���

F q��q� �� � �F q�q� ���

for � � �rot� Again� the action of � on q and F q is de�ned by the integer m� whereas the
action of � on the right�hand�side of ����� is group multiplication�

The solution of the "q and "� equations is unchanged� We solve for a branch of T ���
periodic solutions q�t� �� and obtain

��t� �� � �rot���t! ������t� ���

where ��t� �� has minimal period T ���	��

The Case when k and m are not Coprime

Proposition 	�� When k and m are not coprime� p�t� �� 	 ��

Proof Condition ����� can be written as

f�e��im�kq� �� � e��i�kf�q� ��� �����

In particular�

e��i�df�q� �� � f�e��im�dq� �� � f�q� ���

Since d � �� it follows that f 	 ��

The Case when k and m are Coprime

Since k and m are coprime� d � � and � � k� As before� we solve for a branch of T ���
periodic solutions q�t� �� and obtain

��t� �� � �rot���t! �k����t� ���

where ��t� �� has minimal period T ���	k� The "p equation becomes

"p � ei�rot���tg�t� ���

��



where

g�t� �� � ei�
k��	�t���f�q�t� ��� ���

Proposition 	�� Suppose that for every integer j satisfying jm 	 � mod k� we have

�rot��� ! j�bif��� �� �� �����

Let � be least positive integer such that �m � �� mod k� Then

p�t� �� � �
��p��t� ��

is quasiperiodic �with typically two independent frequencies��

With the exception of the order of p in � and the di�culty with the nonresonance condi�
tions ����� �see Remark ����� this proposition was proved in 	��
� For ease in exposition we
give a complete proof of Proposition ����

Proof Recall from ����� that q�t! T ���	k� �� � e��i�m�kq�t� ��� Using ������ we compute
that the minimal spatiotemporal symmetry of f�q�t� ��� �� is given by

f

�
q

�
t!

�

k
T ���� �

�
� �

�
� e��i��kf�q�t� ��� ���

Since � is T ���	k periodic� g also possesses the minimal spatiotemporal symmetry

g

�
t !

�

k
T ���� �

�
� e��i��kg�t� ��� �����

Next we write g as a Fourier series

g�t� �� �
X

gj���e
ij�bif���t�

By ������ this series reduces to summation over those integers j satisfying jm 	 � mod k�
Multiplying by ei�rot���t and integrating� we obtain a quasiperiodic function p�t� �� if and
only if the nonresonance hypotheses ����� are satis�ed�

The veri�cation of the exponent �	� is postponed until Section �

��



The case when k and m are coprime with resonance

Now suppose that there is an nth order resonance

�rot ! n�bif � � �����

for some n � Z satisfying nm 	 � mod k�

Proposition 	�� At an nth order resonance�

p�t� �� � �
��p��t� �� ! �jnj��p����t

where p��t� �� is periodic�

Proof By the proof of Proposition ���� it remains to verify the exponent jnj	�� This
veri�cation is postponed until Section ��

Implications of Propositions 	��� 	�� and 	�� for Patterns in Physical Space

When �bif �� �� we have the prediction 	��
 of rigid nonuniform rotation and no meander�
To this� we can add that the nonuniformity in the rotation is most noticeable when �bif �
�rot � Zk �k � ��� When �bif �� �rot� ��bif � Zd� � 
 d 
 k�� there is the additional
spatiotemporal symmetry where the arms of the spiral� which are no longer identical� ��re�
after equal periods of time in identical fashion�

When �bif � �� we obtain meander and linear drift as for the case of one�armed spirals�
Away from resonance� we predict meandering� with the size of the petals depending on the
integer �� The petals are most well�de�ned when � � �� This occurs in the case k � �� m � �
�one�armed spirals� and also in the cases where k is arbitrary and m � ��

� Modulated Wavy Vortices in Taylor�Couette

As discussed in the introduction� the Taylor�Couette experiment is often modeled as having
SO����O��� symmetry� where SO��� consists of azimuthal rotations and O��� consists of
axial translations and an up�down 
ip �� It turns out that most of our results are unchanged
if we just assume SO��� � Z� symmetry �azimuthal rotations and the up�down 
ip�� but
there are subtle di�erences in the results which we describe at the end of the section�

Recall that the isotropy subgroup of wavy vortices is given by �rot � Z�k consisting of
pure azimuthal rotations Zk � SO��� �generated by ���	k� �� � SO��� � SO��� together
with symmetries in Z�k eZk that are azimuthal rotations combined with the up�down 
ip��
Hence �rot is generated by a single glide re
ection� rotation by ��	k� �� followed by the 
ip ��

��



Extended Classi�cation of Modulated Rotating Waves in Taylor�Couette

The representation of the isotropy subgroup �rot � Z�k is generated by q 
� e�im�kq for some
m � �� �� � � � � k� As in Section �� we obtain a classi�cation of the possible types of modulated
rotating waves in terms of the integers ��k� d� 
� where d � gcd��k�m� and 
m 	 d mod �k�
Again� k and d denote the instantaneous symmetry of wavy vortices and modulated wavy
vortices� while 
 measures the spatiotemporal symmetry�

We distinguish between modulated wavy vortices which break all the spatial glide re
ec�
tion symmetry of the wavy vortices and those that retain some of this symmetry� In the
terminology of 	�
� Gorman�Swinney or GS �ows are modulated wavy vortices that break
the glide re
ection symmetry while Zhang�Swinney or ZS �ows retain some of the glide
re
ection symmetry� Note that GS 
ows occur when �k	d is even and ZS 
ows occur when
�k	d is odd� To see this� let � be a generator of �rot � Z�k and observe that �j is a glide
re
ection if and only if j is odd� But �bif � Zd is generated by ��k�d and hence contains odd
powers of � precisely when �k	d is odd�

Both kinds of modulated wavy vortices have been observed in experiments� The GS

ows are the original modulated wavy vortices of Gorman and Swinney 	��� ��
 and do
not possess spatial glide re
ection symmetry �though such symmetries necessarily appear as
spatiotemporal symmetries�� The ZS 
ows were obtained more recently in experiments of
Zhang and Swinney 	��
 and possess spatial glide re
ection symmetry� as noted in 	�
�

In Section �� we described Rand�s classi�cation 	��
 of modulated rotating waves in sys�
tems with SO��� symmetry� This classi�cation was particularly geared towards modulated
wavy vortices for which the symmetry group is actually SO����O��� �or at least SO����Z�

which leads to the same results�� In particular� the isotropy subgroup of wavy vortices is
given by �rot � Z�k and does not lie in SO���� whereas Rand has �rot � Zk � SO����
In particular� we obtain twice as many states as does 	��
� for each solution in 	��
� there
corresponds a GS 
ow and a ZS 
ow�

The Center Bundle Equations

The skew�product equations have the form

"�� � F ���q� ��

"�� � F ���q� ��

"q � F q�q� ���

��



where ��� �� and q denote the azimuthal� axial and shape variables� In addition� F ����� �� �
�rot� F

����� �� � � and �dF q���� � i�bifq� We have the �rot equivariance conditions

F ���e�im�kq� �� � F ���q� ���

F ���e�im�kq� �� � �F ���q� ���

Proposition ��� Let d � gcd��k�m�� � � �k	d� T ��� � ��	�bif��� and set

�rot��� �
�

T ���

R T ���

�
F ���q�t� ��� ��dt� Generically� the azimuthal variation is given by

���t� �� � �rot���t! �������t� ���

where ���t� �� has minimal period T ���	��
When � is even� generically the axial variation is given by

���t� �� � ���	���t� ��

where ���t� �� has minimal period �T ���	�� When � is odd� �� 	 ��

Proof The vector �eld F �� satis�es the same invariance condition as the vector �eld F �

in Section � �with k replaced by �k�� Hence� the expression for ���t� �� is immediate from
Lemma ����

Suppose that � is odd� We compute that

�e�im�k�� � �e��im�d��� � e��im�d � ��

It follows from the equivariance condition satis�ed by F �� that

F ���q� �� � F ����e�im�k��q� �� � �����F ���q� �� � �F ���q� ���

Hence F �� 	 ��
Next suppose that � is even� By de�nition� 
m 	 d mod �k from which it follows

that 
�m	d� 	 � mod �� Hence 
 and m	d are odd� As in equation ������ we have q�t !
T ���	�� �� � �e�im�k��q�t� ��� Therefore�

F ���q�t! T ���	�� ��� �� � F ����e�im�k��q�t� ��� �� � �����F ���q�t� ��� �� � �F ���q�t� ��� ���

It follows that F ���q�t� ��� �� is �T ���	� periodic� Again� this period is generically minimal�
The computation of the exponent �	� is similar to previous calculations�

��



Implications of Proposition ��� for Patterns in Physical Space

All bifurcations lead to doubly quasiperiodic motion that includes nonuniform azimuthal
rotation� and none lead to axial drift� The GS 
ows� but not the ZS 
ows� possess an
additional axial oscillation� analogous to the reversing states of 	��
�

The case � � �k	d odd corresponds to the ZS 
ows �spatial glide re
ection symmetry��
We predict� near the bifurcation point� that the dynamics of the modulated rotating wave
in physical space consists of approximately rigid rotation about the axis of the cylinder with
nonuniform speed just as in Section �� Again� we expect that there is a further transition in
which the spatiotemporal symmetry gradually dominates the nonuniform rotation�

The case � � �k	d even corresponds to the GS 
ows �no spatial glide re
ection symme�
try�� Apart from the obvious changes in the spatial and spatiotemporal symmetry� we expect
that near the bifurcation point there is a rigid axial oscillation in addition to the nonuniform
rotation� �We note that there are still only two independent frequencies��

Finally� we remark that the distinction between the GS and ZS 
ows may provide a means
for testing between the modeling assumptions of SO����O��� and SO���� Z� symmetry�
With the �rst symmetry group� we expect axial oscillations for the GS 
ows but not for
the ZS 
ows� With the second symmetry group� we expect no axial oscillations for either
state� since there is no longer an axial translation variable� By Proposition ���� any axial
oscillation of the GS 
ows would be most apparent when d � k �that is� only the glide
re
ection symmetry is broken��

� Numerical Veri	cation

In this section� we describe how we obtained the graphical representation of our results in
Figures �� �� � and �� We work throughout with the speci�c center bundle equations

"p � ei�q

"� � �rot !Re q

"q � ��! i�bif�q � jqj�q�

These are a special case of the center bundle equations for the problems with E��� symmetry
in Section �� Removing the "p equation we include the problems with O��� symmetry in
Section ��

��



The solution to the center bundle equations is given by

p�t� �
p
�

i��rot��bif�
ei��rot��bif�t !O������

��t� � �rott !
p
�

�bif

sin�bift

q�t� �
p
�ei�bif t

Provided that there are no high order resonances �no resonances with jnj � �� it seems
reasonable to discard the O������ terms in p�t��

Next we describe how to bring in the planar spatial dependence� We suppose that the
underlying rotating wave �or its observable� is given by a pure Fourier�Bessel mode

v��r� �� � Im
�
J���r�e

i�
	
�

where J� is the �rst�order Bessel function� and � � C� Such functions have contours which
look like one�armed spirals 	��
� The time evolution of the rotating wave is given by

v�t� � Rtv� � Im
�
J���r�e

i����rott�
	
�

�taking Rt � ��t� with � � ��� We de�ne the �spiral tip� of the function v�t� � R� � R as
the intersection of the contours

Re
�
J���r�e

i����rott�
	
� C�� Im

�
J���r�e

i����rott�
	
� C��

where C�� C� are constants� The time evolution of the spiral tip of the rotating wave is shown
in Figure ��a� with �rot � ��� � � �! ����i� C� � ����� C� � ���� and t runs from � to ���
in steps of ����

Now we suppose that the rotating wave undergoes a Hopf bifurcation to a modulated
rotating wave so � � � in the center bundle equations� Recall that the modulated rotating
wave u�t� admits the decomposition u�t� � ��t�y�t� where ��t� � � and y�t� is the solution
for the normal vector �eld� Write y�t� � v� ! w�t�� For simplicity� we suppose that w�t�
is itself a pure Fourier�Bessel mode� proportional to Im

�
cJ���r�e

i�
	
� where c� � � C� �In

practice w�t� will involve in�nitely many such modes�� The amplitude and time dependence
of w�t� is determined by the shape variable q�t� on the center bundle� Hence� we have

w�t� � Im
�p

�cei�biftJ���r�e
i�
�
�

In particular� the shape change of the modulated rotating wave is governed by

y�t� � Im
�
J���r�e

i� !
p
�cei�bif tJ���r�e

i�
�
�

��



Thus in Figure ��b� we plot the spiral tip for the function

u�t� � ��t�y�t� � R��t�y�t� � Im

��
J���r� !

p
�cei�bif tJ���r�

�
e
i����rott�

p
�

�bif
sin�bift�

�
�

�����

where �rot� �� C�� C�� t are as in Figure ��a��
p
� � ����� c � ���� � ����i� �bif � �������

� � �������i� The result is a �fattening�out� of the perfect circle of Figure ��a�� In particular�
there is no visible sign of meandering� However� the motion around the circle is nonuniform
as shown by the graph of angle plotted against time in Figure �� The parameter settings in
Figure � are identical to those in Figure ��b�� but with t running from � to �� in steps of
�����

Figure ��c���f� shows the spiral tip for functions of the form ����� subject to the time
dependent planar translation

z�t� � z � p�t� � z �
p
�

i��rot��bif�
ei��rot��bif�t�

The parameters in Figures ��b� and ��c� are identical and it is evident that it is the additional
translation modulation in �c� which is responsible for meandering of the spiral tip� Figures
��d� and ��e� show meandering before ��bif � ������ and after ��bif � ������ resonance and
illustrate the transition from petals inwards to petals outwards� We choose �bif � �����
in �f� to obtain almost linear drift very close to resonance �in this last diagram� t runs from
� to �� in steps of �����

Figures � and � show the motion of the inner and outer patterns corresponding to the
parameter settings in Figures ��b� and �c�� but we have taken

p
� � ��� �instead of

p
� �

����� so that the contours corresponding to the inner and outer patterns can be distinguished�


 Completion of Proofs

In this section� we verify the exponents of � given in Lemma ���� Lemma ���� Proposition ���
and Proposition ����

Proposition 
�� Consider the ODE

"q � F q�q� ���

where F q � R� �R� R� is a general smooth vector �eld satisfying F ��� �� � � and under�
going Hopf bifurcation with eigenvalues �i�bif � The branch of periodic solutions guaranteed

��



by the Hopf Theorem can be written as a Fourier series

q�t� �� �
X
j�Z

qj���e
ij�bif���t�

where �bif��� is smooth in �� �bif��� � �bif� Moreover� generically the Fourier coe�cients
satisfy

q� � �� qj � �jjj��� j �� ��

Proof If follows from Birkho� normal form theory that there is a polynomial change of
coordinates q � P �z� #z� ��� where P ��� �� � �� such that the ODE "q � F q�q� �� is transformed
up to any �nite order into the simpler ODE

"z � g�jzj�� ��z�
where g � R� � R is smooth� In these coordinates� the bifurcating periodic solutions are
given by

z�t� �� � a���ei�bif���t�

where a��� � ����� Transforming back into the original coordinates� we see that the linear
terms in P lead to the Fourier modes j � �� and generically q�� � ����� Similarly� the
quadratic interactions in P contribute the Fourier modes j � � and j � �� so that generically
q�� q�� � �� The Fourier modes q�j� j � � arise from the j�th order terms in P � so that
q�j � �j��� j � ��

Proposition 
�� Assume the set up of Proposition ��	� except that F q is a general smooth
Zk�equivariant vector �eld on R�� where the action of Zk on R� �� C is given by

R���kq � e��im�kq�

for some m � �� � � � � 	k	�
� Let d � gcd�k�m� and � � k	d� The branch of periodic solutions
guaranteed by the Hopf Theorem can be written as a Fourier series

q�t� �� �
X
s�Z

rs���e
i���s���bif���t� �����

Moreover� generically the Fourier coe�cients satisfy

rs � �j��s�j���

��



Proof The spatiotemporal symmetry ����� places restrictions on the Fourier series in
Proposition ���� Indeed� we calculate that if qj �	 � then

e��ij�� � eij�bif���T ����� � e��i���

It follows that j 	 � mod �� Hence� we may write

q�t� �� �
X
s�Z

rs���e
i���s���bif���t�

and it follows from Proposition ��� that rs � O��j��s�j����
It remains to verify that generically rs has terms of order precisely j� ! s�j	� in �� The

reduction to Birkho� normal form can be achieved by a Zk�equivariant change of coordinates
P � We have the expansion

q � P �z� #z� �� �
X

a��
���z
�#z
 �

and the Zk�equivariance condition P �e��im�kz� e���im�k#z� �� � e��im�kP �z� #z� �� implies that

a��
���e
��i���
���m�k 	 ��

Hence� either a��
 	 � or

��� � � ��
m	d

�
� ��� � � ��

m

k
� Z�

Since m	d and � � k	d have no factors in common� we deduce that �� � � � is a multiple
of �� It follows that the surviving terms in P have the form

jzj�azb���� a� b � �� and jzj�a#zb���� a � �� b � ��

These terms yield Fourier coe�cients

qb��� � ��b������� b � �� and q��b���� � ��b������� b � ��

respectively�

Proof of Lemma ��� The function F � is a general smooth function of q and � subject
to the invariance condition ������ A computation similar to that for the function P in the
proof of Proposition ��� shows that the general term in F � has the form jqj�aqb� or jqj�a#qb�
where a� b � ��

��



In particular� the lowest order terms in F ��q�t� ��� �� correspond to a � �� b � � and to
a � �� b � �� Taking a � �� b � �� and substituting in the Fourier series ����� for q� yields
lowest order terms of the form �

r����e
i�bif���t

	�
�

which is of the required order �����
It remains to show that the nonconstant terms produced by taking a � �� b � � are of

order at least ����� By Proposition ����

jq�t� ��j� �
X

s��s��Z
rs����#rs����e

i�s��s����bif���t�

Nonconstant terms are obtained when s� �� s�� To obtain the smallest order in �� we take
s� � �� s� � � which yields a term of order ������������ � ����� This completes the proof
that ���� is the lowest order nonconstant term in F ��

Proof of Lemma ��� In addition to the symmetry condition ������ which was taken
into account in the proof of Lemma ���� the function F � satis�es the condition F ��#q� �� �
�F ��q� ��� It follows that the general term in F � has the form jqj�a �qb� � #qb�

	
where a� b � ��

It is immediate from the proof of Lemma ��� that no terms of order lower than ���� are
possible� The lowest order terms are obtained by taking a � � and b � �� and this yields
terms of order ���� as before�

It remains to verify the order of the constant term in the Fourier expansion of F ��
Substituting the Fourier series ����� into q� yields a term of the form�

r�e
i�bift

	���
r��e

i�������bif t � r���
� r���

which has the required order �
�
�� � �� ! j����j

�
� � � � in �� Note also that r� and r�� are

the lowest and second lowest order Fourier coe�cients of q� so the only term of lower order
term in F � is the nonconstant term of order �	� that we computed earlier� Hence� the lowest
order constant term is of order ���� as required�

Proof of Proposition 	�� The structure of the "p component of the skew product equa�
tions is as given prior to the statement of Proposition ���� A calculation as in Lemma ���
shows that the general terms in the Taylor expansion of f�q� �� have the form jqj�aqb and
jqj�a#qc where a� b� c � � and bm 	 � mod k� cm 	 �� mod k� The lowest order term is either
q
 or #q
 �or possibly both�� Since Hopf bifurcation occurs with exponent ����� we obtain the
required exponent �
�� for g� This completes the veri�cation of the claim�

Proof of Proposition 	�� The exponent jnj	� is veri�ed as follows� By taking b � n � �
or c � �n � � in the proof of Proposition ���� and substituting in the Fourier expansion �����

��



of q� we obtain a term in g proportional to
�p

�ei�bif���t
�n

�arising from the s � � term in

q�� This resonance term shows that the exponent jnj	� is achieved generically� Observe also
that every multiple r of the basic frequency �bif��� in q occurs with the identical power r ofp
�� Hence jnj	� is the smallest possible exponent�
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