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Abstract Proof-Carrying Code (PCC) is a general approach to mobile 
code safety in which programs are augmented with a certificate (or proof). 
The intended benefit is that the program consumer can locally validate the 
certificate w.r.t. the "untrustcd" program by means of a certificate checker a 
process which should be much simpler, efficient, and automatic than generat­
ing the original proof. The practical uptake of PCC greatly depends on the 
existence of a variety of enabling technologies which allow both proving pro­
grams correct and replacing a costly verification process by an efficient check­
ing proceduri on th( consumer side. In this work we propose Abstraction-
Carrying Code (ACC), a novel approach which uses abstract interpretation 
as enabling technology. We argue that the large body of applications of ab­
stract interpretation to program verification is amenable to the overall PCC 
scheme. In particular, we rely on an expressive class of safely policies which 
can be defined over different abstract domains. We use an abstraction (or 
abstract model) of the program computed by standard static analyzers as a 
certificate. The validity of the abstraction on ihe consumer side is checked 
in a single pass by a very efficient and specialized abstract-interpreter. We 
believe that ACC brings the expressiveness, flexibility and automation which 
is inherent in abstract interpretation techniques to the area of mobile code 
safety. 
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§1 Introduction 
One of the most important challenges which computing research faces 

today is the development of security techniques for verifying thai the execution 
of a program (possibly) supplied by an untrusted source is safe, i.e., that it 
meets certain properties according to a predefined safety policy, Proof-Carrying 
Code (PCC)34) is a general framework for mobile code safety which proposes 
to associate safety information in the form of a certificate to programs. The 
certificate (or proof) is created at compile time, and packaged along with the 
code. The consumer who receives or downloads the code+certificate package 
can then run a checker which by an efficient, inspection of the code and the 
certificate, can verify the validity of the certificate and thus compliance with 
the safety policy. The key benefit of this "certificate-based" approach to mobile 
code safety is that the consumer's task is reduced from the level of proving to the 
level of checking, a task that should be much simpler, efficient, and automatic 
than generating the original certificate. 

The practical uptake of PCC greatly depends on the existence of a variety 
of enabling technologies which allow: 

1. defining expressive safety policies covering a wide range of properties, 
2. solving the problem of how to automatically generate the certificates (i.e., 

automatically proving the programs correct), and 
3. replacing a costly verification process by an efficient checking procedure 

on the consumer side. 

The main approaches applied up to now are based on either theorem proving or 
type analysis. For instance, in PCC the certificate is originally31" a proof in first-
order logic of certain verification conditions and the checking process involves 
ensuring that the certificate is indeed a valid first-order proof. AProlog is ua 
to define a representation of lemmas and definitions which helps keep the proofs 
small. Another proposal6' uses temporal logic to specify security policies in 
PCC. In Typed Assembly Languages,310 the certificate is a type annotation of 
the assembly language program and the checking process involves a form of type 
checking. Each of the different approaches possesses their own set. of stronger and 
weaker points. Depending on the particular safety property and the available 
computing resources in the consumer, some approaches are inure suitable than 
others. Li some eases the priority is to reduce the size of the certificate as 
much as possible in order to fit in small devices or to cope with scarce network 
access (as in, e.g., Oracle-based PCC381 or Tactic-based PCC*'), whereas in other 
cases the priority is to reduce I he cheeking time (as in. e.g., standard PCC'1'" or 
lightweight byteeode verification^1). Asa result of all this, a successful certificate 
infrastructure should have a wide set of enabling technologies available for the 
< I liferent requirements. 

In this work we propose Abstraction-Carrying Code (ACC), a novel ap-
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proach which uses abstract interpretation1^ as enabling technology to handle 
the difficult practical challenges mentioned above. Abstract interpretation is 
now a well-established technique which has allowed i lie development of very so 
phisticated global static program analyses thai arc at the same lime automatic, 
provablv coriect, and practical. The basic idea of abstract interpretation is to 
infer information on programs by interpreting ("running") them using abstract. 
values rather than concrete ones, thus obtaining safe approximations of the be­
havior of the program. The technique allows inferring a wide range of properties 
about programs. Our proposal. ACC. opens the door to the applicability of this 
inference power as enabling technology for PCC. Figure 1 presents an overview 
of ACC. The certification process carried out by the code producer is depicted to 
t he left of the figure while the checking process performed by the code consumer 
appears to the right. In particular, ACC has the following fundamental elements 
which can handle the three aforementioned challenges: 

1. The lirst element, common to both producer and consumers, is the 
Safety Policy. We rely on an expressive class of safety policies based on 
"abstract"—i.e. symbolic—properties over different; abstract domains. 
Our framework is parametric w.r.t. the abstract doriiaiii(s) of interest, 
which gives us generality and expressiveness, since it allows a single 
concrete implementation of the approach to be used without change For 
generating certificates for different classes i if properi ies by simply adding 
domains a.s "plugins." 

2. The next element at the producer's side is a fixed point-based static 
Analyzer which automatically infers an abstract model (or simply ab­
straction) of the mobile code which can then be used to prove that this 
code is safe w.r.t. the given policy in a straightforward way. hi particu­
lar, we identify a subset of the analysis results which is sufficient for this 
purpose. 

3. The verification condition generator, VCGen in the figure, generates, from 
the initial safety policy and the abstraction, a Verification Condition 
(VC), which can be proved only if the execution of the code does not 
violate the safety poEcy. As in standard PCC methods, litis process is 
performed also by the consumers in order to have a trustworthy VC. 

4. Finally, a simple, easy-to-trust (analysis) checker at the consumer's side 



verifies the validity of the information on the mobile code, ll is indeed ;i 
specialized abstract interpreter whose key characteristic is that it does 
not need to iterate in order to reach a fixed point (in contrast to st andard 
analyzers). 

While ACC is a general approach, for concreteness we develop herein an incar­
nation of it in the context of (Constraint) Logic Programming, (C)LP, because 
this paradigm offers a good number of advantages, an important one being the 
maturity and sophistication of the analysis tools available for it. In particular, 
a wide range of analysis domains have been developed to infer properties such 
as data structure shape {with pointer sharing), bounds on data structure sizes. 
and other operational variable instantiat ion properties, as well as procedure-leve] 
properties such as determinaey, termination, non-failure, and bounds on resource 
consumption, such as time or space cost (see, e.g.,21) and its references). 

Also for concreteness. we build on the algorithms of (and report on an 
implementation on) CiaoPP.'2n the abstract interpretation-based preprocessor 
of the Ciao multi-paradigm CLP system.5" CiaoPP uses modular, incremental 
abstract interpretation as a fundamental tool to obtain information about pro­
grams. In CiaoPP, the semantic approximations thus produced have been ap­
plied in perform high- and low-level optimizations during program compilation, 
including transformations such as multiple abstract specialization, paralleliza-
tion, partial evaluation, resource usage control, and program verification. More 
recently, novel and promising applications of such semantic approximations are 
being applied in the more general context of program development. We report 
on our extension of CiaoPP to incorporate ACC and on how this instantiation 
of ACC already shows promising results. 

The article is organized as follows. Section 2 introduces some notation 
and preliminary notions on CLP and abstract interpretation. In Section 3, we 
present a general view of ACC. Section 4 describes the assertion language which 
is used to define our safety policy. Section 5 discusses the generation of pro­
gram abstractions. In Section 6, we present the verification condition generator 
which attests compliance of the abstraction with respect to the safety policy. In 
Section 7, we introduce an abstract interpretation-based checker which validates 
the safety certificate in the consumer. Section 8 reports on some experiments 
performed in the CiaoPP-based iinplenientation. Finally Seel ion 9 discusses the 
work presented in this article and related work. 

§2 Preliminaries 
We assume familiarity with constraint logic programming2"" (CLP) and 

the concepts of abstract interpretation161 which underlie most analyses in CLP. 
The remaining of this section introduces some notation and recalls preliminary 
concepts on these topics. 

2.1 Constraint Logic Programming 
Terms are constructed from variables (e.g.. X) and functors (e.g., / ) . We 

denote by {ATj >—> f] X„ i—* t„] the substitution a with a{Xi) — t, for all 



i = 1 7i with A'; 7̂  Xj if i ^ j and <r(AT) = X for any oilier variable A . 
where tj are terms. The identity substitution, which we denote by id is such 
that V.Y id(X) = X. A renaming is a substitution p for which there exists tin1 

inverse p~1 such that pp~] = p~lp = id, We say that a renaming p is a rt naming 
substitution of term /i w.r.t. term t% if 2̂ = p{t\). 

A KteraZ has the form p(tj /„) where p /n is a procedure name (pred­
icate symbol), n is its arity and U are terms. Most real-life (C')LP programs 
use procedures which are not defined in the program (module) being developed. 
Thus, procedures are classified into internal and external Internal procedures 
are defined in the current program (module), whereas external procedures are 
not. Examples of external procedures include the traditional "built-in" (prede­
fined) procedures, such as constraints, basic input/outpul facilities (e.g.. open). 
We will also consider as external procedures those defined in a different mod­
ule, procedures written in another language, etc. We assume the existence of 
a boolean function external s.t. external(p(f| tu)) succeeds iff the procedure 
p/n is external. A goal is a finite sequence of literals. A rule is of the form 
H:-B where H, the head, is a literal and B, the body, is a possibly empty finite 
sequence of literals. A CLP program, or program, is a finite set of rules. 

Example 2.1 (Running Example) 
The main procedure, create_streams/2, of the following CLP program receives 
a list of numbers which correspond to certain file names, and returns in the 
second argument the list of file handlers (streams) associated to tin- (opened) 
tiles: 

create_streams( [ ] , [ ] ) . 
create_st reams([NjNL],[FlFL]) : -

number.codes(N,ChInN), app("/tmp/",ChInN,Fname), 
safe_open(Fname,write,F) , create_streanis(NL,FL) . 

app([] ,L,L). 
app([XIXs] ,L , [XIY]) : -

app{Xs,L,Y). 

safe_open(Fname,Mode,F):-

atom_codes(File,Fname), open(File,Mode,F). 

It. defines the well-known list concatenation procedure app/3 and uses the follow­
ing external predicates. The call number^codesCN,ChInN) receives the number 
N and returns in ChInN the list of the ASCII codes of the characters comprising 
the representation of N as a decimal number. Then, it uses the well-known list 
concatenation procedure app/3. Note that lists are represented in this example 
by using quoted strings. The call atom_codes(File,Fname) receives in Fname 
a list, of ASCII codes and returns in F i l e the atom (constant) made up of the 
corresponding characters. Also, a call such as open(File,Mode,F) opens the 
file named F i l e and returns in F the stream associated to the file. The argu­
ment Mode can have any of the values: read, wri te , or append. Procedures 
number_codes/2, atom.codes/2, and open/3 are ISO-standard Prolog proce-



dures, and thus they are available in CiaoPP (in the iso-prolog library). 
In the following, we assume that all rule heads are normalized, i.e., H is 

of the form p{X\,.... X„ } where X], ...,X„ are distinct free variables. This is not 
restrictive since programs can always be normalized, and it will Facilitate the pre­
sentation of the algorithms later. For instance, the procedure create-Streams 
of Example 2.1 in normalized form is as follows. 

c r e a t e _ s t r e a m s U , Y ) : - X=[],Y=[]. 
create_straams<X,Y):- X-[NINL], Y=[FIFL], 

number_codeE(N,ChInN), T="/tmp/", 
appCT.ChlnN.Fname),Mode=write, 
safe_open(Fname,Mode,F), create_streams(NL,FL). 

2.2 Abstract Interpretation 
In Abstract Interpretation,1*' programs are interpreted over an abstract 

domain [Da) which is simpler than the corresponding concrete domain {D). 
An abstract value is a finite representation of a possibly infinite set of actual 
values in the concrete domain. Our approach relies on the abstract interpre­
tation theory."'1 where the set of all possible abstract semantic values which 
represents Dn is usually a complete lattice or cpo which is ascending chain fi­
nite. However, for this study, abstract interpretation is restricted to complete 
lattices over sets, both for the concrete (2 , C) and abstract {Da.Q) domains. 
Abstract values and sets of concrete values are related via a pair of monotonic 
mappings (0.7): abstraction a : 2D —• D„. and amcretization 7 : Da —* 2D, 
such that V.r. £ 2D : 7(0(1)) 2 J and Vy e Da : a(^(y)) = y. In general L 
is induced by C and a. Similarly, the operations of least upper bound (u) and 
greatest lower bound (n) mimic those oF 2D in a precise sen.se. 

In oui framework, the safety properties thai the execution of a program 
must satisFy are defined as abstract substitutions. This allows us to express 
properties in terms of abstract domains. In turn, different domains can be used 
for different safety properties. The abstract (or description) domain we use in 
our examples is the following regular type domain.17 

Example 2.2 (regular type domain) 
Wo refer to the regular typt domain as eterms, since it is the name it has in 
CiaoPP. Abstract substitutions in eterms,**' over a set of variables V, assign a 
regular type to each variable in V. We use in our examples term as the most 
general type (i.e.. term = T corresponds to all possible terms). We also allow 
parametric types such as l i s t ( T ) which denotes lists whose elements are all 
of type T. Type l i s t is equivalent to l i s t ( t e r m ) . Also, l i s t ( T ) C l i s t C. 
term for any type T. The least general substitution ± assigns the empty set of 
values to each variable and indicates that the corresponding program point is 
unreachable. 

Apart, from predefined types, in the eterms domain, the user can define 
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regular types by means of Regular Unary Logic programs/'"' ' For instance, in 
the context of mobile code, it is a safety issue whether the code tries to ac­
cess files which are not related to the application in the machine consuming the 
code. A very simple safety policy can be to enforce that the mobile code only 
accesses temporary Hies. In a UNIX system this can be controlled (under some 
assumptions) by ensuring that the file resides in the directory /tmp/. The fol­
lowing regular type safe_name defines this notion of safety, where the regtype 
declarations are used in CiaoPP to define new regular types: 

:- regtype saie_name/l. 

safe_name("/tmp/"I|L) :- list(L,alphanum_code). 

:- regtype alphanum.code/l. 

alphanuiE_code(X):- alpha_code(X). 

alphanum_code(X):- num_code(X). 

:- regtype alpha_code/l. 

alpha_code(X):- member(X, "abcdefghijklmnopqrstuvTJzyz") . 

alpha.code(X):- member(X,"AECDEFGHIJKLMNQPQRSTUVMXYZ"). 

The regular type num.code(X) : - member(X,"0123456789.eE+~") is predefined 
in the system. The abstract property made up of substitution {Xi—>saf e_name} 
expresses that X is bound to a string which starts with "Vtmp/" followed by a 
list, of alpha-numerical characters (we use "I I" to denote list concatenation). In 
the following, we write simply safe_name(X) to represent it. The crucial point 
here is thai safe jiames cannot contain (back-)slaslics. As a result, there is no 
way saf ejiames can access files outside the /tmp/ directory. 

§3 A General View of Abstraction-Carrying Code 
An abstract interpretation-based certifier is a function certifier : Proa x 

A Don) x AInt —± ACe.rf. which for a given program P 6 Prog, an abstract domain 
Da e ADom and a safety policy /„ e AIni generates a certificate Certa € 
ACert. by using an abstract interpreter for Dn. which entails that P satisfies 
/„.. This abstract safety specification /„ embodii ei\ requirements, i.e.. 
it is an expression of the consumer's safety expectations. Its formalization in out-
context is the main issue of Section 4. In the following, we denote that /„ and 
Certa are specifications given as abstract semantic values of Du by using the 
same a. The basics for defining such certifiers (and their corresponding checkers) 
in ACC are summarized in the following five points and Equations: 

Analysis. We consider the class oi fixed-point semantics in which a (monotonie) 
semantic operator, Sr. is associated to each program P. The meaning of the 
program. JPJ, is defined as the least fixed point of the Sp operator, i.e.. [PJ = 
lfp(Sp). If Sp is continuous, the least, fixed point is the limit of an iterative 
process involving at most u) applications of Sp starting from the bottom element 

' Additionally such types are interred by the system independently of tin pre- or tiser-
defined types. 



of the lattice. Consider Ihe operator Sp which is the abstract counterpart of 
Sp. Using abstract interpretation, we can usually only compute [P] . , as [P] = 
lfp(S£). 

analyze(P.Dn} = lfp(57,) = n „ (D 

Correctness of analysis ensures that [PJ safely approximates [P] , i.e., [P] £ 

MI-PL). 
I In' generation of Equation (1) is the main issue of Section 5. 

Verification Condition. Let Certa be a safe approximation of P. If an abstract 
safety specification Ia can be proved w.r.t. C< ri,,. then P satisfies the safety 
policy and ( '< rfn is a valid certificate: 

C< rtQ is a ™/«/ certificate for P w.r.t. /,, if Certa C /^ (2) 

Equation (2) is explained in detail in Section 6. 

Certifier. Together, equations (1) and (2) define a certifier which provides pro­
gram fixpoints, [P ] Q , as certificates which entail a given safety policy, i.e., by-
taking Certa = I-PJc- Note that the two equations define the function certifier 
specified above. 

Checking. A checker is a function checker: Prog x ADomx ACeit —» bool which 
for a program P € Prog, an abstract domain D,-, £ ADom and a certificate 
Certa £ ACert checks whether Certa is a fixpoint of S% or not: 

theck{P,DQ,Certa) returns hue iff {Sp[CertQ) = Cvrta)(Z) 

The definition of a check function satisfying Equation (3) is the purpose of 
Section 7. 

Verification Condition Regeneration. To retain the safety guarantees, the con­
sumer must regenerate a trustworthy verification condition -Equation 2- and 
use the incoming certificate to test for adherence of the safety policy. 

P is trusted iff Certa C Ia (4) 

A fundamental idea in ACC is that, while analysis -equation (1)- is an iterative 
process which may traverse (parts of) the abstraction more than once until the 
fixpoint is reached, checking -equation (3)- is guaranteed to be done in a single 
pass over the abstraction {a single application of Sp). 

§4 An Assertion Language to Specify the Safety Policy 
The aim of this section is to present the safety policy In £ Alnt within 

the ACC approach. The purpose of a safety policy is to specify precisely the 
(abstract) conditions under which the execution of a program is considered safe. 
Assertions are syntactic objects which allow expressing a wide variety of high-
level properties of (in our case CLP-) programs. Examples are assertions which 
state information on entry points to a program module, assertions which describe 
properties of predefined procedures (built-ins), assertions which provide some 



type declarations, cost bounds, etc. They will allow us to have an expressive 
class of safety policies in the context of (constraint) logic programs. Intuitively. 
we assume that a program will be accepted at the receiving end. provided all 
properties stated within assertions can be checked, i.e.. the abstracl specification 
/,, expressed in the assertions determines the safety policy. This can be a policj 
agreed a priori or exchanged dynamically. 

The original assertion language3'1 available in CiaoPP is composed of sev­
eral assertion schemes. Among them, we only consider t lie following two schemes 
in AInt for the purpose of this article, which intuitively correspond to traditional 
pre- and postconditions on procedures: 

calls(B, {Xprr:;...: ,\'pri:}): This assertion scheme is used to express properties 
which should hold in any call to a given procedure, in a similar way to 
the traditional precondition. B is a procedure descriptor, i.e.. it has a 
procedure name (predicate symbol) as main functor and all arguments 
are distinct free variables, and Apre, i — I.... .11, are abstract proper­
ties of execution states. The resulting assertion should be interpreted 
as "in all activations of B at least one property XPr, should hold in 
the calling state." 

success(B,[\prei]\post): This assertion scheme is used to describe a postcon­
dition which must hold on each success state for a given procedure. 
B is a procedure descriptor, and Xpre and \p(>st are abstract proper­
ties about execution states. XpTe is optional and must be evaluated 
w.r.t. the description at the calling state to the procedure while con 
dition XFost is evaluated at the success state. If the optional AprP 

is present, then XPost is only required to hold in those success slates 
which correspond to call states sat isl'ving Xpri . Note that several suc-
cess assertions for the same procedure and with different A/v. may be 
given. 

Therefore, abstract properties Xprc and Xpost in assertions allow us to express 
I,, 6 AInt as conditions, in terms of an abstract domain Dft. that t he execution of 
a program must satisfy. Each condition is an abstract substitution corresponding 
to the variables in some literal. 

In existing approaches, safety policies usually correspond to some vari­
ants of type safety (which may also conl rol the correct access of memory or 
array bounds35'). In our system, the coexistence of several domains allows ex­
pressing a wide range of properties using the assertion language. They include 
several classes of safety policies based on modes, types, non-failure, termination, 
determinacy, non-suspension, non-floundering, cost bounds, and their combina­
tions. 

In general, it is the task of the compiler designer to define the safety 
policies associated with the predefined system procedures. In addition to these 
assertions, the user can optionally provide further assertions manually for user-
defined procedures. As depicted in Fig. 1, given an initial program P. we first 
define its Safety Policy Ia as a set of assertions AS in the context of an abstracl 
domain Da. The domain is appropriately chosen among a repertoire of abstract 



calls(number_codes(X,Y), {(num(X)jlistCY.num.code))}) 
calls(atom_codes(X, Y), {{constant (X);s t r ing(Y)) }) 

ca l ls (open(X,Y, .Z) , {constant(X), iojnode(Y)}) 
calls(safe_open(Fname,_,-), {safe.nameCFnaaie)}) 

success(number_codes(X,Y), T , (num(X),list(Y,num_code)}) 
success(atom_codes(X,Y),T , {cons tant (X) ,s t r ing(Y)}) 

success(open(X,Y,Z), T , {constant(X).iojnodeCY),stream{Z}}) 

Kij;. 2 Assertions for the Exam|>!i 

domains available in the system. The assertions are obtained from I he asserl ions 
for system procedures arid those provided by the user. Let. lis illustrate this 
process by means of an example, 

Example 4.1 (Safety Policy) 
Figure 2 shows the assertions which are relevanl to the program in our running 
example. The first lour rows correspond to c a l l s assertions, whereas the last 
three are success assertions. Out of the four c a l l s , t he first three are predefined 
in the system. For example, the first one states that calls to number.codes/2 
have to be performed with the first argument bound to a number or the second 
argument bound to a list of num.code. which is . ied t\pe thai includes 
the ASCII characters required for representing floating point (and integer) num­
bers as strings. The last c a l l s assertion is for procedure saf e_open and provides 
a simple way to guarantee that all subsequent calls to open are safe, ll can be 
read as "the calling conventions for procedure safe_open require that the first 
argument be a safejiame." The success assertion for open is predefined in our 
system and requires, upon success, the first variable to be of type constant, the 
second a proper io_mode and the last one of type stream. 

In contrast to traditional approaches, assertions are nol compulsory for 
every procedure. Thus, the user can decide how much efforl to put into writing 
assertions: with more of them, the intended semantics (and thus the partial 
I'Dim I ncss) of I he program is described more exhaustively and more possibilities 
arise for detecting problems. Indeed, pre- and post-conditions are frequently 
provided by programmers, specially in the case of libraries, since they are often 
easy to write and very useful not only for verification but also for example for 
generating program documentation. Nevertheless, the analysis algorithm is able 
to obtain sale approximations of the program behavior even if no assertions are 
given. This is not always the case in other approaches such as classical program 
verification, in which loop invariants are actually required. Such invariants arc 
hard to find and existing automated techniques are not always sufficient to infer 
I hem, so that often they have to be provided by hand. 

Note that the three success assertions shown in the example correspond 
to library procedures, Such assertions can be verified beforehand, and indeed 
they are verified in our implementation assuming that calls to such procedures 
satisfy the corresponding c a l l s assertions. Unfortunately, calls assertions for 
library procedures cannot be verified beforehand, since programs which use such 
procedures may do so incorrectly. Thus, in order to guarantee that the safety 
policy holds we only need to prove that the four calls assertions in Fig. 2 hold, 



§5 Generation of Program Abstractions 
This section introduces part of the certification process, represented to the 

lefl of Fig. 1. carried oui by the producer, namely the generation of an abstraction 
[P | r i which safely approximates the behaviour of the program (Equation 1 in 
Section 3). The generation of the verification condition from this certificate 
(Equation 2) will be discussed in the next section 

5.1 The Analysis Graph 
Global program analysis is becoming a practical tool in constrain! logic 

program compilation in which information about calls, answers, and the effect 
of the constraint store on variables at, different program points is computed 
statically.10'23'33"41'43' Essentially, an analyzer returns an abstraction of P's exe­
cution in terms of the abstract domain Dn. The underlying theory, formalized 
in terms of abstract interpretation,1"1 and the related implementation techniques 
are well understood for several general types of analysis and. in particular, for 
top-down analysis of Prolog."1" ih lu-28M| Several generic analysis engines, such 
as the one implemented in the CiaoPP system,**' PLA1." ,:" CAIA.!1 ami the 
CLP(7£) analyzer,'"" facilitate the construction of such top-down analyzers. As 
shown in Fig. I in principle the analyzer is domain -independent. This allows 
plugging in different abstract domains provided suitable interfacing functions are 
defined. From the user's point, of view, i! is sufficient In specify I lie particular 
absl racl domain desired during the generation of the safety assertions. Different 
domains yield analyzers which provide different kinds of information, degrees of 
accuracy, and efficiency. The core of each generic abstract interpretation-based 
engine is an algorithm for efficient fixed-point computation.13,31'33'39' 

In order to analyze a program, traditional (goal dependent) abstract in­
terpreters for (C)LP programs, such as those referenced above, receive as input, 
in addition to the program and the abstraci domain, a set S of calling patterns. 
Such calling patterns are pairs of the form A : CTP where A is a procedure de­
scriptor and CP is an abstract substitution (i.e.. a condition of the run-time 
bindings) of A expressed as CP € D„.': Given a program I' and a set S of call­
ing patterns in the context of an abstract domain D a , the analyzer constructs 
an and-or graph (or analysis graph) for S which ran be viewed as an abstraction 
[P], , . i.e.. a finite representation of the (possibly infinite) set of (possibly infi­
nite) AND-OR trees explored by the concrete execution of initial calls described 
by S in P.*' Fiiiiteness of the program analysis graph (and thus termination of 
analysis) is achieved by considering absl racl domains with certain characterisl ies 
(such as being finite, or of finite height, or without infinite ascending chains) or 
by the use of a witlciuni/ operator.1*' 

hi principle, calling patterns are only required for exported procedures. The analysis 
algorithm is able to general*- tlii-in automatically For the remaining internal procedures. 
Nevertheless, they can still be automatically L-,. i < mi. <[ liy assuming T (i.e., no initial 
data) for all exported procedures (although the idea is to improve this information in the 
initial calling patterns). 



Example 5.1 
Consider our running; example and assume that we are interested in analyzing it 
for the call create_streams(X. Y) with initial description list(X. nam), indicat­
ing that we wish to analyze it for any call to create_streams/2 with the first 
argument being a list of numbers. In essence the analyzer must produce the 
program analysis graph given in Fig. 3. 

The graph has two sorts of nodes. Those which correspond to literals are 
called "OR-nodes". The OR-node in the root: 

'""^•"•""•'create.streamstX.y)'"'1^'"'""1 ' ' '^"'*'••"" } 

indicates that when the literal create_streams(X, Y) is called with description 
hst(X,num) the answer (or success) substitution computed is (/y.sl(.Y,K'um), 
lif>t(Y, stream)} 

Those nodes which correspond to rules are called "AND-nodes." In Fig. A, 
they appear within a dashed box and contain the head of the corresponding 
clause. Each AND-node has as children as many OR-nodes as literals there are 
in the body. We indicate with the symbol • that the rule is a fact with no 
literals in the body. And the symbol o denotes that the code for this procedure 
is not available (i.e., it is an external procedure). These rules are annotated 
by abstract descriptions (referenced by numbers 0 , . . . , 13 whose corresponding 
description appears to the bottom of the figure) at each program point when 
the rule is executed from the calling pattern of the node connected to the rules. 
The program points are at the entry to the rule, the point between each two 
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literals, and at the return from the call. If a child OR-node if- already in the 
tree, it. is not further expanded and the currently available answer is used. For 
instance, the analysis graph in Fig. 3 contains two occurrences of the abstract 
literal create_streams(X. Y) : list(X.num) (modulo renaming), but only one of 
them has been expanded. This is depicted by an arrow from the non-expanded 
occurrence of create-Streams(X. Y) : lisf(X. num) to the expanded one. How 
this program analysis graph is constructed and the meaning of the auxiliary type 
sf is detailed in Example 5.2 below. 

For a given program and set of calling patterns there may be many differ­
ent analysis graphs. However, for a given set of initial calling patterns, program, 
and abstract operations on the abstract domain, there is a unique least analysis 
graph which gives the most precise information possible. 

5.2 The Analysis Algorithm 
The aim of this section is two-fold. First, we introduce an analysis algo­

rithm which computes an analysis graph. Second, we identify" the fragment of 
the information stored in such graph which is sufficient in order to play the role 
of safety certificate, written as Gerta = [-P]„. 

The analysis algorithm presented is an extension of the generic analy­
sis algorithm m2'2) in order to handle (constraint) logic, programs with external 
(including imported) procedures. For this, our analyzers rely again on assertion-
based techniques.'17' Intuitively, our analyzer trusts the information stated in the 
success assertions for external procedures by considering the answer pattern in 
them a safe approximation of the concrete answer patterns. In our algorithm, 
the analysis of external procedures is handled by the function Atrust which is 
introduced below. The details about analysis of modular programs can be found 
in38) and are out of the scope of this article. 

The program analysis graph is implicitly represented in the algorithm by 
means of two data structures, the answer table and the dependency arc table. 
Given the information in these, it is straightforward to construct the graph and 
the associated program point annotations. The answer table contains entries of 
the form A : CP i-> AP, where .4 is always a base form and AP and CP an 
abstract substitutions. This corresponds to OR-nodes in the analysis graph oi 
the form CPAAP. A dependency arc is of the form Hk : Cl:\\ => [CP\] Bk.j : 
CP-2- This is interpreted as follows: if the MM with //;, as head is called with 
description CPa then this causes literal /J*., to be called with description CP-2-
The remaining part CP{ is the program annotation just before Bk,i is reached 
and contains information about all variables in rule k. Note hat -he annotation 
CP\ is not, really necessary, as it could be recomputed, but it is included for 
efficient recomputation. As we will see below, dependency ares are used for 
enforcing recomputation until a fixed point is reached, 

Intuitively, the analysis algorithm is a graph traversal algorithm which 
places entries in the answer table and dependency arc table as new nodes and ares 
in the program analysis graph are encountered. In order to guide computation, 
we need a third data structure for storing the events which are to be handled. 



Events are of three forms: 
»(:Wcal.l(A : CP) which indicates that a new calling pattern for literal A 
with description CP has been encountered. 

- arc(Hh : CP0 => \CP{\ BkA : CP2) which indicates that the body of rule k 
needs to be processed from position i, i.e., from body literal lh, , until the 
end of rule k, using the annotation CP\. 
itpdated(A : CP) which indicates that the answer description to calling 
pattern A with description CP has been changed. 

Rather than simply using a stack or a. queue for storing events, which 
would result in a depth-first or a breadth-first traversal, respectively, we use a 
prioritized event queue. This allows capturing the sophisticated graph traversal 
strategies used in optimized fixed-point algorithms. For example, note that 
there are three different classes of events and we may be interested in assigning 
different priorities to each class of events. Coming up with an efficient, strategy 
is out of the scope of this paper. A detailed discussion with concrete proposals 
can be found.'11" 

Our analysis algorithm is given in Fig. 4. It, is defined in terms of five 
abstract operations on the abstract domain Da of interest: 

Arestrict( CP. V) performs the abstract restriction of a description CP to the 
set of variables in the sel \ . denoted ™.i-.s-(V'): 

- Aextend(CP, V) extends the description CP to the variables in the set \'\ 
- Atrust(.4, CP) returns an answer pattern for an external procedure .4 which 

is a safe approximation of the concrete answer patterns for all call patterns 
described by CP\ 
Aconj(CPi, CP-i) performs the abstract conjunction of two descriptions; 
Alub(CPi, CP2) performs the abstract disjunction of two descriptions. 

\purt from the parametric description domain-dependent, functions, the al­
gorithm has several other undefined functions. The functions add.event and 
next_event respectively add an event, to the priority queue and return (ami delete) 
the event of highest priority. 

When an event being added to the priority queue is already in the priority 
queue, a single event with the maximum of the priorities is kept in the queue. 
When an arc Hk : CP => [CP"]Bjlli • CP" is added to the dependency arc table, 
it replaces any oi her arc of the form Hk : CP ^ \\BkA : . in the table and the 
priority queue. Similarly when an entry Hk : CP 1— AP is added to the answer 
table, it replaces any entry of the form Hk : CP i-> -. Note thai the underscore 
(_) matches any description, and that there is at most one matching entry in 
the dependency arc table or answer table at. any time. The function initiaLguess 
returns an initial guess for the answer to a new calling pattern. The default 
value is _L but if the calling pattern is more general than an already computed 
call then its current value may be returned. 

The algorithm centers around the processing of events on the priority 
queue in mainJoop, which repeatedly removes the highest priority event and 
calls the appropriate event-handling function. When all events are processed it 
calls remove.useless-calls. This procedure traverses the dependency graph given 
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by the dependency airs from the initial calling patterns S and marks those enl ties 
in the dependency arc and answer table which are reachable. Those remaining 
air removed. 

The function new.calling.pattern initiates processing of the rules in the 
definition of the interna! literal ,4. by adding arc events For rack of the first 
literals of these rules, and determines an initial answer for ihe calling pattern 
and places this in the table. The function add.dependent.rules adds arc events 
for each dependency arc which depends on the calling pattern A : CP for which 
the answer has been updated. The function process_arc performs the core of 
the analysis. It performs a single step of the left-to-right, traversal of a rule 
body. II" the literal B^ , is not For an external procedure, the arc is added to the 
dependency arc lable. The current answer for the call B^,, : CP-2 is conjoined 
with the description CP\ from the program point immediately before Bt, , to 
obtain the description For the program point after Bk ,. This is either used to 
generate a new arc event to process the next literal in the rule if B^,- is nol 
the last literal: otherwise the new answer for the rule is combined with the 
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current answer in insert.answerJnfo. The function get_answer processes a literal. 
The current answer to that literal for the current description is looked up; then 
this answer is extended to the variables in the rule the literal occurs in and 
conjoined with the current description. The function lookup.answer Hist looks 
up an answer for the given calling pattern in the answer table and if it is not 
found and the procedure is local, it places a newcall event. Otherwise (the 
procedure is external), it uses Atrust to obtain a safe answer pattern. Finally. 
insert-answerJnfo, updates the answer table entry when a new answer is found. 

Theorem 5.1 (correctness22) 
For a program P and calling patterns S, the analysis algorithm of Fig. 4 returns 
an answer table and dependency arc table which represents the least program 
analysis graph of P and S. 

A central idea in ACC is that, for certifying program safety, it suffices in 
send the information stored in the analysis answer table. The theory of abstract 
interpretation guarantees that the answer table is a safe approximation of tin-
runtime behavior (see*'"'39' for details). In contrast to this analysis algorithm, a 
simple checker can be designed for validating the answer table wiiluml requiring 
the use of the arc dependency table at all (as we show in Sect. 7). 

5.3 An Example 
The following example illustrates the operation of the fixed-point algo­

rithm. It shows how the craate^streams program is analyzed, to obtain the 
program analysis graph shown in Fig. 3. We use in our example well-known 
abstract operations for a regular type domain, in particular, the operations for­
malized in '" for the ett rms domain described in Example 2.2. For the analysis of 
library procedures, we assume i hat the parametric routine Atrust returns the fib 
struct descriptions which appear in the three success assert ions shown in Fig. 2 
for the corresponding library procedures. This can be done safely because, as 
already mentioned, such success assertions have been verified beforehand. 

Example 5.2 
Analysis begins from an initial set S of catling patterns. In our example S 
contains the single calling pattern c rea te streams(X,Y) :list(X. nam). I 
brevity, variables which do not appear in abstract substitutions are assumed 
to be "t«rm". Also nil(X) indicates that X is the empty list. The first step 
in the algorithm is to add the initial calling patterns as a newcall event to the 
priority queue. After this the priority queue contains 

newcai1 (create .streams (X,Y) \list(X, num.)) 
and the answer and dependency arc tables are empty. The newcall event is 
taken from the event queue and processed as follows: for each rule defining 
create_streams. an arc is added to the priority queue which indicates the rule 
body which must lie processed from the initial literal. An entry for the new 
calling pattern is added to the answer table with an initial guess of X as the 
answer. The data structures are now: 



priority queue: 

(H'r(create_streams(X,Y):fo£(X,num) => [iis£(X, num)] X=[] :list(X, num.)) 
firc(create.streains(X,Y):list(X,num) =f> [list{X,num)] X=[NlNL] : list(X,num)) 

answer table: 
create_streams(X, Y) :list(X, num) i-» i . 

dependency arc table: 
ini entries 

An arc on the even! queue is now selected for processing, say the Erst. The 
routine get.answer is called to find the answer pat tern to the literal X=[] with 
descripi ion list(X, num). As t he literal is an external constraint, the parametric 
routine Atrust is used. It returns the answer pa t tern {/;>/(,V. num),nil(X)}. A 
new arc is added to the priority queue which indicates that the second literal in 
the rule body must be processed. The priority queue is now 

arc(create.streams(X,Y) :list(X,num) => [list(Xtnum),nil(X)] Y=[]:{ }} 
<i/i-(create_streams(X,Y) :list{X,num) => [/ist(X,nii,m)]X-[N[NL] :list(X,num)) 

The answer and dependency arc table remain the same. 
Again, an arc on the event queue is selected for processing, say the first. As 

before, get-answer and Atrust are called to get the nexl annotation {list{ A. num \. 
ri.il (.V), nil {}')}. This time, as there are no more literals in I he body, the entry for 
c r e a t e _ s t r e a m s ( X , Y ) : l i s t ( X , n u m ) in the answer table is updated. Alub is used 
to find the least upper bound of the new answer [list(X, num),nil(X), nil(Y)} 
with the old answer X. This gives {list(X,num), nil(X), nii(Y)}. The entry 
in the answer table is updated, and an updated event is placed on the priority 
queue. The data structures are now: 

priority queue: 
updatt </(create_streams(X,Y) :list{X. num)} 
a / ' c (c rea te_s t reams(X,Y) :list(Xinum) => 

[lit,t{\. num)] X=[N|NL] :list(X, num)) 
answer table: 

c r e a t e _ s t r e a m s ( X , Y ) :list{X, num) i-» [list(X, num), II/I(X), nil(Y I} 
dependency are table: 

no entries 

The updated event can now be processed. As there arc no entries in the depen­
dency arc table, nothing in the current program analysis graph depends on the 
answer to this call, so nothing needs to be recomputed. The priority queue now 
contains 

are{ c r e a t e . s t r e a m s ( X , Y) :list(X,num) => 
[Ust{X,num)] X=[N|NL]: list(X,num)) 

The answer and dependency arc table remain the same. Similarly to 
bcliiic we process the arc. giving rise to the new priority queue 

fMY-(create_streams(X,Y) :list(X, num) =*• 
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[liat(X,num))num{N),list(NL,num)] Y=[F|FL]:{ }). 

The arc is processed to give I lie priority queue 

r7rv(create_streams(X,Y) :list(X, num.) => 
[list(X,num),num(N),list{NL,num),Y = \F\FL}} 

number.codes(N,ChInN) :rium{N}) 

Note that CiaoPP creates the regular type r t 2 to represent a term whose top-
level functor is a list constructed with F as head and FL as tail. For simplicity, 
we just write this description a.s Y=[F|FL] in the following. 

This time, because number.codes(N,ChInN) is an external literal, the 
parametric routine Atrust is used and no dependency is stored (as success pat­
terns for external procedures arc never updated). As a result, the data structures 
are now: 

•priority queue: 
rjrr(create_streams(X,Y) :list(X. mini) => [list(X,nwm),num(N), 

Ust{NL,num),Y = [F\FL}.iis1{CliItiX.iunn^code)] T="/tmp/":{ }) 
answer table: 

create.streams(X,Y) :list(X, iiiini) t-+ list(X,num),riil(X),nil(Y I 
ntunber.codesCN.ChlnN} :mim(N) i-> uum(N), l:>st( ChhiN. num.code) 

dependency arc table: 
no entries 

Following the analysis, we process the unique are in tin' priority queue, 
obtaining the new priority queue; 

priority queue: 
«/r(create_streams(X,Y) ://,s/(.Y. tumi I => \llst(X, mini). num(N), 

list(NL,num),Y = [F\FL],list(ChInN, num.code),T = " / tmp/"\ 
app(T,ChInN,Fname) :T = "/imp/" Jist{ChInN, mini codt \) 

Similarly as done so far. and skipping the intermediate steps, we obtain 
finally the following data structures in which, the dependency arc table contains 
a different arc for each one of the literals in the second rule of create_streams 
which are not external. 

priority qui in : 

(ui(create.streams(X,Y} :list(X,num) => CP 
create-Streams(NL,FL): list(NL, nnm ) I 

answer tabic: 
create.streams(X,Y) :list{X, mnn) i— {lisi(X. mini), nil(X), nil(Y)} 
number_codes(N,ChInN) :num(N) M {num(N), Ust(ChInN. num.vodi ) \ 
app(T,ChInN,Fname) :{Hst{ChInN, numj-odc). T = "/trap/"} w 

{list(ChInN,num-code),T = " /imp/" ,sf(Fname)} 
safe_open(Fname,Hode,F): {sf(Fname). Mode = write} i—» 

{sf(Fname). Mode = -write, stream{F)} 
atom_codes(File,Fname) isf(Fname) >—>• {constant(File),sf(Fname)} 
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open (F i l e , Mode, F) : {constant (File), Mode - write} t-t 
{constant(File), Mode - writ*. sin am [ !•")} 

where 
CP = [ list{X, num),num(N),list(NL,num), Y = [F\FL], 

l/st( ChlnN, mini.code). sf(Fname), constant( Fill !. 
Mode = write, stream(F), T = "jimp/'" |. 

It is interesting to note that CiaoPP creates the auxiliary type: 

s f (" / tmp/"I |A) :-list.(A,nwn_code). 

to represent strings which start with the prefix "/tmp/" and continue with a list 
of type num_code. Since all num.codes are also alphanum.codes. it is clear thai 
sf C saf ejname. This will allow our system to inter that calls to open performed 
within this program satisfy the simple safety policy discussed in Example 4.1. 
Therefore, the information stored in the answer table is sufficient to attest I he 
safety policy. Also, we use the notation Var — constant to denote that the 
system generates a new type whose only element is this constant, as it happens 
for wri te , in the entries for safe.open and open and. for "/tmp/", in the entry 
for app. 

Now, the call get_answer for the recursive call create_streams(NL,FL) : 
list(NL, num) is made. The answer table is looked up to find the answer 
ami, appropriately renamed and restricted to the variables in the call, gives 
Al'„ \iiil[:\!L). nit(FL). list{NL,num)}. This description is extended to all 
variables (no change) and then conjoined with CP to give I he next annota­
tion {nil(X),nil(Y),list(X,num), list(Y,stream)}. We take tin- least upper 
bound of this answer with the old answer in the table, giving {list(X.n.n.m). 
list( Y. stream)}. The answer table will replace (he current annotation for crea­
t e -Streams(X,Y): Hst(X.num) by: 
create.streams(X. Y) :list(X, num) t-* {list(X, num),list(Y, stream)} adding 
the processed arc to the dependency arc table. 

As the answer has changed, an updated event is added to the priority 
queue. The priority queue contains: 

updafcd(create_streams(X,Y) :list(X, num ) ] 

The updated event is processed by looking in the dependency are table for all arcs 
which have a body literal which is a variant of create_streams(X,Y) ://>•/( A". 
num) and adding these arcs to the priority queue to be reprocessed. There is 
only OIK1 (the last processed arc). After reprocessing this arc we obtain as answer 
[list(X,num),Iiat(Y, stream)}. Taking the least upper bound of this with the 
old answer, the result is identical to the old answer, hence no updated event is 
added to the priority queue. As there are no events on the priority queue, the 
analysis terminates. 

As a result of the whole analysis, the answer table computed by CiaoPP con-
tains (among others) these entries: 



Procedure 

create.streams(A,B) 
number_codes(A,B) 
app(A,B,C) 

safe.apen{A,B,C) 
atom-Codes(A,B) 
open(A,B,C) 

< 'illlill"; 1 ':il l lT l l S in i e s s Pill !<•• 1] 

l ist(A,num) 
num(A) 

A="/tmp/", 
l i s t (B,num.code) 

s f (A) ,B=vri te 
sf(B) 

constant(A),B=write 

liat{A, num).list(B, stream) 
num(A),listCB,num.cod«) 

A="/tmp/'\ 
list(B.num-Code) ,sf (C) 

sf(A),B=write,stream(C) 
constant(A),sf(B) 

constant(A),B=write,stream(C) 

Wc show in the next section that the information stored in the above table can 
be taken as Certa, i.e., Cert,a - AT, because it is sufficient to certify that the 
mobile code is safe according to the policy defined in Example 4.1. 

In order to increase accuracy, analyzers arc usually multivariant on calls 
(see, e.g., " ' ) . Indeed, though not visible in this example. CiaoPP incorporates 
a multivariant analysis, i.e., more than one triple (A : CP\ •-> AP\) (-4 : 
CP„ H-> APn), n > 1 with CPj ^ APj for some i,j may be computed for the 
same procedure descriptor A. 

§6 The Verification Condition 
As part, of the certification process carried out by the code producer, 

the verification condition generator (VCGen in Fig. 1) extracts, from the initial 
assertions /,, and the abstraction Certa,

 a Verification Condition (VC) which 
can be proved only if I he cxecut ion of the code does not violate the safety policy. 
In particular, we are interested in studying the implications of comparing the 
intended safety policy described in Section 4. denoted /„. with the program 
abstraction described in Section 5, denoted \P][U. Therefore. VCGen generates 
a VC which encodes the comparison [ f ] | 0 C Ia in Equation (2). If VC can be 
proved (marked as OK in Fig. 1), then the certificate (i.e.. the abstraction) is 
sent together with the program P to the code consumer. 

Definition 6.1 (VC - verification condition) 
Let AT be an analysis answer table computed for a program P and a set of 
calling patterns S in the abstract domain Da. Let I be an assertion. Then, the 
verification condition, VC(I, AT), for I w.r.t. AT is defined as follows: 

f\ (p(CP) g XPrec v . . . v p(CP) c XPrec) 
(A>.CP>-AP)€AT 

ifI=calls(B,{XPrec;...;\Prec}) 
VC[I,AT)::= { 

/ \ p{CP) n XPree = J_ V p{AP) C \Post 

(A:CP<->AP)eAT 
if 7 = success{B, Ap7.ec, \Posi) 

where /> is a variable renaming substitution of A w.r.t. B. 
If/„ is a finite set of assertions, then its verification condition, VC(Ia,AT), 

is the conjunction of the verification conditions of the elements of Ia. 
Roughly speaking, the VC generated according to Def. G.l is a conjunc­

tion of boolean expressions (possibly containing disjunctions) whose validity en-



SUITS the consistency of a set of assertions w.r.t. the answer table computed by 
Analysis, see Equation (1). It. distinguishes two differenl cases depending on i he 
kind of assertion. For calls assertions, the VC requires that at least one precon­
dition Apre£. be a safe approximation of each existing abstract calling patterns 
For the literal B. In the case of success assertions, there are two cases for ilicm 
to hold. The first one indicates that the precondition is never satisfied and, thus. 
the assertion trivially holds (and the postcondition dues not need to be tested). 
The second corresponds to the case in which the success subsl itutions computed 
by analysis for the procedure are equal or more particular than the one required 
by the assertion. 

Example 6.1 (Verification Condition) 
Consider the answer table generated in Example 5.2 and the calls and sn> 
assertions of Fig. 2. According to Definition (i. I. the VC is: 

num(X) C (num(X); list(Y.num_code)} A 
sffY) C (constant(X);string(Y)) A 

constant(X). Y = wri te C constant(X). iojnode(Y) A 
sf(X) C safe-name(X) 

Each conjunct, corresponds to a calls assertion in Fig. 2 in the same order they 
appear there. As already mentioned, success assertions for predefined proce­
dures are verified beforehand. 

The validity of the whole conjunction can be easily proved by taking into 
account the following (trivial) relations between the elements in the domain: 

sf(X) C. string(X) 
X = wri te C. io_mode{X) 

Note that the first two conjuncts contain a disjunction in the right hand condi­
tion. In the second one, the condition sf(Y) C (constant(X): string(Y)) holds 
because sf (Y) C string(Y). 

Therefore, upon creating the answer table and generating the VC, the 
validity of the whole boolean condition is checked bj resolving each conjunct 
separately. Note that each conjunct consists of comparisons of pairs of abstract 
substitutions, which simply return either true or false but do not compute any 
substitution. This validation may yield three different possible outcomes: i) 
the VC is indeed checked and the answer table is considered a valid abstraction 
(marked as OK), ii) it is disproved, and thus the certificate is not valid and 
the code is definitely not safe to run (we should obviously correct the program 
before continuing the process); iii) it can neither be proved nor disproved. The 
[alter case happens because SOUK1 properties are undecidablc and the analyzer 
performs approximations in order to always terminate. Therefore, it may not 
be able to infer precise enough information to verify the conditions. The user 
can then provide a more refined description of initial calling patterns or choose 
a different, finer-grained, domain. Although, it is not shown in the picture, in 
both the ii) and iii) cases, the certification process needs to be restarted until 
achieving a VC which meets i). 



The following theorem stales the soundness of the VC. Intuitively, it 
amounts to saying that if the VC holds, then the execution of the program 
will preserve all safety assertions. Following the nutation of.J'" we write >1 ( ' 
when VC is valid. 

Theorem 6.1 (Soundness of the Verification Condition) 
Let AT be an analysis answer table for a program P and a set of calling patterns 
S in an abstract domain Da (as defined in Fig. 4). Let Ia be a set of assertions. 
Let VC(Ia,AT) be the verification condition for Ia w.r.t. AT (generated as 
stated in Def. 6.1). If >VC{Ia.AT), then P satisfies all assertions in Ia for all 
computations described by S. 

This result directly derives from the fad lhal the static analysis algorithm 
computes a safe approximation of the states reached during computation (see 
Theorem 5.1). 

!;7 Checking Safety in the Consumer 
The checking process performed by the consumer is illustrated on t he right 

hand side of Fig. 1. Initially, the supplier sends the program P together with 
the certificate to the consumer. To retain the safety guarantees, the consumer 
can provide a new set of assertions, denoted J ' , which specifies the Safety Policy 
required by this particular consumer. It should be noted that ACC is very 
flexible in that it allows different implementations on the way the safety policy 
is provided. Clearly, the same assertions used by the producer, denoted IQ. can 
be sent to the consumer. But, more interestingly, the consumer can decide to 
impose a weaker safety condition, i.e., /„ L T'a, which can be proved with the 
submitted abstraction since / ' j /.,. Also, the imposed safety condition can 

be stronger, i.e., I'a C /„ and it may not be provable if it is not implied by the 
current abstraction [Pfla (which means that the code would be rejected), From 
the provided assertions, the consumer must generate again a trustworthy VC and 
use the incoming certificate to efficiently check that the VC holds. Thus, in the 
validation process, a code consumer not only checks the validity of the answer 
table (Equation 3) but it also (re-[generates a trustworthy VC (Equation 4). 
The validation of AT in Equation 3 is carried out by the Analysis Checker. The 
re-generation of V(' in Equation 4 (and its corresponding validation) is Identical 
to the process already discussed in the previous section. Therefore, this section 
describes only the first part of the validation process. 

7.1 Fixed-point Checking 
Although global analysis is now routinely used as a practical tool, it is 

still unacceptable to run the whole Analysis to validate the certificate since it 
involves considerable cost. One of the main reasons is that the analysis algorithm 
is an iterative process which often computes answers (repeatedly I for the same 
call due to possible updates introduced by further iterations. At each iteration, 
the algorithm has to manipulate rather complex data structures—which invoke 
performing updates, lookups, etc. until the fixed point is reached. The whole 



validation process is centered around the following observation: 

The checking algorithm can be defined as a very simplified "one-pass" 
analyzer. 

The Analysis process can be understood as: Analysis = fixedpoint(analy-
sisstep). I.e., a process which repeatedly performs a traversal of the analy­
sis graph (denoted by analysis step) until the computed information does nut 
change. The idea is that the simple, non-iterative, analysisstep process can play 
the role of abstract interpret at ion- based checker (or simply analysis checker). In 
other words, checks tma!tisis_sttp. Intuitively, since the certification process 
should provide a correct fixed-point result (i.e.. JP]],J as certificate, an additional 
analysis pass over this fixed point, should not change the result, Otherwise, the 
current: answer table is not a valid abstraction of the program. Thus, in our con 
text, as long as the answer table is valid, one single execution of analysisstt p 
is required to validate the certificate, as stated in Equation (3). 

7.2 The Checking Algorithm 
The next definition presents our abstract interpretation-based checking al­

gorithm. It receives as an additional input a Certa (which is the analysis fixed 
point). In a single traversal, it constructs a program analysis graph by using 
the information in Certa. The algorithm is devised as a graph traversal pro­
cedure which places entries in a local answer table, AT, as new nodes in the 
program analysis graph are encountered. Thus, it handles two distinct answer 
tables: the local AT + the incoming Certa. The final goal of the checking is 
to reconstruct the analysis graph and compare tin1 results with the information 
stored in Certa. As long as Ccrfa is valid, both results coincide and. thus, the 
certificate is guaranteed to lie valid w.r.t. the program. 

Definition 7.1 (Analysis Checker) 
Let P be a normalized program and S be a set of calling patterns in the abstract 
domain Da. Let Ce.rta be an answer table (or safety certificate) as defined in 
Figure 4. The validation olCcrta is performed by the procedure check depicted 
in Fig. 5. The algorithm uses a, local answer table, AT. to compute the results 
(initially it does not contain any entry). 

Following the presentation of the analysis algorithm in Section •lj.2. we as 
sume i hat t he program P and the answer table are global parameters t hroughout 
I he algorithm. The cheeking algorithm proceeds as follows: as in the analysis 
algorithm, the procedure process.arc is aimed al computing the resulting de­
scription CP„ after processing a given literal Bi;A. The computed result is used 
to process the next literal in the rule when B^j. is not the last one. Otherwise, 
the computed result constitutes indeed the computed answer for the rule. The 
difference w.r.t. the analyzer is that the answer is combined with the correspond­
ing answer supplied by the certification process in Certa. If Certa is valid, the 
comparison should hold; otherwise the process prompts an error and the pro­
gram is not. safe to run. Therefore, no control structure is needed in order to 
guarantee that a fixed point is reached. This eliminates I he need for the "event 



checkf S. Cert,-,) 
foreach .-1 : CP £ S 

proces5.node(.4 : CP.C'i rl,, ) 
r e t u r n Valid 

process_node(.l : CP.Ct it,, | 
if (3 a renaming a s.t. a(A : CP •— AP) in (\ rl:, i 

then add (A : CP <-> AP) to AT 
else return Error 

if (not external (A)) 
foreach rule Ak t— Bkl Sfc,n.i. '"' P 

W := rars(Ak,BkA Bk.nk) 
CPb :=A«xtend( CI'. varm HkA B f c , „ f t )) 

CPRi := Are<,tricU.CPtj,Bkli) 
foreach Bk , in the rule body i = 1 »k 

CPa := process_arc(£ t,, : CPR*. CJ\. IV. O r t Q ) 
if i/ nk) then CPU, := Arestrict(CP„, rar(Bk ,+ , i) 
crf, ;= CP* 
<"/ ' / , ' , , : = C P P „ 

W' I : = Arestrict(CP (1.i 'o.rs(v4 fc)) 

AP2 := Alub(APi,<T_ 1(^^)) 
if .4P < > AP2 then return Error 

else %• external(A)) 
AP\ — Atrust(A, C P ) 
if <7_1(AP) < > APi then return Error 

process_arc(;?,,., : CPRb,CPb,W,Certa) 
if ( ^ a renaming rr s.t. <r(Bfc,, : C P P h i— AP1) in A I 
l . i l l ' l l 

process-node (£?n-., : CPRf,,Certa) 
. IP | := Aextend (/>_I(.4P), IT) where p is a reiiamh ;• 

,,Hh , .ci'li,,- AP) in AT 
<7>, .= Aconj (CPb.APl) 
return ( 7 ' , 

Fig. 5 Abstract Interpretation-based Checking in CiaoPP 

queue" of the analysis algorithm in Fig. 4. Moreover, since onh one traversal 
of lilt' analysis graph is to be performed, no detailed dependency information is 
required. This eliminates the need fur the •'dependency arc table" of the analysis 
algorithm. As a result, check is a suitable procedure for determining the validiu 
of the certificate. 

The following theorem ensures that algorithm check is able to validate 
safety certificates which are stored in a valid analysis answer table. 

Theorem 7.1 (partial correctness) 
Let P be a program, let S be a set of calling pat terns in an abstract domain 
[),,. Lei C'tit,, be an answer table for P and S as defined in Fig. 4. Then, 
check(,S', Ct rta) terminates and, if it returns Valid, then Cert,a is an absi racl ion 
of P and S. 

The theorem is implied by the definition of fixed point and the fact that check 
is a single pass of a correct Analysis algorithm.221 Indeed, it is immediate to 



see that algorithm check has been obtained as » simplification of the algorithm 
Analysis. 

Another issue is the efficiency of the checking algorithm. Our point to 
justify an efficient behavior of check for validating an answer table is that it 
performs a single graph traversal. Indeed, for a regular type domain,1"' demon­
strates that directional type-checking for logic programs is fixed-parameter lin­
ear. Section 8 reports experimental evidence of efficiency issues 

7.3 An Example 
We describe the more representative steps that algorithm check performs 

in order to validate the answer table of Example 5.2. 

Example 7.1 
Consider the answer table, called Certat of Example 5.2. First, procedure 
process_node looks up an answer for the initial calling pattern in (. '< rta and 
adds the entry 

(create_streams(X, Y) :list{X, num.) >-* AP = {lii1(X. nam). Iisli V. slirmn)}) 

to the answer table .47 (note that, for short, we use AP to denote this par­
ticular answer pattern). Since there are two rules defining create .s t reams the 
outermost loop performs two iterations: 

Iter 1. We start by describing the processing of the first rule (although the 
order is irrelevant). Since the first literal X=[] in the rule body is a constraint, 
its description is computed within procedure process.arc by adding its abstraci 
description, i.e., {nii{X)}, to the initial description {list(X, mnu)}. resulting in 
{nil(X)Jist(X, num)}. Similarly, the analysis for the second constraint adds 
\nil(Y)} to the former description producing {nil(X), nil(Y), list{X, num)}. 
Upon exiting the innermost loop, the disjunction of this description with the 
answer stored in Ctrl,, is calculated: 

AP, := Alub({nil(X),nil(Y),list( V. nurn)},AP) 

since nil(X) L list(X,num) and nil{Y) E Ii*t(Y,.stream], then AP2 - AP. 
Thus, the certificate holds for this rule. 

Iter 2. In the second iteration, we find eight literals in the rule body. Thus, the 
innermost loop performs the following eight steps, The first two traversais deal 
with the constraints for X and Y, and are similar to Iter 1. They produce the 
calling pattern 

{list(X,num),num(N),list(NL,num), Y = [F\FL]} 

Tin- next literal, number .codes, in the rule body is an external procedure, 
thus, proc.ess.node uses the parametric routine Atrust which gives the answer 
[num{N), Ust(ChInN. num-code)} for it. This answer is conjoined with the de­
scription of the program point immediately before the literal, i.e.: 

[list(X, man), num(N),list{lVL,num),Y = [F\FL],list(ChInN,num-codt )} 

http://proc.ess.node


The remaining intermediate literals are dealt in a similar way (see Ex­
ample 5.2 for more specific del ails). Let US just consider the processing of the 
recursive call to create .s t reams, for which we get as final description: 

CP = [ list{X,num),num{N),list{NL,num), Y = [F\FL], 
list(ChInN, nurri-code), sf{Fname). constant(File), Mode = write, 
stream(F). T = "/tmp/ri] 

Now, process_node finds out that AT already contains an answer pattern for this 
procedure. Then, both calling patterns are conjoined: CPa •= Aconj(CP, AP) 
and restricted to variables X and Y. obtaining CPa = AP as final result. Upon 
return from process_arc. it performs the disjunction of the computed answer with 
the answer supplied by Certa: AP2 ~ Alub{CPa, AP). Since CPa = AP and 
also the result, AP2 = AP, coincides with the one in the certificate, the proof is 
validated and the algorithm terminates in a single graph traversal for the initial 
query. Note that in the analysis example, there is an additional full iteration 
due to the existence of update events which make the analyzer re-process all arcs 
which depend on a calling pattern whose answer has been updated. It is well 
known that several passes over the program are often needed to reach a fixed 
point. 

\\S Experimental Results 
In this section we show some experimental results aimed at studying two 

crucial points for the practicality of our proposal: the checking time as com­
pared to the analysis time, and the size of certificates. We have implemented 
the checker as a simplification of the generic abstract interpretation system of 
CiaoPP. It should be noted that this is an efficient, highly optimized, state-of-
the-art analysis system which is part of a working compiler. Both the analysis 
and checker are parametric w.r.t. the abstract domain. In these experiments 
I hey both use the same implementation of the domain-dependent functions of 
the xharing+frcencxti domain.'" We have selected this domain because the in­
formation it infers is very useful for reasoning about instantiation errors, which 
is a crucial aspect for the safety of logic programs. The whole system is imple­
mented in C'iao l.ll#2()0a i with compilation to bytecode. All of our experiments 
have been performed on a Pentium 4 at 2.4GHz and 512MB RAM running GNU 
Linux RH9.0. The Linux kernel used is 2.4,25, customized with the hrtime pal eh 
to provide improved precision and resolution in time measurements. 

S, 1 Checking Time 
Table 1 presents our experimental results regarding checking time, Execu-

tion times are given in milliseconds and measure runtime. They are computed as 
the arithmetic mean of five runs. A relatively wide range of programs has been 
used as benchmarks. They axe the same ones used in,33' where they are described 
in some detail. For each benchmark, the columns for Analysis are the following: 
P..i is the time required by the preprocessing phase, in which program rules are 
processed and stored in the format required by the analyzer. The analysis time 



Table 1 Checking Time 
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1-3 
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2 . 2 
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2 5 

1.0 

1.61 

proper is shown in column An. The actual time needed for analysis the sum 
of these two times- is shown in column T.4. Similarly, in the case of checking, 
three columns are shown. The preprocessing phase, Pc- includes asserting the 
certificate in addition to asserting the program to be analyzed. As the figures 
show, the overhead required fur asserting I he certificate is negligible. Column 
Ch is the time for executing the checking algorithm. Finally, 1C is the total time 
l"i checking. The columns under Speedup compare analysis and checking times. 
As can be seen in columns A/C and T.4/TY;. the checking algorithm is faster 
than the analysis algorithm in all cases. The actual speedup ranges from almost 
none, as in the case of zebra, to over four times faster in the case of deriv. The 
last row summarizes the results for the different benchmarks using a weighted 
mean, which places more importance on those benchmarks with relatively larger 
analysis times. We use as weight for each program its actual analysis time. We 
believe that this weighted mean is more informative than the arithmetic mean, 
as, for example, doubling the speed in which a large and complex program is 
analyzed (checked) is more relevant than achieving this for small, simple pro­
grams. Overall, the speedup is 1.63 in just analysis time, or I.til if we also lake 
into account the preprocessing time. We believe that the achieved speedup is 
significant taking into account, that CiaoPP's analyzer for this domain is highly 
optimized and converges very efficiently/01 However, it is to be expected that, 
for other domains and implementations, the relative gains will be higher. 

8.2 Certificate Size 
Table 2 shows our experimental results regarding certificate size, coded in 

compact [fastread) format, for the different benchmarks and compares it to the 
size of the source code for the same program and to the size of the corresponding 
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bytecode. To make this comparison fair, we sulu rari ) I Ml I bytes from the size of 
the bytecode for each program: the size of the bytecode for an empty program 
in i his version of Ciao (minimal top-level drivers ami exception handlers For any 
executable). The results show the size of the certificate to be quite reasonable. 
It. ranges from 0.3 times the size of the source code (for deriv) to 3.5 (in the case 
of qsortapp). Overall, it is 1.4-1 times the size of the source rode. We consider 
this acceptable since in general (C)LP programs are quite compact (up to 10 
times more compact than equivalent imperative programs). In fact, the size of 
source plus certificate is smaller (1 + 1.44) than that of the bytecode (2.66). 

§9 Conclusions and Related Work 
We have presented absirariion-carrying rode (ACC) as o novel enabling 

technology for PCC, which follows the standard strategy of associating safety 
certificates to programs but it is based throughout on the use of abstract inter­
pretation techniques. We argue that ACC is highly flexible, one aspect being 
the parametricity on the abstract domain inherited from analysis engines as 
exemplified by those used in (C)LP. We argue thai our proposal brings the ex­
pressiveness, flexibility, and automation which is inherent in the abstract inter­
pretation techniques developed in logic programming to tins area. Our approach 
has been illustrated by using the CiaoPP system. This system already uses a 
combination of abstracl interpretation, abstract specialization, and a flexible as­
sertion language, to perform program debugging, verification, and optimization 
with a wide variety of domains. Other approaches to abstracl verification and 
debugging have also been proposed {see1'',ai) for further references). The system 
has been enhanced to produce certificates as dictated by the ACC scheme, as 
mi integral part of the static debugging and verification performed during the 



program development process. A simplified version of the analysis framework 
of CiaoPP has also been developed that serves as an efficient checker of the 
certificates. The approach is currently being tested in a number of pervasive 
applications using an embedded version of the Ciao system which runs on PDAs 
and Gumstix processors. Ongoing work also includes the si udy < .1' techniques for 
further reducing the size of certificates," and reducing the checking time. 

It is important to note that our approach will work directly in other 
programming paradigms, such as imperative or functional programming (the 
latter already covered in our current system, since Ciao supports functional 
programming), as long as a static analyzer/checker is available. Note that I he 
fundamental components of the approach (fixed-point semantics and abstracl 
interpretation) have both been widely applied also in these paradigms. In fact, 
analyzers have been recently developed, for example. I'm- analysis and verification 
of Java, which arc direct adaptations of essentially the same parametric fixpoint-
based analysis algorithms that we have used in this work on the producer sii 
The ACC approach is thus directly applicable in this context. 

Our approach differs from existing approaches to PC'O in several aspects. 
In our case, the certificate is computed automatically on the producer side by 
an abstract interpretation-based analyzer and the certificate takes the form of 
a particular subset of the analysis results. The burden on the consumer side is 
reduced by using a simple one-traversal checker, which is a very simplified and 
efficient a.hsl raci interpreter which does not need to compute a fixed point. 

A type-level dataflow analysis of .lava virtual machine bytecode is also 
the basis of several existing verifiers,-"1 " ! and some arc loosely based on abstracl 
interpretation. These analyses allow proving thai I he program is correel w.r.t, 
type-related correctness conditions. In*01 a proposal is presented to split the 
type-based byl ecode verification of the KVM {an embedded variant of the JVM) 
in two phases, where the producer first computes I he certificate by means of a 
type-based dataflow analyzer and then the consumer simply checks that the 
I \ pes provided in I lie code certificate are valid. As in our case, the second phase 
can be done in a single, linear pass over the bytecode. However, these approaches 
are limited to types. 

Let us note thai our checker is part of the trusted computing base (TCBI 
and. hence, the code consumer has to trust also the domain operations. Other 
approaches to PCC use logic-based verification methods as enabling technology, 
an example is1''1 which formalizes a simple assembly language with procedures 
and presents a safety policy for arithmetic overflow in Isabellc/HOL. Recently, 
a PCC architecture based on Certified Abstract Interpretation"' has been pro­
posed by Besson et al."1 This proposal follows the basics of ACC lor certificate 
generation and checking, but relies on a rcriijinl checker specified in Coq* in 
order to reduce the TCB. In contrast to our framework, this work is restricted 
to safety properties which hold for all states and. for now, it has only been 
implemented for a particular abstract domain. 

The coexistence of several absl ract domains in our framework is so what 
related to the notion of models to capture the security-relevant proper! ii s i >f a >de, 



as addressed in the work on Model-Carrying Code {MCC}.4"1 M('( ' enables code 
consumers to try out different security policies of interest, and select one that can 
be statically proved to be consistent with the model associated to the untrusted 
code. However, models are intended to describe low-level properties and their 
combination has not been studied, which differs from our idea of combining 
(high-level) abstract domains. Another approach based on model checking (and 
also types) is that of"". It is based on sending the "predicate abstraction" 
used in model checking to help reduce the state space search at the receiving 
end. where model checking is performed again on the received program. This 
approach is thus also quite different from ours, although by coincidence (because 
of the use of a predicate abstraction) it has been independently given the same 
name. Perhaps the most obvious difference is that this approach does not expli >ii 
the fundamental idea of our proposal of constructing iteratively a fixpoint on the 
producer's end and checking it without any iteration at the receiving end. Also, 
it is not parametric on a set of domains as our generic model and it is presented 
only informally. 

As a final consideration, it should be noted that while the particular 
instance of ACC that we have described in detail is actually defined at the source-
level, in most existing PCC frameworks the code supplier typically packages the 
certificate with the object code rather than with the source code (we assume 
that both are untrusted). This is without loss of generality because the basic 
principles of our approach can also be applied to bytecode or machine code. 
Note that a good number of abstract interpretation-based analyses have been 
proposed in the literature for bytecode and aiaeliin.M-o.li-. most of which compute 
a l]\|Kiini during analysis which can be checked in one pass a1 a receiving end 
using the general principle of our proposal. More concretely, the work mentioned 
above which tises similar fixpoint-based analysis algorithms to those that we have 
applied in this work on the producer side3"1 performs the analysis and verification 
directly on Java bytecode, and thus supports the applicability of our approach 
to bytecode. In fact, also in recent work, even the concrete CLP verifier used in 
our ACC implementation (CiaoPP) has itself been shown to also be applicable 
without modification to Java bytecode via a transformational approach.2' 

In any case, both approaches {ACC for source code and ACC for object 
code) are of interest from our point of view; clearly, in many rases t he source code 
is simply not available to the consumer and even when there is a choice between 
objecl and source code, using object code means reducing the trusted computing 
base in the consumer since there is no need for a compiler. On the other hand, 
open-source code is becoming much more relevant these days (in fact. Ciao and 
CiaoPP are themselves CM'licensed and available in source rode for reviewing 
and modification). As a result, it is now realistic to expect that a relatively large 
amount of untrusted source code is available to the consumer. The advantages 
of open-source with respect to safety are important since ii allows inspecting 
the code and applying powerful techniques for program analysis and validation 
which allow inferring information which may be difficult to observe in low-level, 
compiled code. This allows handling richer properties which in turn potentially 
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allow more expressive safety policies. 
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