
Abstraction-Carrying Code:
a Model for Mobile Code Safety

Elvira ALBERT
DSIC, Complutense University of Madrid
Avda. Complutense s/n, E-28Q40 Madrid, SPAIN
German PUEBLA
Technical University of Madrid (UPM)
E-28660 Boadilla del Monte. Madrid. SPAIN
Manuel HERMENEGELDO
Technical University of Madrid. Spain and
CS/EECE Depot.. University of New Mexico, USA

Abstract Proof-Carrying Code (PCC) is a general approach to mobile
code safety in which programs are augmented with a certificate (or proof).
The intended benefit is that the program consumer can locally validate the
certificate w.r.t. the "untrustcd" program by means of a certificate checker a
process which should be much simpler, efficient, and automatic than generat­
ing the original proof. The practical uptake of PCC greatly depends on the
existence of a variety of enabling technologies which allow both proving pro­
grams correct and replacing a costly verification process by an efficient check­
ing proceduri on th(consumer side. In this work we propose Abstraction-
Carrying Code (ACC), a novel approach which uses abstract interpretation
as enabling technology. We argue that the large body of applications of ab­
stract interpretation to program verification is amenable to the overall PCC
scheme. In particular, we rely on an expressive class of safely policies which
can be defined over different abstract domains. We use an abstraction (or
abstract model) of the program computed by standard static analyzers as a
certificate. The validity of the abstraction on ihe consumer side is checked
in a single pass by a very efficient and specialized abstract-interpreter. We
believe that ACC brings the expressiveness, flexibility and automation which
is inherent in abstract interpretation techniques to the area of mobile code
safety.

Keywords: Logic Programming, Static Analysis, Abstract Interpretation,

§1 Introduction
One of the most important challenges which computing research faces

today is the development of security techniques for verifying thai the execution
of a program (possibly) supplied by an untrusted source is safe, i.e., that it
meets certain properties according to a predefined safety policy, Proof-Carrying
Code (PCC)34) is a general framework for mobile code safety which proposes
to associate safety information in the form of a certificate to programs. The
certificate (or proof) is created at compile time, and packaged along with the
code. The consumer who receives or downloads the code+certificate package
can then run a checker which by an efficient, inspection of the code and the
certificate, can verify the validity of the certificate and thus compliance with
the safety policy. The key benefit of this "certificate-based" approach to mobile
code safety is that the consumer's task is reduced from the level of proving to the
level of checking, a task that should be much simpler, efficient, and automatic
than generating the original certificate.

The practical uptake of PCC greatly depends on the existence of a variety
of enabling technologies which allow:

1. defining expressive safety policies covering a wide range of properties,
2. solving the problem of how to automatically generate the certificates (i.e.,

automatically proving the programs correct), and
3. replacing a costly verification process by an efficient checking procedure

on the consumer side.

The main approaches applied up to now are based on either theorem proving or
type analysis. For instance, in PCC the certificate is originally31" a proof in first-
order logic of certain verification conditions and the checking process involves
ensuring that the certificate is indeed a valid first-order proof. AProlog is ua
to define a representation of lemmas and definitions which helps keep the proofs
small. Another proposal6' uses temporal logic to specify security policies in
PCC. In Typed Assembly Languages,310 the certificate is a type annotation of
the assembly language program and the checking process involves a form of type
checking. Each of the different approaches possesses their own set. of stronger and
weaker points. Depending on the particular safety property and the available
computing resources in the consumer, some approaches are inure suitable than
others. Li some eases the priority is to reduce the size of the certificate as
much as possible in order to fit in small devices or to cope with scarce network
access (as in, e.g., Oracle-based PCC381 or Tactic-based PCC*'), whereas in other
cases the priority is to reduce I he cheeking time (as in. e.g., standard PCC'1'" or
lightweight byteeode verification^1). Asa result of all this, a successful certificate
infrastructure should have a wide set of enabling technologies available for the
< I liferent requirements.

In this work we propose Abstraction-Carrying Code (ACC), a novel ap-

Program

Analyser

•
Vifm Policy Abstraction

1 Cii<

s* ° - * S*fe«i Policj

\ (-(,,. ,

PRODUCER CONSUMER

Fig. 1 Abstraction-Carrying (lode

proach which uses abstract interpretation1^ as enabling technology to handle
the difficult practical challenges mentioned above. Abstract interpretation is
now a well-established technique which has allowed i lie development of very so
phisticated global static program analyses thai arc at the same lime automatic,
provablv coriect, and practical. The basic idea of abstract interpretation is to
infer information on programs by interpreting ("running") them using abstract.
values rather than concrete ones, thus obtaining safe approximations of the be­
havior of the program. The technique allows inferring a wide range of properties
about programs. Our proposal. ACC. opens the door to the applicability of this
inference power as enabling technology for PCC. Figure 1 presents an overview
of ACC. The certification process carried out by the code producer is depicted to
t he left of the figure while the checking process performed by the code consumer
appears to the right. In particular, ACC has the following fundamental elements
which can handle the three aforementioned challenges:

1. The lirst element, common to both producer and consumers, is the
Safety Policy. We rely on an expressive class of safety policies based on
"abstract"—i.e. symbolic—properties over different; abstract domains.
Our framework is parametric w.r.t. the abstract doriiaiii(s) of interest,
which gives us generality and expressiveness, since it allows a single
concrete implementation of the approach to be used without change For
generating certificates for different classes i if properi ies by simply adding
domains a.s "plugins."

2. The next element at the producer's side is a fixed point-based static
Analyzer which automatically infers an abstract model (or simply ab­
straction) of the mobile code which can then be used to prove that this
code is safe w.r.t. the given policy in a straightforward way. hi particu­
lar, we identify a subset of the analysis results which is sufficient for this
purpose.

3. The verification condition generator, VCGen in the figure, generates, from
the initial safety policy and the abstraction, a Verification Condition
(VC), which can be proved only if the execution of the code does not
violate the safety poEcy. As in standard PCC methods, litis process is
performed also by the consumers in order to have a trustworthy VC.

4. Finally, a simple, easy-to-trust (analysis) checker at the consumer's side

verifies the validity of the information on the mobile code, ll is indeed ;i
specialized abstract interpreter whose key characteristic is that it does
not need to iterate in order to reach a fixed point (in contrast to st andard
analyzers).

While ACC is a general approach, for concreteness we develop herein an incar­
nation of it in the context of (Constraint) Logic Programming, (C)LP, because
this paradigm offers a good number of advantages, an important one being the
maturity and sophistication of the analysis tools available for it. In particular,
a wide range of analysis domains have been developed to infer properties such
as data structure shape {with pointer sharing), bounds on data structure sizes.
and other operational variable instantiat ion properties, as well as procedure-leve]
properties such as determinaey, termination, non-failure, and bounds on resource
consumption, such as time or space cost (see, e.g.,21) and its references).

Also for concreteness. we build on the algorithms of (and report on an
implementation on) CiaoPP.'2n the abstract interpretation-based preprocessor
of the Ciao multi-paradigm CLP system.5" CiaoPP uses modular, incremental
abstract interpretation as a fundamental tool to obtain information about pro­
grams. In CiaoPP, the semantic approximations thus produced have been ap­
plied in perform high- and low-level optimizations during program compilation,
including transformations such as multiple abstract specialization, paralleliza-
tion, partial evaluation, resource usage control, and program verification. More
recently, novel and promising applications of such semantic approximations are
being applied in the more general context of program development. We report
on our extension of CiaoPP to incorporate ACC and on how this instantiation
of ACC already shows promising results.

The article is organized as follows. Section 2 introduces some notation
and preliminary notions on CLP and abstract interpretation. In Section 3, we
present a general view of ACC. Section 4 describes the assertion language which
is used to define our safety policy. Section 5 discusses the generation of pro­
gram abstractions. In Section 6, we present the verification condition generator
which attests compliance of the abstraction with respect to the safety policy. In
Section 7, we introduce an abstract interpretation-based checker which validates
the safety certificate in the consumer. Section 8 reports on some experiments
performed in the CiaoPP-based iinplenientation. Finally Seel ion 9 discusses the
work presented in this article and related work.

§2 Preliminaries
We assume familiarity with constraint logic programming2"" (CLP) and

the concepts of abstract interpretation161 which underlie most analyses in CLP.
The remaining of this section introduces some notation and recalls preliminary
concepts on these topics.

2.1 Constraint Logic Programming
Terms are constructed from variables (e.g.. X) and functors (e.g., /) . We

denote by {ATj >—> f] X„ i—* t„] the substitution a with a{Xi) — t, for all

i = 1 7i with A'; 7̂ Xj if i ^ j and <r(AT) = X for any oilier variable A .
where tj are terms. The identity substitution, which we denote by id is such
that V.Y id(X) = X. A renaming is a substitution p for which there exists tin1

inverse p~1 such that pp~] = p~lp = id, We say that a renaming p is a rt naming
substitution of term /i w.r.t. term t% if 2̂ = p{t\).

A KteraZ has the form p(tj /„) where p /n is a procedure name (pred­
icate symbol), n is its arity and U are terms. Most real-life (C')LP programs
use procedures which are not defined in the program (module) being developed.
Thus, procedures are classified into internal and external Internal procedures
are defined in the current program (module), whereas external procedures are
not. Examples of external procedures include the traditional "built-in" (prede­
fined) procedures, such as constraints, basic input/outpul facilities (e.g.. open).
We will also consider as external procedures those defined in a different mod­
ule, procedures written in another language, etc. We assume the existence of
a boolean function external s.t. external(p(f| tu)) succeeds iff the procedure
p/n is external. A goal is a finite sequence of literals. A rule is of the form
H:-B where H, the head, is a literal and B, the body, is a possibly empty finite
sequence of literals. A CLP program, or program, is a finite set of rules.

Example 2.1 (Running Example)
The main procedure, create_streams/2, of the following CLP program receives
a list of numbers which correspond to certain file names, and returns in the
second argument the list of file handlers (streams) associated to tin- (opened)
tiles:

create_streams([] , []) .
create_st reams([NjNL],[FlFL]) : -

number.codes(N,ChInN), app("/tmp/",ChInN,Fname),
safe_open(Fname,write,F) , create_streanis(NL,FL) .

app([] ,L,L).
app([XIXs] ,L , [XIY]) : -

app{Xs,L,Y).

safe_open(Fname,Mode,F):-

atom_codes(File,Fname), open(File,Mode,F).

It. defines the well-known list concatenation procedure app/3 and uses the follow­
ing external predicates. The call number^codesCN,ChInN) receives the number
N and returns in ChInN the list of the ASCII codes of the characters comprising
the representation of N as a decimal number. Then, it uses the well-known list
concatenation procedure app/3. Note that lists are represented in this example
by using quoted strings. The call atom_codes(File,Fname) receives in Fname
a list, of ASCII codes and returns in F i l e the atom (constant) made up of the
corresponding characters. Also, a call such as open(File,Mode,F) opens the
file named F i l e and returns in F the stream associated to the file. The argu­
ment Mode can have any of the values: read, wri te , or append. Procedures
number_codes/2, atom.codes/2, and open/3 are ISO-standard Prolog proce-

dures, and thus they are available in CiaoPP (in the iso-prolog library).
In the following, we assume that all rule heads are normalized, i.e., H is

of the form p{X\,.... X„ } where X], ...,X„ are distinct free variables. This is not
restrictive since programs can always be normalized, and it will Facilitate the pre­
sentation of the algorithms later. For instance, the procedure create-Streams
of Example 2.1 in normalized form is as follows.

c r e a t e _ s t r e a m s U , Y) : - X=[],Y=[].
create_straams<X,Y):- X-[NINL], Y=[FIFL],

number_codeE(N,ChInN), T="/tmp/",
appCT.ChlnN.Fname),Mode=write,
safe_open(Fname,Mode,F), create_streams(NL,FL).

2.2 Abstract Interpretation
In Abstract Interpretation,1*' programs are interpreted over an abstract

domain [Da) which is simpler than the corresponding concrete domain {D).
An abstract value is a finite representation of a possibly infinite set of actual
values in the concrete domain. Our approach relies on the abstract interpre­
tation theory."'1 where the set of all possible abstract semantic values which
represents Dn is usually a complete lattice or cpo which is ascending chain fi­
nite. However, for this study, abstract interpretation is restricted to complete
lattices over sets, both for the concrete (2 , C) and abstract {Da.Q) domains.
Abstract values and sets of concrete values are related via a pair of monotonic
mappings (0.7): abstraction a : 2D —• D„. and amcretization 7 : Da —* 2D,
such that V.r. £ 2D : 7(0(1)) 2 J and Vy e Da : a(^(y)) = y. In general L
is induced by C and a. Similarly, the operations of least upper bound (u) and
greatest lower bound (n) mimic those oF 2D in a precise sen.se.

In oui framework, the safety properties thai the execution of a program
must satisFy are defined as abstract substitutions. This allows us to express
properties in terms of abstract domains. In turn, different domains can be used
for different safety properties. The abstract (or description) domain we use in
our examples is the following regular type domain.17

Example 2.2 (regular type domain)
Wo refer to the regular typt domain as eterms, since it is the name it has in
CiaoPP. Abstract substitutions in eterms,**' over a set of variables V, assign a
regular type to each variable in V. We use in our examples term as the most
general type (i.e.. term = T corresponds to all possible terms). We also allow
parametric types such as l i s t (T) which denotes lists whose elements are all
of type T. Type l i s t is equivalent to l i s t (t e r m) . Also, l i s t (T) C l i s t C.
term for any type T. The least general substitution ± assigns the empty set of
values to each variable and indicates that the corresponding program point is
unreachable.

Apart, from predefined types, in the eterms domain, the user can define

http://sen.se

regular types by means of Regular Unary Logic programs/'"' ' For instance, in
the context of mobile code, it is a safety issue whether the code tries to ac­
cess files which are not related to the application in the machine consuming the
code. A very simple safety policy can be to enforce that the mobile code only
accesses temporary Hies. In a UNIX system this can be controlled (under some
assumptions) by ensuring that the file resides in the directory /tmp/. The fol­
lowing regular type safe_name defines this notion of safety, where the regtype
declarations are used in CiaoPP to define new regular types:

:- regtype saie_name/l.

safe_name("/tmp/"I|L) :- list(L,alphanum_code).

:- regtype alphanum.code/l.

alphanuiE_code(X):- alpha_code(X).

alphanum_code(X):- num_code(X).

:- regtype alpha_code/l.

alpha_code(X):- member(X, "abcdefghijklmnopqrstuvTJzyz") .

alpha.code(X):- member(X,"AECDEFGHIJKLMNQPQRSTUVMXYZ").

The regular type num.code(X) : - member(X,"0123456789.eE+~") is predefined
in the system. The abstract property made up of substitution {Xi—>saf e_name}
expresses that X is bound to a string which starts with "Vtmp/" followed by a
list, of alpha-numerical characters (we use "I I" to denote list concatenation). In
the following, we write simply safe_name(X) to represent it. The crucial point
here is thai safe jiames cannot contain (back-)slaslics. As a result, there is no
way saf ejiames can access files outside the /tmp/ directory.

§3 A General View of Abstraction-Carrying Code
An abstract interpretation-based certifier is a function certifier : Proa x

A Don) x AInt —± ACe.rf. which for a given program P 6 Prog, an abstract domain
Da e ADom and a safety policy /„ e AIni generates a certificate Certa €
ACert. by using an abstract interpreter for Dn. which entails that P satisfies
/„.. This abstract safety specification /„ embodii ei\ requirements, i.e..
it is an expression of the consumer's safety expectations. Its formalization in out-
context is the main issue of Section 4. In the following, we denote that /„ and
Certa are specifications given as abstract semantic values of Du by using the
same a. The basics for defining such certifiers (and their corresponding checkers)
in ACC are summarized in the following five points and Equations:

Analysis. We consider the class oi fixed-point semantics in which a (monotonie)
semantic operator, Sr. is associated to each program P. The meaning of the
program. JPJ, is defined as the least fixed point of the Sp operator, i.e.. [PJ =
lfp(Sp). If Sp is continuous, the least, fixed point is the limit of an iterative
process involving at most u) applications of Sp starting from the bottom element

' Additionally such types are interred by the system independently of tin pre- or tiser-
defined types.

of the lattice. Consider Ihe operator Sp which is the abstract counterpart of
Sp. Using abstract interpretation, we can usually only compute [P] . , as [P] =
lfp(S£).

analyze(P.Dn} = lfp(57,) = n „ (D

Correctness of analysis ensures that [PJ safely approximates [P] , i.e., [P] £

MI-PL).
I In' generation of Equation (1) is the main issue of Section 5.

Verification Condition. Let Certa be a safe approximation of P. If an abstract
safety specification Ia can be proved w.r.t. C< ri,,. then P satisfies the safety
policy and ('< rfn is a valid certificate:

C< rtQ is a ™/«/ certificate for P w.r.t. /,, if Certa C /^ (2)

Equation (2) is explained in detail in Section 6.

Certifier. Together, equations (1) and (2) define a certifier which provides pro­
gram fixpoints, [P] Q , as certificates which entail a given safety policy, i.e., by-
taking Certa = I-PJc- Note that the two equations define the function certifier
specified above.

Checking. A checker is a function checker: Prog x ADomx ACeit —» bool which
for a program P € Prog, an abstract domain D,-, £ ADom and a certificate
Certa £ ACert checks whether Certa is a fixpoint of S% or not:

theck{P,DQ,Certa) returns hue iff {Sp[CertQ) = Cvrta)(Z)

The definition of a check function satisfying Equation (3) is the purpose of
Section 7.

Verification Condition Regeneration. To retain the safety guarantees, the con­
sumer must regenerate a trustworthy verification condition -Equation 2- and
use the incoming certificate to test for adherence of the safety policy.

P is trusted iff Certa C Ia (4)

A fundamental idea in ACC is that, while analysis -equation (1)- is an iterative
process which may traverse (parts of) the abstraction more than once until the
fixpoint is reached, checking -equation (3)- is guaranteed to be done in a single
pass over the abstraction {a single application of Sp).

§4 An Assertion Language to Specify the Safety Policy
The aim of this section is to present the safety policy In £ Alnt within

the ACC approach. The purpose of a safety policy is to specify precisely the
(abstract) conditions under which the execution of a program is considered safe.
Assertions are syntactic objects which allow expressing a wide variety of high-
level properties of (in our case CLP-) programs. Examples are assertions which
state information on entry points to a program module, assertions which describe
properties of predefined procedures (built-ins), assertions which provide some

type declarations, cost bounds, etc. They will allow us to have an expressive
class of safety policies in the context of (constraint) logic programs. Intuitively.
we assume that a program will be accepted at the receiving end. provided all
properties stated within assertions can be checked, i.e.. the abstracl specification
/,, expressed in the assertions determines the safety policy. This can be a policj
agreed a priori or exchanged dynamically.

The original assertion language3'1 available in CiaoPP is composed of sev­
eral assertion schemes. Among them, we only consider t lie following two schemes
in AInt for the purpose of this article, which intuitively correspond to traditional
pre- and postconditions on procedures:

calls(B, {Xprr:;...: ,\'pri:}): This assertion scheme is used to express properties
which should hold in any call to a given procedure, in a similar way to
the traditional precondition. B is a procedure descriptor, i.e.. it has a
procedure name (predicate symbol) as main functor and all arguments
are distinct free variables, and Apre, i — I.... .11, are abstract proper­
ties of execution states. The resulting assertion should be interpreted
as "in all activations of B at least one property XPr, should hold in
the calling state."

success(B,[\prei]\post): This assertion scheme is used to describe a postcon­
dition which must hold on each success state for a given procedure.
B is a procedure descriptor, and Xpre and \p(>st are abstract proper­
ties about execution states. XpTe is optional and must be evaluated
w.r.t. the description at the calling state to the procedure while con
dition XFost is evaluated at the success state. If the optional AprP

is present, then XPost is only required to hold in those success slates
which correspond to call states sat isl'ving Xpri . Note that several suc-
cess assertions for the same procedure and with different A/v. may be
given.

Therefore, abstract properties Xprc and Xpost in assertions allow us to express
I,, 6 AInt as conditions, in terms of an abstract domain Dft. that t he execution of
a program must satisfy. Each condition is an abstract substitution corresponding
to the variables in some literal.

In existing approaches, safety policies usually correspond to some vari­
ants of type safety (which may also conl rol the correct access of memory or
array bounds35'). In our system, the coexistence of several domains allows ex­
pressing a wide range of properties using the assertion language. They include
several classes of safety policies based on modes, types, non-failure, termination,
determinacy, non-suspension, non-floundering, cost bounds, and their combina­
tions.

In general, it is the task of the compiler designer to define the safety
policies associated with the predefined system procedures. In addition to these
assertions, the user can optionally provide further assertions manually for user-
defined procedures. As depicted in Fig. 1, given an initial program P. we first
define its Safety Policy Ia as a set of assertions AS in the context of an abstracl
domain Da. The domain is appropriately chosen among a repertoire of abstract

calls(number_codes(X,Y), {(num(X)jlistCY.num.code))})
calls(atom_codes(X, Y), {{constant (X);s t r ing(Y)) })

ca l ls (open(X,Y, .Z) , {constant(X), iojnode(Y)})
calls(safe_open(Fname,_,-), {safe.nameCFnaaie)})

success(number_codes(X,Y), T , (num(X),list(Y,num_code)})
success(atom_codes(X,Y),T , {cons tant (X) ,s t r ing(Y)})

success(open(X,Y,Z), T , {constant(X).iojnodeCY),stream{Z}})

Kij;. 2 Assertions for the Exam|>!i

domains available in the system. The assertions are obtained from I he asserl ions
for system procedures arid those provided by the user. Let. lis illustrate this
process by means of an example,

Example 4.1 (Safety Policy)
Figure 2 shows the assertions which are relevanl to the program in our running
example. The first lour rows correspond to c a l l s assertions, whereas the last
three are success assertions. Out of the four c a l l s , t he first three are predefined
in the system. For example, the first one states that calls to number.codes/2
have to be performed with the first argument bound to a number or the second
argument bound to a list of num.code. which is . ied t\pe thai includes
the ASCII characters required for representing floating point (and integer) num­
bers as strings. The last c a l l s assertion is for procedure saf e_open and provides
a simple way to guarantee that all subsequent calls to open are safe, ll can be
read as "the calling conventions for procedure safe_open require that the first
argument be a safejiame." The success assertion for open is predefined in our
system and requires, upon success, the first variable to be of type constant, the
second a proper io_mode and the last one of type stream.

In contrast to traditional approaches, assertions are nol compulsory for
every procedure. Thus, the user can decide how much efforl to put into writing
assertions: with more of them, the intended semantics (and thus the partial
I'Dim I ncss) of I he program is described more exhaustively and more possibilities
arise for detecting problems. Indeed, pre- and post-conditions are frequently
provided by programmers, specially in the case of libraries, since they are often
easy to write and very useful not only for verification but also for example for
generating program documentation. Nevertheless, the analysis algorithm is able
to obtain sale approximations of the program behavior even if no assertions are
given. This is not always the case in other approaches such as classical program
verification, in which loop invariants are actually required. Such invariants arc
hard to find and existing automated techniques are not always sufficient to infer
I hem, so that often they have to be provided by hand.

Note that the three success assertions shown in the example correspond
to library procedures, Such assertions can be verified beforehand, and indeed
they are verified in our implementation assuming that calls to such procedures
satisfy the corresponding c a l l s assertions. Unfortunately, calls assertions for
library procedures cannot be verified beforehand, since programs which use such
procedures may do so incorrectly. Thus, in order to guarantee that the safety
policy holds we only need to prove that the four calls assertions in Fig. 2 hold,

§5 Generation of Program Abstractions
This section introduces part of the certification process, represented to the

lefl of Fig. 1. carried oui by the producer, namely the generation of an abstraction
[P | r i which safely approximates the behaviour of the program (Equation 1 in
Section 3). The generation of the verification condition from this certificate
(Equation 2) will be discussed in the next section

5.1 The Analysis Graph
Global program analysis is becoming a practical tool in constrain! logic

program compilation in which information about calls, answers, and the effect
of the constraint store on variables at, different program points is computed
statically.10'23'33"41'43' Essentially, an analyzer returns an abstraction of P's exe­
cution in terms of the abstract domain Dn. The underlying theory, formalized
in terms of abstract interpretation,1"1 and the related implementation techniques
are well understood for several general types of analysis and. in particular, for
top-down analysis of Prolog."1" ih lu-28M| Several generic analysis engines, such
as the one implemented in the CiaoPP system,**' PLA1." ,:" CAIA.!1 ami the
CLP(7£) analyzer,'"" facilitate the construction of such top-down analyzers. As
shown in Fig. I in principle the analyzer is domain -independent. This allows
plugging in different abstract domains provided suitable interfacing functions are
defined. From the user's point, of view, i! is sufficient In specify I lie particular
absl racl domain desired during the generation of the safety assertions. Different
domains yield analyzers which provide different kinds of information, degrees of
accuracy, and efficiency. The core of each generic abstract interpretation-based
engine is an algorithm for efficient fixed-point computation.13,31'33'39'

In order to analyze a program, traditional (goal dependent) abstract in­
terpreters for (C)LP programs, such as those referenced above, receive as input,
in addition to the program and the abstraci domain, a set S of calling patterns.
Such calling patterns are pairs of the form A : CTP where A is a procedure de­
scriptor and CP is an abstract substitution (i.e.. a condition of the run-time
bindings) of A expressed as CP € D„.': Given a program I' and a set S of call­
ing patterns in the context of an abstract domain D a , the analyzer constructs
an and-or graph (or analysis graph) for S which ran be viewed as an abstraction
[P], , . i.e.. a finite representation of the (possibly infinite) set of (possibly infi­
nite) AND-OR trees explored by the concrete execution of initial calls described
by S in P.*' Fiiiiteness of the program analysis graph (and thus termination of
analysis) is achieved by considering absl racl domains with certain characterisl ies
(such as being finite, or of finite height, or without infinite ascending chains) or
by the use of a witlciuni/ operator.1*'

hi principle, calling patterns are only required for exported procedures. The analysis
algorithm is able to general*- tlii-in automatically For the remaining internal procedures.
Nevertheless, they can still be automatically L-,. i < mi. <[liy assuming T (i.e., no initial
data) for all exported procedures (although the idea is to improve this information in the
initial calling patterns).

Example 5.1
Consider our running; example and assume that we are interested in analyzing it
for the call create_streams(X. Y) with initial description list(X. nam), indicat­
ing that we wish to analyze it for any call to create_streams/2 with the first
argument being a list of numbers. In essence the analyzer must produce the
program analysis graph given in Fig. 3.

The graph has two sorts of nodes. Those which correspond to literals are
called "OR-nodes". The OR-node in the root:

'""^•"•""•'create.streamstX.y)'"'1^'"'""1 ' ' '^"'*'••"" }

indicates that when the literal create_streams(X, Y) is called with description
hst(X,num) the answer (or success) substitution computed is (/y.sl(.Y,K'um),
lif>t(Y, stream)}

Those nodes which correspond to rules are called "AND-nodes." In Fig. A,
they appear within a dashed box and contain the head of the corresponding
clause. Each AND-node has as children as many OR-nodes as literals there are
in the body. We indicate with the symbol • that the rule is a fact with no
literals in the body. And the symbol o denotes that the code for this procedure
is not available (i.e., it is an external procedure). These rules are annotated
by abstract descriptions (referenced by numbers 0 , . . . , 13 whose corresponding
description appears to the bottom of the figure) at each program point when
the rule is executed from the calling pattern of the node connected to the rules.
The program points are at the entry to the rule, the point between each two

^create .s t ream

create.streamsf |]. [|)

1number-Codes(N. C)2 3app("/tmp", C

0
1
2
3
4
5

e

s(X.Y)1

cri

Fn)4Es

6atom_codes(File. Fn)"

0

; l i s t (X, num)
: ninn(N)
: num(N). l i s t (C , num.code)
: l i s t (C , num.code)
: l i s t (C , num_code). sf(Fn)
: af(Fn)
: si(Fn)

7 :
8 :
9 :
10 :
11 :
12 :
13 :

S

ate-^stream

af e_open(Fn

:saie_open

S(MNL] . [F]FL |)

, wri te , F)iycreate_streams(NL,FL) i a

(Fn. Mod. F)

sopen{File,Xod. Fn)9

o
constant (F i le) , s i (Fn)
constant(File),Mod = wri te
constant(File),y»od — wri te , atream{F)
Bi(FN).stream(F)
l lst(NL nun")
l ist(NL, num). l i s t (FL. stream)
list(X,num), l i s t (Y. stream)

Fig. 3 Analysis Graph

literals, and at the return from the call. If a child OR-node if- already in the
tree, it. is not further expanded and the currently available answer is used. For
instance, the analysis graph in Fig. 3 contains two occurrences of the abstract
literal create_streams(X. Y) : list(X.num) (modulo renaming), but only one of
them has been expanded. This is depicted by an arrow from the non-expanded
occurrence of create-Streams(X. Y) : lisf(X. num) to the expanded one. How
this program analysis graph is constructed and the meaning of the auxiliary type
sf is detailed in Example 5.2 below.

For a given program and set of calling patterns there may be many differ­
ent analysis graphs. However, for a given set of initial calling patterns, program,
and abstract operations on the abstract domain, there is a unique least analysis
graph which gives the most precise information possible.

5.2 The Analysis Algorithm
The aim of this section is two-fold. First, we introduce an analysis algo­

rithm which computes an analysis graph. Second, we identify" the fragment of
the information stored in such graph which is sufficient in order to play the role
of safety certificate, written as Gerta = [-P]„.

The analysis algorithm presented is an extension of the generic analy­
sis algorithm m2'2) in order to handle (constraint) logic, programs with external
(including imported) procedures. For this, our analyzers rely again on assertion-
based techniques.'17' Intuitively, our analyzer trusts the information stated in the
success assertions for external procedures by considering the answer pattern in
them a safe approximation of the concrete answer patterns. In our algorithm,
the analysis of external procedures is handled by the function Atrust which is
introduced below. The details about analysis of modular programs can be found
in38) and are out of the scope of this article.

The program analysis graph is implicitly represented in the algorithm by
means of two data structures, the answer table and the dependency arc table.
Given the information in these, it is straightforward to construct the graph and
the associated program point annotations. The answer table contains entries of
the form A : CP i-> AP, where .4 is always a base form and AP and CP an
abstract substitutions. This corresponds to OR-nodes in the analysis graph oi
the form CPAAP. A dependency arc is of the form Hk : Cl:\\ => [CP\] Bk.j :
CP-2- This is interpreted as follows: if the MM with //;, as head is called with
description CPa then this causes literal /J*., to be called with description CP-2-
The remaining part CP{ is the program annotation just before Bk,i is reached
and contains information about all variables in rule k. Note hat -he annotation
CP\ is not, really necessary, as it could be recomputed, but it is included for
efficient recomputation. As we will see below, dependency ares are used for
enforcing recomputation until a fixed point is reached,

Intuitively, the analysis algorithm is a graph traversal algorithm which
places entries in the answer table and dependency arc table as new nodes and ares
in the program analysis graph are encountered. In order to guide computation,
we need a third data structure for storing the events which are to be handled.

Events are of three forms:
»(:Wcal.l(A : CP) which indicates that a new calling pattern for literal A
with description CP has been encountered.

- arc(Hh : CP0 => \CP{\ BkA : CP2) which indicates that the body of rule k
needs to be processed from position i, i.e., from body literal lh, , until the
end of rule k, using the annotation CP\.
itpdated(A : CP) which indicates that the answer description to calling
pattern A with description CP has been changed.

Rather than simply using a stack or a. queue for storing events, which
would result in a depth-first or a breadth-first traversal, respectively, we use a
prioritized event queue. This allows capturing the sophisticated graph traversal
strategies used in optimized fixed-point algorithms. For example, note that
there are three different classes of events and we may be interested in assigning
different priorities to each class of events. Coming up with an efficient, strategy
is out of the scope of this paper. A detailed discussion with concrete proposals
can be found.'11"

Our analysis algorithm is given in Fig. 4. It, is defined in terms of five
abstract operations on the abstract domain Da of interest:

Arestrict(CP. V) performs the abstract restriction of a description CP to the
set of variables in the sel \ . denoted ™.i-.s-(V'):

- Aextend(CP, V) extends the description CP to the variables in the set \'\
- Atrust(.4, CP) returns an answer pattern for an external procedure .4 which

is a safe approximation of the concrete answer patterns for all call patterns
described by CP\
Aconj(CPi, CP-i) performs the abstract conjunction of two descriptions;
Alub(CPi, CP2) performs the abstract disjunction of two descriptions.

\purt from the parametric description domain-dependent, functions, the al­
gorithm has several other undefined functions. The functions add.event and
next_event respectively add an event, to the priority queue and return (ami delete)
the event of highest priority.

When an event being added to the priority queue is already in the priority
queue, a single event with the maximum of the priorities is kept in the queue.
When an arc Hk : CP => [CP"]Bjlli • CP" is added to the dependency arc table,
it replaces any oi her arc of the form Hk : CP ^ \\BkA : . in the table and the
priority queue. Similarly when an entry Hk : CP 1— AP is added to the answer
table, it replaces any entry of the form Hk : CP i-> -. Note thai the underscore
(_) matches any description, and that there is at most one matching entry in
the dependency arc table or answer table at. any time. The function initiaLguess
returns an initial guess for the answer to a new calling pattern. The default
value is _L but if the calling pattern is more general than an already computed
call then its current value may be returned.

The algorithm centers around the processing of events on the priority
queue in mainJoop, which repeatedly removes the highest priority event and
calls the appropriate event-handling function. When all events are processed it
calls remove.useless-calls. This procedure traverses the dependency graph given

file:///purt

p r o c « s s j r c (f / t : CPV => [CP,] Bk., : CP7)
if (n o t externalf i •

add / / t ; (•/'„ =! ' C P , Bfc , r r .
to dep lency arc table

IV := u a r s (A * : - Bfc.j 8,
C/'., ;= ge t jnswer (i i t . , : (7'..- (' / ' , . U)
if (CP3 / X and i ^ n*)

C P 4 := Arestrict(CP3, vars(Bk . 11
add_ever±t(arc{

H„ : C P 0 = * [CP,] B f c , 4 + 1 : CP.,))
elseif (CPa ^ -L and / = nk)

•I / ' , : = Arestrict i <. 1\. ,nrs{ II k))
inser t_answer-info(/ / : CPrj I U ,

gflt_ansn8r(L : CP2. CP, . W)
APrj := lookup_answer(J. : (7 ' j)
/ IP , ; - Aextehd(AP0 , W)
re turn Aconj((7',, APi)

lookup_ansver(,4 ; CP)
If (there ex i s t , a renaming o s.t.

<r(.-A : f 7J) i—• AP in answer table)
r e t u r n <T~ ' (.4P)

elaif (n o t extefnal(A))
add_event(neu'c«/((a(^l : CP)))
where a is ;i renaming s i
a[A) is in base form
return _L

e lse 'X external(.4)
AP := Atrust(A, CP)
add (A : CPi— AP) to answer table
return . W

insert_anauer_info[/ / : CP' - IP)
APfj := lookup-answe-i // ('P)
I / ' , : - Alubi -IP. .IP,,)

if (A Pi, # AP X)
add (H : CPi-« AP]) to answer table
add-ewnt(upf/riffi/jH - CP))

Fig. 4 F ixed-po in t Ana lyzer

by the dependency airs from the initial calling patterns S and marks those enl ties
in the dependency arc and answer table which are reachable. Those remaining
air removed.

The function new.calling.pattern initiates processing of the rules in the
definition of the interna! literal ,4. by adding arc events For rack of the first
literals of these rules, and determines an initial answer for ihe calling pattern
and places this in the table. The function add.dependent.rules adds arc events
for each dependency arc which depends on the calling pattern A : CP for which
the answer has been updated. The function process_arc performs the core of
the analysis. It performs a single step of the left-to-right, traversal of a rule
body. II" the literal B^ , is not For an external procedure, the arc is added to the
dependency arc lable. The current answer for the call B^,, : CP-2 is conjoined
with the description CP\ from the program point immediately before Bt, , to
obtain the description For the program point after Bk ,. This is either used to
generate a new arc event to process the next literal in the rule if B^,- is nol
the last literal: otherwise the new answer for the rule is combined with the

a n a l y z e ^)
fo reach A : CP E S

addjBvent(neioca(J(A : CP))
ciain loDp()

main.loop))
w h i l e F, : — next.event()

if I E = newc.all{A : CP))
new-call ing-pattern(.4 : CP)

elseif (E = npdated(.A : CP))
add_dependent.rule5(/A : CP)

elsei f [E = a rc (f l))
process_arc[R)

e n d w h i l e
remove_useless.calls{ .S')

new_callirjg_patterii(A : CP)
f o r e a c h rule A* : - Bfc.t, - • - , BkTllr

CP„ •-
Aextendj CP, vars{BkA B j (11 il

CPi := Arestrkt(CP„, vara(Bk , i |
add.event (a rc(

Ak : CP=> [CP0] Bk,, : CPi))
AP := initial_guess(.'i : CP)
iiiAP^t ±)

add.event(uprio.(eci(A : CP))
add A : CP H-* A P to answer 1 able

add_dependent_rulea(-4 : CP)
f o r e a c h arc of the form

ffh : C P 0 = * [CP,] Bk., : C P 2

in graph
w h e r e there exists renaming &

s.i. A : CP= (Bkil : CP-2)v
add_event(urc(

Hk : CP„ => [CP,1 Bk,t : CP^))

current answer in insert.answerJnfo. The function get_answer processes a literal.
The current answer to that literal for the current description is looked up; then
this answer is extended to the variables in the rule the literal occurs in and
conjoined with the current description. The function lookup.answer Hist looks
up an answer for the given calling pattern in the answer table and if it is not
found and the procedure is local, it places a newcall event. Otherwise (the
procedure is external), it uses Atrust to obtain a safe answer pattern. Finally.
insert-answerJnfo, updates the answer table entry when a new answer is found.

Theorem 5.1 (correctness22)
For a program P and calling patterns S, the analysis algorithm of Fig. 4 returns
an answer table and dependency arc table which represents the least program
analysis graph of P and S.

A central idea in ACC is that, for certifying program safety, it suffices in
send the information stored in the analysis answer table. The theory of abstract
interpretation guarantees that the answer table is a safe approximation of tin-
runtime behavior (see*'"'39' for details). In contrast to this analysis algorithm, a
simple checker can be designed for validating the answer table wiiluml requiring
the use of the arc dependency table at all (as we show in Sect. 7).

5.3 An Example
The following example illustrates the operation of the fixed-point algo­

rithm. It shows how the craate^streams program is analyzed, to obtain the
program analysis graph shown in Fig. 3. We use in our example well-known
abstract operations for a regular type domain, in particular, the operations for­
malized in '" for the ett rms domain described in Example 2.2. For the analysis of
library procedures, we assume i hat the parametric routine Atrust returns the fib
struct descriptions which appear in the three success assert ions shown in Fig. 2
for the corresponding library procedures. This can be done safely because, as
already mentioned, such success assertions have been verified beforehand.

Example 5.2
Analysis begins from an initial set S of catling patterns. In our example S
contains the single calling pattern c rea te streams(X,Y) :list(X. nam). I
brevity, variables which do not appear in abstract substitutions are assumed
to be "t«rm". Also nil(X) indicates that X is the empty list. The first step
in the algorithm is to add the initial calling patterns as a newcall event to the
priority queue. After this the priority queue contains

newcai1 (create .streams (X,Y) \list(X, num.))
and the answer and dependency arc tables are empty. The newcall event is
taken from the event queue and processed as follows: for each rule defining
create_streams. an arc is added to the priority queue which indicates the rule
body which must lie processed from the initial literal. An entry for the new
calling pattern is added to the answer table with an initial guess of X as the
answer. The data structures are now:

priority queue:

(H'r(create_streams(X,Y):fo£(X,num) => [iis£(X, num)] X=[] :list(X, num.))
firc(create.streains(X,Y):list(X,num) =f> [list{X,num)] X=[NlNL] : list(X,num))

answer table:
create_streams(X, Y) :list(X, num) i-» i .

dependency arc table:
ini entries

An arc on the even! queue is now selected for processing, say the Erst. The
routine get.answer is called to find the answer pat tern to the literal X=[] with
descripi ion list(X, num). As t he literal is an external constraint, the parametric
routine Atrust is used. It returns the answer pa t tern {/;>/(,V. num),nil(X)}. A
new arc is added to the priority queue which indicates that the second literal in
the rule body must be processed. The priority queue is now

arc(create.streams(X,Y) :list(X,num) => [list(Xtnum),nil(X)] Y=[]:{ }}
<i/i-(create_streams(X,Y) :list{X,num) => [/ist(X,nii,m)]X-[N[NL] :list(X,num))

The answer and dependency arc table remain the same.
Again, an arc on the event queue is selected for processing, say the first. As

before, get-answer and Atrust are called to get the nexl annotation {list{ A. num \.
ri.il (.V), nil {}')}. This time, as there are no more literals in I he body, the entry for
c r e a t e _ s t r e a m s (X , Y) : l i s t (X , n u m) in the answer table is updated. Alub is used
to find the least upper bound of the new answer [list(X, num),nil(X), nil(Y)}
with the old answer X. This gives {list(X,num), nil(X), nii(Y)}. The entry
in the answer table is updated, and an updated event is placed on the priority
queue. The data structures are now:

priority queue:
updatt </(create_streams(X,Y) :list{X. num)}
a / ' c (c rea te_s t reams(X,Y) :list(Xinum) =>

[lit,t{\. num)] X=[N|NL] :list(X, num))
answer table:

c r e a t e _ s t r e a m s (X , Y) :list{X, num) i-» [list(X, num), II/I(X), nil(Y I}
dependency are table:

no entries

The updated event can now be processed. As there arc no entries in the depen­
dency arc table, nothing in the current program analysis graph depends on the
answer to this call, so nothing needs to be recomputed. The priority queue now
contains

are{ c r e a t e . s t r e a m s (X , Y) :list(X,num) =>
[Ust{X,num)] X=[N|NL]: list(X,num))

The answer and dependency arc table remain the same. Similarly to
bcliiic we process the arc. giving rise to the new priority queue

fMY-(create_streams(X,Y) :list(X, num) =*•

http://ri.il

[liat(X,num))num{N),list(NL,num)] Y=[F|FL]:{ }).

The arc is processed to give I lie priority queue

r7rv(create_streams(X,Y) :list(X, num.) =>
[list(X,num),num(N),list{NL,num),Y = \F\FL}}

number.codes(N,ChInN) :rium{N})

Note that CiaoPP creates the regular type r t 2 to represent a term whose top-
level functor is a list constructed with F as head and FL as tail. For simplicity,
we just write this description a.s Y=[F|FL] in the following.

This time, because number.codes(N,ChInN) is an external literal, the
parametric routine Atrust is used and no dependency is stored (as success pat­
terns for external procedures arc never updated). As a result, the data structures
are now:

•priority queue:
rjrr(create_streams(X,Y) :list(X. mini) => [list(X,nwm),num(N),

Ust{NL,num),Y = [F\FL}.iis1{CliItiX.iunn^code)] T="/tmp/":{ })
answer table:

create.streams(X,Y) :list(X, iiiini) t-+ list(X,num),riil(X),nil(Y I
ntunber.codesCN.ChlnN} :mim(N) i-> uum(N), l:>st(ChhiN. num.code)

dependency arc table:
no entries

Following the analysis, we process the unique are in tin' priority queue,
obtaining the new priority queue;

priority queue:
«/r(create_streams(X,Y) ://,s/(.Y. tumi I => \llst(X, mini). num(N),

list(NL,num),Y = [F\FL],list(ChInN, num.code),T = " / tmp/"\
app(T,ChInN,Fname) :T = "/imp/" Jist{ChInN, mini codt \)

Similarly as done so far. and skipping the intermediate steps, we obtain
finally the following data structures in which, the dependency arc table contains
a different arc for each one of the literals in the second rule of create_streams
which are not external.

priority qui in :

(ui(create.streams(X,Y} :list(X,num) => CP
create-Streams(NL,FL): list(NL, nnm) I

answer tabic:
create.streams(X,Y) :list{X, mnn) i— {lisi(X. mini), nil(X), nil(Y)}
number_codes(N,ChInN) :num(N) M {num(N), Ust(ChInN. num.vodi) \
app(T,ChInN,Fname) :{Hst{ChInN, numj-odc). T = "/trap/"} w

{list(ChInN,num-code),T = " /imp/" ,sf(Fname)}
safe_open(Fname,Hode,F): {sf(Fname). Mode = write} i—»

{sf(Fname). Mode = -write, stream{F)}
atom_codes(File,Fname) isf(Fname) >—>• {constant(File),sf(Fname)}

file:///F/FL}}

open (F i l e , Mode, F) : {constant (File), Mode - write} t-t
{constant(File), Mode - writ*. sin am [!•")}

where
CP = [list{X, num),num(N),list(NL,num), Y = [F\FL],

l/st(ChlnN, mini.code). sf(Fname), constant(Fill !.
Mode = write, stream(F), T = "jimp/'" |.

It is interesting to note that CiaoPP creates the auxiliary type:

s f (" / tmp/"I |A) :-list.(A,nwn_code).

to represent strings which start with the prefix "/tmp/" and continue with a list
of type num_code. Since all num.codes are also alphanum.codes. it is clear thai
sf C saf ejname. This will allow our system to inter that calls to open performed
within this program satisfy the simple safety policy discussed in Example 4.1.
Therefore, the information stored in the answer table is sufficient to attest I he
safety policy. Also, we use the notation Var — constant to denote that the
system generates a new type whose only element is this constant, as it happens
for wri te , in the entries for safe.open and open and. for "/tmp/", in the entry
for app.

Now, the call get_answer for the recursive call create_streams(NL,FL) :
list(NL, num) is made. The answer table is looked up to find the answer
ami, appropriately renamed and restricted to the variables in the call, gives
Al'„ \iiil[:\!L). nit(FL). list{NL,num)}. This description is extended to all
variables (no change) and then conjoined with CP to give I he next annota­
tion {nil(X),nil(Y),list(X,num), list(Y,stream)}. We take tin- least upper
bound of this answer with the old answer in the table, giving {list(X.n.n.m).
list(Y. stream)}. The answer table will replace (he current annotation for crea­
t e -Streams(X,Y): Hst(X.num) by:
create.streams(X. Y) :list(X, num) t-* {list(X, num),list(Y, stream)} adding
the processed arc to the dependency arc table.

As the answer has changed, an updated event is added to the priority
queue. The priority queue contains:

updafcd(create_streams(X,Y) :list(X, num)]

The updated event is processed by looking in the dependency are table for all arcs
which have a body literal which is a variant of create_streams(X,Y) ://>•/(A".
num) and adding these arcs to the priority queue to be reprocessed. There is
only OIK1 (the last processed arc). After reprocessing this arc we obtain as answer
[list(X,num),Iiat(Y, stream)}. Taking the least upper bound of this with the
old answer, the result is identical to the old answer, hence no updated event is
added to the priority queue. As there are no events on the priority queue, the
analysis terminates.

As a result of the whole analysis, the answer table computed by CiaoPP con-
tains (among others) these entries:

Procedure

create.streams(A,B)
number_codes(A,B)
app(A,B,C)

safe.apen{A,B,C)
atom-Codes(A,B)
open(A,B,C)

< 'illlill"; 1 ':il l lT l l S in i e s s Pill !<•• 1]

l ist(A,num)
num(A)

A="/tmp/",
l i s t (B,num.code)

s f (A) ,B=vri te
sf(B)

constant(A),B=write

liat{A, num).list(B, stream)
num(A),listCB,num.cod«)

A="/tmp/'\
list(B.num-Code) ,sf (C)

sf(A),B=write,stream(C)
constant(A),sf(B)

constant(A),B=write,stream(C)

Wc show in the next section that the information stored in the above table can
be taken as Certa, i.e., Cert,a - AT, because it is sufficient to certify that the
mobile code is safe according to the policy defined in Example 4.1.

In order to increase accuracy, analyzers arc usually multivariant on calls
(see, e.g., " ') . Indeed, though not visible in this example. CiaoPP incorporates
a multivariant analysis, i.e., more than one triple (A : CP\ •-> AP\) (-4 :
CP„ H-> APn), n > 1 with CPj ^ APj for some i,j may be computed for the
same procedure descriptor A.

§6 The Verification Condition
As part, of the certification process carried out by the code producer,

the verification condition generator (VCGen in Fig. 1) extracts, from the initial
assertions /,, and the abstraction Certa,

 a Verification Condition (VC) which
can be proved only if I he cxecut ion of the code does not violate the safety policy.
In particular, we are interested in studying the implications of comparing the
intended safety policy described in Section 4. denoted /„. with the program
abstraction described in Section 5, denoted \P][U. Therefore. VCGen generates
a VC which encodes the comparison [f] | 0 C Ia in Equation (2). If VC can be
proved (marked as OK in Fig. 1), then the certificate (i.e.. the abstraction) is
sent together with the program P to the code consumer.

Definition 6.1 (VC - verification condition)
Let AT be an analysis answer table computed for a program P and a set of
calling patterns S in the abstract domain Da. Let I be an assertion. Then, the
verification condition, VC(I, AT), for I w.r.t. AT is defined as follows:

f\ (p(CP) g XPrec v . . . v p(CP) c XPrec)
(A>.CP>-AP)€AT

ifI=calls(B,{XPrec;...;\Prec})
VC[I,AT)::= {

/ \ p{CP) n XPree = J_ V p{AP) C \Post

(A:CP<->AP)eAT
if 7 = success{B, Ap7.ec, \Posi)

where /> is a variable renaming substitution of A w.r.t. B.
If/„ is a finite set of assertions, then its verification condition, VC(Ia,AT),

is the conjunction of the verification conditions of the elements of Ia.
Roughly speaking, the VC generated according to Def. G.l is a conjunc­

tion of boolean expressions (possibly containing disjunctions) whose validity en-

SUITS the consistency of a set of assertions w.r.t. the answer table computed by
Analysis, see Equation (1). It. distinguishes two differenl cases depending on i he
kind of assertion. For calls assertions, the VC requires that at least one precon­
dition Apre£. be a safe approximation of each existing abstract calling patterns
For the literal B. In the case of success assertions, there are two cases for ilicm
to hold. The first one indicates that the precondition is never satisfied and, thus.
the assertion trivially holds (and the postcondition dues not need to be tested).
The second corresponds to the case in which the success subsl itutions computed
by analysis for the procedure are equal or more particular than the one required
by the assertion.

Example 6.1 (Verification Condition)
Consider the answer table generated in Example 5.2 and the calls and sn>
assertions of Fig. 2. According to Definition (i. I. the VC is:

num(X) C (num(X); list(Y.num_code)} A
sffY) C (constant(X);string(Y)) A

constant(X). Y = wri te C constant(X). iojnode(Y) A
sf(X) C safe-name(X)

Each conjunct, corresponds to a calls assertion in Fig. 2 in the same order they
appear there. As already mentioned, success assertions for predefined proce­
dures are verified beforehand.

The validity of the whole conjunction can be easily proved by taking into
account the following (trivial) relations between the elements in the domain:

sf(X) C. string(X)
X = wri te C. io_mode{X)

Note that the first two conjuncts contain a disjunction in the right hand condi­
tion. In the second one, the condition sf(Y) C (constant(X): string(Y)) holds
because sf (Y) C string(Y).

Therefore, upon creating the answer table and generating the VC, the
validity of the whole boolean condition is checked bj resolving each conjunct
separately. Note that each conjunct consists of comparisons of pairs of abstract
substitutions, which simply return either true or false but do not compute any
substitution. This validation may yield three different possible outcomes: i)
the VC is indeed checked and the answer table is considered a valid abstraction
(marked as OK), ii) it is disproved, and thus the certificate is not valid and
the code is definitely not safe to run (we should obviously correct the program
before continuing the process); iii) it can neither be proved nor disproved. The
[alter case happens because SOUK1 properties are undecidablc and the analyzer
performs approximations in order to always terminate. Therefore, it may not
be able to infer precise enough information to verify the conditions. The user
can then provide a more refined description of initial calling patterns or choose
a different, finer-grained, domain. Although, it is not shown in the picture, in
both the ii) and iii) cases, the certification process needs to be restarted until
achieving a VC which meets i).

The following theorem stales the soundness of the VC. Intuitively, it
amounts to saying that if the VC holds, then the execution of the program
will preserve all safety assertions. Following the nutation of.J'" we write >1 ('
when VC is valid.

Theorem 6.1 (Soundness of the Verification Condition)
Let AT be an analysis answer table for a program P and a set of calling patterns
S in an abstract domain Da (as defined in Fig. 4). Let Ia be a set of assertions.
Let VC(Ia,AT) be the verification condition for Ia w.r.t. AT (generated as
stated in Def. 6.1). If >VC{Ia.AT), then P satisfies all assertions in Ia for all
computations described by S.

This result directly derives from the fad lhal the static analysis algorithm
computes a safe approximation of the states reached during computation (see
Theorem 5.1).

!;7 Checking Safety in the Consumer
The checking process performed by the consumer is illustrated on t he right

hand side of Fig. 1. Initially, the supplier sends the program P together with
the certificate to the consumer. To retain the safety guarantees, the consumer
can provide a new set of assertions, denoted J ' , which specifies the Safety Policy
required by this particular consumer. It should be noted that ACC is very
flexible in that it allows different implementations on the way the safety policy
is provided. Clearly, the same assertions used by the producer, denoted IQ. can
be sent to the consumer. But, more interestingly, the consumer can decide to
impose a weaker safety condition, i.e., /„ L T'a, which can be proved with the
submitted abstraction since / ' j /.,. Also, the imposed safety condition can

be stronger, i.e., I'a C /„ and it may not be provable if it is not implied by the
current abstraction [Pfla (which means that the code would be rejected), From
the provided assertions, the consumer must generate again a trustworthy VC and
use the incoming certificate to efficiently check that the VC holds. Thus, in the
validation process, a code consumer not only checks the validity of the answer
table (Equation 3) but it also (re-[generates a trustworthy VC (Equation 4).
The validation of AT in Equation 3 is carried out by the Analysis Checker. The
re-generation of V(' in Equation 4 (and its corresponding validation) is Identical
to the process already discussed in the previous section. Therefore, this section
describes only the first part of the validation process.

7.1 Fixed-point Checking
Although global analysis is now routinely used as a practical tool, it is

still unacceptable to run the whole Analysis to validate the certificate since it
involves considerable cost. One of the main reasons is that the analysis algorithm
is an iterative process which often computes answers (repeatedly I for the same
call due to possible updates introduced by further iterations. At each iteration,
the algorithm has to manipulate rather complex data structures—which invoke
performing updates, lookups, etc. until the fixed point is reached. The whole

validation process is centered around the following observation:

The checking algorithm can be defined as a very simplified "one-pass"
analyzer.

The Analysis process can be understood as: Analysis = fixedpoint(analy-
sisstep). I.e., a process which repeatedly performs a traversal of the analy­
sis graph (denoted by analysis step) until the computed information does nut
change. The idea is that the simple, non-iterative, analysisstep process can play
the role of abstract interpret at ion- based checker (or simply analysis checker). In
other words, checks tma!tisis_sttp. Intuitively, since the certification process
should provide a correct fixed-point result (i.e.. JP]],J as certificate, an additional
analysis pass over this fixed point, should not change the result, Otherwise, the
current: answer table is not a valid abstraction of the program. Thus, in our con
text, as long as the answer table is valid, one single execution of analysisstt p
is required to validate the certificate, as stated in Equation (3).

7.2 The Checking Algorithm
The next definition presents our abstract interpretation-based checking al­

gorithm. It receives as an additional input a Certa (which is the analysis fixed
point). In a single traversal, it constructs a program analysis graph by using
the information in Certa. The algorithm is devised as a graph traversal pro­
cedure which places entries in a local answer table, AT, as new nodes in the
program analysis graph are encountered. Thus, it handles two distinct answer
tables: the local AT + the incoming Certa. The final goal of the checking is
to reconstruct the analysis graph and compare tin1 results with the information
stored in Certa. As long as Ccrfa is valid, both results coincide and. thus, the
certificate is guaranteed to lie valid w.r.t. the program.

Definition 7.1 (Analysis Checker)
Let P be a normalized program and S be a set of calling patterns in the abstract
domain Da. Let Ce.rta be an answer table (or safety certificate) as defined in
Figure 4. The validation olCcrta is performed by the procedure check depicted
in Fig. 5. The algorithm uses a, local answer table, AT. to compute the results
(initially it does not contain any entry).

Following the presentation of the analysis algorithm in Section •lj.2. we as
sume i hat t he program P and the answer table are global parameters t hroughout
I he algorithm. The cheeking algorithm proceeds as follows: as in the analysis
algorithm, the procedure process.arc is aimed al computing the resulting de­
scription CP„ after processing a given literal Bi;A. The computed result is used
to process the next literal in the rule when B^j. is not the last one. Otherwise,
the computed result constitutes indeed the computed answer for the rule. The
difference w.r.t. the analyzer is that the answer is combined with the correspond­
ing answer supplied by the certification process in Certa. If Certa is valid, the
comparison should hold; otherwise the process prompts an error and the pro­
gram is not. safe to run. Therefore, no control structure is needed in order to
guarantee that a fixed point is reached. This eliminates I he need for the "event

checkf S. Cert,-,)
foreach .-1 : CP £ S

proces5.node(.4 : CP.C'i rl,,)
r e t u r n Valid

process_node(.l : CP.Ct it,, |
if (3 a renaming a s.t. a(A : CP •— AP) in (\ rl:, i

then add (A : CP <-> AP) to AT
else return Error

if (not external (A))
foreach rule Ak t— Bkl Sfc,n.i. '"' P

W := rars(Ak,BkA Bk.nk)
CPb :=A«xtend(CI'. varm HkA B f c , „ f t))

CPRi := Are<,tricU.CPtj,Bkli)
foreach Bk , in the rule body i = 1 »k

CPa := process_arc(£ t,, : CPR*. CJ\. IV. O r t Q)
if i/ nk) then CPU, := Arestrict(CP„, rar(Bk ,+ , i)
crf, ;= CP*
<"/ ' / , ' , , : = C P P „

W' I : = Arestrict(CP (1.i 'o.rs(v4 fc))

AP2 := Alub(APi,<T_ 1(^^))
if .4P < > AP2 then return Error

else %• external(A))
AP\ — Atrust(A, C P)
if <7_1(AP) < > APi then return Error

process_arc(;?,,., : CPRb,CPb,W,Certa)
if (^ a renaming rr s.t. <r(Bfc,, : C P P h i— AP1) in A I
l . i l l ' l l

process-node (£?n-., : CPRf,,Certa)
. IP | := Aextend (/>_I(.4P), IT) where p is a reiiamh ;•

,,Hh , .ci'li,,- AP) in AT
<7>, .= Aconj (CPb.APl)
return (7 ' ,

Fig. 5 Abstract Interpretation-based Checking in CiaoPP

queue" of the analysis algorithm in Fig. 4. Moreover, since onh one traversal
of lilt' analysis graph is to be performed, no detailed dependency information is
required. This eliminates the need fur the •'dependency arc table" of the analysis
algorithm. As a result, check is a suitable procedure for determining the validiu
of the certificate.

The following theorem ensures that algorithm check is able to validate
safety certificates which are stored in a valid analysis answer table.

Theorem 7.1 (partial correctness)
Let P be a program, let S be a set of calling pat terns in an abstract domain
[),,. Lei C'tit,, be an answer table for P and S as defined in Fig. 4. Then,
check(,S', Ct rta) terminates and, if it returns Valid, then Cert,a is an absi racl ion
of P and S.

The theorem is implied by the definition of fixed point and the fact that check
is a single pass of a correct Analysis algorithm.221 Indeed, it is immediate to

see that algorithm check has been obtained as » simplification of the algorithm
Analysis.

Another issue is the efficiency of the checking algorithm. Our point to
justify an efficient behavior of check for validating an answer table is that it
performs a single graph traversal. Indeed, for a regular type domain,1"' demon­
strates that directional type-checking for logic programs is fixed-parameter lin­
ear. Section 8 reports experimental evidence of efficiency issues

7.3 An Example
We describe the more representative steps that algorithm check performs

in order to validate the answer table of Example 5.2.

Example 7.1
Consider the answer table, called Certat of Example 5.2. First, procedure
process_node looks up an answer for the initial calling pattern in (. '< rta and
adds the entry

(create_streams(X, Y) :list{X, num.) >-* AP = {lii1(X. nam). Iisli V. slirmn)})

to the answer table .47 (note that, for short, we use AP to denote this par­
ticular answer pattern). Since there are two rules defining create .s t reams the
outermost loop performs two iterations:

Iter 1. We start by describing the processing of the first rule (although the
order is irrelevant). Since the first literal X=[] in the rule body is a constraint,
its description is computed within procedure process.arc by adding its abstraci
description, i.e., {nii{X)}, to the initial description {list(X, mnu)}. resulting in
{nil(X)Jist(X, num)}. Similarly, the analysis for the second constraint adds
\nil(Y)} to the former description producing {nil(X), nil(Y), list{X, num)}.
Upon exiting the innermost loop, the disjunction of this description with the
answer stored in Ctrl,, is calculated:

AP, := Alub({nil(X),nil(Y),list(V. nurn)},AP)

since nil(X) L list(X,num) and nil{Y) E Ii*t(Y,.stream], then AP2 - AP.
Thus, the certificate holds for this rule.

Iter 2. In the second iteration, we find eight literals in the rule body. Thus, the
innermost loop performs the following eight steps, The first two traversais deal
with the constraints for X and Y, and are similar to Iter 1. They produce the
calling pattern

{list(X,num),num(N),list(NL,num), Y = [F\FL]}

Tin- next literal, number .codes, in the rule body is an external procedure,
thus, proc.ess.node uses the parametric routine Atrust which gives the answer
[num{N), Ust(ChInN. num-code)} for it. This answer is conjoined with the de­
scription of the program point immediately before the literal, i.e.:

[list(X, man), num(N),list{lVL,num),Y = [F\FL],list(ChInN,num-codt)}

http://proc.ess.node

The remaining intermediate literals are dealt in a similar way (see Ex­
ample 5.2 for more specific del ails). Let US just consider the processing of the
recursive call to create .s t reams, for which we get as final description:

CP = [list{X,num),num{N),list{NL,num), Y = [F\FL],
list(ChInN, nurri-code), sf{Fname). constant(File), Mode = write,
stream(F). T = "/tmp/ri]

Now, process_node finds out that AT already contains an answer pattern for this
procedure. Then, both calling patterns are conjoined: CPa •= Aconj(CP, AP)
and restricted to variables X and Y. obtaining CPa = AP as final result. Upon
return from process_arc. it performs the disjunction of the computed answer with
the answer supplied by Certa: AP2 ~ Alub{CPa, AP). Since CPa = AP and
also the result, AP2 = AP, coincides with the one in the certificate, the proof is
validated and the algorithm terminates in a single graph traversal for the initial
query. Note that in the analysis example, there is an additional full iteration
due to the existence of update events which make the analyzer re-process all arcs
which depend on a calling pattern whose answer has been updated. It is well
known that several passes over the program are often needed to reach a fixed
point.

\\S Experimental Results
In this section we show some experimental results aimed at studying two

crucial points for the practicality of our proposal: the checking time as com­
pared to the analysis time, and the size of certificates. We have implemented
the checker as a simplification of the generic abstract interpretation system of
CiaoPP. It should be noted that this is an efficient, highly optimized, state-of-
the-art analysis system which is part of a working compiler. Both the analysis
and checker are parametric w.r.t. the abstract domain. In these experiments
I hey both use the same implementation of the domain-dependent functions of
the xharing+frcencxti domain.'" We have selected this domain because the in­
formation it infers is very useful for reasoning about instantiation errors, which
is a crucial aspect for the safety of logic programs. The whole system is imple­
mented in C'iao l.ll#2()0a i with compilation to bytecode. All of our experiments
have been performed on a Pentium 4 at 2.4GHz and 512MB RAM running GNU
Linux RH9.0. The Linux kernel used is 2.4,25, customized with the hrtime pal eh
to provide improved precision and resolution in time measurements.

S, 1 Checking Time
Table 1 presents our experimental results regarding checking time, Execu-

tion times are given in milliseconds and measure runtime. They are computed as
the arithmetic mean of five runs. A relatively wide range of programs has been
used as benchmarks. They axe the same ones used in,33' where they are described
in some detail. For each benchmark, the columns for Analysis are the following:
P..i is the time required by the preprocessing phase, in which program rules are
processed and stored in the format required by the analyzer. The analysis time

Table 1 Checking Time

B e n c h

aiakJ
a m i

bid

h o v e r

br< >wse

deriv
g r a m ! [i a r

h a l i o i n p p

ra m a t r i x
o c c u r

p r o g e o m
l e a d

I h l . i i

q s o r t a p p

q u e r y

r d t o k
s e r i a l i z e

w a r p l a n

w i t t

z e b r a

O v e r a l l

A n a l y s i s

P.4

2
22

4

9

3

2
2

2

1
2

2

9
i:t

l

5

S

2
8

16

3

A n

8 7

4 5 2
56

143
14

86
10

2 5
13

16
13

792

1411
20

11

141

40
173

196

94

TA

89

474
HO

151

17

8 8

12
26

14
18

15

801

1424

21

15

119

42
181

212

97

C h e c k i n g

Pc

2

!>
4

7

3

1

2
2

1

2
2

8

11

1
4

6
2

7

1

3

C b

71
254

35

8 5

12

19
9

16

10

10

9
4 8 8

9 6 2

12
9

4 3

17
1118

72
91)

T o

72
27 >

3 8
92

15

20

t l
18

11

12

11
197

9 7 3

14
12

49

19

115
86

92

S p e e d u p

A / 0

1.2

1.8

l 6

1.7
1.2

4 .6

L I
1.5

1.3

1.7

1.5

1.6
1.5

1.6

1.2
3 .3

2 .3

1.6
2 .7

1.1

I i > : i

T^/Tc
1.2

1.7

1.6

1.6

1.2
1 1

1 1
1.5

1.3

1.6

1-4
1.6

1.5

1.5

1-3
3.1

2 . 2
: i ,

2 5

1.0

1.61

proper is shown in column An. The actual time needed for analysis the sum
of these two times- is shown in column T.4. Similarly, in the case of checking,
three columns are shown. The preprocessing phase, Pc- includes asserting the
certificate in addition to asserting the program to be analyzed. As the figures
show, the overhead required fur asserting I he certificate is negligible. Column
Ch is the time for executing the checking algorithm. Finally, 1C is the total time
l"i checking. The columns under Speedup compare analysis and checking times.
As can be seen in columns A/C and T.4/TY;. the checking algorithm is faster
than the analysis algorithm in all cases. The actual speedup ranges from almost
none, as in the case of zebra, to over four times faster in the case of deriv. The
last row summarizes the results for the different benchmarks using a weighted
mean, which places more importance on those benchmarks with relatively larger
analysis times. We use as weight for each program its actual analysis time. We
believe that this weighted mean is more informative than the arithmetic mean,
as, for example, doubling the speed in which a large and complex program is
analyzed (checked) is more relevant than achieving this for small, simple pro­
grams. Overall, the speedup is 1.63 in just analysis time, or I.til if we also lake
into account the preprocessing time. We believe that the achieved speedup is
significant taking into account, that CiaoPP's analyzer for this domain is highly
optimized and converges very efficiently/01 However, it is to be expected that,
for other domains and implementations, the relative gains will be higher.

8.2 Certificate Size
Table 2 shows our experimental results regarding certificate size, coded in

compact [fastread) format, for the different benchmarks and compares it to the
size of the source code for the same program and to the size of the corresponding

Table 2 (..Vriitkiite Sî u

Bench

BJakJ
ami
bid
boyer
browse
deriv
g rammar
hanoiapp
mmatr ix
occur
pro^eom
read
Oplau
qsortapp
query
rdtok
serialize
war plan
witt
> ' L - I I I ; I

] Overall

Source

Source

1555
L2745
4045

11010
2589

957
1598
1172
557

1367
1619

11843
9983

664
2690

13704
987

5203
17681
2284

1

Byte Code

BytcC

3805
43884
10376
32522

8 !l,7
4221
3182
2264
1053
6903
357(1

24619
33 472

1176
8833

15354
3801

23971
41760

5396

B/S
2.4
3.4
2.1
3.0
3.3
4.4
2.0
1 9
1.9
5.0
2,2
2.1
3.4
1.8
4.2
1.1
3.9
1.0
2.4
2.4

2.66

Certificate

Cerl

3090
24475

5939
12300

1661
288

1259
2325

880
1I)!I8
21 IP

20509
2355

531
6533
1779

15305
19131

t058

C/S

2.0
1.8
1.2
1.1
0.6
0.3
0.8
2.0
1.6
0.8
1.3
2.1
2.1
3.5
0.3
0.5
1.8
2.9
1,1
1.8

1.44

bytecode. To make this comparison fair, we sulu rari) I Ml I bytes from the size of
the bytecode for each program: the size of the bytecode for an empty program
in i his version of Ciao (minimal top-level drivers ami exception handlers For any
executable). The results show the size of the certificate to be quite reasonable.
It. ranges from 0.3 times the size of the source code (for deriv) to 3.5 (in the case
of qsortapp). Overall, it is 1.4-1 times the size of the source rode. We consider
this acceptable since in general (C)LP programs are quite compact (up to 10
times more compact than equivalent imperative programs). In fact, the size of
source plus certificate is smaller (1 + 1.44) than that of the bytecode (2.66).

§9 Conclusions and Related Work
We have presented absirariion-carrying rode (ACC) as o novel enabling

technology for PCC, which follows the standard strategy of associating safety
certificates to programs but it is based throughout on the use of abstract inter­
pretation techniques. We argue that ACC is highly flexible, one aspect being
the parametricity on the abstract domain inherited from analysis engines as
exemplified by those used in (C)LP. We argue thai our proposal brings the ex­
pressiveness, flexibility, and automation which is inherent in the abstract inter­
pretation techniques developed in logic programming to tins area. Our approach
has been illustrated by using the CiaoPP system. This system already uses a
combination of abstracl interpretation, abstract specialization, and a flexible as­
sertion language, to perform program debugging, verification, and optimization
with a wide variety of domains. Other approaches to abstracl verification and
debugging have also been proposed {see1'',ai) for further references). The system
has been enhanced to produce certificates as dictated by the ACC scheme, as
mi integral part of the static debugging and verification performed during the

program development process. A simplified version of the analysis framework
of CiaoPP has also been developed that serves as an efficient checker of the
certificates. The approach is currently being tested in a number of pervasive
applications using an embedded version of the Ciao system which runs on PDAs
and Gumstix processors. Ongoing work also includes the si udy < .1' techniques for
further reducing the size of certificates," and reducing the checking time.

It is important to note that our approach will work directly in other
programming paradigms, such as imperative or functional programming (the
latter already covered in our current system, since Ciao supports functional
programming), as long as a static analyzer/checker is available. Note that I he
fundamental components of the approach (fixed-point semantics and abstracl
interpretation) have both been widely applied also in these paradigms. In fact,
analyzers have been recently developed, for example. I'm- analysis and verification
of Java, which arc direct adaptations of essentially the same parametric fixpoint-
based analysis algorithms that we have used in this work on the producer sii
The ACC approach is thus directly applicable in this context.

Our approach differs from existing approaches to PC'O in several aspects.
In our case, the certificate is computed automatically on the producer side by
an abstract interpretation-based analyzer and the certificate takes the form of
a particular subset of the analysis results. The burden on the consumer side is
reduced by using a simple one-traversal checker, which is a very simplified and
efficient a.hsl raci interpreter which does not need to compute a fixed point.

A type-level dataflow analysis of .lava virtual machine bytecode is also
the basis of several existing verifiers,-"1 " ! and some arc loosely based on abstracl
interpretation. These analyses allow proving thai I he program is correel w.r.t,
type-related correctness conditions. In*01 a proposal is presented to split the
type-based byl ecode verification of the KVM {an embedded variant of the JVM)
in two phases, where the producer first computes I he certificate by means of a
type-based dataflow analyzer and then the consumer simply checks that the
I \ pes provided in I lie code certificate are valid. As in our case, the second phase
can be done in a single, linear pass over the bytecode. However, these approaches
are limited to types.

Let us note thai our checker is part of the trusted computing base (TCBI
and. hence, the code consumer has to trust also the domain operations. Other
approaches to PCC use logic-based verification methods as enabling technology,
an example is1''1 which formalizes a simple assembly language with procedures
and presents a safety policy for arithmetic overflow in Isabellc/HOL. Recently,
a PCC architecture based on Certified Abstract Interpretation"' has been pro­
posed by Besson et al."1 This proposal follows the basics of ACC lor certificate
generation and checking, but relies on a rcriijinl checker specified in Coq* in
order to reduce the TCB. In contrast to our framework, this work is restricted
to safety properties which hold for all states and. for now, it has only been
implemented for a particular abstract domain.

The coexistence of several absl ract domains in our framework is so what
related to the notion of models to capture the security-relevant proper! ii s i >f a >de,

as addressed in the work on Model-Carrying Code {MCC}.4"1 M('(' enables code
consumers to try out different security policies of interest, and select one that can
be statically proved to be consistent with the model associated to the untrusted
code. However, models are intended to describe low-level properties and their
combination has not been studied, which differs from our idea of combining
(high-level) abstract domains. Another approach based on model checking (and
also types) is that of"". It is based on sending the "predicate abstraction"
used in model checking to help reduce the state space search at the receiving
end. where model checking is performed again on the received program. This
approach is thus also quite different from ours, although by coincidence (because
of the use of a predicate abstraction) it has been independently given the same
name. Perhaps the most obvious difference is that this approach does not expli >ii
the fundamental idea of our proposal of constructing iteratively a fixpoint on the
producer's end and checking it without any iteration at the receiving end. Also,
it is not parametric on a set of domains as our generic model and it is presented
only informally.

As a final consideration, it should be noted that while the particular
instance of ACC that we have described in detail is actually defined at the source-
level, in most existing PCC frameworks the code supplier typically packages the
certificate with the object code rather than with the source code (we assume
that both are untrusted). This is without loss of generality because the basic
principles of our approach can also be applied to bytecode or machine code.
Note that a good number of abstract interpretation-based analyses have been
proposed in the literature for bytecode and aiaeliin.M-o.li-. most of which compute
a l]\|Kiini during analysis which can be checked in one pass a1 a receiving end
using the general principle of our proposal. More concretely, the work mentioned
above which tises similar fixpoint-based analysis algorithms to those that we have
applied in this work on the producer side3"1 performs the analysis and verification
directly on Java bytecode, and thus supports the applicability of our approach
to bytecode. In fact, also in recent work, even the concrete CLP verifier used in
our ACC implementation (CiaoPP) has itself been shown to also be applicable
without modification to Java bytecode via a transformational approach.2'

In any case, both approaches {ACC for source code and ACC for object
code) are of interest from our point of view; clearly, in many rases t he source code
is simply not available to the consumer and even when there is a choice between
objecl and source code, using object code means reducing the trusted computing
base in the consumer since there is no need for a compiler. On the other hand,
open-source code is becoming much more relevant these days (in fact. Ciao and
CiaoPP are themselves CM'licensed and available in source rode for reviewing
and modification). As a result, it is now realistic to expect that a relatively large
amount of untrusted source code is available to the consumer. The advantages
of open-source with respect to safety are important since ii allows inspecting
the code and applying powerful techniques for program analysis and validation
which allow inferring information which may be difficult to observe in low-level,
compiled code. This allows handling richer properties which in turn potentially

http://aiaeliin.M-o.li

allow more expressive safety policies.

Acknowledgements
The authors would like to thank the anonymous referees for their useful

comments. This work was funded in part by the Information Society Technolo­
gies programme of the European Commission, Future and Emerging Technolo­
gies under the IST-15905 MOBIUS integrated project, by the Spanish Ministry
of Science and Education under the MEC TlN20(t.r>-il!)207-C()3 MERIT project,
and by the Region of Madrid ler the CAM S-0505/TIC/G407 PROMESAS
project. Part of this work was performed during ;i research st.i\ of Elvira Albert
and German P u e b l a a t UNM supported by respective grams from the Secrel
de Estado de Education y Universidades. Spanish Ministry of Science ami Edu­
cation. Manuel Hermenegildo is also supported by the Prince of Asturias Chair
in Information Science and Technology at UNM.

References
1) Albert, E.. Arenas, P.. Puebla, G. and Hermenegildo, M.. "Reduced Certifi­

cates for A hst rait ion-Carrying Code," in 22nd International Conferena mi
Logic Programming (ICLP 2006). LNCS 4079. Springer-Verlag, pp. 163-178,
August 2006.

2) Albert, E., Gomcss-Zanialloa, M.. Hubert. L. and Puebla, G., "Verification of
Java Byteeode using Analysis and Transformal ion of Logic Programs," in Ninth
ini. Sijniji. on Practical Aspects of {)< chi.ruticc Languages. LNCS .{,io.{. Springer-
Verlag, pp 124-139, January 2007.

3) Appel, A. and Felty, A, "Lightweight Lemmas in lambda-Prolog," in Proc. of
ICLP'99. MIT Press, pp. 411-425. 1999.

4) Aspinall, D., Gilmore, S., Hofmann, M, Sannella, D. ami Stark, 1., "Mobile
Resource Guarantees for Smart Devices," in CASSIS'04 (Barthe, G., Burdy, L..
Huisman, M. Lanet, J.-L. and Muntean, 1*. eds.). LNCS 3362, Springer pp.
1-27, 2005.

5) Barras, R.. Boutin, S.. Cornes, C , Courant, J., Filliatre, J.. Gimenez, B., Her-
belin, II.. Ilnei. G., Munoz, C , Murthy. C., Parent. C , Paulin-Mohring, C„
Saibi, A. and Werner, B, 'The Coq pi-oof assistant reference manual : V
6.1," Technical Report RT-0208, 1997, citcseer.ist.psii.edu/barras97coq.html.

6) Bernard, A. and Lee. P. "Temporal logic for proof-carrying emir.' in Proc <>f
CADE'OB, LINCS. Springer, pp. 31-46. 2002.

7) Besson, F., Jensen, T. and Pichardie, D.. "A pec architecture based on certified
abstract Interpretation," in Proc. of First Int. Workshop on F.nnrgmg Appli­
cations of Abstract Interpretation (EAAI'06), Electronic Notes in Theo'i
Computer Science (ENTCS), 2006.

8) Bruynooghe. M, "A Practical Framework For the Abstracl Interpretation of
Logic Programs." Journal of Logic Programming, 1.0. pp, 91-124, 1991.

9) Bueno, F . Cabeza, I).. Carro, M. Hermenegildo, M.. Lopez-Garcia, P, and
Puebla. G.. 11K- Ciao Prolog System. Reference Manual (vl.8)." The Ciao

http://ist.psii.edu/barras97coq.html

System. Documentation Series-TR CLIP I,/200% A, School of Computer Science,
Technical University of Madrid (UPM), May 2002. System and on-line version
of the manual available at http://www.fiaolniiue.org.

10) Bueno, F., Garcia dc la Banda, M. and Hermenegildo. M., "Effectiveness of
Global Analysis in Strict. Independence-Based Automatic Program Paralleliza-
tion," in Int. Symp. on Logic Programming, MIT Press, pp. 320-336, November
1994.

11) Cachera, D., Jensen. T., Pichardie, D. and Rusu. V., -'Extracting a Data Flow
Analyser in Constructive Logic," in Proc. of ESOP 2004. LNCS 2986, pp. 385-
400, 2004.

12) Oharatonik, W., '•Directional Type Checking for Logic Programs: Beyond Dis­
criminative Types.-' in Proc. of ESOP 2000. LINCS 1782. pp. 72-87, 2000.

13) Le Charlier, B., Degimbe, O., Michael, L. and Van Hrnteuryck, P.. "Optimiza­
tion Techniques for General Purpose Fixpoint Algorithms: Practical Efficiency
for the Abstract Interpretation of Prolog." in Workshop on Static Analysis.
Springer-Verlag, pp. l5-2(i. September 1993.

14) Le Charlier, B. and Van Hentenryck, P, "Experimental Evaluation of a Generic
Abstract. Interpretation Algorithm for Prolog." ACM Transactions on Program­
ming Languages and Systems. 16(1), pp. 35-101, 1091.

15) Comini, M., Gori. R., Levi, G. and Volpe, P.. "Abstract Interpretation based
Verification of Logic Programs," Elector. Notes Theor. Comput. Set., 30(1), 2000.

16) Cousot, P. and C'ousot, R., "Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoinis."
in Proc. of POPL'77, pp. 238-252. 1977.

17) Dart. P.W. and Zobel. .1.. "A Regular Type Language for Logic Programs," in
Type* in Logic Programming, MIT Press, pp. 157-187, 1992.

18) Debray, S.K.. "Sialic Inference of Modes and Dala Dependencies in Logic Pro­
grams," A CM Transactions on Programming Languages and Systems, 11(3),
pp.:418-450, 1989.

19) Debray. S.k.(ed). "Abstract Interpretation". Journal of Logic Programming,
Special Issue: Vol. 13(1-2), North-Holland. July 1992.

20) Friiwirth,T., Shapiro, E-, Vardi, M.Y. and Yardeni, E., "Logic programs as types
for logic programs," in Proc. LICS'91,pp. 300-309, 1991.

21) Hermenegildo, M.. Puebla. G., Bueno, F. and Lopez-Garcia, P., "Program De­
velopment Using Abstract Interpretation (and The Ciao System Preprocessor)."
in Proc. of SAS'03, LINCS 2694, Springer, pp. 127-152. 2003.

2*2) Hermenegildo, M.. Puebla, C... Marriott. K. and Stuckey, P., "Incremental Anal­
ysis of Constraint Logic Programs." A CM Transactions on Programming Lan­
guages and Systems, 22(2). pp. 187-223, March 2000.

23) Hermenegildo, M.. Warren. H. and Debray, S.K., "Global Flow- Analysis as a
Practical Compilation Tool." Journal of Logic Programming, 13(4). PP- 349-367,
August 1992.

21] .laffar. J. and Maher, M.J., "Constraint Logic Programming: A Survey," Journal
of Logic Programming, 19/20, pp. 503-581, 1994.

25) Kelly. A., Marriott. K.. Sondergaard, H. and Stuckey. P.J., "A practical object-
oriented analysis engine for CLP," Software: Practice and Experience, 28(2),
pp. 188-224. 1998.

http://www.fiaolniiue.org

26) Xavier Leroy, "Java bytecode verification: algorithms and formalizations," Jour­
nal of Automated Reasoning, 30(3-4). PP- 235-209. 2003.

27) Lindholm. T. and Yellin, F., The Java Virtual Machine. Specification, Addison-
Wesley, 1997.

28) Marriott, K., Sandergaard, H. ami Junes. N.D.. "Deriotational Abstract Inter­
pretation of Logic Programs," ACM Transactions on Programming Languages
and Systems, 16(3). pp. 607-048, 1994.

29) Mendez-Lojo. M., Navas, J. and Hermenegildo. M.. "An Efficient, Paramet­
ric Fixpoint Algorithm for Analysis of Java Bytecode." in ETA PS Workshop
on Bytecode Semantics, Verification, Analysis and Transformation (BYTE-
CODE'07). Electronic Notes in Theoretical Computer Science. Elsevier- North
Holland, March 2007. To appear.

30) Morrisett, C , Walker, D., Crary. K. and Glew, N., "From system F to l.yped as­
sembly language," ACM Transactions on Programming Languages and Systems.
21(3). pp. 527-568, 1999.

31) Muthukumar, K. and Hermenegildo, M.. "Deriving A Fixpoint Compul
Algorithm for Top-down Abstract Interpretation of Logic Programs," Technical
Report ACT-DC-153-90, Microelectronics and Computer Technology Corpora­
tion (MCC), Austin, TX 78759, April 1990.

32) Muthukumar, K. and Hermenegildo, M., "Combined Determination of Sharing
and Freeness of Program Variables Through Abstract Interpretation." in hit.
Con/, on Logic Programming, MIT Press, pp. 49-63, June lll'H.

33) Muthukumar, K. and Hermenegildo, M.. "Compile-time Derivation of Variable
Dependency Using Abstract. Interpretation," Journal of Logic Programming,
13(2/3), pp.315-347, July 1992.

34) Neeula, G.. "Proof-Carrying Code." in Proc. of POPL'97, ACM Press, pp. 106-
119. 1997.

35) Neeula, G. and Lee. P., "The Design and Implementation of a Certifying Com­
piler," in Proc. of PLDI'98, ACM Press. 1998.

36) Neeula, G.C. and Rahul, S.P., "Oracle-based checking of untrusted software."
in Proc. of P0PLV1, ACM Press, pp. 142-154, 2001.

37) Puebla. C . Bueno, F. and Hermenegildo. M.. "An Assertion Language for Con­
straint Logic Programs," in Analysts and Visualization Tools for Constraint
Programming. L1NCS 1870, Springer, pp. 23-61. 2000.

38) Puebla, G., Correas, J., Hermenegildo, M.. Bueno. F.. Garcia de la Banda, M.,
Marriott. K. and Stuckey. P.J.. "A Generic Framework lor Context-Sensitive
Analysis of Modular Programs." in Program Development in Computational
Logic. A Dirndl of Research Ailvirm, > in Logir-Iinsrd Program Dcvt hrpment
(Bruynooghe, M. and Fan, K. eds.). LNCS 3049, Springer-Yerlag, Heidelberg,
Germany, pp. 234-261. August 2004.

39) Puebla, G. and Hermenegildo, M., "Optimized Algorithms for the Incremental
Analysis of Logic Programs," in SAS'96, LINCS 1145, Springer, pp. 270-284,
1996.

40) Rose, K., Rose, E., "Lightweight bytecode verification," in OOPSLA Workshop
on. Formal Underpinnings of Java, 1998.

41) Santos-Costa, V., Warren. D.H.D. and Yang. R., "The Andorra-] Preprocessor:
Supporting Full Prolog on the Basic Andorra Model." in Int. Conf. on Logu
Programming, MIT Press, pp. 443-456. June 1991.

42) Sekar, R., Venkatakrishnan, V.N., Basu, S., Bhatkar, S. and DuVarney, D.,
"Model-carrying code: A practical approach for safe execution of utitrusted
applications." in Proc. of SOSP'OS. ACM, pp. 15-28, 2003.

43) Van Roy, P. and Despain, A.M., "High-Performance Logic Programming with
the Aquarius Prolog Compiler," IEEE Computer Magazine, pp. 54-68, January
1992.

44) Viiiiilicrct. ('. mid IJueiio, P.. "More Precise yei Efficient Type Inference fbi
Logic Programs," in Int. Static Analysis Symp., LNCS 2477. Springer-Verlag,
pp. 102-116, September 2002.

45) Wildmoser, M. and Nipkow, T., "Certifying Machine Code Safety: Shallow
Versus Deep Embedding," in i7th Int. Con}, on Theorem Proving in Higher
Order Logics. LNCS 3233. Springer, 2004.

46) Xia, S. and Hook. .1.. "Experience with Abstraction Carrying Code," in E!n-
tronic Notes on Theo. Co7np. Sci., 89. Elsevier, 2003.

