
Quantum Computation from a Programmer’s Perspective 1

Quantum Computation:
from a Programmer’s Perspective

Benôıt Valiron

University of Pennsylvania,
Department of Computer and Information Science,
3330 Walnut Street, Philadelphia, Pennsylvania, 19104-6389, USA

benoit.valiron@monoidal.net

Received 15 April 2012

Abstract This paper is the second part of a series of two articles on

quantum computation. If the first part was mostly concerned with the

mathematical formalism, here we turn to the programmer’s perspective.

We analyze the various existing models of quantum computation and

the problem of the stability of quantum information. We discuss the

needs and challenges for the design of a scalable quantum programming

language. We then present two interesting approaches and examine their

strengths and weaknesses. Finally, we take a step back, and review the

state of the research on the semantics of quantum computation, and how

this can help in achieving some of the goals.

Keywords Quantum Computation, Models of Computation, Quantum

Programming Language, Semantics.

§1 Introduction
This paper is the second part of a two-articles series. The first part30) was

concerned with a general introduction to quantum computation; in this article,

we discus quantum computation specifically from a programmer’s perspective.

Supported by the Intelligence Advanced Research Projects Activity (IARPA) via Department
of Interior National Business Center contract number D11PC20168. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. Disclaimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.

2 Benôıt Valiron

In particular, we assume that the quantum device is already scalable and

that we already know which algorithm we want to implement. The questions we

want to be able to answer are how to actually write the algorithm and how to

make sure that it is correct, and that it will run as expected.

The paper is organized as follows. First we discuss the distinction be-

tween the abstract models of computation in which algorithms are usually de-

fined; then we focus on the aspect that is not addressed in these scheme, that

is, the problem of error detection and correction. We then turn to the question

of the programming of quantum devices, from the perspective of the discussed

computational models. We first discuss the need for an actual quantum pro-

gramming language: why we need one, what can we expect from it. Then we

develop two attempts at building a language, and discuss their strengths, their

weaknesses and what lessons can be kept for future work.

To conclude the paper, we analyze what have been done in the semantics

of quantum computation: how they relate to models of computation, and what

benefits these studies can bring.

§2 Ideal versus realistic models of computation

In this section, we turn to the question of setting up a robust setting for

performing quantum computation. There are two sides to this coin: the first is

to define a logical layer, resilient to decoherence, and the other is the definition

of a paradigm for quantum computation, with ideal quantum bits.

2.1 Models of computations
What are the computational paradigms that allow us to actually design

and reason about algorithms? In this section, we briefly describe three of them.

Although there exist (many) other models of computation (quantum Turing ma-

chine, quantum cellular automata, adiabatic quantum computation. . .), we only

focus on the models that we feel are the most susceptible to interface between a

hardware and a potential programming language.

Quantum circuits. As we saw in Section 6 (Part 130)), many quantum algo-

rithms consist of big blocks of preparation phase, followed by the application

of a unitary map (described in term of elementary operations), terminated by

the measurement of the system. The whole process is then regarded as a fancy

Quantum Computation from a Programmer’s Perspective 3

probabilistic process from which one can make some sense with classical pre-

and post-processing.

If we draw a parallel with classical boolean circuits, it makes sense to

consider quantum circuit as a model of quantum computation. A quantum

algorithm is then seen as a family of regular quantum circuits, one for each

input size. The circuits have all the same structure:

Input Output, to be measured

Unitary

|0000 . . .〉 M Garbage

This model is the “canonical” model of quantum computation, and the expressive

power of new models is usually determined by comparison with this one.

It has the advantage of being extremely close to the standard description

of quantum algorithms, and it is also well-suited for some physical implementa-

tions, such as quantum NMR30): we first set up an array of quantum bits, then

we send a series of pulses to change the state of the system, then we measure

and destroy the system.

The QRAM model. The model of computation behind quantum circuit can

be generalized to the model of “quantum random access machine”21). The model

can be best described as “quantum data, classical control”26): the computation

essentially takes place in a classical computer to which a quantum device is con-

nected. The device holds the quantum memory and can allocate new quantum

bits and measure or apply unitary maps on existing quantum bits at wish. The

quantum device is a black-box whose entries are instructions and whose only

outputs are the results of measurements and return codes of instructions.

Classical
computer

Instructions
))

Quantum
device

Results of measurements
Return codes

ii

It is the model of computation implicitly behind most of the quantum algo-

rithms we discussed so far, and behind most error correcting codes. It is a

versatile model in which one can express most of the other models of quantum

computations.

4 Benôıt Valiron

Measurement-based model. Quantum circuits let us think that unitaries

are the ultimate computational unit of quantum computation. It turns out that

it is not the case, and one can develop a theory of computation using “mostly”

measurements. The model is called measurement-based quantum computation24)

(MBQC). In the following, we use the definitions found in (Danos et al., 2009)7)

In this model, quantum bits are usually represented arranged on a lat-

tice, and separated in three groups: the input qubits, the outputs qubits and

the auxiliary qubits. There are three main operations at hand:

• initialization of a quantum bit to the value 1√
2
(|0〉+ |1〉);

• entanglement of 2 (adjacent) quantum bits using ZC ;

• measurement against the basis 1√
2
(|0〉+ eiα|1〉), 1√

2
(|0〉 − eiα|1〉);

• corrections: N and Z.

The computation run as follows. First, we initialize all the non-input qubits.

Then we perform entanglement between certain pairs of qubits. Finally, a se-

ries of measures and possibly correlated corrections are applied on each of the

non-output qubits. The order of operation is of course important (because of

the correlated corrections), and for a particular algorithm one can draw a de-

pendence graph specifying the order in which the measurements are supposed

to be executed.

This model is interesting for several reason. First, this dependence graph

is a powerful tool for optimizing a computation: it gives some non-local informa-

tion on what parts of the computation are unrelated (and can potentially be run

in parallel), and what parts are connected. It also give a notion of flow of infor-

mation (following the dependencies) that can potentially be used for optimizing

the way error-correction is implemented in the hardware.

This model is also well-connected to hardware (in particular lattice-

based technologies, such as trapped ions or quantum dots30)), and thought of as

a good candidate model for computations that would be more resilient to errors

than plain circuit model.

Finally, the model is equivalent to the quantum-circuit model: a quan-

tum circuit can be re-written as a measurement-based computation and vice-

versa. This can be seen as both a “compilation” of a quantum circuit onto a

MBQC-aware hardware, or as a tool to parallelize a quantum circuit6): from a

programmer’s perspective, this model could become a precious tool for automatic

code optimization in a compiler.

Quantum Computation from a Programmer’s Perspective 5

2.2 Physical versus logical quantum bits
Although quantum hardware is tuned to make the system as precise and

stable as possible, a reasonable computation is expected to outlive the coherence

time of the quantum memory30). Moreover, the elementary operations performed

on the system cannot be perfect, and errors are bound to occur. Therefore, before

any practical implementation of a quantum algorithm one needs to first find a

way to stabilize the quantum memory by detecting and correcting the error and

a way to render the operations resilient to errors.

This problem also exists in classical computation, and for example net-

working protocols make heavy use of repetition codes to overcome errors. How-

ever, compared to classical computation, quantum computation has peculiarities

that do not make classical codes directly applicable22).

• No-cloning. Repetition cannot blindly be applied since a piece of quantum

information cannot be duplicated in general.

• Errors are continuous. In classical computation, a bit is either flipped or

not. In quantum computation, errors can be more pernicious: The state

|0〉 can be modified to ε|0〉+(1−ε)|1〉, for a small ε; the state 1√
2
(|0〉+ |1〉)

can be sent to 1√
2
(|0〉+ eiε|1〉). . . This requires to adapt classical codes,

but also to develop new ideas to tackle the new setting.

• Measurement are destructive. In classical error correction, checking the

value of a bit is just a matter of looking at it. In quantum computation,

such an operation on a quantum bit will destroy the potentially huge en-

tangled state in which the qubit is part of. Beside, the notion of “looking

at” something has to be adapted to the new setting: In the phase shift
1√
2
(|0〉 + eiε|1〉), a measure in the canonical basis will not say anything

useful.

For a very readable and extensive presentation of codes for detection and cor-

rection of errors, see Chapter 10 of (Kaye et al, 2007)20).

Three-qubit bit-flip code. To illustrate the issues, we give a concrete ex-

ample of error-detection and correcting code adapted from the classical world.

Suppose that the errors from the environment are random application of not-

gates N on our system: this is the bit-flip error-model.

A simple code to correct this error uses 3 qubits to encode one qubit. As

for the classical case, the correction uses the majority vote to correct the error:

the logical qubit |0〉 is encoded with the three qubits |000〉, and |1〉 with the

6 Benôıt Valiron

|φ〉 •
|0〉 •
|0〉 ⊕ ⊕

(a) Creation

• • U1
xy

• U2
xy

• U3
xy

|0〉 ⊕ ⊕ M x

|0〉 ⊕ ⊕ M y

(b) Correction

H • •

⊕
⊕

(c) Unitary

Fig. 1 Three-qubit bit-flip code

three qubits |111〉. If after a while, the logical qubit is |001〉, we can reasonably

consider that we are instead looking at |000〉, that is, |0〉.
Consider a quantum bit in state |φ〉. As we just discussed, we cannot

duplicate a general quantum state. Instead, we can use NC as in Figure 1(a).

If |φ〉 = α|0〉 + β|1〉, the resulting state of the circuit is α|000〉 + β|111〉. We

successfully encoded |φ〉 as a logical qubit.

The next problem is to detect and recover from errors: If the encoded

|φ〉 suffers from a bit-flip and becomes α|001〉 + β|110〉, we need to first detect

the problem, and then to correct it. But detecting it would require a measure,

and a measure would destroy the state, right? The trick is to perform the

detection in a unitary way, using two auxiliary qubits to store the result. From

the structure of the error, we can then simply measure these qubits and applying

a correcting scheme of Figure 1(b), where the gates U ixy are adjustments to

perform depending on the output of the 2 measurements: either identity or

not-gate.

If we can encode “stabilized” logical quantum bits as 3 physical qubits,

we also have to modify the elementary gates accordingly. For example, the

Hadamard gate sending |0〉 to 1√
2
(|0〉+ |1〉) and |1〉 to 1√

2
(|0〉 − |1〉) physically

sends |000〉 to 1√
2
(|000〉+ |111〉) and |111〉 to 1√

2
(|000〉 − |111〉); it is the circuit

featured in Figure 1(c).

This technique allows us to have quantum bits stable with respect to bit-

flip errors provided that they do not occur “too often”: between each application

of the detection-recover scheme, one has to be reasonably certain that only one

bit-flip can occur.

Concatenated codes. There exist other codes to correct other sort of errors.

For example, the three-qubit phase flip code uses three qubits for detecting and

correcting the error sending 1√
2
(|0〉+ |1〉) to 1√

2
(|0〉 − |1〉).

Quantum Computation from a Programmer’s Perspective 7

When one has two codes, for example the bit-flip code and the phase-

flip code, it is possible to concatenate them in the sense that the (logical) input

qubit of one code will be the output of the other code. In the case of these

two codes, we get the Shor code, correcting an arbitrary error happening on a

logical quantum bit, by using 9 physical qubits. Although it corrects only one

error at a time, this could be partially solved by concatenating yet another code.

However, even for this simple concatenation, the resulting logical qubit uses 9

physical qubits. And if we were concatenating more codes, the number of qubits

would be even larger.

An increase in the number of quantum bits means more memory man-

agement: more qubits need to be allocated and potentially moved around. Also,

the logical elementary operations are hindered by a corresponding overhead.

Given a particular hardware, there is therefore a subtle analysis to per-

form: sure enough there is some decoherence going on. But if it is possible at

all, what is the cost of a fault-tolerant quantum computation on this hardware?

Does the concatenation of one, two, three codes helps? If it does, it has to

be balanced with the increased number of physical quantum bits and physical

elementary gates required for their logical alter-ego.

For a real quantum computer with several hundreds of logical qubits,

this analysis will probably be daunting to perform by hand only. Dedicated

software analysis tools will be needed for fine tuning the design of a code for a

particular hardware combination. This is one of the place where programming

techniques and analysis might end up useful, if not necessary.

§3 Quantum programming
In the discussion so far, we only hinted in a few places that formal

language should probably be a good thing for the field of quantum computa-

tion. This section is the place where we really pledge for quantum programming

languages: why we need them (or will soon), what can they bring, and some

guidelines to follow in order to get the best out of them. We then present two

existing languages with some good features but yet some drawbacks, showing

what we find are good directions to follow in the quest for an “ideal” program-

ming language.

3.1 The need for quantum programming language
If eventually a quantum computer with enough quantum memory is

8 Benôıt Valiron

built, it is worthwhile to wonder how to use it. Several aspects require to be

taken into consideration.

Writing of algorithms. At a high-level view, the algorithms that we de-

scribed in Section 6 (Part 130)) are good examples of informally described al-

gorithms: no parser will ever be able to automatically transform the textual

description into an actual sequence of elementary operations.

There is therefore the need for a reasonably rich language for describing

quantum computation. At a minimum, the language should have the abilities21):

1. to allocate quantum registers, to apply unitaries and to measure quan-

tum registers;

2. to reason about quantum subroutines: to reverse a subroutine and to

condition it over the state of a quantum register;

3. to build a quantum oracle out of the description of a classical function.

Specification and verification. In classical programming languages, debug-

gers are useful tools while writing programs. In quantum computation, due to

impossibility to watch quantum information without modifying it, a debugger

for a program is a lost cause.

In classical programming languages, one can develop test suites to an-

alyze the behavior of a program and check whether it (statistically) behaves

correctly in the expected input data-range. In the case of embedded software, if

it is not possible to do it with the actual device, one can usually perform these

tests off-site. In quantum computation, because of the cost of running code

early quantum computers and the impossibility to efficiently simulate quantum

computation on large inputs, test suites are not an option.

In typed classical programming languages, one has the choice between

strong type systems, dynamic type systems, or even blends of these, bearing the

fact that run-time errors can be captured and potentially resolved by the user

(as in LISP, for example). In quantum computation, due to the cost of the run

of a quantum computation and the difficulty to keep stable quantum memory,

the programmer cannot afford run-time errors in his code, specially if they come

from something as simple as the attempt to clone a quantum bit.

The conclusion is that the work have to be done upstream.

• A program needs to be specified and verified beforehand. A quantum

programming language therefore needs to come up with a well-defined

Quantum Computation from a Programmer’s Perspective 9

and sound semantics, in which one can specify a particular behavior for

a piece of code, and eventually prove that the code behave as expected.

• Because of the cost of each run, the compiler of the programming language

should catch most of the standard causes of run-time errors: the language

needs a strong type system.

Resource sensitivity. At first, quantum computers will probably not have a

very large quantum memory. The programming language should come up with

tools to estimate the resources needed to run a particular piece of code: whether

it is the number of required quantum bits or the number of elementary gates to

be applied.

A particular issue in that respect is the place of the error detection-

correction scheme: should it be managed at the code level, so that the program-

mer can potentially choose which code to use or apply some smart optimization,

should it be left to the compiler, or should it be implemented directly in the

quantum device? A programming language for quantum computation should be

designed in order to be able to deal with codes for error management.

Existing languages for quantum computation. Various quantum pro-

gramming languages have been proposed in the literature14), both imperative-

style and functional-style. Many of these programming languages are theoretical

apparatuses to explore particular aspects of quantum computation and not de-

signed as scalable tools.

First, there is a trend of works developing notations for quantum Turing

machines, one of the paradigms we did not discuss here: its main use is of

theoretical nature.

In the realm of imperative programming languages, it is worthwhile men-

tioning the first real quantum programming language, QCL23), designed by Ömer

between 1998 and 2004. This fine piece of software proposes a C-like language

with many nifty features for what he calls “structured quantum programming”.

The result is a language with a relatively natural way of writing algorithms.

However, with respect to the list of requirements we developed for a successful

programming language, QCL fails short in the specification/verification aspect,

and in the ability to address resource sensitivity. Various other imperative lan-

guages follows QCL footsteps. In particular, a C++ extension4) providing a hint

at a compilation process, the command-guarded language qGCL25). . .

10 Benôıt Valiron

In the realm of quantum functional programming, the proposed lan-

guages are usually coming up with a semantics: either denotational, as the

first-order QPL26) and the quantum lambda-calculus described in Section 3.2, or

operational, as van Tonder’s calculus31), or QML2), a purely quantum language

with compilation in term of quantum circuits, or the line of works proposing an

embedded language in Haskell and from which Section 3.3 is derived.

In the following, we discuss two approaches that we feel partially answer

the requirements we discussed in this section, and that might serve as a base for

future approaches: the quantum lambda-calculus of Selinger and Valiron28) and

the Haskell-embedded quantum IO monad of Green and Altenkirch17). Their

interest lies in the fact that despite their shortcomings, they are not only rea-

sonably expressive but also they possess a well-defined and extendable semantics

offering the premises of a specification.

3.2 A toy language for the QRAM model
We first present a minimal ML-style language for the QRAM model28).

The intuition is the following.

1. The language should be able to express any classical, boolean computa-

tion; it should be higher-order and contain pairing constructs; it should

contain term constructs to express quantum bit creation, unitaries and

measurements.

2. Quantum data should be a first-class citizen: one should be able to

manipulate classical and quantum data with the same term constructs;

variables holding quantum data should be no different from variable

holding classical data; quantum data should be usable at higher-order.

3. The language should be typed and verify usual safety properties, plus

the additional requirement that it should forbid non-duplicable data to

be duplicated.

4. The only side-effect should come from the probabilistic measurement.

In particular, one should not need particular type constructors to hold

quantum data.

The language is formally defined as a lambda-calculus. A lambda-term

is an expression made of the following core grammar, written in BNF form:

Term M,N,P ::= x |MN | λx.M | ifM then N else P | 0 | 1 | ∗ |
meas | new | U | 〈M,N〉 | let 〈x, y〉 = M in N,

Quantum Computation from a Programmer’s Perspective 11

where x ranges over an infinite set of term variables and U a set of unitary

gates; the term ifM then N else P stands for a test on P with output M if true,

N else; the constant terms 0 and 1 stand for the boolean values false and true

respectively; ∗ is the result of a command; the constant terms meas, new and

U stand respectively for the measurement, the creation and the application of

a unitary gate on a quantum bit; the terms let 〈x, y〉 = M in N stands for the

retrieval of the content of a pair.

We identify terms up to α-equivalence, defined as usual3). Similarly, the

notions of free and bound variables and of substitution are standard. We use

syntactic sugar for programs when the context is clear: let x = M in N for

(λx.N)M , and λ〈x, y〉.M for λz.(let 〈x, y〉 = z in N).

This language is purely functional: for example, a fair coin can be im-

plemented as the term meas(H(new 0)), where H is the Hadamard gate.

[3.2.1] Abstract machine

Although we want the language to perform quantum computation, no

quantum bit was added into the terms of the language. For example we might

want to represent the constant function outputting a quantum bit, as λx.(α|0〉+
β|1〉). The reason why we do not allow such a notation is the problem of entan-

glement. As discussed in the first article of this series30), it is not always possible

to write a two quantum bit system in the form |φ〉 ⊗ |ψ〉. Therefore, if x is the

variable corresponding to the first quantum bit and y the one corresponding to

the second in an entangled state, it is not possible to write classically the term

(λf.fx)(λt.(gy)t) as there is no means of writing x and y.

This non-local nature of quantum information forces us to introduce a

level of indirection for representing the state of a quantum program. Following

the scheme of the QRAM model, we describe an abstract machine consisting of

a lambda-term M , an array of quantum bits Q (the QRAM), and a map linking

variables in M to quantum bits in Q. Formally, an abstract machine is a triple

[Q,L,M], where

• Q is a normalized vector of ⊗ni=1C2, for some n > 0, called the quantum

array.

• M is a lambda term,

• L is an injective function from a set |L| of term variables to {1, . . . , n},
where FV (M) ⊆ |L|. L is called the linking function.

We write |Q| = n. If L(xi) = i, we will sometimes write L as the ordered list

12 Benôıt Valiron

|x1 · · ·xn〉. The idea is that the variable xi is bound in the term M to qubit

number L(xi) of the state Q. We also call the pair (Q,L) a quantum context.

If there are no quantum bits, i.e. if Q ∈ C, we write Q = |〉. Similarly, if L is

empty we write L = |〉.

[3.2.2] Evaluation Strategy

Although we solved the problem of entanglement, there is another issue

that prevents us from blindly using substitution, namely the probabilistic nature

of the measurement: since tossing a coin and duplicating the result is not the

same thing as duplicating the coin and tossing each instance, we need to make

a choice of reduction strategy.

A reduction strategy is a deterministic procedure for reducing a general

abstract machine to a result. There are two main reduction strategies for the

lambda-calculus: in the presence of (λx.M)N , either we blindly substitute N

for x in M : this is call-by-name; or we first reduce N to a result before doing

the substitution: this is call-by-value.

In quantum computation, because of the non-duplicability of a quantum

bit, the choice of reduction strategy might even render invalid a piece of code.

For example, if x links to a quantum bit, the code (λfx.(fx)x)(meas x) cannot

be reduced right ahead to λf.(f((meas x))((meas x) as this duplicate the quan-

tum bit. We first have to apply the measure, yielding a classical bit that can

effectively be duplicated.

Generally speaking, in call-by-name a measurement of the form measM

is carried over along β-reductions. There is no possible way to “force” the

measurement to happen. However, it is possible to simulate a call-by-name

reduction in call-by-value by encapsulating terms in lambda-abstractions. For

example, to carry over the term measM using a call-by-value reduction strategy,

one can write the term as λy.measM , with y a fresh variable.

Because of this flexibility, in this quantum lambda-calculus we consider

the call-by-value reduction strategy.

[3.2.3] Reduction rules

We then define a probabilistic call-by-value reduction procedure for the

quantum lambda calculus. Note that, although the reduction itself is probabilis-

tic, the choice of which redex to reduce at each step is deterministic.

Quantum Computation from a Programmer’s Perspective 13

[Q,L, if 0 then M else N]→1 [Q,L,N]

[Q,L, if 1 then M else N]→1 [Q,L,M]

[Q,L,U〈xj1 , . . . , xjn〉]→1 [Q′, L, 〈xj1 , . . . , xjn〉]

[α|Q0〉+ β|Q1〉, L,meas xi]→|α|2 [|Q0〉, L, 0]

[α|Q0〉+ β|Q1〉, L,meas xi]→|β|2 [|Q1〉, L, 1]

[Q, |x1 . . . xn〉,new 0]→1 [Q⊗ |0〉, |x1 . . . xn+1〉, xn+1]

[Q, |x1 . . . xn〉,new 1]→1 [Q⊗ |1〉, |x1 . . . xn+1〉, xn+1]

Table 1 Reductions rules of the quantum lambda calculus

A value is a term of the following form:

Value V,W ::= x | λx.M | 0 | 1 | ∗ | meas | new | U | 〈V,W 〉.

An abstract machine of the form [Q,L, V] where V is a value is called a quantum

value-state.

The reduction rules are shown in Table 1. We write [Q,L,M] →p

[Q′, L′,M ′] for a single-step reduction of states which takes place with prob-

ability p. In the rule for reducing the term U〈xj1 , . . . , xjn〉, U is an n-ary

built-in unitary gate, j1, . . . , jn are pairwise distinct, and Q′ is the quantum

state obtained from Q by applying this gate to qubits j1, . . . , jn. In the rule for

measurement, |Q0〉 and |Q1〉 are normalized states of the form

|Q0〉 =
∑
j

αj |φ0
j 〉 ⊗ |0〉 ⊗ |ψ0

j 〉, |Q1〉 =
∑
j

βj |φ1
j 〉 ⊗ |1〉 ⊗ |ψ1

j 〉,

where φ0
j and φ1

j are i-qubit states (so that the measured qubit is the one pointed

to by xi). In the rule for new , Q is an n-qubit state, so that Q⊗|i〉 is an (n+1)-

qubit state.

There are also ξ-rules for each term constructor, such as

[Q,N]→p [Q′L, ,N ′]

[Q,L,MN]→p [Q′, L,MN ′]

[Q,M]→p [Q′, L,M ′]

[Q,L,MV]→p [Q′, L,M ′V]

or

[Q,L, P]→p [Q′, L, P ′]

[Q,L, if P then M else N]→p [Q′, L, if P ′ then M else N]

keeping in mind that we do not reduce under the branches of a test.

[3.2.4] Type System

14 Benôıt Valiron

The reduction system has run-time errors: the state [Q,L,H(λx.x)] and

the state [Q, |xyz〉, U〈x, x〉] are both invalid. In the next section, we introduce

a type system designed to rule out such erroneous states.

Types In the lambda calculus we just defined, we need to be able to account

for higher-order, products, classical booleans and quantum booleans. Since we

do not want to have specific term constructs for dealing with duplication and

non-duplication, the information has to be encoded into the type system. We

use a type system inspired from linear logic15). By default, a term of type A

is assumed to be non-duplicable, and duplicable terms are given the type !A

instead.

Formally, we define the following type system for the quantum lambda

calculus as follows:

qType A,B ::= bit | qbit | !A | (A(B) | > | (A⊗B).

The constant types bit and qbit stand respectively for the classical and the

quantum booleans; the type !A is for duplicable elements of type A; the type

A(B for functions from A to B; the type > for result of commands; the type

A⊗B for pairs of elements of types A and B.

We call the operator “!” the exponential.

The typing rules will ensure that any value of type !A is duplicable.

However, there is no harm in using it only once; thus, such a value should also

have type A. For that purpose, we use a subtyping relation to capture this

notion: the subtyping is morally stating that !A <: A, and verifying the usual

properties otherwise: A ⊗ B <: A′ ⊗ B′ and A′(B <: A(B′ provided that

A<:A′ and B <:B′.

Typing Rules A typing judgment is the given of a set ∆ = {x1 : A1, . . . , xn :

An} of typed variables, a term M and a type B, written as ∆ BM : B. We call

the set ∆ the typing context, or simply the context.

Given two contexts ∆1 and ∆2, we write (∆1,∆2) for the context con-

sisting of the variables in ∆1 and in ∆2. When described in this form, it is

assumed that |∆1| ∩ |∆2| = ∅.
A typing derivation is called valid if it can be inferred from the rules

of Table 2. We write !∆ for a context of the form {x1 : !A1, . . . , xn : !An}.
We use the notation |∆| to represent the set of (untyped) variables {x1, . . . , xn}

Quantum Computation from a Programmer’s Perspective 15

contained in ∆. In the table, the symbol c spans the set of term constants

{meas,new , U, 0, 1}. To each constant c we associate a term Ac, as follows:

A0, A1 = bit , Anew = bit (qbit , AU = qbit⊗n (qbit⊗n, Ameas = qbit (!bit .

The type !Ac is understood as being the “most generic” one for c, as

enforced by the typing rule (ax 2). For example, we defined Anew to be bit(qbit .

Since new can take any type B such that !Ac <:B, the term new can be typed

with all the types in the poset:

!(!bit (qbit)
<:

!(bit (qbit)
<:

<:
!bit (qbit .

bit (qbit
<:

This implies, as expected, that no created quantum bit can have the type !qbit .

In general, the type system enforces the requirement that variables hold-

ing quantum data cannot be freely duplicated; thus λx.〈x, x〉 is not a valid term

of type qbit(qbit⊗qbit . On the other hand, we allow variables to be discarded

freely.

Note also that due to rule (λ2) the term λx.M is duplicable only if all

the free variables of M (other that x) are duplicable. This follows the call-by-

value approach: since λx.M is a value, if it is duplicated it will be duplicated

as a syntactic string of symbols, thus duplicating every single free variable of it

(other than x).

Properties of the Type System An abstract machine [Q,L,M] can be

said to be well-typed (or valid) of type A as one could expect: M needs to be of

type A, and all the variables in L are taken to be of type qbit .

The properties of the type system are then canonical: A well-typed

program only reduces to well-typed programs of the same type, and if a program

is well-typed, either it is a value or it reduces to some other program.

[3.2.5] Example: quantum teleportation

It turns out that some quantum algorithms can be efficiently understood

as elements of higher-order types. We give in this section the implementation

of the teleportation procedure as a higher-order term, despite the fact that the

usual formalism is completely sequential30).

The Teleportation Procedure Consider the teleportation algorithm as it is

described in Section 4.3 (Part 130)). We can embed each part of the procedure

16 Benôıt Valiron

A<:B
∆, x : A B x : B

(ax 1)
!Ac <:B

∆ B c : B
(ax 2)

Γ1, !∆ B P : bit Γ2, !∆ BM : A Γ2, !∆ B N : A

Γ1,Γ2, !∆ B if P then M else N : A
(if)

Γ1, !∆ BM : A(B Γ2, !∆ B N : A

Γ1,Γ2, !∆ BMN : B
(app)

x : A,∆ BM : B

∆ B λx.M : A(B
(λ1)

If FV (M) ∩ |Γ| = ∅:
Γ, !∆, x : A BM : B

Γ, !∆ B λx.M : !n+1(A(B)
(λ2)

!∆,Γ1 BM1 : !nA1 !∆,Γ2 BM2 : !nA2

!∆,Γ1,Γ2 B 〈M1,M2〉 : !n(A1 ⊗A2)
(⊗.I)

∆ B ∗ : !> (>.I)

!∆,Γ1 BM : !n(A1 ⊗A2) !∆,Γ2, x1:!nA1, x2:!nA2 B N : A

!∆,Γ1,Γ2 B let 〈x1, x2〉 = M in N : A
(⊗.E)

Table 2 Typing rules

as a function. There is a function EPR : !(>((qbit ⊗ qbit)) that creates an

entangled state, as in Step (1):

EPR = λx.CNOT 〈H(new 0),new 0〉.

There is a function BellMeasure : !(qbit ((qbit (bit ⊗ bit)) that takes two

qubits, rotates and measures them, as in Step (2):

BellMeasure = λq2.λq1.(let 〈x, y〉 = CNOT 〈q1, q2〉 in 〈meas(Hx),meas y〉

We also can define a function U : !(qbit ((bit ⊗ bit (qbit)) that takes a qubit

q and two bits x, y and returns Uxyq, as in Step (3):

U = λq.λ〈x, y〉.if x then (if y then U11q else U10q)

else (if y then U01q else U00q).

The teleportation procedure can be seen as the creation of two non-duplicable

functions f and g

f : qbit (bit ⊗ bit , g : bit ⊗ bit (qbit , (1)

Quantum Computation from a Programmer’s Perspective 17

such that (g ◦ f)(x) = x for an arbitrary qubit x. We can construct such a pair

of functions by the following code:

let 〈x, y〉 = EPR ∗ in
let f = BellMeasure x in

let g = U y

in 〈f, g〉.

Note that, since f and g depend on the state of the qubits x and y, respectively,

these functions cannot be duplicated, which is reflected in the fact that the types

of f and g do not contain a top-level “!”.

[3.2.6] Shortcomings of the language

This quantum lambda-calculus provides a sound and unified framework

for manipulating classical and quantum data. It also makes it possible to po-

tentially define oracles as higher-order functions. The language successfully ad-

dresses the issue of the distinction between duplicable and non-duplicable data,

even at higher-order type, and do so in a general manner. Finally, it can easily

be extended with a richer type system (such as lists) and recursion29).

However, it has several shortcomings that cannot be overcome with a

simple extension: first, if it is possible to write and manipulate oracles as first-

class objects, there is no way to automatically make a unitary map out of a

classical description: the only unitaries around are the elementary ones. It

also lacks a way of manipulating quantum circuits. For example, one cannot

reverse a computation. It is not possible to process a quantum circuit to remove

redundancies, or describe and apply optimization. It is neither possible to apply

an error correcting code to a given function within the language.

3.3 A toy language for circuit construction
The shortcomings described in Section 3.2.6 are mainly due to the fact

that the semantics of the quantum lambda-calculus does not separate circuit

construction from circuit evaluation. The quantum IO monad of Green and

Altenkirch17) proposes an alternative approach for dealing with quantum com-

putation, and the technique addresses this particular problem.

The language follows an intuition different from the one developed in

the quantum lambda-calculus.

1. First, the language is a language embedded in a host language, Haskell.

18 Benôıt Valiron

The choice of the host language has its importance: Haskell is a higher-

order, functional language with a rich type system (much richer than

the ML type-system, for example). This makes it a good candidate for

hosting an embedded language while giving it a well-defined operational

semantics.

2. The language separates the construction of a quantum computation

from its execution. While being built, the computation is stored in a

datastructure that one could then theoretically manipulate. As such,

the language only proposes commands to run various simulations, but

the implementation is modular enough to imagine being able to add

a “run” command to hook on a real quantum computer, or add some

commands to perform code rewriting.

3. The other noteworthy feature of the quantum IO monad is the use of

Haskell’s rich type system to define a notion of generic quantum data.

With a single term construct, one can define the measure of a tuples of

quantum bits, or a list of quantum bits, or a tuples of list of quantum

bits. . . This gives a concrete definition of the otherwise vaporous notion

of quantum data.

In the following, we give a brief tutorial to the quantum IO monad, illustrating

the features that are worth having in a quantum programming language. Al-

though the language being embedded in Haskell, we’ll try our best to make the

exposition self-contained. Haskell code is written in typewriter font.

[3.3.1] An embedded language in Haskell

Standing on top of Haskell, the language comes with three main specific

type constructors: a type of quantum bits Qbit, a type of unitary maps U, and

a type constructor for quantum computation QIO. A function of type A→ QIO B

is understood as a function from an object of type A, returning a quantum

computation whose result would be of type B. The type constructor QIO records

the fact that some non-purely functional operations are taking place along the

evaluation of the function.

Elementary quantum computation. The basic blocks of quantum compu-

tation are represented as Haskell functions.

• measQbit :: Qbit -> QIO Bool. For measurements: a function taking

a qubit as input and outputting a classical boolean.

Quantum Computation from a Programmer’s Perspective 19

• mkQbit :: Bool -> QIO Qbit. For creating quantum bits: a function

taking a classical boolean as input and producing a quantum bit.

• applyU :: U -> QIO (). For unitaries: it is a command taking a uni-

tary matrix as input, and producing. . . a quantum computation. A

command is a function of output type void, represented by the empty

tuple () in Haskell.

Building unitaries. How are we to build unitaries of type U? The following

operations are at available.

• swap :: Qbit -> Qbit -> U. For swapping the quantum bits refer-

enced by the two inputs.

• cond :: Qbit -> (Bool -> U) -> U. For dynamically constructing of

controlled operation. This operation is nothing else than an if-then-else

construction for quantum bit, as it was already proposed in QML2).

• rot :: Qbit -> ((Bool,Bool) -> C) -> U. The first input is a ref-

erence to a quantum bit, and the second input is the description of a 2×2

matrix. This operation constructs the circuit applying the matrix to the

qubit.

• ulet :: Bool -> (Qbit -> U) -> U. Allocation of auxiliary ancillas.

First the ancilla is created with the value of the first input, then the

second argument is applied to this ancilla. Finally, the ancilla is erased

(i.e. measured).

• urev :: U -> U. Reverse the circuit description given in input.

Finally, the type U is enriched with the notion of monoid (thanks to Haskell’s

typeclass Monoid). Practically, this means that two other useful constructions

are available: mempty :: U, representing the empty circuit and mappend ::

U -> U -> U, representing sequencial composition of circuits.

Example of unitary constructions. The Hadamard gate, using an auxil-

liary function:

hadMat :: (Bool,Bool) → C
hadMat (True,True) = -0.707...

hadMat (_,_) = 0.707...

uhad :: Qbit → U

uhad q = rot q hadMat

20 Benôıt Valiron

One can define a generic control operator as a one-sided if-construction:

ifQ :: Qbit → U → U

ifQ q u = cond q (λx → if x then u else mempty)

Using lists of quantum bits (in Haskell, [A] is the notation for a list of elements

of type A), one can use the programmable feature of the circuit construction and

define a multi-control operation with recursion.

ifQx :: [Qbit] → U → U

ifQx [] u = u

ifQx (h:t) u = ifQ h (ifQx t u)

Arguably, this program is implementing a multi-controlled gate in a “natural”

way.

General quantum computation. Haskell proposes an imperative style way

for composing operations of type QIO (thanks to the monadic interface). Con-

sider the two functions f :: A → QIO B and g :: B → QIO C. The com-

position of f and g is done using the syntax

h :: A → QIO C

h x = do y <- f x; z <- g y; return z

The syntax is self explanatory: store the result of f x in y, feed it to g, get

z, finally return z. One can of course compose many operations in one go, or

apply commands of type QIO (), extending the syntax in the obvious way. For

example, the coin-toss can be defined as follows.

coinToss :: QIO Bool

coinToss = do

q <- mkQbit False;

applyU (uhad q);

r <- measQbit q;

return r

Quantum teleportation. As a complete example, we show the implemen-

tation of the quantum teleportation algorithm17). Compared to the quantum

lambda-calculus, the main differences is that every function returns a computa-

tion QIO. We assume that unot is the gate N and that uZ is the gate Z.

Quantum Computation from a Programmer’s Perspective 21

alice :: Qbit → Qbit → QIO (Bool, Bool)

alice eq aq = do

applyU (ifQ aq (unot eq));

applyU (uhad aq);

eb <- measQbit eq;

ab <- measQbit aq;

return (eb, ab)

Provided that bobsU : : (Bool, Bool)→ Qbit→ U implements the map (x, y) 7→
Uxy, we define the action of Bob as

bob :: Qbit → (Bool, Bool) → QIO Qbit

bob eq cd = do

applyU (bobsU cd eq);

return eq

We write the teleportation algorithm as in Section 3.2.5. Here, the type of the

term is a bit more complex due to the construct QIO.

teleportation :: QIO ((Bool,Bool) → QIO Qbit,

Qbit → QIO (Bool,Bool))

teleportation = do

(eq1, eq2) <- bell;

return (alice eq1, bob eq2)

It is of course possible to compose the two functions, and any reasonnable oper-

ational semantics would produce an identity map.

idQ :: Qbit → QIO Qbit

idQ q = do

(f, g) <- teleportation;

b <- g q;

q’ <- f b;

return q’

[3.3.2] Typeclasses and quantum data

A particularly useful feature in the quantum IO proposal is the notion

of generic quantum data. Thanks to Haskell’s typeclasses, one can overload the

type of a function and still stay in a strongly typed paradigm. A typeclass is a

22 Benôıt Valiron

property of a type to which is attached a set of functions. In the case of quantum

data, the quantum IO monad proposes

class Qdata a qa | a -> qa, qa -> a where

mkQ :: a -> QIO qa

measQ :: qa -> QIO a

condQ :: qa -> (a -> U) -> U

That is, the typeclass Qdata place in relation two types a and qa, and define

for each pair (a,qa) three functions mkQ, measQ and condQ. The names of these

functions are deliberately close to the maps mkQbit, measQ and cond, since the

first pair (a,qa) is (Bool,Qbit):

instance Qdata Bool Qbit where

mkQ = mkQbit

measQ = measQbit

condQ = cond

Provided that (a,qa) and (b,qb) are already member of Qdata, we can also

make ((a,b),(qa,qb)) member of Qdata:

instance (Qdata a qa, Qdata b qb) => Qdata (a,b) (qa,qb) where

mkQ (x,y) = (mkQ x, mkQ y)

measQ (x,y) = (measQ x, measQ y)

condQ (x,y) f = condQ x λz → condQ y λz’ → f (z,z’)

Similarly, it is possible to add tuples, and lists in the scheme. But one

can make more “interesting” correspondences; for example, if we define the type

data QInt = QInt [Qbit]

one can make (Int, QInt) into an instance of Qdata (by fixing the number of

digits a QInt is allowed to have, and by choosing whether we are little or big

endian), so that mkQ 4 for example builds the state | . . . 0100〉

[3.3.3] Discussion

The quantum IO monad offers a versatile way of manipulating pieces of

quantum algorithms: quantum circuits on one hand, and quantum computation

in general on another hand. It also features a systematic procedure to extend

quantum datatypes. These ideas are to keep in mind while designing a scalable

quantum programming language.

Quantum Computation from a Programmer’s Perspective 23

However, several drawbacks hamper the language, and does not make it

the perfect fit we were looking for.

1. The type of unitaries U is untyped. As such, a unitary is a blackbox

that does not contain any information on the structure of the input

and the output. Unitaries cannot easily be used with Qdata.

2. The typeclass Qdata leaves the programmer frustrated: the correspon-

dence classical-quantum is only drawn for elementary functions: how

about producing a map QInt → QInt out of a map Int → Int?

3. Despite its power, Haskell’s type system is not capable of forbidding

duplication of quantum bits. For example, the following buggy code is

nonetheless valid:

copy :: Qbit -> QIO (Qbit, Qbit)

copy q = do return (q,q)

This is certainly problematic in the light of our requirements for a

quantum programming language.

3.4 Monads and quantum computation
Albeit kept under the shed, in the two languages we reviewed a struc-

turing notion kept showing up: the notion of monad. Monads are semantic tools

to capture and reason about side-effects.

Side-effects appear in a language when the notion of value, or result is

distinct from the notion of computation. Exemples of side-effects include.

• Probabilistic behavior. If there is a way to toss a coin in a language, the

coin-toss is operationally distinct from its result.

• Input-output. If the language possesses a library for accessing a terminal,

or a tape, or a network, or a file-system. . . , sure enough a computation

is not similar to a result.

• State. If references, or pointers are available in the language, this can

often be represented by a monad.

These three side-effects appear in the situations we explored:

• QIO is can be regarded as input-output,

• U is a state monad,

• the measurement induces a probabilistic side-effect.

24 Benôıt Valiron

In the quantum lambda-calculus, the operational semantics makes use of an ex-

plicit state monad to keep track of the quantum bits already allocated. However,

thanks to the type system enforcing linearity on quantum bits, a computation

involving unitaries (such as H (N x)) is the same thing as the result of the com-

putation (since one can only use it once): in the quantum lambda-calculus, the

quantum bits is not the part breaking the pure functionality of the language.

The important aspects these two languages teach us is that

• linear type systems can efficiently deal with the non-duplicability of quan-

tum information;

• monads are probably the good paradigm to manipulate quantum circuits

and quantum computation as a piece of data.

• generic quantum data definable by the programmer makes sense, but

should be used in parallel with automatic classical-to-quantum conversion

to take full advantage of their genericity.

3.5 Semantics of quantum computation
A second research area is the development of semantics for quantum

computation. The goal is two-fold. First, understanding the structure of quan-

tum information13). Then, developping tools for specification and verification

of quantum algorithms. In the event of quantum computers, these tools might

reveal as useful as they were for classical computation32).

[3.5.1] Completely positive maps

A well-known fact22) is that vectors in Hilbert spaces do not form a

satisfying framework to describe quantum computation when it involves mea-

surement. Consider the two computations

new (meas (H (new 0))), (2)

H (new (meas (H (new 0))). (3)

The former outputs the equal probability distribution consisting of the states |0〉
and |1〉 whereas the latter outputs the equal probability distribution consisting of

the states 1√
2
(|0〉+ |1〉) and 1√

2
(|0〉− |1〉). One can argue that these are distinct.

However, this is not the case: there are observationally equivalent, i.e. one

cannot find a computation that can distinguish between them. For example, if

you simply measure them with respect to the standard basis, they both answer 0

and 1 with equal probability. Intuitively, the idea is that a quantum computation

Quantum Computation from a Programmer’s Perspective 25

on either state is morally “just” a general measurement, and one can generalize

this idea to build a denotational semantics for quantum computation.

A representation that is invariant under this observational equivalence is

the notion of positive matrix. There are several equivalent definitions for positive

matrices. The one of interest in our situation is this one:

Definition 3.1

A positive matrix is a square-matrix of the form
∑n
i=1 ρiuiu

∗
i where the ρi’s

are non-negative reals, the ui’s are normalized vectors of same dimension. The

notation u∗i represents the conjugate transpose of ui. That is, if ui is the 2-

dimensional vector (αβ), u∗i is the row-vector (ᾱ β̄). The element uiu
∗
i is then

the 2× 2 matrix (αᾱ αβ̄
βᾱ ββ̄

).

One can therefore represent a probabilistic superposition of states by

taking the ρi’s as the probability for a particular state ui to be the result of the

computation. Then in the above example, the output of Program (2) is

1

2

(
1

0

)
(1 0) +

1

2

(
0

1

)
(0 1) =

(
1
2 0

0 1
2

)
,

whereas the output of Program (3) is

1

2

(
1√
2

1√
2

)
(1√

2
1√
2
) +

1

2

(
1√
2

-1√
2

)
(1√

2
-1√

2
) =

1

2

(
1
2

1
2

1
2

1
2

)
+

1

2

(
1
2

-1
2

-1
2

1
2

)
=

(
1
2 0

0 1
2

)
.

Their representation in term of positive matrices is the same: this is consistent

with the fact that the two programs are indistinguishable.

If the result of a computation is a positive matrix, a computation is a

completely positive map. That is:

• sending positive matrices to positive matrices;

• linear, in the sense of linear algebra: if the map is f , f(x+y) = f(x)+f(y)

and f(ρ · x) = ρ · f(x).

If we deal with first-order maps (i.e. with inputs and outputs being only classical

and quantum bits), one can also add

• trace-preserving,

in which case the map is called a superoperator.

Denotational semantics. A denotational semantics for a programming lan-

guage is a mathematical representation of its programs. A program is regarded

26 Benôıt Valiron

as a process inputting some data and outputting some other data: its semantics

is a function whose domain is the datatype of input and whose codomain is the

datatype of output.

The semantics of a programming language can have three properties: ad-

equacy, full-abstraction and full completeness. If [[P]] represents the denotation

of the program P , we can define these notions as follows32).

• Let Ω be the diverging program. The semantics is adequate if when-

ever [[P]] = [[Ω]] where Ω is the looping program, then P is also non-

terminating.

• The semantics is fully-abstract if for all programs P and Q, [[P]] = [[Q]] if

and only if P and Q are observationally equivalent. A potential use for a

fully abstract semantics is to validate code optimization, for example in

the context of the construction of a compiler.

• Finally, the semantics is fully complete if moreover, every element v in the

image of a type A corresponds to a program P . With such a semantics,

one has a decision tool that can determine using mathematical methods

whether a given set of specifications can be realized by a program.

Quantum lambda-calculus. Positive matrices and completely positive maps

form a denotational for the quantum lambda-calculus in the following sense.

• Completely positive maps form a fully-abstract semantics for the strictly

linear fragment of the quantum lambda-calculus27): the model only rep-

resents programs whose types do not contain any instance of “!”. In

particular, if f and g are the two functions built in Section 3.2.5, then

g ◦ f : qbit → qbit has the same denotation as the identity function λx.x.

• Superoperators form a complete semantics for the first-order fragment of

the stricly linear lambda-calculus26). This means that any superoperator

can be regarded as a program unique up to observational equivalence,

and vice-versa.

[3.5.2] Linear logic

Completely positive maps does not capture the whole quantum lambda-

calculus: duplication is not handled. One can wonder what is the structure of

the type operator “!”, and what are the properties it satisfies.

Programs and Proofs. Through the Curry-Howard correspondence19), the

type of a program can be interpreted as a proposition in a particular logic. The

Quantum Computation from a Programmer’s Perspective 27

program corresponds to the proof of the proposition, and the cut-elimination

of the proof corresponds to the evaluation of the program. A rich enough logic

admits a notion of conjunction ∧ and a notion of implication ⇒. In the type

system, these correspond to pairing and function types. In the realm of the

semantics, the connectives (∧,⇒) forms an adjunction, a powerful categorical

notion.

The notions of semantics, typed languages and logical systems interact

in complex ways, each one giving insight on the structure of the other ones.

A modality for non-linearity. Linear logic is a resource-sensitive logic in-

troduced by Girard15). This logic acknowledges the fact that the structural rules

are usually hidden in regular, classical logic: for example, the introduction rule

for the conjunction can be decomposed in two distinct ways, giving rise to two

distinct conjunctions: a multiplicative ⊗ and an additive &:

∆ B A Γ B B
∆,Γ B A⊗B

∆ B A ∆ B B
∆ B A&B

In order to go from one to the other, one needs to apply two structural rules:

weakening and contraction:

A B C
A,B B C

A,A B B

A B B

In linear logic, structural rules can only be applied on formulas of the form !A.

In general there are four structural rules: weakening and contraction, but also

dereliction and promotion, respectively:

A B C
A, !B B C,

!A, !A B B

!A B B ,
A B B
!A B B,

!A B B
!A B!B.

The modality “!” can be regarded as the duplicability flag in the type system

of the quantum lambda-calculus: weakening and promotion restricts which data

can be erased and duplicated, whereas derelication and promotion relate dupli-

cable data with non-duplicable data.

A valid typing judgement in the quantum lambda-calculus can therefore

be seen as a proof in a linear-logic-like logical system. It does not match precisely

linear logic because the type operator “!” is weaker: in particular, !!A is a type

equivalent to !A, which is not the case in linear logic.

28 Benôıt Valiron

Relation with models. If the two logical systems do not match precisely,

they match enough to be able to adapt models of linear logic to the subset of

quantum computation described by the quantum lambda-calculus. Specically,

many models of linear logic are based on functional analysis and theory of opera-

tor spaces, and use the algebraic linearity to reflect the logical linearity10, 5, 12, 11).

The spaces used for the models are rich enough to be able to generate the modal-

ities “!” with the correct behavior. It has been shown that in some context it is

possible to use the constructions to make models of quantum computation16, 18).

[3.5.3] Graphs and MBQC

An successful alternative approach to verify properties of quantum pro-

grams is the use of rewriting rules in graphical representation of symmetric

monoidal and compact closed categories. Although this is particularly relevant

in the paradigm of measurement-based quantum computation, it is a tool to

keep an eye on when concerned with optimization of quantum circuits.

Categorical representation. Entanglement structures such as the one de-

signed at the beginning of a computation in the MBQC model (Section 2.1) can

be regarded simply as a graph: called graph state, they possess many properties

that can be abstracted away and described in categorical models9).

The canonical categorical models that can be used to described quantum

computation are the compact closed structures1): for our purpose, their most

interesting aspect is that they feature a graphical language, and equations in

compact closed structures can be set in correspondence with rewrite rules in the

graphical language.

Playing with additional structures on compact closed categories allows

one to describe with sharp precision many constructions in quantum computa-

tion, in particular with what can be done with graph states. A partially au-

tomated tool, Quantomatic8), have been developped for helping the reasonning

in this theoretical framework. It is readily available to help analyzing circuit

optimizations.

§4 Conclusion
Quantum computation is yet at an early stage: there does not yet ex-

ist a technology to build scalable quantum computers, and the development is

hindered by the unstability of quantum information.

Quantum Computation from a Programmer’s Perspective 29

However, if the technology is not yet up to scale, the theory behind

quantum computation is well-understood. This is calling for a theoretical com-

puter science to be developed, using all the insight computer science have been

developing for classical computation. Semantical tools are getting shaped: it is

time to develop quantum programming languages and analysis techniques to get

ready for the birth of scalable quantum computers.

This is an exciting field with many open questions and extremely diverse

problematics. We hope this review raised some interest among the readers: this

computational paradigm is still vastly unexplored, and it is calling for expertize

from all domains of computer science.

References

1) Abramsky, S. and Coecke, B., “A categorical semantics of quantum protocols,”
in Proc. of LICS’04, pp. 415–425, 2004.

2) Altenkirch, T. and Grattage, J., “A functional quantum programming lan-
guage,” in Proc. of LICS’05, pp. 249–258, 2005.

3) Barendregt, H. P., The Lambda-Calculus, its Syntax and Semantics, North
Holland, 1984.

4) Bettelli, S., Calarco, T. and Serafini, L., “Toward an architecture for quantum
programming,” The European Physical Journal D, 25, 2, pp. 181–200, 2003.

5) Blute, R. F., Cockett, J. R. B. and Seely, R. A. G., “Differential categories,”
Math. Struct. in Comp. Sc., 16, 6, pp. 1049–1083, 2006.

6) Broadbent, A. and Kashefi, E., “Parallelizing quantum circuits,” Th. Comp.
Sc., 410, 26, pp. 2489–2510, 2009.

7) Danos, V., Kashefi, E., Panangaden, P. and Perdrix, S., “Extended measure-

ment calculus,” Ch. 713), pp. 235–310.

8) Dixon, L. and Duncan, R., “Graphical reasoning in compact closed categories
for quantum computation,” Annals of Math. and Art. Int., 56, pp. 23–42, 2009.

9) Duncan, R. and Perdrix, S., “Rewriting measurement-based quantum compu-
tations with generalised flow,” in Proc. of ICALP’10, pp. 285–296, 2010.

10) Ehrhard, T., “On Köthe sequence spaces and linear logic,” Math. Struct. in
Comp. Sc., 12, 5, pp. 579–623, 2002.

11) Ehrhard, T., “Finiteness spaces,” Math. Struct. in Comp. Sc., 15, 4, pp.
615–646, 2005.

12) Ehrhard, T. and Regnier, L., “The differential lambda-calculus,” Th. Comp.
Sc., 309, 1–2, pp. 1–41, 2003.

13) Gay, S. J. and Mackie, I., editors, Semantic Techniques in Quantum Computa-
tion, Cambridge University Press, 2009.

14) Gay, S. J., “Quantum programming languages: Survey and bibliography,”
Math. Struct. in Comp. Sc., 16, 4, pp. 581–600, 2006.

30 Benôıt Valiron

15) Girard, J. Y., “Linear logic,” Th. Comp. Sc., 50, 1, pp. 1–101, 1987.

16) Girard, J. Y., “Between logic and quantic: A tract,” in Linear logic in computer
science, Cambridge University Press, 2004.

17) Green, A. and Altenkirch, T., “The quantum IO monad,” Ch. 513), pp. 173–205.

18) Hasuo, I. and Hoshino, N., “Semantics of higher-order quantum computation
via geometry of interaction,” in Proc. of LICS’11, pp. 237–246, 2011.

19) Howard, W., “The formulae–as–types notion of construction,” in To H.B.
Curry: essays on combinatory logic, lambda calculus, and formalism, Academic
Press, pp. 479–490, 1980.

20) Kaye, P., Laflamme, R, and Mosca M., An Introduction to Quantum Computing,
Oxford University Press, 2007.

21) Knill, E. H., “Conventions for quantum pseudocode,” Tech. Rep. LAUR-96-
2724, Los Alamos National Laboratory, 1996.

22) Nielsen, M. A. and Chuang, I. L., Quantum Computation and Quantum Infor-
mation, Cambridge University Press, 2002.

23) Ömer, B., Quantum programming in QCL, Master’s thesis, Institute of Infor-
mation Systems, Technical University of Vienna, 2000.

24) Raussendorf, R. and Briegel, H. J., “A one-way quantum computer,” Phys.
Rev. Lett., 86, 22, pp. 5188–5191, 2001.

25) Sanders, J. W. and Zuliani, P., “Quantum programming,” in Proc. of MPC’00,
pp. 80–99, 2000.

26) Selinger, P., “Towards a quantum programming language,” Math. Struct. in
Comp. Sc., 14, 4, pp. 527–586, 2004.

27) Selinger, P. and Valiron, B., “On a fully abstract model for a quantum linear
functional language,” pp. 123–137.

28) Selinger, P. and Valiron B., “A lambda calculus for quantum computation with
classical control,” Math. Struct. in Comp. Sc., 16, 3, pp. 527–552, 2006.

29) Selinger P. and Valiron, B., “Quantum lambda-calculus,” Ch 413), pp. 135–172.

30) Valiron, B., “Quantum computation: a tutorial,” New Generation Computing,
2012. To appear.

31) van Tonder, A., “A lambda calculus for quantum computation,” SIAM Journal
of Computing, 33, 5, pp. 1109–1135, 2004.

32) Winskel, G., The Formal Semantics of Programming Languages, MIT Press,
1993.

