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Abstract We obtain the conditions for the emergence of the swarm

intelligence effect in an interactive game of restless multi-armed bandit

(rMAB). A player competes with multiple agents. Each bandit has a pay-

off that changes with a probability pc per round. The agents and player

choose one of three options: (1) Exploit (a good bandit), (2) Innovate

(asocial learning for a good bandit among nI randomly chosen bandits),

and (3) Observe (social learning for a good bandit). Each agent has two

parameters (c, pobs) to specify the decision: (i) c, the threshold value for

Exploit, and (ii) pobs, the probability for Observe in learning. The pa-

rameters (c, pobs) are uniformly distributed. We determine the optimal

strategies for the player using complete knowledge about the rMAB. We

show whether or not social or asocial learning is more optimal in the

(pc, nI) space and define the swarm intelligence effect. We conduct a

laboratory experiment (67 subjects) and observe the swarm intelligence

effect only if (pc, nI) are chosen so that social learning is far more optimal

than asocial learning.
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§1 Introduction
The trade-off between the exploitation of good choices and the explo-

ration of unknown but potentially more profitable choices is a well-known prob-

lem 6, 10, 5). A multi-armed bandit (MAB) provides the most typical environment

for studying this trade-off. It is defined by sequential decision making among

multiple choices that are associated with a payoff. The MAB problem involves

the maximization of the total reward for a given period or budget. In a variety

of circumstances, exact or approximated optimal strategies have been proposed
2, 7, 11, 1, 13).

Recently, the MAB has also provided a good environment for the trade-

off between social and asocial learning 10). Here, social learning is learning

through observation or interaction with other individuals, and asocial learning

is individual learning 8, 10, 6, 12). The advantage of social learning is its cost

compared with asocial learning. The disadvantage is its error-prone nature, as

the information obtained by social learning might be outdated or inappropriate.

In order to clarify the optimal strategy in the environment with the two trade-

offs, Rendell et al. held a computer tournament using a restless multi-armed

bandit (rMAB) 10). Here, restless means that the payoff of each bandit changes

over time. There are 100 bandits in an rMAB, and each bandit has a distinct

payoff independently drawn from an exponential distribution. The probability

that a payoff changes per round is pc. An agent has three options for each

round: Innovate, Observe, and Exploit. Innovate and Observe correspond to

asocial and social learning, respectively. For Innovate, an agent obtains the

payoff information of one randomly chosen bandit. For Observe, an agent obtains

the payoff information of nO randomly chosen bandits that were exploited by

the agents during the previous round. Compared to the information obtained

by Innovate, that obtained by Observe is older by one round. For Exploit, an

agent chooses a bandit that he has already explored by Innovate or Observe and

obtains a payoff. In an rMAB environment, it is extremely difficult for agents to

optimize their choices 9, 10). The outcome of the tournament was that the winning

strategies relied heavily on social learning. This contradicted previous studies

in which the optimal strategy is a mixed one that relies on some combination of

social and asocial learning. In the tournament, the cost for Observe was not very
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low, as approximately 50% of the choices of Observe returns information that

the agents already knew. The results of the tournament imply the inadvertent

filtering of information when an agent chooses Observe, as the agents choose the

best bandit during Exploit.

In this paper, we discuss whether social or asocial learning is optimal in

an rMAB, where a player competes with many agents. We answer to the question

why social learning is so adaptive in Rendell’s tournament. We suppose that the

cost of Innovate becomes higher than that of Observe in the tournament. In order

to reduce the cost of Innovate, we control the exploration range nI for Innovate,

and agents obtain the best information about the bandits among nI randomly

chosen bandits. An rMAB is characterized by two parameters, pc and nI . We

compare the average payoffs of the optimal strategies when only Innovate, only

Observe, and both are available for learning using the complete knowledge of an

rMAB and the information of the bandits exploited by agents. We determine

the region in which each type of learning is optimal in the (nI , pc) plane and

show that Observe is more adaptive than Innovate for nI = 1. We define the

swarm intelligence effect as the increase in the average payoff compared with

the payoffs of the optimal strategies where only asocial learning is available. We

have conducted a laboratory experiment where 67 human subjects competed

with multiple agents in an rMAB. If the parameters are chosen in the region

where social learning is far more optimal than asocial learning, we observe the

swarm intelligence effect.

§2 Restless multi-armed bandit interactive game

An interactive rMAB game is a game in which a player competes with

120 agents using an rMAB. The player aims to maximize the total payoff over

103 rounds and obtain a high ranking among all entrants. Below, we term the

population of all agents and a player as all entrants. The rMAB has N =

100 bandits, and we label them as n ∈ {1, 2, · · · , N = 100}. Bandit n has a

distinct payoff s(n), and we term the (n, s(n)) pair as bandit information. s(n)

is an integer drawn at random from an exponential distribution (λ = 1; values

were squared and rounded to give integers mostly falling in the range of 0–10
10)). We denote the probability function for s(n) as Pr(s(n) = s) = P (s) (left

figure in Figure 1). We write the expected value of s(n) as E(S(n)), and it is

approximately 1.68. The payoff of each bandit changes independently between
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Fig. 1 Left: Plot of P (s). The expected value of s is E(s) ≃ 1.68. Right: Parameter

assignment for agent i ∈ {1, 2, · · · , 120}. pobs(i) = 0.1 × (i%10) ∈ {0.0, 0.1, · · · , 0.9}. c(i) =

i/10 + 1 ∈ {1, 2, · · · , 12}.

rounds with a probability pc, with new payoff drawn at random from the same

distribution.

Every entrant has his own repertoire and can store at most three pieces

of bandit information. The bandit information has a time stamp when the

entrant obtains it. The time stamp is updated when the entrant obtains new

bandit information about the bandit. When an entrant obtains more than three

pieces of bandit information, the one with the oldest time stamp is erased from

the repertoire.

There are three possible moves for the entrants: Innovate, Observe,

and Exploit. Innovate and Observe are learning processes to obtain bandit

information. Exploit is the exploitation process that obtains some payoff.

• Innovate is individual learning, and an entrant obtains bandit informa-

tion. nI bandits are chosen at random among N = 102 bandits, and the

bandit information with the maximum payoff is provided to the entrant.

If there are several bandits with the same maximum payoff, one of them

is chosen at random.

• Observe is social learning, and an entrant obtains the bandit information

exploited by an agent during the previous round. If there are many agents

who exploited a bandit, an agent is randomly chosen among them, and

its bandit information is provided to the entrant. If there are no such
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agents, no bandit information is provided. The information obtained by

Observe is one round older than that obtained by Innovate.

• Exploit is the exploitation of a bandit. An entrant chooses a bandit from

his repertoire and exploits the bandit. Even if the bandit information is

(n, s(n)), as the information changes with a probability pc per round, he

does not necessarily receive the payoff s(n).

The repertoire is updated after a move. For Innovate, the bandit in-

formation with the maximum payoff sI among nI randomly chosen bandits is

provided to the entrant. We denote the distribution function of sI as PI(s) =

Pr(sI = s). Intuitively, sI is chosen in the region of upper probability 1/nI of

P (s). We denote the expectation value of sI as E(sI). If nI > 1, E(sI) > E(s)

holds. For example, E(sI) ≃ 9.63 for nI = 10. By controlling nI , we can change

the cost of Innovate.

2.1 Agent strategy

We explain the strategy of the agents. The most important factor in

the performance of the strategies in Rendell’s tournament was the proportion

of Observe in learning 10). The high performance of Observe originated from

the inadvertent filtering of bandit information, as the agents exploited the best

bandit in their repertoires. If the agents choose at random, Observe does not

provide good bandit information. We take these facts into account and introduce

a simple strategy for the agents with two parameters c and pobs.

• c: every agent has a threshold value c. If there is no bandit in one’s

repertoire whose payoff is greater than c, the agent will learn by Innovate

or Observe.

• pobs: an agent chooses Observe with a probability pobs when he learns.

We label 120 agents as i ∈ {1, 2, · · · , I = 120}. Agent i has the param-

eters (c(i), pobs(i)). c(i) is given as the quotient i/10 plus one. pobs(i) is the

remainder of i%10 multiplied by 0.1. The assignment of (c, pobs) to agent i is

represented in the right figure in Figure 1.

2.2 Game environment

A player participated in a game and competed with N agents. However,

the game did not advance on a real-time basis. Agents had already participated

in the game for 1000 rounds. When a player participated in the game, 103

sequential rounds were randomly chosen from the 1000 rounds, and he competed
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Fig. 2 The interactive rMAB game online interface. A human player is presented with

the present round t/100, his ranking among 121 entrants (one player and 120 agents), and

his repertoire. He must choose one among Innovate, Exploit a bandit, and Observe. In his

repertoire, only (n, s(n)) is shown. The bandit information from left to right indicates the

newest to oldest information, respectively.

with agents for 103 rounds. We denote the round by t ∈ {−2,−1, 0, 1, 2, · · · , T =

100}. The scores of the player and agents were set to zero. The agents had

already stored at most three pieces of bandit information in their repertoires.

The player had three rounds to learn the rMAB. He could choose Innovate or

Observe for three rounds and stored at most three pieces of bandit information

in his repertoire. After three rounds, the rMAB game started. As the agents had

already finished the game, they could not observe the information of the player.

On the other hand, the player could observe the information of the agents.

The game environment was constructed as a website. The information

of the agents for 1000 rounds was stored in a database of the website. The player

used a tablet (7 inch) and participated in the game through a web browser. The

player had to learn for three rounds and stored at most three pieces of bandit

information in his repertoire. Afterwards, the game started. Figure 2 shows the

interface of the rMAB game. For the present round t, the ranking and score

are shown on the screen. The player had to choose an action among Innovate,

Exploit, and Observe. For Exploit, the player had to choose which bandit he

would exploit in his repertoire. Then, the payoff and new ranking were shown

on the screen, and the game proceeded to the next round.
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For the parameters (nI , pc) of the rMAB, we adopted the next four

combinations. We call the combinations A, B, C, and D.

A: (nI , pc) = (1, 0.1). pc is small and the change in the payoff of a bandit is

slow. As nI = 1, E(sI) = E(s), and it is difficult to find a bandit with

high payoff with Innovate.

B: (nI , pc) = (10, 0.1). pc is small, as in A. As nI = 10, E(sI) ≃ 9.63 is

large, and good bandit information can be obtained with Innovate.

C: (nI , pc) = (1, 0.2). pc is large, and the bandit information changes fre-

quently. As nI = 1, it is difficult to obtain good bandit information with

Innovate.

D: (nI , pc) = (10, 0.2). pc is large, as in C. As nI = 10, good bandit infor-

mation can be obtained with Innovate.

2.3 Experimental procedure

The experiment reported here were conducted at the Information Science

room at Kitasato University. The subjects included students from the university,

mainly from the School of Science. The number of subjects S was 67. Each

subject participated in the game at most four times.

The subjects entered a room and sat down on a chair. After listening

to a brief explanation about the experiment and reward, they signed a consent

document for participation in the experiment. Afterwards, they logged into the

experiment website using the IDs written on the consent document. The game

environment was chosen among the four cases A, B, C, and D, and they started

their games. After 100 + 3 rounds, the game ended. The subjects logged into

the website again to participate in a new game. Within the allotted time of

approximately 40 min, most subjects participated in the game at least three

times. Subjects were paid upon being released from the experiment.

There were slight differences in the experimental setup and rewards

among the subjects. For the first 21 subjects (July 2014), there was no par-

ticipation fee. The reward was completely determined by the number of times

that they entered the Top 20 among the 120 + 1 entrants in each game. Their

rewards were a prepaid card of 300 yen (approximately $2.50) for each placement

within the Top 20. The subject could choose the game environment at the start

of the game. They could choose each environment at most once, and the aver-

age number of subjects in each environment is approximately 19. They did not

know the parameters of each environment. For the last 46 subjects (December
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2014) there was a 1050 yen (approximately $9) participation fee in addition to

the performance-related reward. The reason for the change in the reward is to

recruit more subjects. They were asked to play the game at least three times

during the allotted time. The game environment was randomly chosen by the

experimental program. The average number of subjects in each environment is

approximately 37. A total of 67 subjects participated in the experiment, and we

gathered data from approximately 56 subjects for each game environment.

§3 Optimal strategy and swarm intelligence ef-
fect

We estimate the expected payoff of the optimal strategies for the player

in the rMAB game. Here, optimal means to maximize the expected total payoff

in a total of 100 + 3 rounds. For the first three rounds (t ∈ {−2,−1, 0}), the

player could choose Innovate or Observe. After that, he could choose all three

options. The optimal choice for round t is defined as the choice that maximizes

the expected payoff obtained during the remaining T − t rounds.

We assume that the player has the complete knowledge about the rMAB

game. More concretely, he knows pc, E(s), and E(sI) about the rMAB. Further-

more, he knows the bandit information exploited during the previous round. We

denote the average value of the payoff of the exploited bandit at round t − 1

as O(t). If the player chooses Observe for round t, the expected value of the

payoff of the obtained bandit information is O(t). O(t) depends on the agents’

choices in the background. It is usually the most difficult quantity to estimate

for the player in the game, as it depends on the strategies of the agents. With

this information, we estimated the expected value of the payoff per round for

the remaining rounds for each choice.

We assume that there are M pieces ofbandit information in the player’s

repertoire at round t. We denote them as (nm, sm, tm),m ∈ {1, · · · ,M}. Here,

tm is the round during which the player obtained the information. When, the

player obtains information from Innovate or obtains updated information from

Exploit at t′, tm = t′. If the player obtains information from Observe at t′,

tm = t′ − 1, as Observe returns the bandit information from the previous round,

t′ − 1.

We denote the expected value of the payoff per round for exploiting
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bandit nm from t to T as Em(t). This quantity is estimated as

Em(t) = E(s) +
1

T − t+ 1

T∑

t′=t

(sm − E(s))(1 − pc)
t
′
−tm

= E(s) +
(1 − (1− pc)

T−t+1)(sm − E(s))(1 − pc)
t−tm

pc(T − t+ 1)
(1)

where (1−pc)
t
′
−tm is the probability that the bandit information does not change

from tm until t′. During this period, the payoff is sm. If the bandit information

changes until t′, the probability for it is 1−(1−pc)
t
′
−tm , and the expected payoff

of the bandit is given by E(s). By summing these values and dividing by the

number of rounds T − t+ 1, we obtain the above expression.

We denote the expected payoff per round for Innovate as I(t). For Inno-

vate, a player does not receive any payoff. He only obtains bandit information,

and the expected value of the payoff of the obtained bandit information is E(sI).

We estimate the expected value of the payoff by Innovate by assuming that the

player continues to exploit the new bandit with the payoff E(sI) from round t+1

to T as

I(t) =
T − t

T − t+ 1
E(s)+

(1− (1 − pc)
T−t)(E(sI)− E(s))(1 − pc)

pc(T − t+ 1)
.(2)

As the player loses one round because of Innovate, the prefactor in front of E(s)

and the power of (1−pc) are reduced to (T−t)/(T−t+1) and (T−t) as compared

with those in eq.(1). If nI = 1, E(sI) = E(s), the second term vanishes, and

Innovate is almost worthless. For cases in which all of the payoffs of the bandit

information in one’s repertoire are zero or less than E(s), it might be optimal to

choose Innovate. Otherwise, instead of losing one round and obtaining bandit

information with a payoff E(s), it is optimal to choose Exploit with the maximum

expected payoff. If pc is large, even if all the payoffs in one’s repertoire is zero,

(1− pc)
t−tm can be negligibly small, and it is optimal to choose Exploit. When

nI > 1 and pc are not very large, Innovate might be optimal.

Likewise, we estimate the expected payoff per round for Observe, which

we denote as O(t). For Observe, a player obtains bandit information with a

payoff O(t). The age of the information is one round older than the information

obtained by Innovate. We change E(sI) to O(t) in eq.(2). Accounting for the

age of the new bandit information, we estimate O(t) as
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O(t) =
T − t

T − t+ 1
E(s)+

(1− (1− pc)
T−t)(O(t)− E(s))(1 − pc)

2

pc(T − t+ 1)
.(3)

Comparing I(t) and O(t), which is more optimal depends on pc and E(sI)−O(t).

If pc is small and 1 − pc ≃ 1, the magnitude of the relationship between E(sI)

and O(t) determines which is more optimal.

The optimal strategy is to choose the action with maximum expected

payoff during every round t ∈ {−2,−1, · · · , T = 100}. For example at t = T ,

the last round of the game, as I(T ) = O(T ) = 0 holds, it is optimal to choose

Exploit for bandit m with the maximum Em(T ). In the first three rounds where

the player can choose only Innovate or Observe, if both pc and nI are small,

E(sI) < O(t) usually holds. Observe is more optimal than Innovate in this

case. The situation is the same in later rounds, and the optimal strategy is a

combination of Exploit and Observe. Conversely, if both pc and nI are large,

even if O(t) ≃ E(sI), (1− pc) < 1 and I(t) > O(t) hold.

We estimate the expected payoff per round for several “optimal” strate-

gies with a restriction on the choice of learning. We consider three strategies,

and an Exploit-only strategy as a control strategy.

• I+O: The player can choose both Innovate and Observe when learning.

In the first three rounds, Innovate is chosen. Then, the action with the

highest expected payoff is chosen in the later rounds.

• I: The player can choose Innovate for learning. The other conditions are

the same as I+O.

• O: The player can choose Observe for learning. The other conditions are

the same as I+O.

• EO: The player can choose Exploit with the maximum expected payoff

after the first three rounds.

The expected payoffs per round for these strategies are written as I+O, I, O,

and EO, respectively. We also denote the expected payoff per round for agent i

as P(i). They are estimated by a Monte Carlo simulation. We have performed

a simulation of a game in which 120 agents and four players with above strate-

gies participate 104 times. As we have explained in the experimental procedure,

the agents cannot observe the bandit information exploited by the player. Only

player can observe the bandit information of the agents. As there is no interac-

tion between the players, we can estimate the expected payoffs of the four players

simultaneously. In the experiment, the player can choose Observe for the first

three rounds. With the above strategies, the player can choose Innovate only
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Fig. 3 Optimal learning in (nI , pc). The thick solid line shows the boundary between the

region I>O and the region O>I. The dotted line shows the boundary beyond which EO≃I+O.

for simplicity. The players and agents compete on equal terms.

We summarize the results in Figure 3. In (nI , pc) plane, we show which

strategy is more optimal, I or O. The thick solid line shows the boundary where I

= O. In the lower-left regionO>I holds. As nI and pc are small, the relationship

O(t) > E(sI) holds, and Observe becomes a optimal learning method. In the

upper-right region, I > O holds. nI is large, and E(sI) is greater than or

comparable to O(t). As pc is large, the one round delay for exploiting the

bandit information obtained by Observe might be crucial. The thin dotted line

shows the boundary beyond which I+O is comparable with EO. As pc is large,

the player can obtain comparable payoffs by only exploiting a good bandit in

his repertoire. There is neither an exploitation–extrapolation trade-off nor a

social–asocial learning trade-off above the dotted line. It is a noise-dominant

region.

One can understand why there is no social–asocial learning trade-off in

Rendell’s tournament 10). In the tournament, they set nI = 1 and nO ≥ 1. Here,

nO is the amount of bandit information obtained by Observe. If nI = 1, as we

have explained previously, E(sI) = E(s) holds. If pc is small, O(t) is usually

greater than E(s), as agents exploit the good bandit in their repertoire. Then,

an agent can obtain good bandit information by Observe, and Observe becomes

an optimal learning method. If pc is too large, instead of trying to obtain

good information with Innovate, it is optimal to wait spontaneous changes in

the bandit information in the repertoire. Exploiting a good bandit in one’s
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repertoire (EO strategy) is enough, and no other strategy cannot exceed the

performance of EO.

In the region where O>I and I+O>EO, social learning is effective, and

a swarm intelligence can emerge. We define the swarm intelligence effect as the

increase in the performance compared to I. In the next section, we estimate the

swarm intelligence effect for human subjects. As for the choice of (nI , pc), we

have studied four cases A:(1,0.1), B:(10,0.1), C:(1,0.2), and D:(10,0.2). We show

the positions for these choices in figure 3. For cases A and C, O >>I, and one

expect to observe the swarm intelligence effect in human subjects. For cases B

and D, where O≃I and O<I, one does not expect to observe it.

We make a comment about the definition of the swarm intelligence effect.

For the estimation of I, we assume that the player knows pc, E(s), and E(sI)

and can choose the best option among Exploit and Innovate. The player has

to estimate this information from his actions in the real game. If the player

cannot choose Observe, his performance cannot exceed I. The definition of the

swarm intelligence effect only provides a lower limit. Toyokawa 12) defined it as

the surplus in performance compared to when the same player can only choose

Innovate. Our definition has the advantage that it can be estimated easily

without performing an experiment. The same reasoning applies to I+O. In this

case, the player knows everything that is related with his decision making. I+O

provides an upper limit on the performance of the player in the game.

§4 Experimental results
In this section, we explain the experimental results. We estimate the

swarm intelligence effect for human subjects. We perform a regression analysis

of the performance of each subjects in each experimental environment.

4.1 Swarm intelligence effect

We calculated the total payoff of each subject for 100+3 rounds in each

game environment. We divided the total payoff by 100 and obtained the average

payoff per round. For each game environment, we estimated the average value

of the average payoffs per round for approximately 56 subjects and denote it as

H. This represents the average performance of human subjects in each case. We

compare H with I+O, I, O, and P(i) for agent i. Figure 4 show the results for

cases A, B, C, and D. We explain the results of each case.

A: Case A is in the region where where O>I, and Observe is optimal for
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D: pc=0.2,nI=10
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H=6.7

Fig. 4 Plots of P(i)(✷), I+O(◦), I(•), O(△) and H(×). A:(pc, nI) = (0.1, 1), H(54)=

8.0 ± 0.6. B:(pc, nI) = (0.1, 10), H(65)= 11.1 ± 0.5. C:(pc, nI) = (0.2, 1), H(54)= 5.2 ± 0.3.

D:(pc, nI) = (0.2, 10), H(52)= 6.7 ± 0.3. The number in each parentheses is the number of

subjects in each case.

learning. As I+O≃O and O is much greater than I, one can expect the

swarm intelligence effect. In fact, H, which is plotted with a chain line,

is higher than I. For a fixed value of c, P(i) increases with pobs. For the

dependence of P(i) on c for a fixed value of pobs, there is a maximum for

some c. For pobs = 0.0, P(i) is maximum at c ∼ 4. For pobs = 0.9, P(i)

is maximum at c ∼ 8.5. The agent can obtain good bandit information

by Observe, and they had better to adopt large c.

B: Case B is in the region where O>I. However, it is near the boundary for

I = O, and the difference between O and I is small. One cannot expect

the swarm intelligence effect. In fact, H is below I. As I≃O, subjects

could not improve their performance by Observe. One see I+O>O, and

the difference between I+O and O is small. As nI = 10 is large, Innovate

is frequently more optimal than Observe. For example, if an agent finds

that the payoff of good bandit information changes to zero in round t
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by Exploit, one can suspect that Observe does not provide good bandit

information. In particular, if the bandit is good, and the payoff is high,

one can assume that many agents also exploited the bandit. Then Observe

should provide bandit information with zero payoff in round t+ 1 with a

high probability.

P(i) is an increasing function of pobs when c is small. When c is large,

P(i) does not depend on c very much. When c is small, agents can

easily obtain bandit information whose payoff is greater than c. Then,

the agent exploits the not so good bandit. On the other hand, if the

agent obtains bandit information by Observe, he can obtain good bandit

information, as the bandit’s payoff exceeds the other agents’ c. Observe

is more optimal than Innovate when c is small. However, when c is large,

the agent can obtain good bandit information by Innovate, as nI is large.

By Observe, the agent can obtain good bandit information, and there is

not a big difference in the performance of I and O. As a result, P(i) does

not depend very much on pobs when c is large.

C: Case C is in the region whereO>I. I+O≃ O, and O is much greater than

I, as with case A. One can observe the swarm intelligence effect because

H is greater than I. Because pc is large, the expected payoffs and average

payoff of the subjects are lower than those for case A.

D: Case D is in the region where I>O, and Innovate is optimal for learning.

As I+O>I, Observe is optimal in some cases. When c is large, P(i)

is a decreasing function of pobs. As both pc and nI are large, instead

of obtaining good bandit information by Observe, Innovate succeeds in

obtaining new and good bandit information. When c is small, as in case B,

the agent can obtain better bandit information by Observe than Innovate.

One cannot observe the swarm intelligence effect, as in case B.

4.2 Regression analysis of the performance of individual

subjects

We perform a statistical analysis of the variation in the payoffs of the

subjects in the four cases. We examined the factors that made strategies suc-

cessful by using a linear multiple regression analysis. In Rendell’s tournament,

there were five predictors in the best-fit model for the performance of the strate-

gies 10). Among them, we considered three predictors: rlearn, the proportion of

moves that involved learning of any kind; robs, the proportion of learning moves
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that were Observe; and ∆tlearn, the average round between learning moves.

Other predictors were the variance in the number of rounds to first use of Ex-

ploit and a qualitative predictor of whether or not the agent program estimates

pc. For the latter, we suppose that human subjects estimated pc, or they could

notice whether the frequency of the change in bandit information is high or low.

For the former predictor, it is impossible to estimate it, as the subjects partic-

ipated in the game at most once for each case. We do not include these two

predictors in the regression model. We denote the average payoff per rounds

for subject j as payoff(j). The multiple linear regression model is written as

payoff(j) = a0+a1 ·rlearn(j)+a2 ·robs(j)+a3 ·∆tlearn(j). We select the model

with maximum R̃2. The results are summarized in Table 1.

Table 1 Parameters of the linear multiple regression model predicting the average payoff

per round in each game environment. From the second to fourth columns, the intercepts

and regression coefficients for rlearn, robs, and ∆tlearn are shown. n.s. for p > 0.05,* for

p < 0.05,** for p < 10−2,*** for p < 10−3 and **** for p < 10−4.

Case Intercept rlearn robs ∆tlearn R̃2

A(53) 10.0 (****) -11.0(**) 3.3 (p = 0.16) n.s. 0.253

B(65) 14.1 (****) -10.7 (*) n.s. n.s. 0.076

C(54) 8.37 (***) -8.2 (**) 3.0 (*) -0.49 (p = 0.06) 0.186

D(52) 8.7 (****) -7.2 (**) 1.4 (p = 0.23) n.s. 0.144

ALL(224) 12.0 (****) -13.8 (****) 1.3 (p = 0.15) n.s. 0.246

rlearn had a negative effect on the performance of the subjects, as in

Rendell’s tournament. This result suggests that it is suboptimal to invest too

much time in learning, as one cannot obtain any payoffs for learning. For robs,

the results are not consistent with the results of Rendell’s tournament. There,

the predictor had a strong positive effect, which reflected the fact that the best

strategy was to almost exclusively choose Observe rather than Innovate. In our

experiment, the predictor seems to have a positive effect for cases A, C, and

D. For cases A and C, it is consistent with the results in the previous section

because O>I, and Observe is more optimal than Innovate. In case D, as H is

much less than both I and O, obtaining good bandit information from the agents

by Observe might improve the performance.

§5 Conclusion
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In this paper, we attempt to clarify the optimal strategy in a two trade-

offs environment. Here, the two trade-offs are the trade-off of exploitation–

exploration and that of social–asocial learning. For this purpose, we have devel-

oped an interactive rMAB game, where a player competes with multiple agents.

The player and agents choose an action from three options: Exploit a bandit,

Innovate to obtain new bandit information, and Observe the bandit information

exploited by other agents. The rMAB has two parameters, pc and nI . pc is the

probability for a change in the environment. nI is the scope of exploration for

asocial learning. The agents have two parameters for their decision making, pobs

and c. pobs is the probability for Observe when the agents learn, and c is the

threshold value for Exploit.

We have estimated the average payoff of the optimal strategy with some

restrictions on learning and complete knowledge about rMAB and the bandit

information exploited during the previous round. We consider three types of

optimal strategies, I+O, I, and O, where both Innovate and Observe, Innovate,

and Observe are available. In the (nI , pc) plane, we have derived the strategy

that is more optimal, either O or I. Furthermore, we have defined the swarm

intelligence effect as the surplus of the performance of I. The estimate of the

swarm intelligence effect provides only a lower bound for it; however, the es-

timation is easy and objective. We also point out that the swarm intelligence

effect can be observed in the region of the (nI , pc) plane where O is more optimal

than I. We have performed an experiment with 67 subjects and have gathered

approximately 56 samples for the four cases of (nI , pc). If (nI , pc) are chosen

in the region where O is far more optimal that I, we have observed the swarm

intelligence effect. If (nI , pc) are chosen near the boundary of the two regions

or in the region where I is more optimal than O, we did not observe the swarm

intelligence effect. We have performed a regression analysis of the performance

of each subject in each case. Only the proportion of learning is the effective

factor in the four cases. In contrast, the proportion of the use of Observe for

learning is not significant.

As the agent’s decision making algorithm is too simple, it is difficult to

believe that the conditions for the emergence of the swarm intelligence in Figure

3 are general. In addition, the analysis of the human subjects is too superficial,

as we only studied the correlation between the performance and some predictive

factors. With these points in mind, we make three comments about future

problems.
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The first one is a more elaborate and autonomous model of the de-

cision making in an rMAB environment. The algorithm needs to estimate

pc,E(s),E(sI), and O(t) for round t on the basis of the data that the agent

has obtained through his choices. Then, the agent can choose the most optimal

option during each round and maximize the expected total payoff on the basis

of these estimates. This is an adaptive autonomous agent model. With this

model, we can understand the decision making of humans in the rMAB game

more deeply. It is impossible to understand human decision making completely

with experimental data. On the basis of the model, we can detect the deviation

in human decision making and propose a decision making model for a human

that can be tested in other experiments.

The second one is the collective behavior of the above adaptive au-

tonomous agents or humans. It is necessary to clarify how the conditions for the

emergence of the swarm intelligence effect would change. In the case of a popu-

lation of adaptive autonomous agents, they would estimate the optimal value of

pobs for the environment (nI , pc) and collectively realize the optimal value. The

optimal strategy should be neither I nor O but a mixed strategy of Innovate and

Observe. Then, the condition for the emergence of the swarm intelligence effect

is that the performance of I+O is equal to that of I. If the performance of the

former is greater than that of the latter for any (nI , pc), the swarm intelligence

effect can always emerge, except for the noise-dominant region. After that, we

can study the conditions with human subjects experimentally. A human subject

participates in the rMAB game as a player, as in this study, or many human

players participate in the game to compete with each other. The target is how

and when humans collectively solve the rMAB problem.

The third one is the design of an environment in which swarm intelli-

gence works. In this study, we choose the rMAB interactive game and study

the conditions for the emergence of the swarm intelligence effect for a player.

However, there are many degrees of freedom in the design of the game. For

example, when an agent observes, there are many degrees of freedom regarding

how bandit information is provided to the agent. In the present game environ-

ment, the probability that a bandit exploited in the previous round is chosen

is proportional to the number of agents who have exploited it. Instead, we can

consider an environment in which the bandit information of the most exploited

bandit is provided, the bandit information of the agents who are near the agent is

provided, or the player can choose a bandit by showing him the number of agents
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who have exploited the bandit. We think these changes should affect the choice

and performance of the player. It was shown experimentally that by providing

subjective information about a bandit, the performance of the subjects dimin-

ished 12). We think that the interaction between the design of the environment

and the decision making, performance, and swarm intelligence effect should be a

very important problem in the industrial usage of the swarm intelligence effect.
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