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Abstract
Suggesting tourists/residents about the pollution-free locations and controlling the 
number of passengers in a shareable vehicle have become crucial tasks to smart city 
officials as they plummet health issues such as asthma or COVID-19. Recently, city 
authorities, transport logistic designers, and policymakers have tasked researchers/
entrepreneurs to innovate in shared mobility systems. This paper proposes a Block-
chain-Enabled Shared Mobility (BESM) architecture that allocates seats to resi-
dents/tourists in a shareable vehicle based on air quality and COVID-19 informa-
tion of traveling locations. BESM involves smart city authorities, vehicle owners, 
hospital authorities, and residents using permissioned-blockchains to collaboratively 
decide on allocating travel seats. Experiments were carried out at the IoT Cloud 
research laboratory to manifest the allocation of seats. For instance, BESM excluded 
in allocating seats to asthma patients and limited the number of travelers in the cit-
ies where COVID-19 cases or pollution levels were higher in numbers using BESM. 
The pollution levels of cities were monitored using air quality monitoring sensors or 
predicted using a few prediction algorithms such as Random Forests (RF), Linear 
Regression (LR), Quantile Regression (QR), Ridge Regression (RR), Lasso Regres-
sion (LaR), ElasticNet Regression (ER), Support Vector Machine (SVM), and 
Recursive Partitioning (RP). In succinct, the article unfolded the primordial impor-
tance of the proposed BESM architecture for promoting efficient shared mobility 
aspects in smart cities.
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Introduction

Owning vehicles for mobility no longer seems to be a major attraction for smart 
city officials/residents, given the hype around shared mobility advantages, especially 
when the near future automated vehicles are concerned. Sharing transportation ser-
vices and vehicles can reduce the vehicle kilometer demand in major cities; it pro-
motes productivity, improves vehicle utilization, increases economics, and lowers 
pollution by reducing traffic congestions.

Significant segments of researchers and startup enthusiasts reportedly contribute 
to enabling innovations in the existing shared mobility systems by foreseeing the 
substantial reduction in costs involved in accessing vehicles. For instance, innova-
tions in shared mobility gave birth to several types of shareable vehicles: bike-shar-
ing, scooter sharing, car sharing, bus sharing, ride sharing, public transiting, and so 
forth.

Recently, smart city policymakers and urban sustainability teams have ushered 
in some promotional schemes to innovate on-demand shared mobility practices. 
For instance, the Innovation and Knowledge acceleration program of the USA has 
strategically planned to use 100000 cars on-demand [25]; NITI Aayog of India has 
decided to reduce the overwhelming interests of citizens to own private vehicles 
by foreseeing the congestion/health hazards of emerging smart cities such as Ban-
galore, Chennai, Delhi, and Mumbai [34]. Precisely, there is a need for promoting 
shared mobility practices in cities to reduce pollution/congestion.

In fact, air pollution because of vehicles is a challenging health issue for the tour-
ists/residents of smart cities. Notably, using deprecated vehicles, poor-quality fuels, 
and delirious driving practices could adversely increase air pollution rates in cities, 
especially in traffic-congested cities. When fuel burns, NO2 is formed which acutely 
affects the humans’ lung functions. Consequently, the asthma and bronchitis patients 
avoid urban living or city trips; besides, the patients are driven to lung or similar 
cancer diseases—a long-standing health concern to the urban residents. In addition, 
air pollution due to the emission of NO2 from vehicles remains a toxic element to 
plants which reduces the growth rate of plants or crop productions.

One aspect that has been widely practiced in many countries is to adopt policies 
and regulations to counteract the air pollution due to vehicles. For instance, Air Pol-
lution Control Act, July 1955, was extended with several amendments, including the 
motor vehicle control act, by the US Congress; an Air Act of the parliament of India 
[3] was strengthened with several enforcement schemes to improve the air quality 
standards of over 102 cities that are below the National Ambient Air Quality Stand-
ards set by the US [33]; emissions of NO2 were controlled by Euro 5/6 regulation 
715/2007/EC in Europe [18]. Unfortunately, not all countries are diligent to enforce 
the laws and procedures to a practical extent, especially in developing countries, 
owing to the poor availability of control measures or rigorous enforcement practices.

This article proposes a Blockchain-Enabled Shared Mobility (BESM) archi-
tecture that involves smart city authorities, vehicle owners, hospital management, 
and residents/tourists to decide on collaboratively utilizing a shareable vehicle in 
smart cities. BESM collaboratively allocates seats to travelers in a shareable vehicle 



1011New Generation Computing (2022) 40:1009–1027	

123

depending on the air quality and COVID-19 cases of traveling destinations. The air 
quality information is obtained from air quality monitoring sites [4, 8] or predicted 
using prediction algorithms for the latitude or longitude of traveling locations.

Experiments were carried out at the IoT cloud research laboratory. The article 
discloses the evaluation results highlighting BESM architecture’s importance for 
practicing shared mobility in smart cities. A few case studies were presented to dem-
onstrate the proposed BESM architecture. Besides, a comparison of various predic-
tion algorithms was studied while predicting the air quality information of a location 
in BESM.

The primordial contributions of the work include:

–	 A BESM architecture is proposed which includes smart city policymakers to 
quickly decide on the number of travelers on a shareable vehicle based on the air 
quality and COVID-19 information of smart cities or traveling locations.

–	 A comparison of several prediction algorithms while predicting the air quality 
values of different traveling locations of a traveler was discussed.

–	 The findings due to implementing a smart shared mobility system were detailed 
in the article with a few case studies.

The rest of the article is expressed as follows: the next section explores the state-of-
the-art discussions on shared mobility systems of smart cities. The subsequent sec-
tion explains the proposed BESM architecture and the associated entities involved 
in incorporating blockchain approach for shared mobility followed by which the 
prediction algorithms such as LR, QR, RR, LaR, ER, SVM, RP, and RF that are 
utilized in work and the blockchain processes of the architecture are described. The 
penultimate section manifests the importance of including BESM for shared mobil-
ity practices. The final section provides conclusions and a few insights on the future 
shared mobility research works based on BESM.

Related Works

Intelligent Transportation System (ITS) for societal improvements [1, 5, 10, 14, 19] 
has emerged in various sectors with a proliferation in topics such as shared mobil-
ity [13, 21], secured ITS, efficient vehicle utilization [27], and so forth. Officials 
and government agencies of several countries, including developing countries, have 
shown a keen interest in promoting the shared mobility practices in smart cities due 
to the associated economic and environmental benefits.

In the past, researchers and practitioners studied shared mobility in several 
research perspectives: (i) improving energy consumption of e-vehicles [17, 28], 
reducing traveling costs [39], collaborative or dynamic decision-making processes 
[43], learning the behavior of travelers by providing tourism tips [11, 21, 36], and 
so forth. An array of research works has been carried out to innovate transportation 
systems by augmenting intelligent mechanisms [31, 37, 42, 44] in shared mobility 
approaches such as e-bikes, shared dockless, e-scooters, shared taxis, public buses.
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Besides, blockchains were incorporated in shared mobility solutions to provide 
immutable database and transferring route plans across organizations at ease. For 
instance, authors of Ao et al. [7] have applied blockchains to propagate keys across 
multi-security domains for an accelerated delivery of management keys. Similarly, 
the application of blockchains for enabling secured transactions in transportation 
systems have marked a magnified growth [41]. Authors of [16] have developed a 
token-based ethereum framework for allocating seats in shared vehicles. Recently, 
Nishant et al. [35] have studied the application of permissioned blockchains to share 
a vehicle among travelers by publishing the travel plan on the ledgers.

Although these works relate to the application of blockchains for the shared 
mobility aspects of transportation systems, the authors have not considered the 
inclusion of smart city officials considering the pollution or COVID-19 situations in 
sharing vehicles.

Establishing blockchain-enabled frameworks or providing intelligence to trans-
portation systems considering the environmental aspects recently have attracted a 
large volume of researchers or environment-cautious practitioners. For instance, 
Gregorio et al. [22] have developed a solution to optimize road traffics considering 
air quality values of the city locations; Adriana et al. [2] have predicted the air qual-
ity values for a given traffic model of cities. However, these works have not consid-
ered the shared mobility aspects of Intelligent Transportation Systems.

In fact, the realization of changing policies in the existing transportation sched-
ules or seat allocations in shared mobility practices expects local decisions from 
smart city officials[20]. Such decisions are predominantly crucial in situations such 
as COVID-19 where the shared mobility practices should be diligently dealt with by 
availing sufficient permissions from the smart city officials or travelers. Addition-
ally, an air quality-aware decision-making process while allocating seats in shareable 
vehicles is not available in the existing shared mobility architectures/frameworks.

This article proposed BESM architecture that involves policymakers, smart city 
officials, travelers, and hospital authorities to jointly decide on allocating seats in a 
shareable vehicle for ensuring a robust shared mobility in smart cities.

Blockchain‑Enabled Shared Mobility Architecture

This section provides a brief introduction to blockchains and explains the entities 
and the associated functionalities involved in the BESM architecture.

Blockchains

In short, blockchain is a distributed immutable ledger that is shared and replicated 
within participants. The ledger registers the information in a time-stamped series 
fashion. Broadly, blockchains are classified into public and private blockchains [23] 
depending on the number of participants involved in the process of enrolling infor-
mation into the ledger—i.e., in public blockchains, any participant could decide to 
register information into the ledger; whereas, in private blockchains, only known 
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participants are involved in the process of updating the ledger. Besides, hybrid and 
consortium modes of blockchains are practiced in the past for specific applications.

The important features of blockchains are: 

1.	 There is no central authority to control the registration of data in the ledger;
2.	 Trust is leveraged by the collective involvement of the participants of blockchain 

networks as the trust involved in third parties such as governments or banks are 
no longer valid for the modern communities;

3.	 Registration of data into the distributed ledger is dynamic or based on programs 
such as chaincodes;

4.	 The data is cryptographically stored in the distributed database in a chained fash-
ion—i.e., series of blocks;

5.	 Tampering of distributed ledger is highly impossible owing to the involvement of 
multiple parties—i.e., manipulating a single record of a blockchain would modify 
the entire chain of blocks;

6.	 The auditing costs of data in blockchains are comparatively low due to high 
transparency involved in the verification process of the information entered into 
the ledger; and, so forth.

BESM Entities

BESM adopts private blockchains in the proposed architecture (github.com /shaju-
lin /iiitfabric and github.com/shajulin/shared-mobility). Private blockchains enable a 
speedy process of consensus during the decision to include data or information into 
the ledger. This is due to the fact that only a few participants, priorly known par-
ticipants, are involved in the private blockchains. In addition, due to the involvement 
of government authorities or smart city officials in the process of blockchains, it is 
preferred to utilize private blockchains to avoid unnecessary havoc due to the public 
participants in the blockchains (Fig. 1).

The most important entities involved in the BESM architecture include 

1.	 Interface—Shared mobility travelers of smart cities register in the BESM archi-
tecture using the Interface. The interface connects not only the shared mobility 
travelers but also the smart city officials and the other crucial participants to enact 
policies as per their capacities.

2.	 Peers—Peers are nodes that include ledgers and represent involving participant 
organizations of BESM. Peers could be established in a bare-metal system, virtual 
machines, or in docker container environments. Each organization could include 
more than one peer. Peers are responsible for executing chaincodes that dynami-
cally decide on validating the information for registering the information into the 
ledger. One or more peers are designated as Orderer nodes in BESM which finally 
submits the information into the ledger as blocks in a time-stamped fashion.

3.	 P2P Networks—Peers of BESM are connected in a P2P fashion—i.e., an overlay 
network would be laid on the connected network infrastructure. The advantages 
of establishing P2P networks are:
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–	 to quickly transfer files or ledger information directly between nodes 
instead of having a central node for it; and,

–	 to formulate networks of peers depending on the applications.

4.	 Chaincodes—Chaincodes are programs written in golang, nodejs, or python, 
which include business logic. For instance, Chaincodes in BESM has init and 
invoke methods that instantiate and process information for entering them into 
the ledger with specific business logic. Prior to these two mandatory methods, the 
appropriate golang packages such as shim, protos/peer, and so forth, are 
imported to the Chaincode and the data structure of BESM needs to be initialized.

	   The invoke methods of Chaincode involve three major methods:

–	 querySeatAlloted()—this method queries the confirmed seats from 
the ledger;

–	 initLedger()—this method initializes the defined data structures of 
the ledger into the pre-defined channel; and,

–	 allotSeat()—this piece of code of the chaincode represents/assesses 
the policies of different peer representations.

	    The policies of the allotSeat() method of the chaincode varies between 
organizations. For instance, the policies adopted and approved by smart city offi-
cials endeavor to assign the number of travelers based on the COVID-19 situation; 
the policies that are approved by vehicle owners of the blockchain network cor-
responds with the seating capacity of vehicles; the hospital authorities confirms 

Fig. 1   BESM architecture
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the seat allotment based on the asthma level of travelers; and, the policies of the 
travelers intend to avail seat in a shareable vehicle.

BESM Processes

BESM allocates the number of residents/tourists to travel in a shareable vehicle Vi 
of capacity Sc considering air quality parameters AQj and COVID-19 situations of 
a province/district/region Cs . The air quality parameters AQj consist of NO2 , SO2 , 
and so forth. The processes involved in BESM while permitting a resident/traveler to 
travel in a shareable vehicle of capacity Sc are listed as follows: 

1.	 Initialization—At first, the seat capacity Sc of a shareable vehicle Vi is initialized 
by the vehicle owner; and, a blockchain network Bn is initiated by smart city 
officials or the other permitted participants who are in the admin role of the 
blockchain network.

2.	 Details Collection/Verification—Second, the latitude lsc and longitude losc of the 
smart city locations that the traveler would travel using the shareable vehicle Vi 
of capacity Sc are collected. This depends on the preference given by the traveler 
to reach a destination on the vehicle. Similarly, the information of a traveler Tsc , 
namely, the personal identification number is collected from smart city registries; 
besides, the current COVID-19 situation Cs for the given location or traveling 
locations is collected.

3.	 AQj Measurement/Prediction—Third, for the given lsc and losc of the smart city 
and the entire route of the journey, AQj parameters such as NO2 , SO2 are either 
measured using sensors or predicted using previous values of nearest locations of 
a region. Typically, air quality monitoring sensors are connected to cloud services 
or edge services through microcontrollers such as Arduino UNO and gateways. 
There are no monitoring sensors in some locations due to several reasons such 
as network or cost issues. In fact, it is not possible to provide monitoring sites in 
all possible locations of a widely spread region, especially in developing coun-
tries. Hence, prediction services need to be adopted for identifying the air quality 
parameter values. In order to predict the air quality parameter values, BESM uti-
lizes several prediction algorithms such as LR, QR, RR, LaR, ER, RF, SVM, and 
RP algorithms. A detailed discussion on the prediction algorithms is discussed 
in Sect. 4.

4.	 Travel Decision—Fourth, the traveler requests BESM to allot a seat in the share-
able vehicle. The request is initiated as a blockchain transaction. This transaction 
is verified based on the input provided to the blockchain network such as traveler 
details, air quality values of the entire path of the journey, and the traveler/resi-
dent’s health concerns. Chaincodes are executed on the peers of the blockchain 
network, where the policies of smart city officials, tourists/resident willingness, 
hospital permissions, and vehicle owner consent are collectively approved in 
order to validate the seat allocation of a shareable vehicle.

5.	 Anomaly Records—In general, vehicle owners might attempt to increase the num-
ber of travelers in their vehicle Vi ; smart city officials or governments prefer to 
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vary allocation policies in a dynamic fashion depending on various scenarios; 
hospital authorities might provide wrong recommendations; and, so forth. Anom-
alies of variations Av , if noticed, need to be issued as transactions in blockchains. 
For instance, a smart city official could inspect the over-crowded vehicle and raise 
an anomaly against the vehicle owner. This transaction would be recorded as an 
anomaly record in the blockchain database Bd similar to the traveler seat alloca-
tion transaction. The participants of BESM verify each transaction before they 
were recorded into the database.

Blockchain Intelligence

This section explains the prediction algorithms utilized in the BESM architecture to 
predict the air quality values of the traveling locations of residents/tourists. Smart 
city officials could utilize the prediction results to determine the travel recommenda-
tions (Fig. 2).

Modeling and Predictions

Given (i) a dataset consisting of air quality values such as NO2 and SO2 of the city 
locations of a region and (ii) the corresponding latitude lsc and longitude losc of the 
city locations, the air quality values are either predicted or monitored in BESM.

The prediction processes are, in general, undertaken in three phases after the 
dataset was split into training, validating, and testing data: 

Fig. 2   BESM processes
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1.	 Modeling—Modeling is a mathematical representation of a real-world scenario. 
Modeling happens during the training phase of a prediction algorithm based on 
the given dataset. Modeling results in a trained model that could validate or test 
new input data. It is performed based on the knowledge of the independent and 
dependent variables of data.

2.	 Validation—During the validation phase, the trained model is fine-tuned based on 
the input data and the output of the trained model. The validation phase enables 
a good prediction accuracy for the test dataset.

3.	 Testing—In the Testing phase, the data, whose output values are unknown, are 
predicted based on the trained model while expecting an accuracy that is fine-
tuned during the Validation phase.

The three phases are carried out using prediction algorithms such as LR, QR, RR, 
LaR, ER, RF, SVM, and RP in BESM architecture.

Prediction Algorithms

Depending on the input dataset and the distribution of data available for the inde-
pendent/dependent variable of the dataset, the learning algorithms’ prediction accu-
racy differs.

Linear Regressions—(LR) and (LRM) LR prepares a trained model by finding 
the linear relationship between the dependent and independent variables of a given 
dataset—i.e., it formulates a least square method to calculate the value of the inde-
pendent variable. If the dependent variable y intercepts properly to the independ-
ent variables x1...n , the quality of prediction accuracy would be predominantly high. 
However, it is not the reality in most of the dataset, including the prediction of NO2 
or SO2 of air quality datasets. In such cases, an error term � is introduced to deal 
with the offsets.

In the generalized version of linear regression, i.e., in LRM of BESM, the rela-
tionship between dependent and independent variables is enabled using a link func-
tion. Accordingly, a few non-linear portions of the dataset could fit well between the 
dependent and independent variables of BESM.

Quantile Regression (QR) QR is a variant of LR—i.e., instead of finding the 
median of the least-squares of the independent variable’s entire value, QR restricts 
to a quantile portion of the dataset. In doing so, the quantile portion of the data anal-
ysis is quickly possible using QR. In addition, the error percentage is also spread 
across the quantiles of the dataset. QR is sufficient for a dataset containing outliers 
that are possible in IoT-enabled measurements that emerge due to faulty sensors or 
communication protocols, including the air quality dataset.

Ridge Regression (RR) RR is another variant of LR. RR attempts to reduce the 
overfitting cases of trained models to attain more generalized learning in the trained 
model. In some cases, however, there is a possibility that the trained model fits 
very well during the training phase of predicting data. In fact, the prediction accu-
racy would not be as expected in the validation or the testing phases. This prob-
lem is defined as the overfitting problem. The overfitting problem is addressed by 
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introducing loss functions while creating the trained model in RR—i.e., the sum of 
squares of errors of independent variables is reduced.

Lasso Regression (LaR) LaR is also a variant of LR. In LaR, as specified in LAS-
SO’s name (Least Absolute Shrinkage and Selection Operator), penalty is added 
based on the absolute value of the severity of the coefficients—i.e., LaR attempts to 
set zero for some coefficients. LaR is designed to overcome the overfitting problem 
as similar to RR. The major difference of LaR compared to RR is the utilization of 
the absolute value of the coefficients in LaR instead of least squares of the coeffi-
cients in RR. LaR performs the variable selection mechanism in addition to solving 
the overfitting problem of trained models.

Elastic Regression (ER) LaR might specifically restrict the number of variables 
during the path to solve the overfitting problem. ER is an extension of LaR; it is 
designed to overcome the challenges of LaR and RR. In ER, shrinking coefficients 
and setting zero to some coefficients are performed—i.e., a combination of both 
RR and LaR. ER is therefore considered to be a more effective regression approach 
when compared to the previous regression approaches.

Support Vector Machine (SVM) SVM is a learning algorithm that applies hyper-
planes to separate data with maximum distances. It attempts to plot separation lines 
in an n-dimensional dataset. Besides, it includes kernels such as linear, polynomial, 
sigmoid, and so forth, to convert low-dimensional input space to high dimensional 
data space—i.e., kernels enable quick identification of hyperplanes with a minimal 
computation cost. The continuity of the line in SVM is utilized for predicting the 
future data points of the regression problems.

Random Forest (RF) RF is an ensemble-based bagging technique to create mod-
els during the training phase. It constructs multiple decision RF trees; it bags data 
to appropriate trees while building the training model. RF is considered to reduce 
the overfitting problem during the training phase. It picks up a few samples from 
the training dataset and starts to create RF trees so that RF could average RF trees’ 
results. It is an attractive algorithm that maintains the prediction accuracy even if 
a sequence of data is missing while creating the training model from the training 
dataset.

Recursive Partitioning (RP) RP is more similar to RF—i.e., it establishes deci-
sion trees from the dataset. However, RF creates multiple decision trees to accom-
plish learning forests—a sort of ensemble learning process. In RP, being a single 
tree, the interpretation of arriving results is comparatively more straightforward, 
challenging the predictions’ accuracy.

Experimental Results

This section explains the experimental results carried out at the IoT cloud research 
laboratory to manifest the importance of the proposed BESM architecture. Initially, 
the experimental setup of the architecture was discussed; next, the evaluation of dif-
ferent prediction algorithms was analyzed; and, finally, a few cases, while applying 
the blockchain intelligence, were discussed.
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Experimental Setup

To validate the proposed BESM architecture, the prediction algorithms utilized and 
their configurational settings are mentioned in Table 1.

Throughout the prediction-related experiments, the independent variables such as 
NO2 , Latitude lsc , and Longitude losc of city locations were utilized for predicting 
SO2 ; and, the independent variables such as SO2 , Latitude lsc , and Longitude losc of 
specific locations were utilized for predicting NO2 . While validating the prediction 
algorithms, 50 percentages of data are utilized for creating a training model and the 
other 50 percentages of data are utilized for validating the data. The dataset is a mix-
ture of the real-time collected sensor data from air quality monitoring sites and the 
dataset that is available at the Indian dataset repositories [8].

The dataset utilized in the experiments belongs to the air quality measurements 
carried out in the Kerala state of India. This is due to the fact that the air quality and 
COVID-19 aware allocation of seats in a shareable mobility vehicle was demon-
strated for the Kerala state of India. The dataset was tidied by removing unspecified 
values and ordering datasets based on the measurement time. In addition, the val-
ues of latitude lsc and longitude losc for different city locations were included in the 
dataset so that the air quality values of specific travel locations of a traveler could be 
predicted depending on the corresponding independent variables.

The blockchain network of BESM architecture was established using docker 
containers on a Dell Precision Tower 7810 machine which consists of an Intel 
Xeon(R) CPU E5-2650 processor with 48 CPUs. The containers represent peer 
organizations such as smart cities, travelers, hospitals, and vehicle owners in BESM. 
The permissioned blockchain was executed using a hyperledger fabric v.1.4.1 [24] 
where the chaincodes represent the logic for deciding whether a traveler could be 
accommodated in a shareable vehicle or not. The chaincodes of BESM were written, 
compiled, and executed using golang v1.14.

Prediction Algorithms—Evaluations

For the given dataset, the prediction algorithms of consideration such as LR, LRM, 
QR, RR, LaR, ER, and RF were evaluated in two aspects: (i) Prediction Accuracy 
and (ii) Modeling Time.

Prediction Accuracy

The prediction of air quality values such as SO2 and NO2 for a given dataset was 
validated for different prediction algorithms by considering 50 percent of data for 
training and the other portion for testing. Figure 3 depicts on the training and testing 
dataset while applying different prediction algorithms. The red points represent the 
training data and the blue lines depict on the prediction data obtained for the testing 
data of air quality values while predicting SO2 and NO2 values.
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Figure 4 reveals the R2 values obtained while predicting the air quality param-
eters. The following points could be observed from the prediction results due to 
different algorithms of consideration: 

1.	 The R2 prediction accuracy values of NO2 are higher than SO2 for most of the 
algorithms—i.e., the lowest R2 value of NO2 was 84.16 for QR when compared 
to 36.31 for SO2.
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2.	 Among the seven different prediction algorithms of consideration, RF outper-
formed the other algorithms. Notably, RF showed 14 percentage prediction accu-
racy improvements over QR for NO2 and 63.17 percentage improvements for SO2 
predictions.

The modeling and prediction time for different algorithms were analyzed. Table 2 
highlights the values of them due to the prediction algorithms. The last two col-
umns of the table express the time required for conducting the entire validation pro-
cesses and prediction processes of algorithms. The validation processes, for exam-
ple, include tidying data, splitting data into training and testing datasets, establishing 

Table 1   Settings for prediction 
algorithms

Predictions Package R Settings

LR lm [30] Ind. Variables: SO2, NO2, LatLong
LRM glm [32] Ind. Variables: SO2, NO2, LatLong

Fischer Scoring Iteration: 2
QR quantreg [29] Ind. Variables: SO2, NO2, LatLong

Tau=0.25
RR cv.glmnet [26] Ind. Variables: SO2, NO2, LatLong

Alpha=0
LaR cv.glmnet [26] Ind. Variables: SO2, NO2, LatLong

Alpha=1
ER cv.glmnet [26] Ind. Variables: SO2, NO2, LatLong

Alpha=0.9
RF randomForest [9] Ind. Variables: SO2, NO2, LatLong

mtry=1, proximity=0
SVM e1071 [15] Ind. Variables: SO2, NO2, LatLong

Kernel=radial, cost=1, epsilon=0.1
RP rpart [40] Ind. Variables: SO2, NO2, LatLong

method=exp

Table 2   Modeling and prediction time of algorithms

Prediction Modeling NO2 Modeling SO2 Predict NO2 Predict SO2 Validation Prediction
Algorithms (in sec.) (in sec.) (in sec.) (in sec.) (in sec.) (in sec.)

LR 0.003 0.003 0.001 0.002 2.49 0.469
LRM 0.003 0.015 0.002 0.003 1.659 0.622
QR 0.058 0.043 0.001 0.06 2.069 1.246
RR 0.17 0.224 0.005 0.007 2.251 1.355
LaR 0.134 0.139 0.004 0.006 2.213 1.38
ER 4.112 4.284 0.016 0.02 10.079 13.78
RF 4.694 3.983 0.066 0.065 10.38 9.045
SVM 5.283 1.67 0.093 0.376 9.15 26.4
RP 0.042 0.042 0.007 0.008 2.55 0.58
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models for the training dataset, and predicting data for the testing dataset. The pre-
diction processes avoid splitting processes and testing 50 percent of data as carried 
out at the validation processes.

As observed in Table 2, the time required for creating training models to train 
SO2 and NO2 was comparatively higher than the respective time for predictions. The 
validation and prediction times of SVM, ER and RF were higher than the other algo-
rithms—notably, SVM had experienced 26.4 seconds for predicting the dependent 
variables. Succinctly, the prediction accuracy result of RF was better than the other 
algorithms of consideration as shown in Fig. 4.

Blockchains—Cases

Shared Vehicles (SVs) that travel in four different routes of Kerala, India, were stud-
ied with the application of blockchains. The routes of shared vehicles are listed in 
Table 3. Let us assume that the SVs utilized in the exploratory study consist of a 
maximum seating capacity of 26—i.e., Sc =26, including a driver; the smart city 
officials have fixed a policy of including half the seating capacity whenever the 
smart cities experience COVID-19 cases. In fact, the policies are subject to change 
based on the discretion of the concerning officials.

In this article, four different cases were explored while allotting seats in SVs for 
travelers/residents of smart cities as discussed below: 

Fig. 4   R2 accuracy values of predictions

Table 3   Routes of shareable 
vehicles

SV Travel routes

SV-1 Malappuram->Thrissur->Kochi->Alappuzha->Trivandrum
SV-2 Kottayam->Kollam->Trivandrum
SV-3 Kozhikode->Thrissur->Kochi->Alappuzha->Trivandrum
SV-4 Palakkad->Kochi->Alapuzha->Trivandrum
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1.	 Case 1: A traveler wishes to start a journey from Malappuram to Trivandrum on 
a vehicle V1 which has a seating capacity Sc = 26 . The request was given by the 
traveler to the BESM architecture when the seat allocation level SAl is 7—i.e., a 
few more seats are left in the vehicle V1.

2.	 Case 2: Another traveler proposes a journey from Kottayam to Trivandrum on a 
shareable vehicle V2 . The traveler is an asthma patient as specified by the hospital 
authorities—i.e., the traveler is sensitive to air polluted locations.

3.	 Case 3: Assuming a traveler is willing to travel from Kozhikode to Trivandrum 
on a shareable vehicle V3 , smart city official assigns policies to the city vehicles 
to restrict the number of seats to 5 in a vehicle having a seating capacity of 26 
considering the increase in the COVID-19 situation of the smart city.

4.	 Case 4: A shareable vehicle V4 is scheduled between Palakkad and Trivandrum 
with a permissible seat allocation of 5 by smart city officials. However, there is 
a possibility that the vehicle owner could allocate more travelers for increasing 
the profits due to travel. A surprise inspection by smart city officials could be 
initiated as a transaction. This case defines such a scenario to record the activities 
of defaulters in the blockchain of BESM so that sufficient actions could be taken 
against the vehicle owners.

The chaincodes of BESM architecture were designed such that smart city offi-
cials, vehicle owners, hospital authorities, and travelers/residents would collec-
tively decide on registering the transaction into the ledger.

In Case 1, the preference of traveler/resident is issued as a transaction to allo-
cate seats in the shareable vehicle V1 . Although seats were available for the trave-
ler in the vehicle for traveling from Malappuram to Trivandrum, the feasibility of 
accommodating the passenger in the shareable vehicle is cross-checked by other 
participants in the blockchain network, including smart city officials, vehicle 
owners, and hospital authorities.

Notably, the chaincode is designed such that the hospital authorities verify 
whether the traveler has health concerns; the vehicle owner verifies the seat 
availability concerning the maximum permissible limit of vehicle capacities as 
advised by smart city authorities; and, the smart city peer of the blockchain net-
work would check if the travel needs to be restricted considering the impact due 
to COVID-19 for a particular city or similar health-related issues. Only if every 
stakeholder agrees on the policies in an automated fashion using the chaincode, 
the seat would be allocated for the traveler/resident—i.e., the transaction would 
be recorded in the blockchain database. Accordingly, as seen in Table 5, the seat 
allocation of a traveler is recorded into the blockchain database.

For allocating seats, COVID-19 quarantine information of the Kerala state was 
collected from the database available in the public repository of cities [12]. The 
data was collected from March 2020 to June 2020 in order to detect/predict the 
COVID-19 situation of a particular city while allocating seats. Figure 5 reveals 
the mobility scenario due to COVID-19 quarantine undertaken in particular cit-
ies of Kerala. According to the COVID-19 numbers, smart city policies could be 
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updated in chaincodes to automatically fine-tune the number of seats that might 
be allocated in shareable vehicles.

In Case 2, it was observed that the traveler wishes to travel from Kottayam to 
Trivandrum. However, being an asthma patient, the information is specified by hos-
pital authorities suggesting that the patient should be permitted to travel only if the 
air quality values do not exceed a specific permissible limit. In this case, the per-
missible limit for asthma patients was fixed as follows by the hospital authorities: 
(i) SO2 = 20;SO2 = 40 . The smart city organization’s peer invokes chaincode to 

Table 4   Prediction of SO2 and 
NO2 for Case-II Traveling Cities

Case-II SO2 NO2

Kottayam 5.901 20.49
Kollam 3.325 14.83
Trivandrum 7.946 24.1

Table 5   Cases recorded in permissioned blockchain

Prior conditions Smart city Vehicle Hospital Tourists/ Blockchain
Authorities Owner Management Residents

Case-I SC=26 ✓ ✓ ✓ ✓ Recorded
SA

l
=9;

Patient = NIL
Case-II Patient = Asthma; ✓ ✓ Checks AQ ✓ Recorded

SA
l
=9; ✓

Case-III Patient = Asthma; policy changes ✓ Checks AQ ✓ ×

SA
l
=9; × ✓

Case-IV Verifications=3 Violation Checks
SA

l
=14; ✓ ✓ ✓ ✓ Recorded

Fig. 5   COVID-19 situation of cities in Kerala
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evaluate the air quality parameter values for the traveling locations/cities—i.e., the 
air quality values of Kottayam, Kollam, and Trivandrum are predicted. In BESM, 
RF prediction algorithms would be utilized because the prediction accuracy is 
higher when compared to the other prediction algorithms as discussed in Sect. 5.2. 
For Case 2, the air quality values of the traveling cities of V2 is predicted as given in 
Table 4.

Case 3 demonstrates a scenario where smart city officials could change the poli-
cies depending on the rising number of COVID-19 mobility aspects on cities; and in 
Case 4, a demonstration to record the anomalies of violators is illustrated.

Table 5 illustrates the different cases demonstrated using BESM architecture. It 
illustrates the scenarios for which the transactions were recorded. As seen, the travel 
request of a traveler, which is issued as transactions in Case-I, Case-II, and Case-
IV, were recorded in the blockchain. In all these cases, the peers representing smart 
city authorities, vehicle owner, hospital management, and tourists/residents have not 
objected in issuing seats for the shareable vehicles—i.e., in Case-I, the traveler will-
ing to travel in V1 does not have any health concerns apart from satisfying all prior 
requirements for traveling in the vehicle, including the COVID-19 conditions.

In cases Case-II and Case-III, the air quality parameter values of all cities that 
the vehicles V2 and V3 would travel are predicted by RF. This is due to the fact that 
the traveler is an asthma patient in these cases. However, the hospital management 
has approved the travelers as the air quality values of traveling locations are in the 
permissible range. In Case-III, however, the smart city officials of Kozhikode city 
have restricted the travel permission to the maximum of 5 seats in shareable vehi-
cles. Accordingly, the peer representing smart city representatives has not approved 
the traveler to travel in V3 . Consequently, BESM denied registering the traveler in V3.

In succinct, BESM architecture promotes a collaborative fashion of quickly allo-
cating seats in a shareable vehicle considering air quality and COVID-19 situation 
of smart cities.

Conclusion

Shared mobility has proliferated in various dimensions, such as shared bikes, shared 
taxis, dockless scooters, and so forth, including public transits, for benefiting smart 
city residents/travelers at large. Air pollution-aware shared mobility or COVID-19-
aware seat allocations for shareable vehicles could remain an effective approach 
to improving city residents/travelers’ health concerns. This work proposed a novel 
BESM architecture based on permissioned blockchains. BESM included smart city 
officials, travelers/residents, hospital management, and vehicle owners while allocat-
ing seats for travelers/residents collaboratively; it allocated seats in shareable vehi-
cles based on air quality values and COVID-19 situations of the traveling locations 
of residents/travelers. The proposed mechanism was experimented at IoT Cloud 
Research Laboratory and manifested using four demonstration-oriented case stud-
ies. In the future, researchers could observe the emotions of travelers based on facial 
recognitions while allocating seats in a shareable vehicle.
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