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Abstract
The new type of coronavirus disease, which has spread from Wuhan, China since 
the beginning of 2020 called COVID-19, has caused many deaths and cases in most 
countries and has reached a global pandemic scale. In addition to test kits, imaging 
techniques with X-rays used in lung patients have been frequently used in the detec-
tion of COVID-19 cases. In the proposed method, a novel approach based on a deep 
learning model named DeepCovNet was utilized to classify chest X-ray images con-
taining COVID-19, normal (healthy), and pneumonia classes. The convolutional-
autoencoder model, which had convolutional layers in encoder and decoder blocks, 
was trained by using the processed chest X-ray images from scratch for deep feature 
extraction. The distinctive features were selected with a novel and robust algorithm 
named SDAR from the deep feature set. In the classification stage, an SVM classifier 
with various kernel functions was used to evaluate the classification performance of 
the proposed method. Also, hyperparameters of the SVM classifier were optimized 
with the Bayesian algorithm for increasing classification accuracy. Specificity, sen-
sitivity, precision, and F-score, were also used as performance metrics in addition to 
accuracy which was used as the main criterion. The proposed method with an accu-
racy of 99.75 outperformed the other approaches based on deep learning.
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Introduction

The number of cases and deaths is increasing day by day due to the COVID-19 pan-
demic, which emerged in the last months of 2019 and spread all over the world in a 
short period of 5 months [1]. Many countries, such as the USA, Brazil, India, Tur-
key, England, and Canada are on the brink of the second wave in combating corona-
virus disease. By November 2020, more than 48 million cases were detected world-
wide, and the death rate in these cases was recorded as 2.51%. The health systems of 
many countries came to the point of collapse due to a rapid increase in the number 
of cases [2]. Besides, countries with a high number of cases have imposed a curfew 
for their citizens since the COVID-19 virus spreads very rapidly through breathing. 
Under these circumstances, social life has been negatively affected, and economic 
crises have broken out in many countries.

Early detection is essential to prevent the spread of the COVID-19 virus. For this, 
a large number of test processes that give fast results are required. The RT-PCR test 
is the most commonly used method to detect the COVID-19 virus in cases that come 
to health centers with symptoms such as cough, fever, shortness of breath, loss of 
taste and smell, and weakness [3]. The samples in the RT-PCR test are collected by 
nasopharyngeal swab or oropharyngeal swab. The samples are evaluated in test kits 
by experts in the laboratory environment. After a few days, the RT-PCR test result is 
taken as positive or negative. This testing process is time-consuming and test results 
are not highly reliable. Also, it is very difficult for all countries to supply a sufficient 
number of test kits due to the pandemic [4]. For this reason, radiological imaging 
techniques, which constitute chest X-ray (CXR) and computed tomography (CT) 
images, have been also used to detect the COVID-19 virus throughout the pandemic. 
CT scan machines provide the most accurate and sensitive results for the diagno-
sis of COVID-19, however, they are not available in every health center as they are 
expensive. CXR images are frequently used in the diagnosis of COVID-19 due to 
their fast results and cheap supply. Despite these advantages of using CXR images, 
there are not enough radiologists in hospitals, and radiologists have to diagnose hun-
dreds of CXR images a day [5]. In this context, machine learning-based computer-
aided systems can provide great convenience to experts in detecting COVID-19 
cases from CXR images and prevent false detections caused by workload.

Up to now, deep learning, which is a subset of machine learning based on neu-
ral networks that enable a machine to train itself to carry out a duty, has been 
used in many tasks such as image classification, environmental sound classifi-
cation, and biomedical signal classification [6–12]. Generally, deep learning 
approaches have outperformed hand-crafted-based machine learning approaches 
[13, 14]. Therefore, deep learning techniques have frequently been preferred 
for automated COVID-19 virus detection. Ucar et al. [15] used the Squeeze Net 
model, in which the hyperparameters are optimized by a Bayesian algorithm, 
for automatic diagnosis of COVID-19 disease. The proposed model achieved an 
accuracy of 98.26% for 3-class categorization. Aras et al. [16] utilized a hybrid 
method containing fine-tuning, deep feature, end-to-end training algorithms. 
The authors reached a success rate of 0.92 for binary classification composed of 
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COVID-19 and normal classes. Khan et  al. [17] proposed Xception pre-trained 
CNN structure for applying the transfer learning technique. The proposed model 
provided an accuracy of 95% for 3 classes composed of normal, COVID-19, and 
pneumonia. Pathak et al. [18] extracted deep features by using the ResNet model 
for binary classification. Also, the authors used cost-sensitive features for increas-
ing classification performance. The best accuracy was 93.018% with this method. 
Oh et al. [19] proposed a segmentation and classification method for the COVID-
19 problem. For segmentation and classification, the authors used FC-DenseNet 
and ResNet-18 models. The best sensitivity and precision scores were 94.33% 
and 87.63%, respectively. Zhang et al. [20] utilized a deep domain adaption algo-
rithm. With this algorithm, COVID- 19 cases were classified by defining the 
similar and different characteristics between COVID-19 and pneumonia. Sethy 
et  al. [21] used ResNet50 pre-trained model to extract deep features from CXR 
images. This model reached a 95.3% accuracy score with the Support Vector 
Machine (SVM) classifier. Ozturk et al. [22] used a stack model named the Dark-
Net model, which included 17 convolutional layers. Different filtering techniques 
for each layer were applied in the proposed model. For 2-class and 3-class clas-
sification, the best accuracies were 98.08% and 87.02%, respectively. Gour et al. 
[23] extracted deep features from a pre-trained VGG19 model and a new model 
containing 30 layers. The classification was performed with a logistic regression 
algorithm. Narin et al. [24] used different pre-trained models such as ResNet50, 
InceptionV3, and ResNetV2 for detecting the COVID-19 virus automatically. The 
best accuracy score was achieved as 98% with the ResNet50 pre-trained model. 
Butt et al. [25] utilized the Hounsfield scale (HU) values for pre-processing stage 
and a 3D CNN model for deep feature extraction. Mangal et  al. [26] proposed 
a 121 layered ChexNet model composed of convolutional and dense layers. The 
highest accuracy was 90.5% for 3-class classification containing COVID-19, 
normal, and pneumonia class labels. Togacar et  al. [27] utilized MobileNetV2 
and SqueezeNet pre-trained models for automated COVID-19 detection. A stack 
feature set was constituted with these models. The best classification result was 
achieved with the SVM algorithm. Nour et al. [28] proposed an end-to-end learn-
ing model, which includes 5 convolutional layers, to classify COVID-19, pneu-
monia and normal classes. Turkoglu [29] proposed a transfer learning approach 
using a pre-trained AlexNet model to extract deep features from CXR images. 
Deep features were constituted from third dimension additions of each layer in 
the trained model. The SVM classifier provided a 99.18% accuracy for 3-class 
classification.

In this study, a convolutional-autoencoder (CA) model was proposed for 
detecting the COVID-19 virus automatically. Deep features were extracted from 
the compressed activations of the CA model. The SVM classifier is used in the 
classification stage. For increasing the classification performance, contributions 
and limitations of the DeepCovNet model can be stated as follows:

•	 The gradient-based pre-processing operation was applied to raw CXR images.
•	 Convolutional layers were used in the CA model instead of dense layers.
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•	 Distinctive deep features were selected by a new and effective algorithm 
(SDAR) containing a two-level process.

•	 Hyperparameters of the SVM classifier were tuned with a Bayesian algorithm to 
give better performance.

•	 If the size of the input images is increased during the training phase, the compu-
tational cost will increase.

The remainder of this work was organized as follows. The material and methods 
were explained in Sect. 2. The experimental works and results were mentioned in 
Sect. 3. The discussion and conclusion were explained in Sects. 4 and 5, respectively.

Materials and Methods

The illustration of the proposed method, which automatically detects the COVID-
19 virus from CXR images, is given in Fig. 1. Firstly, the Laplacian-based gra-
dient operation was applied to CXR images in the pre-processing stage of the 
proposed work. Then, the pre-processed images were resized to 100 × 100 pixels 
for reducing the hardware requirement. The dataset was randomly divided into 
two sets namely training and test datasets and the CA model was trained with the 
training dataset. The CA model, which was composed of a convolutional layer-
based autoencoder architecture, was utilized to extract deep features. The encoder 
and decoder blocks in the CA model were composed of 3 convolutional layers 
and 4 convolutional layers, respectively. The layers of the CA model are given in 
Table 1. As shown in Table 1, the CA model was composed of an ordered struc-
ture containing 1 input layer, 5 convolutional layers, 3 max-pooling layers, and 3 
up-sampling layers. The encoder and decoder of the CA model consisted of struc-
tures organized from the input layer named input_1 up to the convolutional layer 

Pre-Processing with

Laplacian Operator and

Resizing

Training Dataset

Test Dataset

Chest X-ray

images

Encoder Decoder
Compressed

Representation

Activation

Deep Features
Feature Selection

(SDAR Allgorithm)

SVM with 10-Fold

Cross Validation

Hyperparameter

Optimization with

Bayesian Algorithm

COVID-19

CA Model

Fig. 1   The illustration of the proposed method
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named conv2d_3 and from the convolutional layer named conv2d_4 up to the 
convolutional layer named conv2d_7, respectively. The max-pooling layer named 
max_pooling2d_3 was used for the compressed representation that was utilized 
to extract deep features. The numbers of filters in the convolutional layer from 
conv2d_1 up to conv2d_7 were 32, 16, 8, 8, 16, 32, respectively. Also, the sizes 
of filters in the convolutional, max-pooling, and up-sampling layers were chosen 
3, 2, and 2, respectively.

The deep features were extracted from the compressed activations (the max-pool-
ing layer output which comes after the last convolutional layer in the encoder block) 
in the CA model. Then, the two-level feature selection process (SDAR algorithm) 
was performed in the deep feature set. In the first level, features were reduced with 
a threshold algorithm based on standard deviation and average values. In the second 
level, the reduced features were selected with positive feature importance weights in 
the RelifF algorithm. Finally, the SVM classifier, in which the hyperparameters were 
optimized with the Bayesian algorithm, was used in the classification stage.

Pre‑processing

CXR pictures are morphologically similar to each other. As a result of the exami-
nations, deformities and white spots were detected in the CXR images of COVID-
19 cases. To make these changes more distinctive, the gradient operation with the 
Laplacian operator is applied to the CXR pictures [30, 31]. According to x and y 
variables of f  input, the gradient operation with Laplacian operator is defined as 
follows:

Table 1   Analysis of the CA 
model

Layer (type) Output size Parameters

input_1 (Input Layer) (100, 100, 1) 0
conv2d_1 (Conv2D) (100, 100, 32) 320
max_pooling2d_1 (MaxPooling2) (50, 50, 32) 0
conv2d_2 (Conv2D) (50, 50, 16) 4624
max_pooling2d_2 (MaxPooling2) (25, 25, 16) 0
conv2d_3 (Conv2D) (25, 25, 8) 1160
max_pooling2d_3 (MaxPooling2) (13, 13, 8) 0
conv2d_4 (Conv2D) (13, 13, 8) 584
up_sampling2d_1 (UpSampling2) (26, 26, 8) 0
conv2d_5 (Conv2D) (26, 26, 16) 1168
up_sampling2d_2 (UpSampling2) (52, 52, 16) 0
conv2d_6 (Conv2D) (50, 50, 32) 4640
up_sampling2d_3 (UpSampling2) (100, 100, 32) 0
conv2d_7 (Conv2D) (100, 100, 1) 289

Total learnable parameters: 
12,785
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The output of the gradient operation is given in Fig. 2 for the CXR image of a 
COVID-19 case. As shown in Fig. 4b, only the draws related to the pattern are pre-
sent in the CXR image.

Convolutional‑Autoencoder (CA) Model

An autoencoder neural network is an unsupervised learning model and its purpose 
is to reconstitute output similar to the input while reducing the recreation error. If a 
training dataset is assumed to be {x1, x2,..., xn} for xi ∈ ℝn, the target of autoencoder 
is described to be yi = xi for i ∈ {1, 2,..., n}. In other words, the autoencoder output 
is targeted to be equal to its input. The autoencoder creates optimized compressed 
representations at the output of hidden layers, keeping this target function in mind. 
Therefore, the autoencoder learns the F (F(w,b)(x)≅ x) feature space that changes 
according to the b bias vector and w weight vector [32]. The general statement of the 
autoencoder loss function is as follows:

As shown in Fig. 3, a general autoencoder architecture consists of dense layers as 
in a multilayer perceptron.

The representation of the CA structure is given in Fig.  4. In the autoencoder 
model, convolutional and pooling layers are utilized for encoding operations, and 
convolutional and up-sampling layers are utilized for decoded operations. Also, the 
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Fig. 2   Pre-processing for a CXR image
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compressed representation is achieved with a convolutional layer or pooling layer. 
Moreover, autoencoder-based deep features are extracted from the output of com-
pressed representation.

Convolutional layers are used as the main layer in deep learning-based approaches 
to extract distinctive features of different types of data in many areas. Convolutional 
operations are performed through filters containing learnable parameters such as 
weight and bias [33, 34]. Generally, the height and width of the input data do not 
change after convolutional processing. However, the depth increases depending on 
the number of filters. The convolutional operation between filter and input in a con-
volutional layer is defined as shown in Eq. 3.

where Xn−1
i

 is the input data from previous layers, w is the filter weight matrix, b is 
the bias vector and M is the input map. Also, f  represents an activation function 
such as rectified linear unit (ReLU), which is often used in convolutional layers.

(3)Xn
j
= f

⎛⎜⎜⎝
�
i∈Mj

Xn−1
i

∗ wij + bn
j

⎞⎟⎟⎠

Fig. 3   The general autoencoder 
architecture
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Pooling layers are utilized for the down-sampling process in the deep learning 
approaches. Also, a pooling layer both prevents overfitting and decreases computational 
cost in the training stage [35]. Max-pooling, average-pooling, global max-pooling, and 
global average-pooling is utilized frequently in deep learning approaches.

The up-sampling layer functions the opposite of the pooling layer and must be used 
in autoencoder structures. In other words, the up-sampling layer enlarges the input 
transmitted to it with a certain interpolation operation such as nearest and bilinear.

In the deep learning models, stochastic gradient descent with momentum 
(SGDM), root mean square error probability (RMSprop), and adaptive moment esti-
mation (ADAM) are used as robust optimization solvers. The performance of this 
solver can change according to the type and size of the data.

Feature Selection with SDAR Algorithm

Deep features are created by taking the output from one of the sequential layers 
such as the convolutional layer and fully connected layer after training deep learn-
ing models. At the end of the optimization process, most of the values in these deep 
features highlight the characteristics of the sample more, while some of them show 
a weaker representation power. SDAR algorithm is utilized for increasing classifica-
tion performance in the proposed approach. The pseudocode of the SDAR algorithm 
is given in Algorithm 1. In the first stage of the SDAR algorithm, the average and 
standard deviation of the normalized deep feature values are calculated. The stand-
ard deviation and average values are divided one by one to the deep feature values. 
If the results obtained are greater than the threshold value, that value is deleted from 
the deep feature vector. It is appropriate to choose the threshold value between 5 and 
20 times the average value.

In the second stage of the SDAR algorithm, features having high representation 
power in the reduced feature set are selected by positive importance weight indi-
ces computed with the ReliefF. The ReliefF calculates the feature weights in case 
labels are multi-classes. The predictors that give different values to neighbors in the 
same class are punished. In other words, the predictors that give the same scores to 
neighbors in the same class are awarded a prize [36]. At the ReliefF algorithm, fea-
ture weights (Wk) are first adjusted to zero. Then, the ReliefF algorithm re-chooses 
a random prediction (xs), computes the k-nearest predictions to xs for each class, and 
updates according to each nearest neighbor (xt) [7, 37]. If the classes of xs and xt are 
the same, all the weights for the predictors (Pi), are as follows:

If the classes of xs and xt are different, all the weights for the predictors (Pi), are 
as follows:

(4)W
j

k
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j−1

k
−
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(
xa, xb
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j
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where Wj

k
 denotes the weight of the Δk(xa, xb) for the jth iteration, pya stands for 

the prior possibility of the category to which xa belongs, pyb represents the previ-
ous possibility of the category to which xb belongs, t is the number of optimization 
iterations, and Δk(xa, xb)  is the variation in the value of the predictor between the 
observation xa and the observation xb. For discrete situation, the Δk(xa, xb) can be 
stated as follows:

The distance functions dab and  d∼
ab

 are expressed as follows:

where rank(a,b) is the location in the observation of bth between the nearest neigh-
bors in the observation of ath, ranked by distance. M is the number of nearest 
neighbors.

(6)Δk
(
x
a
, x

b

)
=

{
0, x

ai
= x

bi

1 x
ai
≠ x

bi

(7)dab =
d∼
ab∑M

m=1
d∼
am

(8)d∼
ab

= e−(rank(a,b)∕sigma)2
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Support Vector Machines (SVM)

SVM, which was developed by Vapnik, is used for classification and regression by per-
forming statistical learning [38, 39]. The main target of SVM is to constitute the most 
convenient hyperplane by using support vectors between positive and negative data. 
Considering training data as x and class label as y, the used equation for separating lin-
early of positive and negative samples can be expressed as in Eq. 9.

The position of the hyperplane is determined with w weight and b bias vectors, 
which are learnable parameters. The optimization problem in Eq. 10 should be solved 
in Eq. 11 for finding the best hyperplane.

The Lagrange multipliers, which is an optimization method for learning the local 
maxima and minima of a function connected to equality limitations, are utilized to 
solve this optimization problem [40]. For the best hyperplane, the Lagrange multipli-
ers are given in Eq.  7 subject to 

∑N

i=1
�iyi = 0, 0 ≤ �i ≤ C . Where � and C are the 

Lagrange multipliers and smoothing parameter, respectively.

For problems that cannot be separated linearly, samples are moved from the exist-
ing space to a different space. This transformation is performed using kernel functions 
symbolized as K. The most used kernel functions are Gaussian, RBF, polynomial, and 
cubic. The SVM decision function with the K kernel, which is expressed with ∅

(
xi
)
 

and ∅
(
xj
)
 core functions, is given in Eq. 13.

The methods of one-versus-one and one-versus-all are the most used strategies in 
multi-class SVM classification problems [41].

Hyperparameter Optimization

The hyperparameters, which can be selected manually or automatically, in machine 
learning algorithms significantly affect the performance of the used methods. Manual 
selections require expertise, however, the hyperparameter choices of experts often do 
not provide optimum results on first attempts. Besides, it may be necessary to run the 

(9)f (x) = wTx + b = 0
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w2

2
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algorithms several times to fine-tune the hyperparameters [42]. The grid-search and 
random search-based optimization algorithms are mostly used for finding the best 
hyperparameters. However, the solution to the optimization problem with these algo-
rithms requires time-consuming operation in deep learning models with big data. The 
Bayesian optimization algorithm is an efficient way to solve functions containing high 
computational costs [25]. For finding the global maximum value in a black-box func-
tion, the optimization target can be defined as follows:

where S symbolizes the searching space in x . Considering an evidence data D at 
the general Bayesian theorem, the posterior probability P(E|D) of pattern E can be 
calculated as:

where P(E) is a prior possibility, and P(D|E) is the likelihood of overserving D. The 
Bayesian optimization algorithm combines the former distribution of the function 
f (x) with the samples of the previous information to get the posteriors. The poste-
riors compute the valuation which defines the maximization value of the f (x) . The 
maximization operation criterion is the statement named utility function ( p ). The 
steps of Bayesian optimization algorithm with training data ( T  ) and the numbers of 
observations (n) can be expressed as follows:

•	 Find xn by optimizing the utility function p with a certain iteration → 
xn = argmaxp(x|T1∶n−1)

x
•	 Test the objective function → yn = f (xn)
•	 Add new values and update data → T1∶n =

{
T1∶n−1,

(
yn, xn

)}

Model Evaluation

The performance of the proposed method is evaluated by using the confusion matrix. 
The confusion matrix gives about four parameters, which consist of true positive 
(TP), false positive (FP), false negative (FN), and true negative (TN). Performance 
metrics consisting of accuracy (ACC), sensitivity (Sn), specificity (Sp), precision 
(Pr), and F-score, which are frequently used in the literature, are obtained with these 
parameters. These metrics are calculated as follows:

(14)x− = argmax
x∈S

f (x)

(15)P(E|D ) = P(D|E )P(E)

(16)ACC =
TP + TN

TP + TN + FP + FN

(17)Sn =
TP

TP + FN
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Experimental Works and Results

The coding for the pre-processing and the CA model was performed on Python 3.7 
programming language while the coding for the classification and the hyperparam-
eter optimization was performed with Matlab software. Experimental works were 
carried out with the Windows 10 operating system equipped with a 2  GB graph-
ics card, 8 GB RAM card, and an Intel(R) Core(TM) i7-5500U CPU @ 2.4 GHz 
processor. The dataset containing chest X-ray images was constituted by combining 
five different sources [43–47] with the labeling of the chest X-ray images examined 
via radiologists. The combined dataset consists of 580 COVID-19, 500 Pneumonia, 
1541 Normal chest X-ray images. All chest X-ray images in the dataset were resized 
to 100 × 100 pixels with the nearest-neighbor interpolation method. Also, RGB 
images in the dataset were converted to grayscale images for pre-processing stage, 
which uses the Laplacian operator with a 3 × 3 kernel size. 70% of the dataset for the 
training of the CA model was used. Using the rest of the dataset, the classification 
results were achieved with tenfold cross-validation. A few samples of chest X-ray 
images for all classes are shown in Fig. 5.

70 percent of the training data was used for training the CA model and the rest for 
validation. The training options containing epochs and batch size were selected 50 
and 256, respectively, and the rest options were tuned as default. Adam solver and 
cross-entropy loss function were used in the optimization process since they pro-
vided better performance. The changes in training loss and validation loss by peri-
ods are shown in Fig. 6. The best loss values for training and validation were 0.0156 
at the end of 50 epochs.

The importance weight values, which deep features extracted from the CA model 
are calculated with the SDAR algorithm are given in Fig. 7. As seen in Fig. 7, the 
importance weight values deep features became negative after the 500th iteration. 
The SDAR algorithm computed 502 features containing positive feature importance 
weight.

In Fig. 8, the 3-Dimensional representations of deep features with and without 
SDAR algorithm are shown for each class. As seen in Fig.  8, the computational 
parameter was decreased in the feature set. Besides, the distinctive representation 
power was boosted between classes.

(18)Sp =
TN

TN + FP

(19)Pr =
TP

TP + FP

(20)F - score =
2 × TP

2 × TP + FP + FN
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The accuracy scores for various classifiers, which use deep features achieved 
with the CA model, are given in Table 2. As seen in Table 2, the best results were 
obtained with the SVM classifier for both 1352 features and 502 features selected 
with the SDAR algorithm. The SVM classifier performed better by 1.1% with the 
selected deep features compared to 1352 features. The lowest result was obtained 
with the Naive Bayes classifier as 90.1%. The SDAR algorithm improved the clas-
sification accuracy for all classifiers.

The results of other performance metrics such as sensitivity and specificity for 
the proposed model, which uses the SVM classifier and the selected deep features, 
are given in Table 3. The selected deep features (502) outperformed 1352 deep fea-
tures for all metrics. The best results were obtained for the Pneumonia class for all 
metrics, while the lowest results were for the COVID-19 class.

In Table 4, the performance scores of the SVM classifier are given for the kernels 
of linear, Gaussian, and polynomial. The best overall accuracy was obtained with 
the polynomial kernel as 97.30%. The scores of all metrics for the Pneumonia class 
were 1.00 for each kernel function. The best sensitivity, specificity, and F-score for 
the COVID-19 class were achieved with the Gaussian kernel, and the best precision 
was achieved with the polynomial kernel as 0.99. In the normal class, the perfor-
mances of Gaussian and polynomial kernels were equal for specificity and sensitiv-
ity metrics, and the Polynomial kernel outperformed the Gaussian kernel for preci-
sion and F-score.

As shown in Table  5, the proposed method was evaluated for three different 
cases. According to Table 5, the CA model for deep features and the SVM classifier 
for classification was used in all cases. According to Table 5, raw images were only 
used in case-1 for training the CA model, and Bayesian algorithms were only used 
in case-3 for hyperparameter optimization of the SVM classifier. According to the 
cases in Table 5, the results of confusion matrices and other performance metrics are 
given in Fig. 9 and Table 6.

As shown in Fig. 9 and Table 6, the best scores were achieved with case-3. How-
ever, except for the Pneumonia class, the worst scores were obtained with case-1. In 
case-1, 18 samples from the COVID-19 class and 10 samples from the Normal class 
were misclassified.

For the best classification in the proposed method, the kernel scale and box con-
straint hyperparameters were searched in the range of 0.001–1000 by using the 
Bayesian algorithm for SVM classifier, with polynomial (cubic) kernel function and 
one-vs-all coding. The analysis of observed and estimated minimum classification 
errors was given for 30 iterations in Fig. 10. At the end of 30 iterations, kernel scale 
with a value of 34.091 and box constraint with a value of 0.62179 provided the best 
minimum classification error. The observed and estimated minimum classification 
error values were obtained as 0.036849 and 0.038936, respectively. For SVM hyper-
parameters optimization, the elapsed time in the Bayesian algorithm was 1838s.
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Discussions

The COVID-19 pandemic has adversely affected the health and economies of many 
countries since 2019. Now, thousands of cases and hundreds of deaths are recorded 
every day in these countries. Moreover, health services have been insufficient in 
terms of both personnel and health supplies. In this process, many machine learning-
based studies have been conducted to automatically diagnose COVID-19 cases with 
high accuracy to support clinicians, radiologists, and experts. Chest X-ray images 
and deep learning algorithms were used in most of these studies. Besides, classifica-
tion problems involving normal, COVID-19, and pneumonia classes are generally 
preferred in the literature. Therefore, we compared our proposed method with deep 

Fig. 6   The training process of the CA model
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Fig. 7   The feature importance weight values calculated with the SDAR model
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Table 2   Performances of 
classifiers

Classifiers ACC %

1352 features 502 features

Decision Tree 91.6 92.7
Naive Bayes 90.3 91.8
SVM 96.2 97.3
KNN 96.1 96.8
Ensemble Subspace Discriminant 94.8 95.4
Ensemble Subspace KNN 96.1 96.9

Table 3   Three different cases 
for the proposed model

Size of features Classes Sn Sp Pr F-score

1352 COVID-19 0.8977 0.9819 0.9349 0.9159
Normal 0.9763 0.94375 0.9619 0.9691
Pneumonia 0.9931 1 1 0.9965

502(Selected) COVID-19 0.9205 0.9885 0.9586 0.9391
Normal 0.985 0.9564 0.9704 0.9776
Pneumonia 1 1 1 1

Table 4   SVM classifier 
performance according to kernel 
functions

Kernel 
Functions of 
SVM

Classes Sn Sp Pr F-score ACC (%)

Linear COVID-19 0.95 0.94 0.96 0.95 95.00
Normal 0.90 0.96 0.88 0.89
Pneumonia 1.00 1.00 1.00 1.00

Gaussian COVID-19 0.96 0.96 0.97 0.97 96.40
Normal 0.93 0.97 0.90 0.91
Pneumonia 1.00 1.00 1.00 1.00

Polynomial COVID-19 0.92 0.99 0.96 0.94 97.30
Normal 0.98 0.96 0.97 0.98
Pneumonia 1.00 1.00 1.00 1.00

Table 5   Three different cases for the proposed model

Case Type of images Model of deep features Classifier Hyperpa-
rameter 
optimiza-
tion

1 Raw CA model SVM –
2 Processed CA model SVM –
3 Processed CA model SVM Bayesian 

Algo-
rithm
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learning-based approaches and classification problems involving the same class tags 
(COVID-19, Normal, Pneumonia). Methods, accuracies, sensitivities, and specifici-
ties of these approaches are given in Table 7.

In Ref. [8], a novel method, which uses 17 convolutional layers and various 
filters, was proposed to diagnose COVID-19 cases automatically. This method 
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Fig. 9   Confusion matrices of proposed model a case-1, b case-2, c case-3

Table 6   Other performance 
metrics for three different cases 
in Table 2

Cases Classes Se Sp Pr F-score

1 COVID-19 0.8977 0.9836 0.9405 0.9186
Normal 0.9785 0.9439 0.9620 0.9702
Pneumonia 1.0000 1.0000 1.0000 1.0000

2 COVID-19 0.9205 0.9885 0.9586 0.9391
Normal 0.9850 0.9564 0.9704 0.9776
Pneumonia 1.0000 1.0000 1.0000 1.0000

3 COVID-19 0.9943 1.0000 1.0000 0.9972
Normal 1.0000 0.9938 0.9957 0.9979
Pneumonia 0.9931 1.0000 1.0000 0.9965
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provided an accuracy of 87.02%, a sensitivity of 92.18%, and a specificity of 
89.96. In Ref. [28], an end-to-end trained CNN architecture containing many 
residual blocks was used to detect automatically COVID-19 disease from chest 
X-ray images. This model outperformed ResNet-50 and VGG-19 CNN models. 
The accuracy, sensitivity, and specificity scores with this method were 92.64%, 
91.37%, and 95.76, respectively. In Ref. [29], the performance of transfer learn-
ing models such as MobileNet v2, VGG19, and Inception was compared with the 
metrics of accuracy, specificity, and sensitivity. The best scores were obtained 
with the MobileNet v2 model. In Ref. [1], a SqueezeNet Model trained with the 
augmented dataset from scratch was proposed for automated COVID-19 disease 
detection. Also, the Bayesian algorithm was used for hyperparameter optimiza-
tion. The best accuracy, sensitivity, and specificity were 98.26%, 98.33%, and 
99.10%, respectively. In Ref. [13], an end-to-end trained CNN model with 5 con-
volutional layers was utilized to extract deep features from chest X-ray images. 
In the classification stage, the SVM classifier with radial basis function kernel 
obtained an accuracy of 98.97%, a sensitivity of 89.39%, and a specificity of 
99.75. In Ref. [14], deep features were extracted from fully connected and con-
volutional layers of the AlexNet model. A total of 10,568 deep features were 
reduced to 1500 deep features with the Relief algorithm. The accuracy, sensitiv-
ity, and specificity with this model were 99.18%, 99.13%, and 99.21%, respec-
tively. In Ref. [12], the combined features were constituted with MobileNetV2 
and SqueezeNet models. The SVM classifier, in which hyperparameters were 
tuned with the Social Mimic algorithm, reached an accuracy of 99.27%, a sensi-
tivity of 98.33%, and a specificity of 99.69%.

In the DeepCovNet Model, deep features were extracted from the com-
pressed representation of the CA model with 7 convolutional layers. To increase 
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Fig. 10   Analysis of Bayesian algorithm for minimum classification error
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classification performance, 3 algorithms were used in the pre-processing (Lapla-
cian), feature selection (SDAR), and hyperparameter optimization (Bayesian) 
stages. The proposed method gave a high performance with an accuracy of 
99.75%, a sensitivity of 99.33%, and a specificity of 99.79%.

Considering that proposed methods in the literature are evaluated on certain 
datasets, it would not be correct to state that any method is exactly superior to 
another for COVID-19 disease. The reason for this is that the numbers of radio-
logical images are not much as sufficient. However, as the number of COVID-19 
cases increases, more organized and big datasets can be created.

Conclusions

People around the world suffer from COVID-19 disease in terms of their health, 
economy, and social life. In this pandemic period where an accurate diagnosis is 
important, artificial intelligence-based automated detection methods can make a 
great contribution to the decision-making process of specialists and radiologists. 
The deep features in the proposed approach were extracted from a new deep autoen-
coder model, which used the processed chest X-ray images and was trained from 
scratch. The distinctive deep features were selected with a novel algorithm (SDAR) 
that was easy to apply. An SVM classifier with a polynomial kernel was used in the 
classification stage. The hyperparameters of the SVM were tuned with the Bayesian 
algorithm for increasing the classification performance. The results at end of experi-
mental works showed the following outcomes;

•	 In particular, the approaches involving deep features and SVM classifier per-
formed better than the other methods in detecting COVID-19 disease.

•	 The Polynomial kernel outperformed the linear and Gaussian kernels in most 
performance metrics.

•	 The Laplacian, SDAR, and Bayesian algorithms boosted the classification accu-
racy at a rate of 0.89%, 1.1%, and 2.42%, respectively.

Table 7   Comparison of the proposed methods with other published methods

Methods Dataset Number 
of classes

Acc (%) Se (%) Sp (%)

DarkCovidNet [22] Public 3 87.02 92.18 89.96
COVID-Net [48] Public 3 92.64 91.37 95.76
The pretrained CNNs [49] Public 3 96.78 98.66 96.46
COVIDiagnosis-Net [15] Public 3 98.26 98.33 99.10
Deep CNN, SVM [28] Public 3 98.97 89.39 99.75
Deep CNN, AlexNet, Feature Selection, SVM [29] Public 3 99.18 99.13 99.21
Deep features, SqueezeNet, SVM [27] Public 3 99.27 98.33 99.69
DeepCovNet Public 3 99.75 99.33 99.79
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•	 Since the computer capacity used was not much, images were used with a max-
imum size of 100 × 100 in experimental studies and high classification perfor-
mance was obtained under these conditions.

In future works, more refined models will be constituted with big datasets con-
taining many chest X-ray images. Also, the proposed method with a high-capac-
ity computer will be re-tried for the chest X-ray images resized as 200 × 200 and 
300 × 300. Moreover, it is planned to implement a GUI application that can be used 
by radiologists and physicians in the decision-making process.
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