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Abstract The massive upsurge in computational and storage has driven the local
data and machine learning applications to the cloud environment. The owners may
not fully trust the cloud environment as it is managed by third parties. However,
maintaining privacy while sharing data and the classifier with several stakeholders is
a critical challenge. This paper proposes a novel model based on differential privacy
and machine learning approaches that enable multiple owners to share their data
for utilization and the classifier to render classification services for users in the
cloud environment. To process owners’ data and classifier, the model specifies a
communication protocol among various untrustworthy parties. The proposed model
also provides a robust mechanism to preserve the privacy of data and the classifier.
The experiments are conducted for a Naive Bayes classifier over numerous datasets
to compute the proposed model’s efficiency. The achieved results demonstrate that
the proposed model has high accuracy, precision, recall, and F1-score up to 94%,
95%, 94%, and 94%, and improvement up to 16.95%, 20.16%, 16.95%, and 23.33%,
respectively, compared with state-of-the-art works.

Keywords Cloud computing ·Machine learning ·Differential privacy ·Classification ·
Privacy-preserving

1 INTRODUCTION

Cloud computing has the capability to provide an ample amount of data storage,
computation, analysis, and sharing services to organizations without revealing its
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2 New Generation Computing

implementation and platform details [1]. Due to these illimitable services, any orga-
nization outsources its data and model from the local to the cloud platform [2], [3].
Nowadays, machine learning has gained a lot of attention in a wide range of real-world
applications, including image recognition, spam detection, financial market analysis,
and recommendation systems [4], [5]. The machine learning classifier is extensively
utilized in these applications. Thereafter, the emerging challenges include handling the
privacy of the model and sensitive data [6]. The cloud stores and computes massive
amounts of collected data and the classification model that are outsourced from various
owners without interaction with each other. The owners hesitate to share their data and
model with the cloud for computation and storage since a third party runs it [7]. The
owners lose control of their outsourced data, model and are unaware of its extraction
from the cloud platform [8]. According to a Cisco survey, 76% of owners have no clue
about their data utilization by other parties [9]. The cloud may misuse and provide
both data and the model to other parties for different purposes [10], [11]. Due to these
reasons, the privacy-preserving of data and the model has become a challenge for any
organization. Therefore, it is essential to protect the data and classification model by
applying some privacy strengthening process before transferring them to an untrusted
cloud server.

To address the challenges mentioned above, we propose a Differential Approach
for data and classification service-based Privacy-preserving Machine Learning Model
(DA-PMLM) in the cloud environment. In the proposed model, ε-differential privacy
protection is considered on the owner’s side because they do not aspire to disclose
actual data, and the model [12–15]. Fig. 1 outlines a bird-eye view of the proposed
work and emphasizes our consistent contributions to protect the data as well as the
classification model from unauthorized parties. The owners inject different statistical
noise into data and the model according to various applications and queries. The
achieved data and model are uploaded to the cloud platform, and classification services
are provided. The obtained machine learning model is applied over collected data for
classification. The cloud platform receives the classified data from the classification
model and distributes it to the data owners or users rather than other parties. It classifies
tasks and allows data sharing in the cloud environment. The main contributions of the
proposed work have been described as follows:

• DA-PMLM permits several data owners and the classifier owner to share their data
and machine learning model without hindrance. The Laplace mechanism has been
used to keep the data and model private before sharing.

• DA-PMLM uses two clouds: cloud1 and cloud2. Cloud1 handles the data storage
and sharing process, whereas cloud2 carries out the classification tasks over
accumulated data from various owners. To secure data and model with improving
privacy, all entities are deemed untrustworthy.

• DA-PMLM ensures the level of security because the value of the privacy budget is
assigned according to the requirement of protection.

• Implementation and evaluation are performed using various datasets, which shows
that DA-PMLM outperforms the state-of-art works in terms of privacy, accuracy,
precision, recall, and f1-score.



New Generation Computing 3

Data Owners

Request Users

Cloud Service Provider

C2

C1

Data 

Noise
Synthetic

Data

Classifier Owner Noise Synthetic Classification Model

Classification Model

Fig. 1: Bird eye view of DA-PMLM

Organization: Section 2 describes the related work followed by the proposed model
and the process of preserving data in Sections 3 and 4, respectively. The privacy-
preserving of the model and the data classification steps are presented in Section 5 and
Section 6, respectively. The illustration of the proposed model is defined in Section 7.
The operational design and computational complexity are discussed in Section 8. The
experimental results with statistical analysis are shown in Section 9, followed by the
conclusion and future work in Section 10. Table 1 demonstrates the list of symbols
with their descriptive terms that have been used throughout this manuscript.

Table 1: List of Terminologies with their Explanatory Terms

CO: Classifier Owner n∗∗: Training objects P: Precision
UE: Untrusted Entity Di: Actual data Ni: Noise
CM: Classification Model RUid : Request Users DN

i : Synthetic Data
CA: Classification Accuracy ĎN

t′
: Training Data R: Recall

D̂N
i : Preprocessed Data CL: Label Vector ĎN

t′′
: Testing Data

∆ f : Absolute distance n: No. of data object FP: False Positive
DP: Differential Privacy CS: Cloud Storage Pr: Probability
ϑ : Scaling parameter n∗∗∗: Testing objects ε: Privacy budget
R̂: Random function f : Query function n∗: count of classes
CMN : Synthetic Model CF : Classifier FS: F1-Score
CSP: Cloud Service Provider C1: Cloud1 C2: Cloud2
σ : Standard deviation µ: Mean Λ : Data attribute
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2 Related Work

To protect the data, and machine learning model using the differential privacy mech-
anism has been categorized at the two levels: (a) At the data level, (b) At the model
level.

2.1 At Data Level

To protect data privacy, Li et al. [16] proposed a differentially private scheme called
Privacy-preserving Machine Learning with Multiple data providers (PMLM) with
improved computational efficiency and data analysis accuracy. The PMLM scheme
uses public-key encryption with a double decryption algorithm (DD-PKE) to transform
the encrypted data into a randomized dataset and ε-differential privacy to make
the data private. But the PMLM scheme suffered from less accuracy as well as
limited data sharing. Wang et al. [17] proposed a distributed agent-based privacy-
preserving framework, namely DADP, for real-time spatial statistics data collection
and publication with an untrusted server. A distributed budget allocation mechanism
and an agent-based dynamic grouping mechanism were developed to achieve global
w-event ε-differential privacy in a distributed manner. In DADP, crowd-sourced data
is aggregated, and then the noise is added to it using the Laplace mechanism. However,
it was considered a semi-centralized setting and resulted in a more complex system
because it initiated a batch of trusted proxies (Agents) and anonymous connection
technology to protect the privacy of users under an untrusted server. A privacy-
preserving deep learning model, namely PDLM, is presented in [18] that protects
training data by encrypting it with multiple keys using a public-key distributed two
trapdoors (DT-PKC) cryptosystem. The proposed scheme minimized the storage cost.
However, it necessitates more calculations on the ciphertext, resulting in decreased
efficiency. Hassan et al. [19] proposed an efficient privacy-preserving scheme based
on machine learning to protect data privacy. The partially homomorphic encryption
technique was utilized to re-encrypt data, and a differential privacy mechanism was
used to add noise to the data. It permits all participants to publicly verify the validity of
the ciphertext using a unidirectional proxy re-encryption (UPRE) scheme that reduces
computational costs. But the proposed scheme has limited data sharing. A local
differential privacy (LDP)-based classification algorithm for data centers is introduced
[20] with high efficiency and feasible accuracy. Sensitive information is protected
by adding the noise using the Laplace mechanism in the pattern mining process.
They devised a method for determining the level of privacy protection. However, the
proposed method does not allow for data sharing. To prevent information leakage, a
framework, namely, noising before model aggregation federated learning (NbAFL),
was proposed by Wei et al. [21]. Before the model aggregation, a differential privacy
mechanism was utilized to add the noise to clients’ local parameters. Nevertheless,
this framework requires a significant amount of noise to add and sacrifices model
utility. An adaptive privacy-preserving federated learning framework is introduced
in [22], which protects gradients by inserting the noise with varying privacy budgets.
They devised a randomized privacy-preserving adjustment technology (RPAT) to
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enhance the accuracy, but the proposed framework makes the classification process
computationally costly. A machine learning and probabilistic analysis-based model,
namely MLPAM, is presented in [23]. It supports various participants to share their
data safely for different purposes using encryption, machine learning, and probabilistic
approaches. This scheme reduced the risk associated with the leakage for prevention
coupled with detection, but it does not provide privacy for the classifier. To protect the
Spatio-temporal aggregated data in real-time, Xiong et al. [24] proposed a privacy-
preserving framework based on the local differential approach. The authors also
devised a generalized randomized response (GRR) framework for obtaining reliable
aggregated statistics continuously while maintaining user’s privacy. The proposed
framework improves data usage but exposes the user’s privacy by adding independent
identically distributed noise to the associated data. Liu et al. [25] proposed a differential
privacy for local uncertain social network (DP-LUSN) model that protects the social
network’s community structured data. DP-LUSN increased the data utilization by
minimizing the noise effect on a single edge. However, DP-LUSN only operates
on static social networks. Sharma et al. [26] proposed a Differential Privacy Fuzzy
Convolution Neural Network framework, namely DP-FCNN, which protects the
data and query processing by adding the noise using the Laplace mechanism. The
authors used the lightweight Piccolo algorithm to encrypt the data and the BLAKE2s
algorithm to extract the key attributes from the data. However, DP-FCNN increases
the computational overhead.

2.2 At Model Level

A privacy-preserving Naive Bayes learning scheme with various data sources using
ε-differential privacy and homomorphic encryption is presented in [27]. This scheme
enables the trainer to train the Naive Bayes classier over the dataset provided jointly by
the different data owners. But still, adversaries can forge and manipulate the data in this
scheme. Gao et al. [28] proposed a privacy-preserving Naive Bayes classifier scheme
to avoid information leakage under the substitution-then-comparison (STC) attack.
They adopted a double-blinding technique to preserve the privacy of Naive Bayes. The
proposed scheme reduced both the communication and computation overhead. But
this scheme is unable to obtain the discovery of truth that protects privacy. A privacy-
preserving outsourced classification in the cloud computing (POCC) framework was
introduced in [29]. It protects the privacy of sensitive data under various public keys
using a fully homomorphic encryption proxy technique without leakage. However,
encryption for outsourced data can protect privacy against unauthorized behaviors. It
also makes effective data utilization, such as search over encrypted data, a complicated
issue. Liu et al. [30] proposed a private decision tree algorithm based on the noisy
maximal vote. An effective privacy budget allocation strategy was adopted to make
the balance between the true counts and noise. It was constructed as an ensemble
model with differential privacy to boost the accuracy and improve the stableness. In
the proposed algorithm, the privacy analysis was performed only on each separate
tree and not on the ensemble as a whole. A differentially private gaussian processes
classification (GPC) model was presented in [31], which adds noise to the classifier to
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provide privacy. The authors used the Laplacian approximation method to determine
GPC’s sensitivity and scaled noise to outputs generated from other dataset sections.
In this manner, the total noise can be decreased. However, the proposed model is not
sparse. Wang and Zhang [32] proposed a differential privacy version of convex and
nonconvex sparse classification approach based on alternating direction method of
multiplier (ADMM) algorithm with mild conditions on the regularizers. By adding
exponential noise to stable stages, they were able to turn the sparse problem into a
multistep iteration process and accomplish privacy protection. However, estimating the
noise introduced to stochastic algorithms in the proposed approach is problematic. A
differentially private ensemble learning method for classification, referred to as DPEL,
was presented in [33] which provides privacy protection while ensuring prediction
accuracy. The authors applied the Bag of Little Bootstrap and the Jaccard similarity
coefficient techniques to enhance the ensemble’s diversity. A privacy budget allocation
strategy was designed to make the differentially private base classifiers by adding
noise. But the DPEL method is affected by limited data sharing. Table 2 provides an
overview of the literature review.

Table 2: Tabular sketch of the literature review

Model/Scheme
/Framework

Workflow & Implementation Outcomes Drawback

A machine
learning-
based privacy-
preserving
model for data
protection [16]

• To prevent data leakage, addi-
tively homomorphic encryp-
tion and differential privacy
techniques were employed

• Abalone, Wine, Cpu, Glass,
and Krkopt data sets were
used for experiments

• Improve the accuracy of
data analysis and the effi-
ciency of computations

• The model seems to be
more protected as per the
security analysis

For the classi-
fier, it does not
provide privacy

A distributed
privacy-
preserving
task allocation
framework [17]

• w event and ε-Differential Pri-
vacy mechanisms were used
to protect data

• Python language and taxi tra-
jectory, nice rider datasets
were used for experiments

• Less Mean Absolute Er-
ror (MAE) and Mean Rel-
ative Error (MRE)

• Enhance the overall
throughput of the whole
vehicular network

A trade-off be-
tween accuracy
and the overall
payment of
crowd-sensing
server

A cloud-based
Deep Learning
model for data
privacy [18]

• A homomorphic encryption
mechanism was adopted to en-
crypt the data

• To assess PDLM perfor-
mance, a LeNet deep learning
model was utilized

• Achieve high accuracy
up to 94%

• Perform the tasks of
privacy-preserving train-
ing and classification ap-
propriately

The use of
multiple keys
for big data
reduced the
efficiency of
the machine
learners

A privacy-
preserving with
public verifia-
bility scheme
[19]

• Data is protected by applying
differential privacy and par-
tially homomorphic encryp-
tion techniques

• Java pairing based cryptogra-
phy (JPBC) library was used
for experiments

• Lower computational as
well as communication
costs

• The security analysis ver-
ifies that the scheme is
more secure under the
random oracle model

With ho-
momorphic
encryption,
the issue of
ciphertext
expansion arise
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A classification
algorithm satis-
fies local dif-
ferential privacy
[20]

• Internet of Multimedia Things
(IoMT) produces the sensitive
information

• Laplace noise is injected into
the data during pattern mining

• High efficiency, reliabil-
ity, and precision

• Less MAE, mean
squared error (MSE)
metrics

IoMT devices
need higher la-
tency and band-
width

A framework
protects training
data based on
differential
privacy [21]

• Inject the noise into the pa-
rameters of the local learning
model

• This framework was assessed
by utilizing multi-layer per-
ception and MNIST datasets

• A trade-off between fed-
erated learning perfor-
mance and privacy

• Acquire high privacy us-
ing random mini-batches

Less accuracy
due to injected
noise in the pa-
rameters

A secure multi-
party compu-
tation strategy
by adaptive
privacy-
preserving
[22]

• The Laplace mechanism was
adopted to add noise with dif-
ferent privacy budget

• TensorFlow library and
MNIST dataset were used for
experiments

• Achieve high accuracy
up to 88.46%

• Less computation and
transmission overhead

Data perturba-
tion may de-
grade the data
utility

A secure data
sharing model
for determining
guilty entities
against data
leakage [23]

• The attribute based encryp-
tion and differential privacy
were used to preserve the pri-
vacy of multiple participants’
data

• The pyhton language and
Glass, Iris, Wine, and Balance
Scale datasets were utilized
for experiments

• Perform secure data dis-
tribution among users by
an effective allocation
mechanism

• Achieve high accuracy
up to 97%

High compu-
tational and
communi-
cation costs
while trans-
ferring the
data

A real-time
spatio-temporal
data aggrega-
tion method
[24]

• LDP was employed for data
protection

• MATLAB R2018a program-
ming language and Geolife,
Taxi Service datasets were
used to conduct the experi-
mentations

• Less MAE, Mean MAE
(MMAE), Mean KL
divergence (MKLD),
and Mean RelativeError
(MRE)

• Acquire adequate trade-
off of privacy and utility

High com-
putation and
communica-
tion costs due
to generalized
randomized
response

A local differ-
ential privacy
scheme for
social network
publishing [25]

• The perturbed local method
was applied to yield a syn-
thetic network

• The experiments are per-
formed using Python lan-
guage, and WebKB, Citation,
and Cora datasets

• Decrease network struc-
ture information’s loss

• This model provides a
substantial degree of pri-
vacy

It does not
support dy-
namic social
networks

A fuzzy con-
volution neural
network frame-
work based on
Differential Pri-
vacy for data se-
curity [26]

• Data is encrypted with the
help of a 128-bit block cipher

• Java Development toolkit
(JDK) 1.8, Weka tools,
and Adult and Heart dis-
ease dataset were used for
experimentations

• The comparative analysis
shows that it takes less
run-time up to 14 ms

• More effective in terms
of scalability and accu-
racy

Not suitable
for hybrid ma-
chine learning
algorithms
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A privacy-
preserving
learning algo-
rithm based
on differential
privacy[27]

• The differential privacy and
homomorphic encryption
mechanisms were used for
data preservation

• A GMP library was adopted
to execute cryptographic oper-
ations

• Achieve secure data shar-
ing without breaking pri-
vacy

• Require less computa-
tional time for training
model

Less efficiency
because of en-
cryption

A privacy-
preserving
scheme for
protecting the
trained model
[28]

• Additively homomorphic en-
cryption was used to encrypt
the data

• The experiments were con-
ducted over Breast Cancer
Wisconsin (Original), Statlog
Heart datasets

• Less the computation
overhead because of the
offline stage of the server

• Accomplish suitable
privacy-preserving
training tasks

It does not pro-
vide efficient
information
sharing

A framework
for protecting
the outsourced
classification
model [29]

• Data was encrypted by us-
ing the multikey homomor-
phic encryption proxy

• The experiments were carried
out using a naive bayes classi-
fier

• More effective for data
utilization

• Achieve high-level data
protection

Less effi-
ciency due
to additions,
multiplica-
tions, and
the nonlinear
computations
over encrypted
data

A method for
learning a differ-
entially private
decision tree
[30]

• The differentially-private de-
cision tree was trained by
leveraging the noisy maximal
vote

• The experiments were carried
out over Mushroom and Adult
datasets

• Improve the learned clas-
sifier’s utility

• Provide high accuracy up
to 81.19%

The ensemble
model’s perfor-
mance can not
be maximized

A privacy-
preserving
model for data
classification
[31]

• A variant-noise mechanism
was used to perturb the clas-
sifier with the different scaled
noise

• The experiments are con-
ducted over an actual oil
dataset provided by NCRG of
Aston University

• Achieve elevated accu-
racy up to 75.00%

• Retain the classifier’s ac-
curacy

Noise in-
evitably
decreases the
accuracy

A privacy-
preserving for
convex and non-
convex sparse
classification
[32]

• The sparse problem was trans-
formed into a multistep itera-
tion process through ADMM
algorithm

• The logistic regression and
KDDCup99 dataset were used
for experiments

• More effective and effi-
cient for performing sen-
sitive data analysis

• Accomplish appropriate
privacy-preserving train-
ing and classification
tasks

It does not
share the data
effectively
in several
environments
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A privacy-
preserving
method for pre-
venting leakage
in the process
of classification
[33]

• Laplace noise is injected into
the classifier’s objective func-
tion

• The experiments were run
over Wisconsin, User knowl-
edge, Mushroom, Adult, and
Bank Market datasets

• Perform a trade-off be-
tween privacy and accu-
racy

• Acquire high accuracy up
to 94.66%

It does not pro-
vide the data
protection

In the light of the aforementioned discussion, it can be concluded that earlier works
limited data sharing and injected the noise into either data or classification model
and/or protected them by employing diverse encryption techniques followed by the
machine learning-based classification, resulting in decreased privacy, accuracy, and
higher computing cost. In addition, the prior models only supported a single owner or
untrustworthy entity. Unlike the previous works, DA-PMLM ensures that both data
and the classification model are protected before being shared. The proposed model
enables numerous data and classifier owners to securely share outsourced data and
classification model while assuming all entities to be untrustworthy.

3 PROPOSED MODEL

The proposed model (Fig. 2) consists of four entities: Data Owners (DOid), Classifier
Owner (CO), Cloud Service Provider (CSP), and Request Users (RUid), which are
described as follows in terms of intercommunication and vital information flow:

1) DOid : An entity that yields the data and appeals to CSP for storing, computing,
and sharing services. To protect the data, DOid injects the noise into data using
the ε-differential privacy mechanism prior send it to CSP. DOid permits CSP to
share the data with RUid . Since it is assumed that DOid can not misuse its data, it
may disclose the data of other owners. Therefore, DOid is not considered a trusted
entity.

2) CO: An entity that has a classification model (CM) and offers the services to
perform the classification tasks through CSP. Before passing CM to CSP, CO
injects the noise utilizing the ε-differential privacy mechanism to retain the privacy
and stores it. CO is viewed as an untrustworthy entity in the proposed model.

3) CSP: An entity that collects all the data from DOid and CM from CO. It provides
storage, computation, and data sharing services to DOid , CO, and RUid . It also
offers the classification services using CM to DOid , and RUid . CSP trains CM
using the machine learning algorithm over collected data and obtains classified
data from CM. These accessed results are shared between DOid , or RUid . CSP is
introduced as a semi-trusted entity in the proposed model, as it strictly follows the
protocol but is curious to learn the information. In our model, the Cloud Platform
(CP) consists of two clouds: Cloud1 (C1) and Cloud2 (C2). The data is stored in
Cloud Storage (CS) at C1 while the classification model is kept in Classifier (CF)
at C2. CSP is the only entity that acts as a bridge among DOid , CO, and RUid . It
stores the data and model to perform the data sharing and classification tasks.
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4) RUid : An entity that requests CSP to obtain the owner’s data, and classification
service. RUid receives the data from C1 and accesses the CM from C2 through the
CSP. RUid is treated as an untrusted entity in our model.

Data Owners

Request Users

Classification Model

Cloud Storage (C1) Classifier (C2)

C
lo

ud
 P

la
tfo

rm
Lo

ca
l P

la
tfo

rm

Cloud Service Provider

Noise Synthetic DataData

Classifier  Owner

Data Classification Classified Data 
 

Synthetic Model
Request

Response

At Model LevelAt Data Level
Noise

Synthetic Data

Fig. 2: Proposed DA-PMLM architecture

Consider the data owners DO = {DO1, DO2, . . . , DOn} having data D, such as D ∈
{D1, D2, . . . , Dn}. It is essential that DO must share D among the other parties, such as
CSP, and several request users RU = {RU1, RU2, . . . , RUm} for storage, computation,
and data usage purposes. Due to the sensitive data, DO do not aspire to disclose D
to unauthorized parties. As a result, each DO procures synthetic data DN = {DN1

1 ,
DN2

2 , . . . , DNn
n } by injecting noise N = {N1, N2, . . . , Nn} into sensitive data {D1, D2,

. . . , Dn} using ε-differential privacy to make the data private before sharing (details
discussion in Section 4). DA-PMLM makes the use of Differential Privacy (DP)
mechanism to inject N1, N2, . . . , Nn into D1, D2, . . . , Dn, respectively, because DP
is the most appropriate mechanism for generating N1, N2, . . . , Nn and sharing data
DN1

1 , DN2
2 , . . . , DNn

n without sacrificing or revealing sensitive and personal information
about individual owners [34]. Each DO1, DO2, . . . , DOn delivers DN1

1 , DN2
2 , . . . , DNn

n
to CSP that store it on CS at C1 for computation, and sharing purposes. Due to the
lack of storage space and the need to handle multiple requests, CO aspires to store
CM on the cloud. Nevertheless, CO injects noise N̂ into CM to protect privacy before
transferring it (as described in Section 5). CO sends the synthetic model (CMN) to
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CSP that keeps it on CF at C2. CSP utilizes the stored data DN1
1 , DN2

2 , . . . , DNn
n to

accomplish the classification tasks to make a fit CMN , and also share it with RU1, RU2,
. . . , RUm. CSP also uses the stored model CMN to handle the query of DOid , and RUid .
DO1, DO2, . . . , DOn and RU1, RU2, . . . , RUm can make any query and send it to CSP.
Afterward, CSP interacts with CF and achieves the results of these queries from CMN .
The obtained results are sent to the corresponding entity DO1, DO2, . . . , DOn, and
RU1, RU2, . . . , RUm by CSP.

4 Privacy-Preserving of Data

Data owners (DO1, DO2, . . . , DOn) injects the noise (N1, N2, . . . , Nn) into data (D1,
D2, . . . , Dn), respectively, using ε-differential privacy. A random function R̂ is referred
to as ε-differential privacy [35] if for any combination of dataset D and its neighbor
D
′
, and for all ϑ ⊆ Range(R̂) are defined using Eq. (1):

Pr[R̂(D) = ϑ ]≤ exp(ε)×Pr[R̂(D
′
) = ϑ ] (1)

where Pr[.] is the probability function that has been applied to the function R̂ and
demonstrates the privacy disclosure risk. The privacy budget (ε) is defined by the
results of statistical computation, analysis, and the individual’s information that has to
be kept private. To achieve a higher level of privacy protection, the value of ε should
be reduced. A numeric query function ( f ) that is utilized to map the data set D into
real space with d-dimensional, assigned as f : D→ Rd . The sensitivity of f for all the
combinations of dataset D and D

′
is defined using Eq. (2):

∆ f = max
D,D′
‖ f (D)− f (D

′
) ‖P1 (2)

where ‖ . ‖P1 is norm. The sensitivity ∆ f is only depend on the query function f and
finds the maximum gap of query results on neighboring datasets. For any function f :
D→ Rd , the Laplace mechanism F is defined using Eq. (3). The mechanism F takes
input χ , and ε > 0, a numeric query function f , and computes the output. It is based
on the sensitivity of f and receives the statistical noise from a Laplace distribution.
Afterward, the obtained noise is injected into the datasets.

F(χ) = f (χ)+(Lap1(ϖ),Lap2(ϖ), . . . ,Lapd(ϖ)) (3)

where the noise Lap j(ϖ) ( j ∈ [1, d]), and ϖ belongs to R+ comes from a Laplace
distribution, whose the probability density function is calculated using Eq. (4).

N =
1

2ϖ
· (exp(

−|χ|
ϖ

)) (4)

where N is a noise vector. The noise N1, N2, . . . , Nn is generated taking the sample
from the Laplace distribution with scaling parameter ϖ = ∆ f/ε . The parameter ϖ

is under the control of ε . The generated noise vector N1, N2, . . . , Nn is injected into
the corresponding D1, D2, . . . , Dn as DNi

i = Di + Ni, where i ∈ [1, n]. After adding N1,
N2, . . . , Nn, DO1, DO2, . . . , DOn obtains the Synthetic Data DN1

1 , DN2
2 , . . . , DNn

n . DO1,
DO2, . . . , DOn sends data DN1

1 , DN2
2 , . . . , DNn

n to CSP that stores it on CS at C1, shares
it among RU1, RU2, . . . , RUm and performs the classification task over it.
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5 Privacy-Preserving of Classification Model

To protect the privacy of CM, CO injects the noise N̂ into CM before sharing it on the
cloud. In DA-PMLM, CO has a Naive Bayes (NB) classifier, which is used to perform
the classification tasks. The NB classifier takes the input vector DN = {x1, x2, . . . , xd},
which belongs to Rd , and classify d into a class in the form of discrete set C = {C1,
C2, . . . , Cn}. The functionality of the NB classifier based on the Bayes decision rule
[36] is to select the class C with the highest posterior probability of DN and measures
it by using Eq. (5).

CL = argmax
i∈n

p(C=Ci|DN = x) (5)

The highest posterior probability’s value (p(C=Ci,DN = x)) is equal to the factor-
ization of p(C = Ci) ∏

d
j=1 P(DN = x j|C=Ci). Each component of x is conditionally

independent based on the attribute conditional assumption. It can also be expressed
as (log p(C=Ci) = ∑

d
j=1 log p(DN = x j)) in a logarithm form. The conditional prob-

abilities P(DN = x j|C = Ci) is computed using the mean (µi, j), and variance (σ2
i, j),

which are calculated for class j using the values of attribute X from the training set.
As a result, the sensitivity of both µi, and standard deviation (σi, j) are computed. It
is assumed that the feature value of DN

j is bounded in range [gi, hi]. The sensitivity
of µi, j is calculated using (hi - gi)/(n+1), and the sensitivity of σi, j is computed using
n ∗ (hi - gi) / (n+1). After calculating the µi, j and σi, j, CO generates the noise using
the Eqs.1 to 4. The obtained noise N̂i and ˆ̂Ni are injected into µi and σi, respectively,
using Eqs. 6 and 7.

µ
′
i = µi + N̂i (6)

σ
′
i = σi +

ˆ̂Ni (7)

CO uses µ
′
i , and σ

′
i to calculate p(C=Ci,DN = x). Afterword, synthetic model CMN

is sent to CSP to handle the queries of DO1, DO2, . . . , DOn, and RU1, RU2, . . . , RUm.
Therefore, unauthorized users or any attacker are unable to acquire the sensitive
classification model from CSP; the proof is provided in the following theorem:

Theorem 1 In the proposed model, the privacy-preserving mechanism of the classifi-
cation model satisfies the parallel composition of ε-differential privacy.

Proof. Let R̂1, R̂2, . . . , R̂n be n mechanisms, where each mechanism R̂i (i ∈ [1, n]) pro-
vides ε-differential privacy. Let µ1, µ2, . . . , µn and σ1, σ2, . . . , σn are n arbitrary mean
and standard deviation to calculate the conditional probability attributes. For a new
mechanism R̂, the sequence of R̂(R̂1(µ1), R̂2(µ2), . . . , R̂n(µn)) and R̂(R̂1(σ1), R̂2(σ2),
. . . , R̂n(σn)) provide max1≤i≤n ε- differential privacy. CO generates the Laplace noise
N̂i and ˆ̂Ni according to sensitivity (∆ f ), privacy budget (ε) to inject the produced noise
into µ1, µ2, . . . , µn and σ1, σ2, . . . , σn, respectively, which satisfy Pr[R̂(µ) = ϑ ] ≤
exp(ε) × Pr[R̂(µ

′
) = ϑ ], and Pr[R̂(σ) = ϑ ] ≤ exp(ε) × Pr[R̂(σ

′
) = ϑ ]. It can be

observed that the mechanism R̂ provides privacy to the classification model. Hence
this privacy-preserving mechanism of the classification model satisfies the parallel
composition of ε-differential privacy.
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6 Data Classification

CSP receives the synthetic data DN1
1 , DN2

2 , . . . , DNn
n from DO1, DO2, . . . , DOn and

prepossesses it by applying the normalization function shown in Eq. (8), where DNi
i

is training sample, µ , and σ are the mean and the standard deviation of the training
sample, respectively.

ĎNi
i =

(DNi
i −µ)

σ
(8)

CSP achieves the prepossessed data ĎNi
i = {ĎN1

1 , ĎN2
2 , . . . , ĎNn

n }, which belongs to
n∗ is less than equal to n classes C = {C1, C2, . . . , Cn∗}, for all Ci = D, i ∈ [1, n∗]
and Ci ∩ Ck = φ , where k ∈ [1, n∗] ∧ i 6= k. Fig. 3 depicts the stepwise process for
data classification in which the prepossessed data ĎNi

i = {ĎN1
1 , ĎN2

2 , . . . , ĎNn
n } is split

into training data ĎN
t̀ = {ĎN1

t̀,1, ĎN2
t̀,2, . . . , ĎNn∗∗

t̀,n∗∗}, and testing data ĎN
`̀t

= {ĎN1
`̀t,1

, ĎN2
`̀t,2

, . . . ,

ĎNn∗∗∗
`̀t,n∗∗∗
} fulfill the following conditions a) ĎN

t̀ ∪ ĎN
`̀t

= ĎN ; b) ĎN
t̀ ∩ ĎN

`̀t
= φ ; c) n∗∗,

n∗∗∗ ≤ n; and d) n∗∗ = n× z, and n∗∗∗ = n× (1− z), where z belongs to Z or the value
of z can lie between 0 and 1 for CMN . The utilization of training data ĎN1

t̀,1, ĎN2
t̀,2, . . . ,

Synthetic Data Preprocessed Data 

 

Training Data 

 

Testing Data

Synthetic Naïve 
Bayes Classifier

 & Class Labels

y' = argmaxy' P(y')

Synthetic Classification
Model

Fig. 3: Classification flow for shared data and model

ĎNn∗∗
t̀,n∗∗ is to train CMN , whereas the accuracy of CMN is assessed by the testing data

ĎN1
`̀t,1

, ĎN2
`̀t,2

, . . . , ĎNn∗∗∗
`̀t,n∗∗∗

. Data objects ĎN1
`̀t,1

, ĎN2
`̀t,2

, . . . , ĎNn∗∗∗
`̀t,n∗∗∗

are provided to CMN in the

testing process to determine the classes. CMN examines ĎN1
`̀t,1

, ĎN2
`̀t,2

, . . . , ĎNn∗∗∗
`̀t,n∗∗∗

, and

generates the output as the class label vector CL = {CL
1 , CL

2 , . . . , CL
n∗∗∗}. Using CL

1 , CL
2 ,

. . . , CL
n∗∗∗ , the Classification Accuracy (CA) of CMN is measured by applying the Eq.

(9). In this Eq., CL
1 , CL

2 , . . . , CL
n′′′

indicates the number of correctly identified samples

and CL
1 , CL

2 , . . . , CL
n∗∗∗ is the total number of sample in test data, where n

′′′ ∈ [1, n∗∗∗].

CA =
CL

1 ,C
L
2 , . . . ,C

L
n′′′

CL
1 ,C

L
2 , . . . ,C

L
n∗∗∗

(9)
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The precision (P), and recall (R) are computed using Eq. (10) and (11), respectively.

P =
(CL

1 ,C
L
2 , . . . ,C

L
n′′′

)∩ (CL
1 ,C

L
2 , . . . ,C

L
n∗∗∗)

CL
1 ,C

L
2 , . . . ,C

L
n′′′

(10)

R =
(CL

1 ,C
L
2 , . . . ,C

L
n′′′

)∩ (CL
1 ,C

L
2 , . . . ,C

L
n∗∗∗)

CL
1 ,C

L
2 , . . . ,C

L
n∗∗∗

(11)

The F1-Score (FS) is measured using Eq. (12).

FS = 2× (P×R)
(P+R)

(12)

7 Illustration

Let’s assume that the proposed model consists of twenty owners: DOid = {DO1, DO2,
. . . , DO20} possess data D = {D1, D2, . . . , D20}. Data D1 contains the information
(4.2575, 7.1754, -1.7685, -2.6898, 0), D2 contains the information (0.7536, 0.9137,
6.1110, -4.0517, 0), . . . , D20 contains the information (6.2122, 7.6552, -2.4515, -
1.4451, 0). Before sending it to CSP, DO1, DO2, . . . , DO20 generate the noise N1, N2,
. . . , N20 by applying the Eqs. (1) to (4). The obtained noise N1 incorporates 0.6569,
N2 incorporates 0.8015, . . . , N20 incorporates 0.6959. Table 3 shows the synthetic
data (SD) that are produced after injecting N1, N2, . . . , N20 into actual data (AD). To

Table 3: Synthetic data v/s Actual data

Data Owners Λ1 Λ2 Λ3 Λ4
Λ5SD1 AD1 SD2 AD2 SD3 AD3 SD4 AD4

DO1 4.9144 4.2575 7.8223 7.1754 -1.1116 -1.7685 -2.0329 -2.6898 0
DO2 1.5551 0.7536 1.7152 0.9137 6.9125 6.1110 -3.2502 -4.0517 0
DO3 1.3112 1.0978 -2.6567 -2.8701 2.8156 2.6022 -1.8123 -2.0257 0
DO4 2.9124 2.1312 -2.3231 -3.1043 3.4122 2.631 -2.9158 -3.6970 1
DO5 5.1451 4.9639 3.4256 3.2444 -1.6823 -1.8635 1.2151 1.0339 1
DO6 1.0132 0.7983 5.7588 5.5439 0.4724 0.2575 -0.6125 -0.8274 0
DO7 2.5156 1.9033 9.1772 8.5649 -0.7336 -1.3459 -0.7353 -1.3476 0
DO8 4.4157 4.2046 8.7779 8.5668 -4.4035 -4.6146 -0.8064 -1.0175 0
DO9 1.9877 1.6659 1.1038 0.7820 2.3946 2.0728 0.8629 0.5411 1
DO10 2.9935 2.5039 7.6625 7.1729 0.1539 -0.3357 -1.0175 -1.5071 1
DO11 -2.6128 -2.9317 10.8430 10.5241 2.5462 2.2273 -2.7926 -3.1115 0
DO12 2.4121 2.012 8.7261 8.3260 -3.0030 -3.4031 -0.5724 -0.9725 0
DO13 3.6651 2.7939 -3.3924 -4.2636 3.4896 2.6184 1.4771 0.6059 0
DO14 1.7219 1.5800 3.0646 2.927 0.8747 0.7328 0.5861 0.4442 1
DO15 1.4512 1.2401 2.8473 2.6362 4.3439 4.1328 1.6524 1.4413 1
DO16 2.7159 2.5497 -4.0257 -4.1919 8.3428 8.1766 -2.1086 -2.2748 0
DO17 3.2153 2.7866 11.0272 10.5985 -2.3564 -2.7851 -2.1113 -2.5400 0
DO18 1.7121 1.5903 7.8902 7.7684 -1.3663 -1.4881 -1.5650 -1.6868 0
DO19 1.2192 0.9812 -1.1117 -1.3496 2.7118 2.4739 -1.4445 -1.6824 1
DO20 6.9081 6.2122 8.3511 7.6552 -1.7556 -2.4515 -0.7492 -1.4451 1

preserve the privacy of CM, CO also generates the noise N̂1, N̂2 using Eqs. (1) to (4). It
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is supposed that the value of N̂1 is 0.5654, and N̂2 is 0.3651. Initially, CO measures the
sensitivity of mean (µ), and standard deviation (σ ) by adopting Eq. (5). It is observed
that the value of µ is 16.3258, and the value of σ is 9.6894. Afterward, N̂1, and N̂2 are
injected into µ and σ , respectively, by applying Eqs. (6) and (7). The synthetic model
CMN , and SD are uploaded to cloud platform. CSP preprocesses SD using Eq. (8) and
acquires the preprocessed data as ĎN as (1.2456, 2.4523, -0.4452, 1.3425), (-2.5434,
-0.8145, 1.9315, 1.3155), . . . , (-1.3141, 2.5145, -1.3145, -1.0485). The CMN accepts
30 input data, and provides 30 output labels. The CA of CMN is calculated by using
Eq. (9). If CMN identifies 18 correct labels then CMN’s CA is 60% ((18/30) * 100),
where 30 is the total number of test items. The P of CMN is measured by applying Eq.
(10). If CL

1 , CL
2 , . . . , CL

n′′′
is 10, CL

1 , CL
2 , . . . , CL

n∗∗∗ is 30, and common labels among them
is 6 then CMN’s P is 60% ((6/10) * 100). The R of CMN is computed by adopting Eq.
(11). The CMN’s R is 20% ((6/30) * 100). The FS of CMN is estimated by using Eq.
(12). The CMN’s FS is 30% (2 * (P * R) / (P + R)), where P is 60%, and R is 20%.

8 Operational Design and Computational Complexity

The operational summary of the proposed model is described by Algorithm 1, which
protects the data as well as the model and performs the classification task. Initially,
the list of data (D), noise (N), and preprocessed data ĎN are initialized. To preserve
the privacy of the owner’s data D, N is generated. The obtained N is used to construct
the synthetic data after injecting it into D. To protect the classification model, the
sensitivity of µ is calculated. Based on this sensitivity, the scale factor is measured
for µ . Using the scale factor, the noise is generated and adds it into µ . Similarly,
the sensitivity of σ is also computed, and the scale factor is determined using this
sensitivity. Based on this scale factor, noise is produced and added into σ . The synthetic
µ , and σ are used to compute P(DN = x j|C=Ci). The test data is given and received
class labels from the classification model. Using these class labels, the classification
parameter values are measured in a privacy-preserving manner.

In algorithm 1, steps 2 to 19 perform the classification over synthetic data using
a synthetic model, whose time complexity depends on the noise generation, noise
addition, and classifier use. To preserve the privacy of the data, noise is generated in
step 3 and added using the Laplace mechanism in step 4, which takes O(n2) time,
where n is the total rows in the dataset. The classification model is protected using steps
5 to 18. The NB classifier takes O(ni) time. The computation time for the sensitivity
of µ and σ is O(n2) time. Steps 20 to 23 require O(1) time. Therefore, the total time
complexity of DA-PMLM is O(n2).

9 Performance Evaluation

9.1 Experimental Setup

The experiments are conducted on a system equipped with Intel (R) Core (TM)
i5-4210U CPU and 3.60 GHz clock speed. The computation machine is deployed
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Algorithm 1: DA-PMLM operational summary
Input: Actual data D, Noise vector N, Privacy parameter ε

Output: unknown class label CL
i , CA, P, R, and FS

1 Initialize data D := {D1, D2, . . . , Dn}, N := {N1, N2, . . . , Nn}, ĎN
1 = {(x1,y1), (x2,y2), . . . ,

(xï,y j̈)}
2 for i = 1, 2, . . . , n do
3 Ni = Lap(0,1)
4 DN

i = Di + Ni
5 for each attribute X j do
6 Compute the sensitivity Sµ with mean µ with bound [gi, hi]
7 Scale factor for µ (S f µ )← Sµ / ε

8 µ
′
i = µi + Lap(0, S f µ )

9 Compute the sensitivity Sσ with standard deviation σ with bound [gi, hi]
10 Scale factor for σ (S f σ )← Sσ / ε

11 σ
′
i = σi + Lap(0, S f σ )

12 Use µ
′
i , and σ

′
i to compute P(DN = x j|C=Ci)

13 end for
14 for each class ci do
15 Count nc

′
i ← nci + Lap (0,1)

16 Use nc
′
i to compute the prior P(ci)

17 end for
18 CL

i = argmaxc P(C) ∏ P(X j | c)
19 end for
20 CA = (#Correctly classi f ied sample / #test sample) * 100
21 P = {relevant data labels ∩ retrieved data labels} / {retrieved data labels}
22 R = {relevant data labels ∩ retrieved data labels} / {relevant data labels}
23 FS = 2∗ (P∗R)/(P+R)

with 64-bit Ubuntu along with 8 GB of main memory. The classification tasks are
accomplished using Python 2.7.15 programming language. The NB classifier has been
used over testing data.

9.2 Datasets and Classification Parameters

Heart Disease, Iris, Balance Scale, and Nursery datasets, all of which were obtained
from the UCI Machine Learning Repository [37] to train CM. These datasets have 75,
5, 5, 9 attributes and 303, 150, 625, 12960 instances. The description of the datasets is
shown in Table 4.

The 9/10 of the data from the complete dataset is utilized as training data, while the
remaining is used as test data for the purpose of training the CM. The machine learning
tasks are accomplished over the clean data, DA-PMLM, PMLM [16], MLPAM [23],
DPEL [33], and PDLM [18]. We have used the Laplace mechanism to generate
the noise. However, DA-PMLM, PMLM [16], MLPAM [23], as well as DPEL [33]
schemes contain noise, and PDLM [18] scheme is based on a homomorphic encryption
technique. The results of CM are evaluated using test data, and CA, P, R, and FS are
computed from these results.
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Table 4: Basic information of four datasets

Dataset #Instances #Features #Classes Samples in Samples in
training set test set

Heart Disease 303 75 2 272 31
Iris 150 5 3 135 15

Balance Scale 625 5 3 562 63
Nursery 12960 9 5 11664 1296

9.3 Results

The CM acquires the classification results including CA, P, R, and FS over the clean
data, DA-PMLM, PMLM [16], MLPAM [23], DPEL [33], and PDLM [18] as shown
in Figs. 4(a)-(d) to 7(a)-(d). In DA-PMLM, the maximal value of CA is 93.33% on
the Iris dataset with 2.0 privacy budget. The minimal value of CA is 33.87% on the
Nursery dataset with 0.01 privacy budget. The average value of CA is 70.04%, 74.97%,
61.44%, and 46.28% over Heart Disease, Iris, Balance Scale, and Nursery datasets,
respectively. The greatest value of P is 94.44% on the Iris dataset with 2.0 privacy
budget. The lowest value of P is 31.57% on the Nursery dataset with 0.01 privacy
budget. The average value of P is 70.53%, 72.67%, 59.66%, and 44.89% over Heart
Disease, Iris, Balance Scale, and Nursery datasets, respectively. The maximum value
of R is 93.33% on the Iris dataset with 2.0 privacy budget. The minimum value of R is
33.87% on the Nursery dataset with 0.01 privacy budget. The average value of R is
70.04%, 74.97%, 61.44%, and 46.28% over Heart Disease, Iris, Balance Scale, and
Nursery datasets, respectively. The highest value of FS is 93.33% on the Iris dataset
with 2.0 privacy budget. The lowest value of FS is 28.66% on the Nursery dataset
with 0.01 privacy budget. The average value of FS is 69.30%, 73.13%, 58.43%, and
43.64% over Heart Disease, Iris, Balance Scale, and Nursery datasets, respectively.
The performance of the datasets decreases in order: Iris > Heart Disease > Balance
Scale > Nursery datasets.

9.4 Comparison

The results of the experiments are compared to clean data, PMLM [16], MLPAM [23],
DPEL [33], and PDLM [18], which are also deployed on the same platform (Figs.
4(a)-(d) to 7(a)-(d)). The parameters (CA, P, R, and FS) results for DA-PMLM are less
than the results of Clean, PMLM [16], MLPAM [23], and DPEL [33] in all the cases
because of the noise addition in the data and classification model. From Table 5, it is
observed that the highest difference for CA between DA-PMLM and DPEL is 13.35%
on the Nursey dataset with 0.5 privacy budget. The lowest difference is found 0.0% on
the Heart Disease dataset with 0.1, 0.5, 1.0, 1.5, and 2.0 privacy budget, and on the
Iris dataset with 0.1 privacy budget. Besides, the maximum gap for P is 17.16% on the
Nursery dataset with 0.5 privacy budget, but the lowest differences are found 0.11%
on the Heart Disease dataset with 2.0 privacy budget. The maximum decrement for R
of DA-PMLM is 13.35% from DPEL on the Nursey dataset with 0.5 privacy budget.
In contrast, the smallest decrement is 0.0% on the Heart Disease dataset with 0.1, 0.5,
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Fig. 4: Accuracy of CM in DA-PMLM

1.0, 1.5, and 2.0 privacy budget, and on the Iris dataset with 0.1 privacy budget. The
highest difference for FS is 14.05% on the Iris dataset with 0.01 privacy budget, while
the lowest difference for FS is 0.1% on the Heart Disease dataset with 1.0 privacy
budget.

Additionally, the parameters (CA, P, R, and FS) results for DA-PMLM are less
than the results of PMLM and MLPAM in all the cases due to noise addition in the
model. The maximum gap for CA is 9.25% on the Nursey dataset with 1.0 privacy
budget, but the smallest gap is found 1.0% on the Heart Disease with 0.05 privacy
budget. Similarly, the highest difference for P is 19.33% on the Iris with 0.01 privacy
budget, while the lowest difference is found 0.16% on the Heart Disease dataset with
0.05 privacy budget. The R of DA-PMLM the maximum decrement by 8.72% from
PMLM, MLPAM on the Nursery dataset with 1.0 privacy budget, whereas the smallest
decrement is 1.0% on the Heart Disease dataset with 0.05 privacy budget. The highest
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Fig. 5: Precision of CM in DA-PMLM

difference for FS is 13.29% on the Iris dataset with 0.05 privacy budget, but the lowest
difference for FS is 0.18% on the Balance dataset with 0.5 privacy budget.

Likewise, DA-PMLM outperforms PDLM [18] because the proposed model’s
efficiency is increased by performing fewer calculations on synthetic data instead
of ciphertext. Table 6 shows that the improvement ranges for CA, P, R, and FS are
0.08% to 16.95%, 2.87% to 20.16%, 0.08% to 16.95%, and 2.62% to 23.33% over all
datasets.

Moreover, the parameters (CA, P, R, and FS) results for DA-PMLM are less than
the results of clean data in all the cases due to noise addition. The maximum gap
for CA is 42.28% on the Nursey dataset with 0.01 privacy budget, but the lowest
gap is found 0.0% on the Iris dataset with 2.0 privacy budget. Similarly, the highest
difference for P is 58.75% on the Nursey dataset with 0.01 privacy budget, while
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Table 5: Accuracy, precision, recall, and f1-score; DA-PMLM v/s state-of-the-art
works [16], [23], [33] and the baseline schemes

Dataset Epsilon Decrements in the value of parameters
Accuracy Precision Recall F1-Score

Clean data [16], [23] [33] Clean data [16], [23] [33] Clean data [16], [23] [33] Clean data [16], [23] [33]
0.01 25.81 3.23 3.23 24.37 1.97 2.29 25.81 3.23 3.23 25.44 2.88 3.05
0.05 22.58 1 3.22 21.62 0.16 4.11 22.58 1 3.22 22.96 1.62 4.46

Heart 0.1 16.13 1.11 0 17.21 4.08 1.34 16.13 1.11 0 17.71 2.91 1.62
Disease 0.5 12.91 2.81 0 13.17 3.59 1.43 12.91 2.81 0 13.57 3.6 0.65

1.0 9.68 1.21 0 9.55 1.29 0.21 9.68 1.21 0 9.73 1.04 0.1
1.5 6.46 1.27 0 6.27 3.16 1.94 6.46 1.27 0 7.66 2.66 1.41
2.0 3.23 1.32 0 2.32 1.07 0.11 3.23 1.32 0 4.13 2.55 1.22
0.01 40 6.67 6.67 51.11 19.33 14.64 40 6.67 6.67 46.71 13.29 14.05
0.05 33.33 6.66 6.66 36.67 19.08 11.23 33.33 6.66 6.66 34.04 5.74 8.2
0.1 20 6.67 0 30.74 14.63 15.34 20 6.67 0 25.21 6.42 5.72

Iris 0.5 15.18 4.32 1.85 14.45 3.56 6.67 15.18 4.32 1.85 15.01 1.58 1.12
1.0 13.33 6.66 6.66 12.53 5.59 8.09 13.33 6.66 6.66 13.08 6.22 5.1
1.5 6.67 6.67 6.67 6.83 7.05 6.55 6.67 6.67 6.67 7.56 7.63 7.07
2.0 0 6.67 6.67 0 2.22 0.22 0 6.67 6.67 0.04 0.81 0.11
0.01 36.51 4.76 6.35 31.72 7.42 13.05 38.51 4.76 6.35 35.61 7.94 7.5
0.05 33.33 4.76 6.35 22.65 0.57 9.09 35.33 4.76 6.35 29.26 4.71 10.11
0.1 28.57 3.17 6.35 20.95 1.39 10.13 30.57 2.99 6.35 28.76 7.77 11.38

Balance 0.5 22.22 1.58 3.17 14.42 2.21 4.39 24.22 1.58 3.17 16.98 0.18 2.33
1.0 19.05 3.18 3.18 12.41 1.92 7.08 21.05 3.18 3.18 15.15 2.54 5.46
1.5 17.46 4.76 4.76 8.74 0.89 4.57 19.46 4.86 4.76 12.63 2.88 4.31
2.0 12.7 6.35 7.94 5.33 2.11 3.83 14.7 6.35 7.94 8.23 4.92 5.78
0.01 42.28 1.08 1.31 58.75 2.68 4.3 42.28 1.08 1.31 51.45 4.63 3.28
0.05 41.97 3.01 4.09 57.11 4.96 4.59 41.97 3.01 4.09 50.95 6.09 8.16
0.1 40.89 3.62 4.86 56.22 3.57 6.03 40.89 3.62 4.86 49.2 6.58 8.13

Nursery 0.5 37.81 6.02 13.35 53.37 6.07 17.16 37.81 6.02 13.35 42.51 6.03 8.65
1.0 25.61 9.25 11.96 41.22 8.91 12.78 25.61 9.25 11.96 31.2 9.64 13.11
1.5 15.58 8.18 5.71 31.21 10.42 5.33 15.58 8.18 5.71 20.29 7.92 4.97
2.0 4.94 3.17 1.08 20.12 4.59 1.17 4.94 3.17 1.08 9.66 3.03 1.19

Table 6: Improvement in the values of CA, P, R, and FS of DA-PMLM vs PDLM [18]

Dataset Epsilon Increments in the value of parameters
CA P R FS

0.01 -9.71 -8.33 -9.71 -8.34
0.05 -6.48 -5.58 -6.48 -5.86

Heart 0.1 -0.03 -1.17 -0.03 -0.61
Disease 0.5 3.19 2.87 3.19 3.53

1.0 6.42 6.49 6.42 7.37
1.5 9.64 9.77 9.64 9.44
2.0 12.87 13.72 12.87 12.97

0.01 -23.05 -30.95 -23.05 -23.34
0.05 -16.38 -16.51 -16.38 -10.67
0.1 -3.05 -10.58 -3.05 -1.84

Iris 0.5 1.77 5.71 1.77 8.36
1.0 3.62 7.63 3.62 10.29
1.5 10.28 13.33 10.28 15.81
2.0 16.95 20.16 16.95 23.33

0.01 -23.73 -23.45 -23.73 -24.76
0.05 -20.55 -14.95 -20.55 -18.41
0.1 -15.79 -12.68 -15.79 -17.91

Balance 0.5 -9.44 -6.15 -9.44 -6.13
1.0 -6.27 -4.14 -6.27 -4.3
1.5 -4.68 -0.47 -4.68 -1.78
2.0 0.08 2.94 0.08 2.62

0.01 -33.16 -35.09 -33.16 -34.79
0.05 -32.85 -33.45 -32.85 -34.29
0.1 -31.77 -32.56 -31.77 -32.54

Nursery 0.5 -28.69 -29.71 -28.69 -25.85
1.0 -16.49 -17.56 -16.49 -14.54
1.5 -6.46 -7.55 -6.46 -3.63
2.0 4.18 3.54 4.18 7.00
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Fig. 6: Recall of CM in DA-PMLM

the lowest difference is found 0.0% on the Iris Disease with 2.0 privacy budget. The
maximum decrement for R of DA-PMLM is 42.28% from clean data on the Nursey
dataset with 0.01 privacy budget, whereas the smallest decrement is 0.0% on the
Iris dataset with 2.0 privacy budget. The highest difference for FS is 51.45% on the
Nursey dataset with 0.01 privacy budget, but the lowest difference for FS is 0.04%
on the Iris dataset with 2.0 privacy budget. However, The parameters (CA, P, R, and
FS) results for DA-PMLM are less or equal and provide more protection than the
clean data, PMLM, MLPAM, DPEL, and PDLM. The proposed model acquires a
trade-off between accuracy loss and privacy improvement when the noise is added
using individual privacy constraints.

Furthermore, a comprehensive feature analysis along with a comparison of DA-
PMLM against the state-of-the-art works [16], [23], [33], [18] is performed. From
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Fig. 7: F1-Score of CM in DA-PMLM

Table 7, it is observed that DA-PMLM is the only model that preserves the privacy of
data and classification model. It also permits several untrusted entities, data owners,
request users, and classifier owners to participate. DA-PMLM works on the dynamic
privacy budget. In DA-PMLM, the use of the privacy budget is according to the level
of protection required. Therefore, the performance of DA-PMLM outperforms than
the existing schemes [16], [23], [33], [18].

9.5 Statistical Analysis

Statistical analysis is used to validate the CA, P, R, and FS of the model. In this context,
the non-parametric test is applied to the dataset that is not normally distributed. The
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Table 7: Comparative analysis of relevant schemes

Schemes UE DO RU CO Privacy Data Model
Budget Privacy Privacy

PMLM [16] multiple multiple no × static X ×
MLPAM [23] multiple multiple multiple × static X ×
DPEL [33] single single no × dynamic × X
PDLM [18] single multiple no × no X ×
DA-PMLM multiple multiple multiple X dynamic X X

null hypothesis states that the acquired results from different methods are statistically
identical in the Wilcoxon signed-rank test. This test compares the performance of
DA-PMLM to that of the existing DPEL [33], PMLM [16], MLPAM [23], and PDLM
[18] models. The test is run on the dataset with a significance level [38] (p-value) of
0.05 to determine the importance of classifying parameters. Table 8 demonstrates the
results of the test statistics.

Table 8: Wilcoxon test statistics (p-value is 0.05)

Dataset Classification Comparison of Comparison of DA-PMLM, Comparison of
Parameters DA-PMLM & DPEL [33] PMLM [16] & MLPAM [23] DA-PMLM & PDLM [18]

p-value Result p-value Result p-value Result
Accuracy 0.180 Accepted 0.018 Rejected 0.612 Accepted

Heart Precision 0.018 Rejected 0.018 Rejected 0.398 Accepted
Disease Recall 0.180 Accepted 0.018 Rejected 0.612 Accepted

F1-score 0.018 Rejected 0.018 Rejected 0.398 Accepted
Accuracy 0.026 Rejected 0.016 Rejected 1.000 Accepted

Iris Precision 0.018 Rejected 0.018 Rejected 0.866 Accepted
Recall 0.026 Rejected 0.016 Rejected 1.000 Accepted
F1-score 0.018 Rejected 0.018 Rejected 0.735 Accepted
Accuracy 0.017 Rejected 0.018 Rejected 0.028 Rejected

Balance Precision 0.018 Rejected 0.018 Rejected 0.043 Rejected
Scale Recall 0.017 Rejected 0.017 Rejected 0.028 Rejected

F1-score 0.018 Rejected 0.018 Rejected 0.043 Rejected
Accuracy 0.018 Rejected 0.018 Rejected 0.028 Rejected

Nursery Precision 0.018 Rejected 0.018 Rejected 0.028 Rejected
Recall 0.018 Rejected 0.018 Rejected 0.028 Rejected
F1-score 0.018 Rejected 0.018 Rejected 0.043 Rejected

While comparing DA-PMLM and DPEL, it is observed that the null hypothesis
for P, and FS is rejected but accepted for CA, and R on the Heart Disease dataset. The
null hypothesis is rejected for CA, P, R, and FS on the Iris, Balance Scale, and Nursery
dataset, because their p-values are less than 0.05. Similarly, comparing DA-PMLM,
PMLM, and MLPAM, the null hypothesis is rejected for CA, P, R, and FS on the
Heart Disease, Iris, Balance Scale, and Nursery datasets. Moreover, comparing DA-
PMLM and PDLM, the null hypothesis is accepted for CA, P, R, and FS on the Heart
Disease, Iris datasets, but rejected for Balance Scale, and Nursery datasets. Based on
the achieved statistics results, DA-PMLM improves CA, P, R, FS, which demonstrates
the superiority of the proposed model.
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10 Conclusion

This paper proposed a novel model named DA-PMLM that protects the sensitive data
and classification model outsourced by multiple owners in a real cloud environment.
DA-PMLM permits the various data owners to store and analyze their data and the
classifier owner to share the model to handle the multiple requests in the cloud. In
this work, data owners inject varying statistical noise to sensitive data according to
their queries as well as classifier owner adds the statistical noise into the model to
preserve privacy. The experiments have been performed, and the results demonstrate
that the parameter’s values of classification of DA-PMLM (accuracy, precision, recall,
and f1-score) are degraded by increased privacy (i.e., lower ε). However, the results
also illustrate that more elevated ε can enhance the parameter’s classification values
of DA-PMLM. The performance of DA-PMLM on the prominent data sets is more
secure, efficient, and optimal than existing works in this regard. As part of our future
work, we will devise a more efficient privacy-preserving mechanism that reduces
performance degradation.
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