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Abstract
Poverty is a glaring issue in the twenty-first century, even after concerted efforts 
of organizations to eliminate the same. Predicting poverty using machine learn-
ing can offer practical models for facilitating the process of elimination of poverty. 
This paper uses Multidimensional Poverty Index Data from the Oxford Poverty and 
Human Development Initiative across the years 2019 and 2021 to make predictions 
of multidimensional poverty before and during the pandemic. Several poverty indi-
cators under health, education and living standards are taken into consideration. The 
work implements several data analysis techniques like feature correlation and selec-
tion, and graphical visualizations to answer research questions about poverty. Vari-
ous machine learning, such as Multiple Linear Regression, Decision Tree Regressor, 
Random Forest Regressor, XGBoost, AdaBoost, Gradient Boosting, Linear Support 
Vector Regressor (SVR), Ridge Regression, Lasso Regression, ElasticNet Regres-
sion, and K-Nearest Neighbor Regression algorithm, have been implemented to pre-
dict poverty across four datasets on a national and a subnational level. Regulariza-
tion is used to increase the performance of the models, and cross-validation is used 
for estimation. Through a rigorous analysis and comparison of different models, this 
work identifies important poverty determinants and concludes that overall, Ridge 
Regression model performs the best with the highest R2 score.
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1  Introduction

The onset and continuation of the global pandemic COVID-19 saw a rise in 
extreme global poverty for the first time in 20  years, according to reports pub-
lished by the World Bank [1]. Without an adequate response to this crisis, the 
brunt of the cumulative effects of the pandemic, climate change and armed con-
flict in the economic and social spheres have fallen on the underprivileged section 
of society who are unable to make ends meet. Studies focusing on the effect of 
poverty on middle-income countries have shown that these countries are more 
likely to be significantly affected [2]. Thus, it is important to find a method to 
focus on predicting poverty in developing countries. Predicting poverty comes 
with its set of complications. First, identifying poverty and regions in need is an 
extenuating task that requires patience and precision. Next, developing models 
that can efficiently aid in poverty prediction is not simple; a variety of factors 
must be taken into consideration, from the indicators to the levels of regional 
deprivation, which varies across different countries. Furthermore, the collection 
of household data is expensive and time-consuming. Poverty also has several def-
initions and angles, but this paper focuses on multidimensional poverty. Tradi-
tional methods of measuring poverty have been replaced with machine learning 
techniques, which can save time and transform the way that poverty estimation is 
approached.

Applying regression models to poverty data can provide precise predictions 
that would otherwise not be feasible. Machine learning algorithms have been 
used to predict poverty from household survey data and have been extended to 
using deep learning for mapping poverty [3, 4]. This paper introduces the appli-
cation of machine learning methods to recent data and incorporates feature selec-
tion and validation techniques to poverty prediction. The work aimed to predict 
poverty on a national and subnational level to paint a lucid image of multidimen-
sional poverty.

2 � Related Work

Alkire et  al. [5], made an analysis of the global multidimensional poverty and 
COVID-19 which is at risk since a decade of progress. They evaluated the poten-
tial impact of the COVID-19 and responses on global poverty using different pov-
erty index. A harmonized trend for few countries was provided by Alkire et  al. 
[6], where it was found that there was a significant reduction of multidimensional 
poverty due to the effect of COVID-19. This was measured by overlapping dep-
rivations in the health and education domains. Anderson et al. [7] found that the 
policies measured that were implemented based on the epidemiological charac-
teristics of the pandemic had a great context of uncertainty and their effect on 
the society were extremely large. Tavares et  al. [8] proposed two indexes for 
measuring and indexing the vulnerability of the COVID-19 poverty based on the 
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evidence from a fuzzy multidimensional perspective. Huang et al. [9] examined 
the poverty trap through a multidimensional energy and its determinant in typi-
cally six provinces in China. They used the household-scale variables and com-
munity-scale variables for analyzing the effect.

3 � Data Collection and Pre‑processing

In the section, the data collected and used for this research will be discussed, along 
with the methods used to clean the data to prepare it for further steps.

A)	 Data Acquisition

The datasets were acquired from the Oxford Poverty and Human Development 
Initiative (OPHI)’s Multidimensional Poverty Index (MPI) reports [10]. The global 
MPI is an international measure of multidimensional poverty that covers over 100 
developing countries and overcomes the limitations of household surveys [11]. The 
index assesses poverty intensity at an individual level using several socioeconomic 
indicators ranging from health to education and income. The results of the reports 
indicate disaggregation by age group, rural/urban areas, and subnational regions, 
with multiple poverty cut-offs. Four datasets were used for analysis and prediction: 
national data for 2019 and 2021, and subnational data for 2019 and 2021. These 
datasets were formed from the “Censored Headcount” MPI reports, which contain 
data on the intensity of deprivation for different indicators falling under the health, 
education, and living standards categories. The data are updated every year and con-
sist of the latest developments across the globe.

Table 1   Important features of MPI dataset

Attribute Description Data type

Country Country Name Object
Multidimensional pov-

erty index (MPI)
MPI value of the country (ranges from 0 to 1) Float

MPI of the region MPI value of a particular region in a country (ranges from 0 to 1) Float
Nutrition Percentage of population deprived in nutrition Float
Child Mortality Percentage of population deprived in child mortality Float
Years of schooling Percentage of population deprived in years of schooling Float
School attendance Percentage of population deprived in school attendance Float
Cooking fuel Percentage of population deprived in cooking fuel Float
Sanitation Percentage of population deprived in sanitation Float
Drinking water Percentage of population deprived in drinking water Float
Electricity Percentage of population deprived in electricity Float
Housing Percentage of population deprived in housing Float
Assets Percentage of population deprived in assets Float
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B)	 Dataset Description

The National datasets consist of 19 columns inclusive of 10 MPI indicators, 
and the Subnational datasets consist of 26 columns inclusive of 10 MPI indicators. 
Table 1 presents information about important attributes present in the datasets.

Other than the indicators mentioned in Table  1, the Regional datasets contain 
extra attributes describing the population for a particular region in 2016 and 2017 
for the 2019 report, and the population for the years 2018 and 2019 for the 2021 
report.

C)	 Data Cleaning

As part of the exploratory data analysis conducted, missing data was handled. 
The rows containing null values were transformed using the Python library pandas. 
The null values were imputed with the value 0.0 as there were a great number of 
rows consisting of null values in the subnational datasets, due to the scarcity of data 
from developing regions.

4 � Exploratory Data Analysis

Exploratory Data Analysis (EDA) is an important process during data analysis 
which allows the discovery of trends and patterns through maps and graphs. Since 
the MPI data consist of multiple variables, it is categorized under multivariate anal-
ysis, and a few techniques have been demonstrated below:

A)	 Feature Correlation

Correlation is a statistical measure used to represent the linear relationship 
between two variables. The correlation values help with feature selection as the fea-
tures with high values of correlation can be excluded to avoid multi-collinearity. A 
correlation heatmap is a graphical representation of a correlation matrix that rep-
resents the correlations between different variables. Figure 1 shows the correlation 
heatmaps for the National datasets for the years 2019 and 2021, and Fig. 2 shows the 
graphs for the Subnational datasets for 2019 and 2021.

From Fig. 1, it is observed that certain independent variables like nutrition and 
school attendance are strongly correlated with variables like housing and electricity. 
MPI is strongly correlated with a majority of the independent variables due to its 
dependent nature. Since MPI is made up of a combination of indicators, it follows 
that it is dependent on variables like nutrition, drinking water, etc.

The correlation heatmaps for the subnational datasets differs significantly from 
the national datasets due to the introduction of the population attributes. From 
Fig. 2, the population attributes are negatively correlated with the MPI indicators for 
the 2019 dataset. The health, economic and living standards attributes are observed 
to be closely correlated for both 2019 and 2021.
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B)	 Graphical Visualizations and Inferences

The national MPI values of the countries in the National dataset with 2021 data 
have been visualized in the form of a bar chart in Fig. 3. It can be seen that South 
Sudan has the highest MPI value, indicating a greater degree of deprivation.

The total headcount ratio of the MPI dataset indicates the number of people who 
are considered to be living in poverty based on several indicators. This is a measure 
of how much of the population contributes to national poverty and the ten countries 
with the highest headcount ratio are shown in Fig. 4. The country with the highest 
national poverty ratio is South Sudan, followed by Chad and Somalia.

5 � Machine Learning Models

This section of the paper delves into the training and implementation of the machine 
learning algorithms. A flow diagram of the entire process is depicted in Fig. 5.

Fig. 3   Bar chart with MPI national values for all countries in National dataset

Fig. 4   Countries with the high-
est poverty headcount ratio
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A)	 Data Sampling

Splitting the data into training and testing datasets is an essential step in any 
machine learning research. This was done in a 70:30 ratio respectfully. The mod-
els were trained to predict the MPI of the country for the National datasets and 
MPI of the region for the Sub-national datasets.

B)	 Models

The performances of various state-of-the-art regression models were analyzed, 
namely Multiple Linear Regression, Decision Tree Regressor, Random For-
est Regressor, XGBoost, AdaBoost, Gradient Boosting, Linear Support Vector 
Regressor (SVR), Ridge Regression, Lasso Regression, ElasticNet Regression, 
and K-Nearest Neighbor Regression.

a)	 Multiple Linear Regression

Owing to its simplicity, linear regression [12] is a simple and powerful algo-
rithm for real-life data. Multiple linear regression [13] is an extension of the 
popular linear regression algorithm where multiple features (x1i, x2i, x3i,…,xpi) are 
used to predict the target variable (yi), which is MPI in this case. The reason why 
it is called ‘linear’ is that there is an assumption that that response variable is and 
the explanatory variables have a linear relationship, i.e., the target variable can be 
expressed as a linear combination of the features. Equation 1 represents multiple 
linear regression.

where, yi is the dependent variable, and �
0..p are the coefficients for the independent 

features.
Liu et  al. [14] conducted a study in Yunyang, China, to evaluate the perfor-

mance of multiple linear regression on village-level poverty indicators. The 

(1)yi = �
0
+ �

1
x
1i + �

2
x
2i + ... + �pxpi + e

Fig. 5   Flowchart depicting a high-level view of the process to predict poverty using machine learning
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model was able to identify the importance of variables that were strongly related 
to poverty but correlated with other variables. Xhafaj and Nurja determined fac-
tors that influence poverty using data from the Living Standards Measurement 
Study [15] using multiple linear regression and observed various coefficient val-
ues for different attributes.

In this work, the data was scaled using a StandardScaler function, which stand-
ardizes the features by eliminating mean and scaling features to unit variance. This 
was performed to make it easier for the model to analyze the coefficients when pre-
dicting the target variable.

b)	 Decision Tree Regressor

Decision Tree (DT) [16] is an algorithm that has a tree structure. The final leaves 
refer to the target or outcome variables. The features or explanatory variables are 
broken down into smaller subsets. Decision trees have been used both for classifica-
tion and regression when handling poverty data. For predicting poverty, a regressor 
is used. Applications like poverty mapping and prediction have used decision tree 
models to make accurate estimations and even apply the same to specific regions 
like a study conducted in Nepal [17]. The leaves of the tree are the predicted MPI 
value (national/regional) and the nodes are split up into explanatory features like 
nutrition, child mortality, etc. A tree of depth 5 was used for predicting the MPI 
for all four datasets. The training set was passed through scikit-learn’s decision tree 
model and the testing set was fitted to the model.

c)	 Random Forest Regressor

Akin to random forests used for classification, where the leaves are class labels, 
the random forest regressor [18] takes numerical values instead for the leaf nodes. 
Random forests are a combination of multiple prediction trees, where each tree is 
based on independently sampled randomized vector values. Regardless, all of the 
trees have the same distribution. Since multiple trees are produced in an ensemble 
fashion, it is known as a forest. Browne et al. [19] applied multivariate random forest 
prediction to estimate the correlation between malnutrition and poverty measures. 
The method adopted involved using two variations of random forests—independent 
random forests and Mahalanobis random forests on Demographic and Health Survey 
(DHS) data. Estimating poverty using geospatial and DHS data was performed by 
Zhoa et  al. [20] using random forest regression. A case study was performed for 
Bangladesh, achieving an R2 score of 0.70 and 0.61 for Nepal.

The number of trees used for prediction was 500 and passed as the n_estimator 
parameter for scikit-learn’s random forest regressor. The testing set was fitted to the 
trained model and the regressor was trained and tested accordingly.

d)	 XGBoost
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XGBoost [21] is a scalable boosting algorithm that uses the concept of con-
verting weak to strong learners. The algorithm was proposed for predicting a 
target variable given a set of explanatory variables, which makes it apt for pre-
dicting poverty using MPI data. The key concept of this algorithm is building D 
regression trees sequentially, where the previous trees are used to train the sub-
sequent trees. Hence, the new tree corrects the errors of the previous trees. Li 
et al. analyzed data from 8040 households in Kyrgyzstan [22] and used XGBoost 
to profit from the model’s ability to handle several independent variables. They 
compared the performance to a general linear model trained on the same dataset 
and observed the superiority in the XGBoost algorithm’s performance. A study 
conducted by Sharma et  al. [23] used XGBoost to score the poverty level of a 
household in a text classification context. The F1 score achieved was 0.38 for the 
model.

The number of trees used for prediction was 500 and passed as a parameter for 
the XGBoost model. The feature importance was plotted using XGBoost for the 
datasets, as shown in Fig. 6. For the National data in 2019, the most important 
feature was “Years of Schooling” whereas it was “Cooking fuel” in 2021.

e)	 AdaBoost

Introduced by Robert Schapire, the Adaptive Boosting (AdaBoost) [24] algo-
rithm is an ensemble method. A set of weak trees that are connected in series is 
created. Similar to the XGBoost algorithm, each subsequent tree tries to predict 
better than the previous. AdaBoost applies more weight instances that are harder 
to predict compared to those which are predicted well by the algorithm. Decision 
trees are used as AdaBoost’s weak learners and are referred to as decision stumps. 
While Adaboost has been employed in poverty classification [25], the research in 
this paper presents a novel use-case of the AdaBoost regressor for poverty predic-
tion on MPI data.

All of the indicators were used after pre-processing to predict MPI using Ada-
Boost. The number of trees used was 100 and passed as the n_estimator param-
eter for scikit-learn’s Adaboost regressor.

f)	 Gradient Boosting

AdaBoost and related algorithms were further developed by Friedman [26] 
and called Gradient Boosting Machines, and later Gradient Tree Boosting. Gradi-
ent boosting involves a loss function that needs to be optimized. Decision trees 
are used as the weak learner to make predictions and the model takes an addi-
tive approach where trees are added one at a time and the existing trees are not 
changed. To perform the gradient descent procedure, a tree is added to the model 
that reduces the loss. The output of the new tree is then added to the output of 
the existing sequence of trees to improve the final output of the model. A pol-
icy research working paper by the World Bank [27] predicted six target varia-
bles including poverty rates, changes in poverty rates, mean welfare, etc. using 
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gradient boosting. However, the model did not perform well on their dataset due 
to several missing input values, producing a high error value.

All of the indicators were used after pre-processing to predict MPI using Gra-
dient Boosting. The number of trees used was 100 and passed as the N estimator 
parameter for scikit-learn’s Gradient Boosting Regressor.

g)	 Linear Support Vector Regression

Vapnik proposed the Support Vector Machine algorithm in 1995 [28]. In this 
algorithm, independent variables are mapped to a multi-dimensional space. This is 
done by a hyper-plane, which is calculated optimally and splits the observations into 
its classes. Similar to classification, Support Vector Regressor (SVR), its regression 
counterpart estimates real numerical values. For example, Henrique et al. [29] used 
SVR for the prediction of stock prices. Bienvenido-Heurtas et al. [30] used SVR to 
predict fuel deprivations in Chile and achieved high correlation coefficient values of 
99.5%. Similarly, SVR has been used in predicting the MPI values of various coun-
tries and regions around the globe. A linear kernel was used for both the National 
and Subnational datasets.

h)	 Ridge Regression

Ridge regression [31], commonly called L2 regression, is a regularized linear 
regression model that shrinks the coefficients for the input variables that are not 
important to the prediction task. Hence, the model complexity is reduced. In this 
algorithm, the dependent and independent variables are standardized for calculation. 
One study employed ridge regression to identify the socioeconomic factors affecting 
poverty using national-level data of 68 countries [32]. The algorithm detected the 
interrelation among the components of the multiple linear regression model used for 
prediction. For this work, an alpha value of 0.01 was passed as a parameter to the 
model.

i)	 Lasso Regression

Least Absolute Shrinkage Selector Operator (Lasso) regression [33] is a tech-
nique similar to ridge regression, except for one difference. Lasso regression retains 
or shrinks the coefficients for some features while reducing the coefficients of oth-
ers to zero [34]. This is known as feature selection and is absent in the case of ridge 
regression. This advantage has been exploited by several researchers, including 
an application for selecting variables to predict poverty in Sri Lanka [35]. It was 
observed that lasso regression outperformed the other models used, in cases of large 
prediction sets. This algorithm uses L1 regularization technique. An alpha value of 
0.01 was passed as a parameter to the model for this experiment.

j)	 ElasticNet Regression
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ElasticNet is a combination of L1 and L2 regularization [36]. It has been 
employed to model poverty in Yogyakarta [37] where various combinations of mod-
els were combined with ElasticNet to classify poverty levels. If ElasticNet is imple-
mented, then both Ridge and Lasso can be derived by tuning the parameters. Since 
there are several correlated independent variables in the dataset, the elastic net will 
form a group consisting of these correlated variables. If any one of the variables in 
this group is a strong predictor, then the entire group is included in the model build-
ing, because omitting other variables might result in losing information in terms of 
interpretation ability, leading to poor model performance. The model was imple-
mented for this work using an alpha value of 0.01.

k)	 K-Nearest Neighbor Regression

The K-Nearest Neighbor (KNN) algorithm can be used for classification and 
regression problems [38]. The algorithm uses the concept of feature similarity to 
make predictions given new input data. This means that a value is assigned to the 
new input based on how closely it resembles the data in the training set. The algo-
rithm relies on majority voting based on class membership of k-nearest samples, so 
the normalization of data is required to make correct predictions. The algorithm has 
been used to forecast economic events [39] and predict poverty using e-commerce 
data [40]. The latter was used to determine the level of poverty in Indonesia but 
there is room for improvement in terms of model accuracy.

The features in the National and Subnational datasets were scaled and trans-
formed using MinMaxScaler before fitting the model to the dataset. The k-values 
were iterated from 1 to 30, and hyperparameter optimization was carried out through 
Grid Search [41]. The model was fitted to scikit-learn’s GridSearchCV function, 
which is a cross-validation technique that will find the best value of k for the model. 
Hyperparameter optimization was used to increase the performance of the model, 
and GridSearchCV automates the process. Batch sizes of 5 were used for the cross-
validation process.

Table 2   Algorithms used and 
respective parameters

Algorithm Parameters

Multiple linear regression Default parameters
Decision tree regressor n_estimators = 100
Random forest regressor n_estimators = 500
XGBoost regressor n_estimators = 500
AdaBoost random_state = 0, n_estimators = 100
Gradient boosting random_state = 0, n_estimators = 100
Support vector regression kernel = ’linear’
Ridge regression alpha = 0.01
Lasso regression alpha = 0.01
ElasticNet regression alpha = 0.01
K-NN regression n_neighbors = 30



168	 New Generation Computing (2023) 41:155–184

123

Table  2 lists out the machine learning algorithms used for this work and the 
parameters passed to each model. The parameters were tuned to ensure maximum 
performance of the algorithms.

The system specifications on which the study was performed and executed are 
shown in Table 3. Experiments were conducted on the CPU since GPU did not 
provide a difference with respect to speed-up.

6 � Results

In this section, the values obtained for metrics for the Machine Learning (ML) 
models are presented.

A)	 R2 and RMSE values

The first metric used to evaluate the models is R2 score [42]. R2 score is defined 
as the percentage of variation in the dependent variable explained by variation in 
the independent variables, as in Eq. 2. The closer to 1 the R2 score is, the more 

Table 3   System Specifications 
of the work conducted

Aspect Specification

CPU Intel(R) Core(TM) i5-9300H CPU @ 2.40 GHz
GPU Nvidia GeForce GTX 1650
Memory 8 GB @ 2400 MHz
OS Microsoft Windows 11 Version 10.0.22000, 64-bit

Table 4   R2 scores for algorithms

Bold values indicate the high accuracy value

Algorithm accuracy (%) Dataset

National 2019 National 2021 Subnational 2019 Subnational 2021

Multiple linear regression 0.9699 0.9668 0.9998 0.8114
Decision tree regressor 0.9626 0.9847 0.9831 0.7524
Random forest regressor 0.9887 0.9953 0.9937 0.8928
XGBoost regressor 0.9727 0.9881 0.9938 0.9053
AdaBoost 0.9788 0.9906 0.9826 0.7956
Gradient boosting 0.9845 0.9904 0.9959 0.8941
Support vector regression 0.9442 0.9558 0.9962 0.7944
Ridge regression 0.9999 0.9999 0.9998 0.8309
Lasso regression 0.9995 0.9993 0.9995 0.4424
ElasticNet regression 0.9998 0.9996 0.9996 0.4519
K-NN regression 0.9812 0.9620 0.9695 0.7521
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correlated the variables are, indicating validity of the regression model. Table 4 
presents the R2 scores obtained across the four datasets used.

where RSS is the sum of squares of the residual errors and TSS is the total sum of 
the errors.

From Table 4, for the National 2019 dataset, Ridge Regression (L2 regularization) 
outperforms the other regression models with an R2 score of 0.9999, owing to the algo-
rithm’s ability to simplify the features for prediction of MPI value. Likewise, for the 
National 2021 and Subnational 2019 datasets, Ridge Regression performs superior to 
the other algorithms. It can be observed that the other regularization techniques like 
Lasso and ElasticNet also perform very well on these three datasets. Applying regu-
larization to linear regression significantly improved the performance of the model on 
the dataset as seen in Table 4. Variation is encountered for the Subnational 2021 data-
set where it is seen that the XGBoost regressor performs the best with an R2 score of 
0.9053. This could be attributed to the XGBoost algorithm’s ability to handle a large 
number of independent variables, as in the case of the subnational datasets. The reg-
ularization algorithms did not perform very well on the Subnational 2021 data, even 
after tuning the alpha values. Overall, a majority of the algorithms performed well on 
the four datasets.

Another important metric for the evaluation of regression algorithms is Root Mean 
Square Error (RMSE) which is the average of the square of the errors [43–46]. This is 
a way to estimate the standard deviation of the observed values from the predicted val-
ues. The higher the RMSE value, the greater the error. Equation 3 represents the RMSE 
calculation

(2)R2 = 1 −
RSS

TSS

Table 5   RMSE values for algorithms

Bold values indicate the high accuracy value

Algorithm accuracy (%) Dataset

National 2019 National 2021 Subnational 2019 Subnational 2021

Multiple linear regression 0.182 0.151 0.012 0.432
Decision tree regressor 0.203 0.105 0.135 0.498
Random forest regressor 0.017 0.009 0.014 0.055
XGBoost regressor 0.027 0.014 0.014 0.052
AdaBoost 0.024 0.012 0.024 0.076
Gradient boosting 0.021 0.012 0.012 0.054
Support vector regression 0.248 0.174 0.064 0.451
Ridge regression 0.003 0.002 0.002 0.083
Lasso regression 0.005 0.003 0.003 0.125
ElasticNet regression 0.003 0.003 0.003 0.132
K-NN regression 0.021 0.027 0.030 0.085
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where N is the number of observations, xi is the actual observation and yi is the pre-
dicted value. Table 5 presents the RMSE values obtained for all the models across 
the datasets.

From Table 5, the regularization algorithms (Ridge, Lasso, ElasticNet) had the 
lowest RMSE values for the National 2019 and 2021 and Subnational 2019 data-
sets, indicating a low error rate, owing to the high R2 scores achieved by these 
models. The errors of these models are significant in the Subnational 2021 data-
set, but the other models like XGBoost and AdaBoost had lower RMSE values 
for the same. It can be observed that the boosting and ensemble methods per-
formed well in comparison to the regularization techniques for the Subnational 
2021 dataset.

Figure 7 shows a comparison of R2 scores (%) for the National datasets, and 
Fig. 8 shows a comparison of R2 scores for the Subnational datasets. The regres-
sion algorithms have performed well on the National datasets and the Subnational 
2019 dataset, as shown in the bar plots. There is a significant variation in the Sub-
national 2021 dataset as indicated by the bars, showing that some models did not 
perform well.

B)	 Prediction Error and Residuals for Regularization Models

A prediction error plot gives a view of the variance in the model by presenting 
the actual targets from the datasets against the predicted values generated by the 
model. Residual error is calculated by subtracting the predicted values 

(

y
)

 from 
the observed values (y) for the target variable. The performance of the multiple 
linear regression model was evaluated using statistical plots which plotted the 
predicted against actuals and the residual error of each prediction, as shown in 
Fig. 9.

From Fig. 9, it can be observed that the predicted versus true graphs fit to a lin-
ear trend, indicating that the predicted and true values were similar for the multi-
ple linear regression model. The high R2 score is thus accounted for. The dotted 
line on the predicted versus residual error graphs shows the maximum error for 
the model on the National datasets, and it can be inferred that the error value is 
low for the model on both datasets.

Ridge, Lasso and ElasticNet regression were fitted to the training set to mini-
mize loss and prevent overfitting of the model. The results of the regularization 
showed promising values, and prediction error and residual graphs were visual-
ized for all of the datasets.

From the plots for the three models in Fig. 10, the errors for the National 2019 
dataset are shown. It can be seen that the Ridge and ElasticNet models have less 
errors than the Lasso model. Overall, the regularization techniques improve the 
accuracy of the linear regression model, which aligns with the expected outcome.

(3)
RMSE =

�

∑N

i=1

�

x
i
− y

i

�2

N
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In Fig. 11, a comparison of the prediction error and residuals for three models 
fitted on the National 2021 dataset can be seen. The Ridge and ElasticNet model 
[47–51] shows a slightly higher values for R2 scores compared to the Lasso 
model, similar to the performance of the models on the National 2019 dataset. It 
can be inferred that the Ridge regression has less residual errors than ElasticNet 
from the way the points are more evenly distributed in the residual error plot, 
whereas ElasticNet shows more variance in the data points.

The Subnational 2019 dataset featured more independent variables than the 
National datasets. As a consequence, it was important to use regularization on 

Fig. 10   Prediction Error and Residual plots for Regularized regression models (National 2019)
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the linear regression model fitted to the dataset. From Fig. 12, it can be inferred 
that all three regularized models had low to close to no residual errors, but the 
difference in their performance is attributed to the difference in the variation and 
distribution of the points.

Akin the Subnational 2019 dataset, the predicted and residual errors for the 
Subnational 2021 dataset can be observed in Fig. 13. In comparison to the plots 
generated for the models on the other three datasets, the plots in Fig.  13 show 
the greatest amount of variance. This variance leads to a higher error rate and 
lower performance of the regularization techniques on the Subnational 2021 data. 

Fig. 11   Prediction Error and Residual plots for Regularized regression models (National 2021)
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While the Ridge model shows a fair R2 score, Lasso and ElasticNet regression 
performed poorly on this dataset.

C)	 Optimal Values of K

For the KNN algorithm, it is important to determine the optimal value of k, which 
defines how many clusters the data should be divided into. Determining this value 
reduces the effect of noise and the elbow method was employed to select the optimal 

Fig. 12   Prediction Error and Residual plots for Regularized regression models (Subnational 2019)
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number of clusters. Figure 14 consists of the RMSE elbow curves for the KNN algo-
rithm applied on the four datasets.

Table 6 shows the optimal k-values obtained for each dataset used.

D)	 Tree-Based Regression Analysis

Fig. 13   Prediction Error and Residual plots for Regularized regression models (Subnational 2021)



178	 New Generation Computing (2023) 41:155–184

123

The decision tree algorithm performed consistently across all the datasets, 
with a slight drop in performance for the Subnational 2021 dataset. Figure  15 
shows the tree representation with the mean square error (MSE) values obtained 
for different features in the testing set. A depth of 3 was used for ease of viewing 
the diagram; the actual depth used during training was 5 for the decision tree. As 
seen in the diagram, the MSE values in the leaf nodes of the trees are low, indi-
cating that the model has performed very well on the dataset.

Figure  15c and d depicts the decision tree results for the Subnational datasets 
(2019 and 2021 respectively). The leaf nodes of Fig.  15c show low MSE values 
when compared to the values in Fig. 15d. The Subnational 2021 dataset shows rela-
tively higher error rates in comparison to the other datasets, which indicates a drop 
in performance. The parameters of the tree were tuned to increase the R2 score, 
which proved to be efficacious.

While viewing the MSE values in the form of a decision tree can be effective, 
Fig.  16 depicts regression trees for the Subnational datasets, providing a close-up 
view of the features that influence the training of the model to predict regional MPI 
values. The vertical dashed lines indicate the split point in the feature space and the 
black wedge indicates the exact split value. The target prediction is indicated by the 
leaf nodes. From Fig. 16, it is easy to identify the difference between the training of 
the datasets. The Subnational 2019 dataset shows a positive correlation between the 
training points, whereas the Subnational 2021 dataset shows a more scattered corre-
lation, which explains the drop in performance of the model on the same.

Fig. 14   Elbow Curves for RMSE values for values of k 
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7 � Conclusion

Currently, the first sustainable development goal of the United Nations, predict-
ing poverty is a difficult task that requires sufficient data and research. Harnessing 
machine learning to predict poverty is one way of approaching the issue. Measuring 
the extent to which factors included in the MPI affect the overall picture of poverty 
is a crucial step in decision-making related to poverty and allows organizations to 
focus on areas in need. Using MPI data instead of household surveys can facilitate a 
clearer picture of exactly which indicators are lacking in specific regions.

The research presented applies multiple regression models for predicting MPI on 
a national and subnational basis across pre-COVID data (2019 MPI) and data during 

Table 6   Optimal K-values for 
all datasets obtained through 
Grid Search CV

Dataset Optimal K-value 
through grid search 
CV

National 2019 4
National 2021 4
Subnational 2019 28
Subnational 2021 2

Fig. 15   Decision tree MSE results (depth = 3 for ease of viewing)
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COVID-19 (2021 MPI). From the models used, it can be concluded that the ridge 
regression model worked the best across the National datasets and the Subnational 
2019 dataset, with an alpha value of 0.01. The XGBoost regressor performed the 
best on the subnational 2021 dataset. The other regression models performed well 
on the datasets. Predicted and residual error plots depict the variance in data points 
and explain the performance of the regularized models on the datasets, and other 
regression graphs paint a picture of the predictions made by the models. Cross-vali-
dation was used to prevent overfitting or under-fitting to the models. Through feature 
selection and analyzing feature importance, we can conclude that the most impor-
tant determinants of poverty are nutrition, cooking fuel, years of schooling, school 
attendance and child mortality, according to the F-scores obtained. The importance 
of these features has changed during the pandemic, indicating a shift in the way they 
affect poverty.

However, there are limitations to the current work. First, the MPI data can be 
more diverse and detailed to further improve the accuracy and enable a deeper expla-
nation of poverty determinants. Second, some of the models did not achieve optimal 
results on the datasets. Higher R2 scores can be obtained by tuning the parameters 
further and improving the algorithms. Future scope includes finding out how closely 
interrelated the MPI data is across the years and how to further leverage this data to 
map poverty effectively.

Data availability  The data associated with this publication is available with the authors.
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