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Abstract

We identify general domain properties that induce the non-existence of
efficient, strategy-proof, and non-dictatorial rules in the 2-agent exchange
economy. Applying these properties, we establish impossibility results in
several restricted domains; for example, the intertemporal exchange prob-
lem (without saving technology) with preferences represented by the dis-
counted sum of a temporal utility function, the “risk sharing problem”
with risk averse expected utility preferences, the CES-preference domain,
etc. None of the earlier studies applies to these examples.
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1 Introduction

In the “exchange economy”, an allocation rule, or simply, a rule, associates with

each profile of agents’ preferences a single desirable allocation, a list of individ-

ual consumption bundles. We refer to the set of admissible preference profiles

as the domain. We are interested in the following two basic requirements of

rules. The first is efficiency, the requirement that no one can be made better off

without anyone else being made worse off. The second is strategy-proofness (Gib-

bard, 1973, Satterthwaite, 1975), the requirement that truthful representation of

one’s preference always weakly dominates any admissible misrepresentation.

A number of earlier studies have shown impossibilities of satisfying the two

requirements together with other standard equity criteria. In particular, in the 2-

agent case, Dasgupta, Hammond, and Maskin (1979), Zhou (1991a), and Schum-

mer (1997) show that there is no efficient and strategy-proof rules satisfying the

minimal equity criterion, “non-dictatorship”; a rule is dictatorial if there is an

agent, the dictator, who always receives his best bundle.1 However, their results

are not fully satisfactory because they provide no implication for various inter-

esting allocation problems in which agents’ preferences are restricted for some

intuitive or technical reasons.

For example, in the “intertemporal exchange problem” (without saving tech-

nology), we often consider preferences that are represented in the additively sep-

arable form by temporal utility functions and discount factors. In the “risk shar-

ing problem”, we often consider preferences that are represented in the expected

utility form by strictly convex (“risk aversion”) utility indices and subjective

probability distributions over states. Also, in many applications, we focus on

preferences that satisfy technical conditions such as “smoothness”, “continuous

differentiability of utility functions”, “quasilinearity”, etc.

Our main objective is to strengthen the impossibility result for the 2-agent

exchange economy by identifying general domain properties that are sufficient

for the impossibility. These properties are satisfied by the domains considered in

the earlier studies by Dasgupta, Hammond, and Maskin (1979), Zhou (1991a),

and Schummer (1997); our result simplifies their proofs. More importantly, our

domain properties are applicable to several restricted domains such as the in-

tertemporal exchange problem, the risk sharing problem, the domain of “CES

preferences”, and the domain of quasilinear, strictly convex, and smooth prefer-

ences, etc., while none of the earlier studies applies to them.

The seminal study by Hurwicz (1972) shows that in the 2-agent and 2-good

1See also Hurwicz (1972), Satterthwaite and Sonnenschein (1981), Hurwicz and
Walker (1990), and Barberà and Jackson (1995).
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exchange economy, there exists no efficient and strategy-proof rule satisfying

individual rationality, the requirement that everyone should be at least as well off

as in his endowment. Dasgupta, Hammond, and Maskin (1979) strengthen his

result by replacing individual rationality with non-dictatorship. However, their

conclusion crucially relies on the admissibility of “discontinuous” preferences,

while Hurwicz’s result pertains to preferences satisfying the classical assumptions,

“continuity”, “monotonicity”, and “convexity”.

Zhou (1991) reinforces the impossibility result by Dasgupta, Hammond, and

Maskin (1979), considering the classical domain consisting of continuous, strictly

monotonic, and strictly convex preferences. When preferences are strictly mono-

tonic, this conclusion extends to any larger domain, as he remarks. A natural

question addressed by Schummer (1997) is whether the impossibility applies to

smaller, yet interesting, domains. He shows that the impossibility continues to

hold both in the domain of “homothetic” preferences and in the domain of “lin-

ear” preferences (preferences with linear utility functions).

The arguments used by Zhou (1991) and Schummer (1997) crucially rely on

the admissibility of “kinked” preferences.2 So their results do not apply, for ex-

ample, to domains consisting of only smooth and strictly convex preferences. On

the other hand, Schummer (1997) crucially relies on the homotheticity restric-

tion. So, his result does not apply to other restricted domains, for example, the

domain consisting of only quasilinear and strictly convex preferences. Our do-

main properties do not necessarily require that kinked or homothetic preferences

be admissible. They are applicable not only to all the above domains but various

other restricted domains as we show in the application of our main result.

Several recent authors bring out some important domain properties in dif-

ferent perspectives of their studies on strategy-proofness. In a voting model,

Barberà, Sonnenschein, and Zhou (1991) identify the unique maximal domain

in which a class of rules, called “voting by committees”, are strategy-proof. The

maximal domain issue is studied also by Berga and Serizawa (2000) in the 1-

dimensional public choice model. In a linear production model, Maniquet and

Sprumont (1999) identify domain properties under which their characterization

results apply.

Most of the earlier studies focus on “product domains”, Cartesian products

of families of individual preferences.3 Product domains do not capture the in-

terdependency, or correlation, of preferences across agents, which is common in

reality. Such an interdependency arises especially when agents share identical

cultural or historic background relevant to their preferences. Thus, it is standard

2The only exception is the linear preference domain in Schummer (1997).
3Or “independent domains” (Moore, 1993, p 214).
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in implementation theory to capture such an interdependency by considering non-

product domains: see Moore (1993) for a broad survey of literature. Therefore,

we do not restrict our attention only to product domains; our domain properties

are stated for possibly, non-product domains. Strategy-proofness is a necessary

condition for the implementability in dominant strategy equilibrium both in the

product domain case and in the non-product domain case. It is also sufficient in

the product domain case, while it is not in the non-product domain case.

This paper is composed of five sections. In Section 2, we introduce the model

and basic concepts. In Section 3, we define general domain properties and estab-

lish our main result. In Section 4, we provide some applications. We conclude in

Section 5.

2 The model and basic concepts

We consider l-good exchange economies, l ≥ 2, with social endowment Ω ∈ Rl
++

and two agents. Let N ≡ {1, 2} be the set of agents. Let Z ≡ {z ∈ Rl·2
+ :

∑
N zi =

Ω} be the set of feasible allocations. Let Z0 ≡ {zi ∈ Rl
+ : 0 � zi � Ω} be the set

of possible consumption bundles for each agent.4 We use z, z′, z′′, etc. to denote

allocations: zi denotes i’s bundle at z. Notation −i refers to the agent other than

i. Each agent has a preference, a complete and transitive binary relation over

Rl
+. Preferences are continuous, strictly monotonic over Rl

++, and convex .5 Let

R be the class of all such preferences. A preference Ri ∈ R is strictly monotonic

if for all zi, z
′
i ∈ Rl

+, zi ≥ z′i implies zi Pi z′i. Let Ii (zi) be the set of all bundles

indifferent to zi under Ri.

A domain D is a subset of RN . Let D(R−i) ≡ {R′ ∈ D : R′
−i = R−i},

Di(R−i) ≡ {Ri : (Ri, R−i) ∈ D}, and Di ≡ {Ri : for some R−i, (Ri, R−i) ∈ D}.
Since we keep the social endowment fixed, an economy can be characterized

by a preference profile in D. A social choice rule, or simply a rule, over D is a

function ϕ : D → Z associating with each economy a feasible allocation.

A domain D is a product domain if for each i ∈ N, there exists Di ⊆ R
such that D = D1 × D2. We do not restrict ourselves to product domains.

However, the following feature of product domain is important in our result.

4We denote elements of Z0 by zi, z0, x, y etc. Vector inequalities, �, ≤, <, are defined as
follows. Let x, y ∈ Rl. Then x � y if for all k ∈ {1, · · · , l}, xk ≤ yk. We write x ≤ y if x � y

and x �= y. We write x < y if for all k ∈ {1, · · · , l}, xk < yk.
5We use Ri to denote agent i’s preference and Pi and Ii to denote its strict and indifference

relations respectively. A preference Ri is strictly monotonic over Rl
++ if for all zi, z

′
i ∈ Rl

++,

zi ≥ z′i implies zi Pi z′i, where the vector inequality zi ≥ z′i means that each component of zi is
weakly larger than each component of z′i and zi �= z′i. It is convex if for all zi, z

′
i ∈ Rl

++ with zi

Ri z′i and all λ ∈ [0, 1], λzi + (1 − λ) z′i Ri z′i.
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Let R,R′ ∈ D. Profile R′ is a unilateral variation of R if R′
1 = R1 or

R′
2 = R2. A unilateral variation of R, R′, is 0-indifference-monotonic for i if

I ′
i (0) ⊇ Ii (0).6 Profile R′ is reachable from R through iterative unilateral

variations if there exists a finite sequence of profiles (R1, · · · , Rn) in D such

that R1 = R, Rn = R′, and for all k ∈ {2, · · · , n}, Rk is a unilateral variation of

Rk−1. A domain D is everywhere reachable∗ if for all i ∈ N and all R,R′ ∈ D
with Ii (0) ⊆ I ′

i (0), R′ is reachable from R through iterative unilateral variations

that are 0-indifference-monotonic for i. Note that every product domain D is

everywhere reachable∗, since for all R,R′ ∈ D, R′ is reachable from R through

any one of two iterative unilateral variations (R1, R2) → (R′
1, R2) → (R′

1, R
′
2) and

(R1, R2) → (R1, R
′
2) → (R′

1, R
′
2).

We next define our two main requirements of rules. Given R ∈ D, an alloca-

tion z ∈ Z is efficient for R if there exists no z′ ∈ Z such that for all i ∈ N, z′i
Ri zi and for some j ∈ N , z′j Pj zj. Let P (R) be the set, called Pareto set, of

all efficient allocations for R. For all i ∈ N, let Pi(R) ≡ {zi ∈ Rl
+ : (zi, z−i) ∈ Z

for some z−i ∈ Rl
+}. A rule ϕ : D → Z satisfies efficiency if for all R ∈ D,

ϕ(R) ∈ P (R).

In order to define the next requirement, consider agent i ∈ N with preference

Ri. Let R−i and R′
i be such that (Ri, R−i) and (R′

i, R−i) ∈ D. Consider a rule

ϕ : D → Z. Let z ≡ ϕ (Ri, R−i) and z′ ≡ ϕ (R′
i, R−i). Agent i will have an

incentive to represent his true preference as opposed to the misrepresentation

with R′
i if zi Ri z′i. We refer to this condition as i’s incentive compatibility

condition associated with
(
Ri, R′

i, zi

)
, where Ri is i’s true preference, R′

i is

a misrepresentation, and zi is the “truthful outcome”. We require that incentive

compatibility condition should never be violated. Formally, a rule ϕ : D → Z

satisfies strategy-proofness if for all i ∈ N and all R,R′ ∈ D with R−i =

R′
−i, ϕi(R) Ri ϕi(R

′).
We show that every efficient and strategy-proof rule has the following dis-

pleasing feature. A rule ϕ : D → Z is dictatorial over D∗ ⊆ D if there exists

i ∈ N such that for all R ∈ D∗ and all z ∈ Z, ϕi (R) Ri zi. The rule is dictatorial

if it is dictatorial over the entire domain. Since preferences are strictly monotonic

over Rl
++, a rule ϕ is dictatorial over D∗ if and only if there exists i ∈ N such

that for all R ∈ D∗, ϕi (R) = Ω.

We use the following notation. For all Ri ∈ R and all zi ∈ Rl
+, let UC(Ri, zi) ≡

{x ∈ Z0 : x Ri zi} and UC0(Ri, zi) ≡ {x ∈ Z0 : x Pi zi} be the “(constrained)

upper contour set of Ri at zi” and the “strict upper contour set”, respectively.

Let LC(Ri, zi) ≡ {x ∈ Z0 : zi Ri x} and LC0(Ri, zi) ≡ {x ∈ Z0 : zi Pi x} be

the “lower contour set of Ri at zi” and the “strictly lower contour set”.

6Two sets Ii (0) and I ′i (0) are indifference sets through 0 for Ri and R′
i respectively.
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3 The main result

We consider domain D ⊆ RN that has a subdomain D̄ ⊆ D and a reference set

M ⊆ Z satisfying the following three properties. For all i ∈ N, let Mi ≡ {zi ∈
Rl

+ : (zi, z−i) ∈ M for some z−i ∈ Rl
+}.

The first property is that the reference set M is the Pareto set for at least one

economy in D̄ with strictly monotonic preferences.

A1, Potential efficiency: There exists R ∈ D̄ such that P (R) = M and both

R1 and R2 are strictly monotonic.

The second property is that each agent can always make M be the Pareto set

by announcing a preference admissible in D̄.

A2, Attainability: For all i ∈ N and all R−i ∈ D̄−i, there exists Ri ∈ D̄i(R−i)

such that P (Ri, R−i) = M .

The third property is stated in terms of the following notions. Two incentive

compatibility conditions associated with (Ri, R
′
i, zi) and (R′

i, Ri, z
′
i) imply that

z′i ∈ LC (Ri, zi) ∩ UC (R′
i, zi). Therefore, given R−i and the truthful outcome zi

for Ri, the set of incentive compatible outcomes for R′
i coincides with LC(Ri, zi)∩

UC(R′
i, zi). Thus we call LC(Ri, zi) ∩ UC(R′

i, zi) the incentive compatibility

set associated with
(
Ri, R′

i, zi

)
. For all R ∈ D, all i ∈ N, and all z ∈ P (R) ,

R′
i ∈ D (R−i) is a local transformation of Ri at zi relative to R−i if

zi is the unique efficient bundle for (R′
i, R−i), in i’s incentive compatibility set

associated with (Ri, R
′
i, zi), that is, Pi(R

′
i, R−i) ∩ LC(Ri, zi) ∩ UC(R′

i, zi) = {zi}
(see Figure 1). A preference Ri of agent i exhibits crossly local dominance

of z′
i relative to

(
R−i, R′

−i, zi

)
if agent i with Ri prefers z′i to every allocation

that is efficient for (Ri, R
′
−i) and is in −i’s incentive compatibility set associated

with (R−i, R
′
−i, z−i), that is, Pi(Ri, R

′
−i) ∩ {x ∈ Z0 : Ω − x ∈ LC(R−i, z−i) ∩

UC(R′
−i, z−i)} ⊂ LC0(Ri, z

′
i) (see Figure 1).

Our next property states that for any two profiles R and R′ with the Pareto

set M and for any two efficient allocations z and z′, there exist an agent i ∈ N

and his preference R̄i that is a local transformation of Ri at zi relative to R−i and

exhibits crossly local dominance of z′i relative to R−i, R′
−i, and zi (see Figure 1).

A3, Transformability with crossly local dominance: For all R,R′ ∈ D̄ and

all z, z′ ∈ M, if P (R) = P (R′) = M and z �= z′, then there exist i ∈ N and

R̄i ∈ D̄i(R−i) ∩ D̄i(R
′
−i) such that

(i) Pi(R̄i, R−i) ∩ LC(Ri, zi) ∩ UC(R̄i, zi) = {zi};
(ii) Pi(R̄i, R

′
−i) ∩ {x ∈ Z0 : Ω − x ∈ LC(R−i, z−i) ∩ UC(R′

−i, z−i)} ⊂ LC0(R̄i, z
′
i).
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Figure 1: A3, Transformability with crossly local dominance.

There are domains that satisfy the above three properties and over which we

do have efficient, strategy-proof, and non-dictatorial rules.

Example 1 Risk sharing with an objective probability distribution and aggregate

certainty : Let l be the number of states. Each state k = 1, · · · , l is realized

with probability πk. Each bundle x ∈ Rl
+ is a state-contingent commodity. Let

R∗ be the family of all preferences R0 ∈ R that has the following “expected

utility” representation: there exists a concave function u0 : R+ → R such that for

all x, x′ ∈ Rl
+, x R0 x′ ⇔ ∑l

k=1 πku0 (xk) ≥
∑l

k=1 πku0 (x′
k) . Suppose aggregate

certainty, that is, Ω1 = · · · = Ωl. Let m̄ be the constant aggregate wealth across

states.

Note that the equal division (( m̄
2
, · · · , m̄

2
), ( m̄

2
, · · · , m̄

2
)) is efficient for all pro-

files in RN
∗ . Let ϕed : RN

∗ → Z be the equal division rule, that is, for all R ∈ RN
∗ ,

ϕed (R) ≡ (( m̄
2
, · · · , m̄

2
), ( m̄

2
, · · · , m̄

2
)). Then ϕed is efficient and strategy-proof over

RN
∗ .

Let M ≡ {z ∈ Z : for all i ∈ N, zi1 = · · · = zil}. We now show that RN
∗ and

M satisfy the above three properties. A1 and A2 are trivial. Let R,R′ ∈ RN
∗

be such that P (R) = P (R′) = M. Let z, z′ ∈ M and z �= z′. Then since Mi

is a monotonic path for each i ∈ N, without loss of generality we may assume

z1 < z′1. Since z1 is on the 45◦-line, there exists R̄1 ∈ R∗ such that R̄1 is strictly

convex and LC (R1, z1) ∩ UC
(
R̄1, z1

)
= {z1}. Then (i) of A3 holds. Since R̄1
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is strictly convex, P1

(
R̄1, R

′
2

)
= M1. Therefore, P1(R̄1, R

′
2) ∩ {x ∈ Z0 : Ω − x ∈

LC(R2, z2) ∩ UC(R′
2, z2)} = {z1}. Hence (ii) of A3 also holds. �

We now introduce additional domain properties that will induce the non-

existence of rules satisfying efficiency, strategy-proofness, and non-dictatorship.

The following notation is useful. Let R0 ∈ R and all z0 ∈ Z0. For all p ∈ Rl
++,

let H(p, z0) ≡ {x ∈ Z0 : p · x ≥ p · z0}. We say that p (or the hyperplane

normal to p) supports R0 at z0 if UC(R0, z0) ⊆ H(p, z0). Note that since

UC (·) and H (·) are defined as subsets of Z0, although p supports R0 at z0,

there can be a bundle x outside Z0, which is preferred to z0, or x R0 z0, but

satisfies p · x < p · z0. Let ∇R0(z0) ≡ {p ∈ Rl
++ : UC(R0, z0) ⊆ H(p, z0)} be

the set of all vectors supporting R0 at z0.
7 For all R ∈ D and all z ∈ Z, let

∇R(z) ≡ {p ∈ Rl
++ : UC(R1, z1) ⊆ H(p, z1) and UC(R2, z2) ⊆ H(p, z2)} be the

set of all vectors supporting both R1 at z1 and R2 at z2. Note that when z is

efficient for R, ∇R (z) �= ∅.

A domain is flexible if there exist a subdomain D̄ and a reference set M sat-

isfying A1, A2, A3, and the following two properties, F1 and F2. Condition F1

states that for any preference and any bundle, there is an admissible local trans-

formation with sufficiently flat indifference curve at the bundle (see Figure 2 (a)).

This property obviously implies the admissibility of local transformation.

F1: For all R ∈ D̄, all i ∈ N, all z ∈ P (R), and all x ∈ Rl
+, if for some p ∈ ∇R(z),

p · zi < p · x, then there exists R′
i ∈ D̄i(R−i) such that Pi(R

′
i, R−i) ∩ LC(Ri, zi) ∩

UC(R′
i, zi) = {zi} and x P ′

i zi.

Next condition F2 states that given an agent i and an allocation d ∈ M ,

there exists a profile R ∈ D̄ whose Pareto set intersects with M only at (0, Ω)

and (Ω, 0) , and such that whenever an efficient allocation z �= d for R happens to

have d on the hyperplane supporting R at z (see Figure 2 (b)), changing i’s prefer-

ence is admissible so that for the new profile (R′
i, R−i) , such a coincidence never

happens at any efficient allocation in i’s incentive compatibility set associated

with (Ri, R
′
i, zi), LC (Ri, zi) ∩ UC (R′

i, zi) (see Figure 2 (b)).

F2: For all i ∈ N and all d ∈ M, there exists R ∈ D̄ such that (i) Pi(R) ∩ Mi =

{0, Ω} and (ii) if z ∈ P (R)\{d} and p · zi = p · di for all p ∈ ∇R(z), then there

exists R′
i ∈ D̄i(R−i) such that for all z′i ∈ Pi(R

′
i, R−i) ∩ LC(Ri, zi) ∩ UC(R′

i, zi),

p′ · z′i �= p′ · di, for some p′ ∈ ∇(R′
i, R−i)(z

′).

We next provide an example of flexible domain and an example of “inflexibility”.

7When R0 has a differentiable representation u0 and z0 is an interior bundle of Z0, ∇R0 (z0)
is simply the gradient of u0 at z0, that is, ∇u0(z0) ≡ (∂u0(z0)/∂x1, · · · , ∂u0(z0)/∂xl).
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Figure 2: Flexibility. (a) Figure for F1: Pi(R′
i, R−i) ∩ LC(Ri, zi) ∩ UC(R′

i, zi) = {zi}
and x P ′

i zi. (b) Figure for F2: Pi(R)∩Mi = {0, Ω}, z ∈ P (R)\{d} and p ·zi = p ·di for
all p ∈ ∇R(z). Note that for all z′i ∈ Pi(R′

i, R−i)∩LC(Ri, zi)∩UC(R′
i, zi), p′ ·z′i �= p′ ·di,

for some p′ ∈ ∇(R′
i, R−i)(z′).

Example 2 Homothetic preferences: Let RH be the family of all homothetic

preferences that are smooth,8 strictly convex, and strictly monotonic over Rl
++.

Let D̄ ≡ RN
H and M ≡ {z ∈ Z : for some λ ∈ [0, 1], z1 = λΩ + (1 − λ) 0 and

z2 = Ω − z1}. We will show that D̄ and M satisfy A1, A2, A3, F1, and F2; so

RN
H is flexible.

For all Ri ∈ RH , if R−i = Ri, P (Ri, R−i) = M. Hence A1 and A2 hold.

In order to show A3, let R,R′ ∈ D̄ and z, z′ ∈ M be such that P (R) =

P (R′) = M and z �= z′. Without loss of generality, let z1 < z′1. When z1 = 0,

if we let R̄1 = R1, then (i) and (ii) of A3 hold. Now suppose z1 �= 0. Then let

RLeon
1 be the Leontieff-type preference with the locus of kinks equal to M1. Then

(i) and (ii) holds with R̄1 = RLeon
1 . Note that RLeon

1 /∈ RH but that RH contains

a sequence of preferences, which is composed of local transformations of R1 at z1

relative to R−1 and, at the same time, converges to RLeon
1 . Therefore, there exist

a local transformation of R1, R̄1, which is sufficiently close to RLeon
1 so that (i)

and (ii) of A3 can be satisfied.

8A preference R0 ∈ R is smooth if for all x ∈ Rl
++, there is a unique p ∈ ∆l−1 such that

for all y ∈ Rl
+, if y R0 x, then p · y ≥ p · x..
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For all x ∈ Rl
++ and all p ∈ Rl

++, there exists a sequence of preferences in RH ,

which are supported by p at x and converge to the linear preference associated

with normal vector p. Therefore F1 holds. Now we only have to verify F2. We

show F2 for the 2-good case. However, our argument can be easily extended to

the l-good case.

Let i ≡ 1 and d ∈ M. Let R be the preference such that P1 (R) = {z1 ∈
Z0 : z11 = 0 or z12 = Ω2} and the slope of indifference curves of R1 over P1 (R)

is bounded above by −δ < 0. Clearly R satisfies (i) of F2. Let z ∈ P (R) \{d}
be such that for all p ∈ ∇R (z) , p · z1 = p · d1. Then there exists R′

1 ∈ RH

such that the slopes of indifference curves of R′
1 is bounded below by −δ. Then

clearly, P (R′
1, R2) = P (R) and since P1 (R) is a boundary and monotonic path

of the Edgeworth box, P1 (R′
1, R2) ∩ LC (R1, z1) ∩ UC (R′

1, z1) = {z1}. Since for

all p ∈ ∇R (z) , p ·z1 = p ·d1, and the indifference curve of R′
1 through z1 is flatter

at z1 than the indifference curve of R1, there exists p′ ∈ ∇ (R′
i, R−i) (z′) such that

p′ · z1 �= p′ · d1. Therefore, (ii) of F2 also holds. �

Example 3 Linear preferences: Let RL be the family of preferences that are

represented by linear utility functions. Let D̄ ≡ RN
L . Then we show that for

any reference set M, D̄ and M do not satisfy F1. Let R1 = R2 ∈ RL. Then

P (R) = Z. Let z ∈ P (R) be such that z1 ∈ RL
++. Then for all R′

1 ∈ RL, either

z1 /∈ P1(R
′
1, R2) or R′

1 = R1; hence there is no local transformation of R1 at z1

relative to R2(= R1). �

We show in Lemma 1 that F1 and F2 imply the following more general

property.

Double transformability: For all i ∈ N and all d ∈ M, there exists R ∈ D̄
such that (i) Pi(R) ∩ Mi = {0, Ω} and (ii) for all z ∈ P (R) with zi �= di, there

exists R′
i ∈ D̄i(R−i) such that if z′i ∈ Pi(R

′
i, R−i) ∩ UC(R′

i, zi) ∩ LC(Ri, zi), then

either

(ii-1) for some R′′
i ∈ D̄i(R−i),

Pi(R
′′
i , R−i) ∩ LC(R′

i, z
′
i) ∩ UC(R′′

i , z
′
i) = {z′i} and di P ′′

i z′i,
or

(ii-2) for some R′
−i ∈ D̄−i(R

′
i),

P−i(R
′
i, R

′
−i) ∩ LC(R−i, z

′
−i) ∩ UC(R′

−i, z
′
−i) = {z′−i} and d−i P ′

−i z′−i.

Double transformability has wider applicability. For example, as we saw in

Example 3, there is no reference path M such that RN
L and M satisfy flexibility.

However, our conclusion in Section 4.1 shows that there exists a reference path

M such that RN
L and M satisfy double transformability.
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A domain D is rich if there exist a subdomain D̄ and a reference set M

satisfying A1, A2, A3, and double transformability.

Lemma 1: Every flexible domain is rich.

Proof : Let D be flexible with respect to a subdomain D̄ ⊆ D and a reference

set M ⊆ Z. Let i ∈ N and d ∈ M. By F2, there exists R ∈ D̄ such that

Pi (R) ∩ Mi = {0, Ω}. Let z ∈ P (R) with zi �= di. We divide into three cases.

Case 1: There exists p ∈ ∇R (z) such that p ·zi < p ·di. Then by F1, there exists

R′
i ∈ D̄i(R−i) such that Pi(R

′
i, R−i)∩LC(Ri, zi)∩UC(R′

i, zi) = {zi} and di P ′
i zi.

Therefore, if we let R′′
i ≡ R′

i, then (ii-1) of double transformability holds. �
Case 2: There exists p ∈ ∇R (z) such that p ·zi > p ·di. By F1, there exists R′

i ∈
D̄i(R−i) such that Pi (R

′
i, R−i)∩LC (Ri, zi)∩UC (R′

i, zi) = {zi}. Since p ·z−i < p ·
d−i, then applying F1 for (R′

i, R−i) and agent −i, there exists R′
−i ∈ D̄−i(R

′
i) such

that Pi(R
′
i, R

′
−i)∩LC(R−i, z−i)∩UC(R′

−i, zi) = {z−i} and d−i P ′
−i z−i. Therefore,

if we let R′
i ≡ Ri, then (ii-2) of double transformability holds. �

Case 3: For all p ∈ ∇R (z), p · zi = p · di. By F2, there exists R′
i ∈ D̄i(R−i) such

that for all z′i ∈ Pi(R
′
i, R−i) ∩ LC(Ri, zi) ∩ UC(R′

i, zi), p′ · z′i �= p′ · di, for some

p′ ∈ ∇(R′
i, R−i)(z

′). If z′i ∈ Pi(R
′
i, R−i)∩LC(Ri, zi)∩UC(R′

i, zi) and p′ ·z′i < p′ ·di,

for some p′ ∈ ∇(R′
i, R−i)(z

′), then by F1, there exists R′′
i ∈ D̄i(R−i) such that

Pi(R
′′
i , R−i)∩LC(R′

i, zi)∩UC(R′′
i , zi) = {z′i} and di P ′′

i z′i. Hence (ii-1) of double

transformability holds. On the other hand, if z′i ∈ Pi(R
′
i, R−i) ∩ LC(Ri, zi) ∩

UC(R′
i, zi) and p′ · z′i > p′ · di, for some p′ ∈ ∇(R′

i, R−i)(z
′), then p′ · z′−i < p′ · d−i.

Now applying F1 for (R′
i, R−i) and agent −i, there exists R′

−i ∈ D̄−i(R
′
i) such

that Pi(R
′
i, R

′
−i) ∩ LC(R−i, z

′
−i) ∩ UC(R′

−i, z
′
i) = {z′−i} and d−i P ′

−i z′−i. Hence

(ii-2) of double transformability holds. � Q.E.D.

Zhou (1991) and Schummer (1997) establish an invariance property of efficient

and strategy-proof rule with respect to “Maskin monotonic” transformations of

preferences.9 Lemma 2 states an even stronger invariance property related with

local transformation. A rule ϕ is invariant with respect to local transfor-

mation if for all R ∈ D and all i ∈ N, if R′
i is a local transformation of Ri at zi

relative to R−i, then ϕ (R′
i, R−i) = ϕ (R) .

Lemma 2: Every efficient and strategy-proof rule is invariant with respect to

local transformation.

9Let R ∈ D. Let z ∈ P (R) . A preference R′
i is a (strong) Maskin monotonic transformation

of Ri at z if LC(R′
i, zi) ⊇ LC(Ri, zi) and LC(Ri, zi)∩UC(R′

i, zi) = {zi}. Clearly, such R′
i is a

local transformation of Ri at zi relative to R−i. However, there are various local transformations
that are not Maskin monotonic transformations.
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Proof : Let ϕ be an efficient and strategy-proof rule. Let z ≡ ϕ (R) , i ∈ N, and

R′
i be a local transformation of Ri at zi relative to R−i, that is, Pi(R

′
i, R−i) ∩

LC(Ri, zi) ∩ UC(R′
i, zi) = {zi}. Let z′ ≡ ϕ (R′

i, R−i) . By the two incentive com-

patibility conditions associated with (Ri, R
′
i, zi) and (R′

i, Ri, z
′
i), z′i ∈ LC (Ri, zi)∩

UC (R′
i, zi). Therefore by efficiency, z′i ∈ Pi(R

′
i, R−i)∩LC(Ri, zi)∩UC(R′

i, zi) =

{zi} and so z′i = zi. Hence ϕ (R′
i, R−i) = ϕ (R) . Q.E.D.

Next, we show that if the domain is rich with respect to a subdomain D̄ and

a set M, then for a rule to be efficient and strategy-proof, it should always pick

a fixed allocation for each economy in D̄ with Pareto set M .

Lemma 3: Let D be rich with respect to D̄ ⊆ D and M ⊂ Z. Let ϕ : D → Z

be efficient and strategy-proof . Then for all R,R′ ∈ D̄, if P (R) = P (R′) = M,

then ϕ(R) = ϕ(R′).10

Proof: Let R,R′ ∈ D̄ be such that P (R) = P (R′) = M. Let z ≡ ϕ(R)

and z′ ≡ ϕ(R′). Suppose to the contrary z1 �= z′1. By A3, there exists R̄1 ∈
D̄1(R2) ∩ D̄1(R

′
2) such that (i) P1(R̄1, R2) ∩ LC(R1, z1) ∩ UC(R̄1, z1) = {z1} and

(ii) P1(R̄1, R
′
2) ∩ {x ∈ Rl

+ : Ω − x ∈ LC(R2, z2) ∩ UC(R′
2, z2)} ⊂ LC0(R̄1, z

′
1).

By (i) and Lemma 2, ϕ(R̄1, R2) = z. By the incentive compatibility associated

with (R2, R
′
2, z), ϕ2(R̄1, R

′
2) ∈ LC(R2, z2) ∩ UC(R′

2, z2). Hence by efficiency,

ϕ1(R̄1, R
′
2) ∈ P1(R̄1, R

′
2)∩{x ∈ Rl

+ : Ω−x ∈ LC(R2, z2)∩UC(R′
2, z2)}. Therefore

by (ii), ϕ1(R̄1, R
′
2) ∈ LC0(R̄1, z

′
1), that is, ϕ1(R

′
1, R

′
2) P̄1 ϕ1(R̄1, R

′
2), contradicting

strategy-proofness. Q.E.D.

We will show that when a rule gives one agent the whole endowment at a

profile, for it to be efficient and strategy-proof, it should be dictatorial over a

certain neighborhood of the initial profile.11 In this sense, dictatorship at a

10Lemma 3 corresponds to Step 4 of Proof of Theorem 1 by Zhou (1991) and Lemmas 2,
3, and Corollary 1 by Schummer (1997). Zhou and Schummer make use of Maskin monotonic
transformation in the proofs. Particularly in Schummer (1997), Mi is the line segment between
0 and Ω. He uses a preference which is a Maskin monotonic transformation of both Ri at zi

and Ri at z′i, where zi, z
′
i ∈ Mi. This preference should be kinked as far as it is homothetic

and Ri has a different supporting hyperplane at zi from the supporting hyperplane of R′
i at

z′i. In restricted domains without kinked preferences, the proof in Schummer (1997) does not
work. Our proof does not necessarily require such Maskin monotonic transformation. We only
use a preference that satisfies (i) and (ii) in the above proof. Our argument is based on strong
invariance property established in Lemma 2. Consequently, as we show in Example 2 and in
Section 4 later, Lemma 3 applies in a number of domains without kinked preferences.

11By using the term “neighborhood” of a profile R, we do not mean an “open” set containing
R. It simply means a set containing R.
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profile contaminates the choices made for some other profiles. For the formal

description, we need the following notation.

Let R ∈ D and i ∈ N. Let S i(R) ≡ {R′ ∈ D : I ′
−i (0) ⊇ I−i (0) and there exists

R′′
i ∈ Di such that R′

−i ∈ D−i(R
′′
i ) and R′′

i ∈ Di(R−i)}. Note that if R′ ∈ S i (R) ,

then R′ is reachable from R through the following three unilateral variations:

(Ri, R−i) → (R′′
i , R−i) → (

R′′
i , R

′
−i

) → (
R′

i, R
′
−i

)
, where R′′

i ∈ Di is such that

R′
−i ∈ D−i(R

′′
i ) and R′′

i ∈ Di(R−i). Since I ′
−i (0) ⊇ I−i (0) , all these unilateral

variations are 0-indifference-monotonic for −i. Note also that if R′ is a unilateral

variation of R, which is 0-indifference-monotonic for −i, then R′ ∈ S i (R) .

Let S̄ i(R) be defined as follows: for all R′ ∈ D, R′ ∈ S̄ i(R) if and only

if there exists a finite sequence (R1, · · ·, Rn) of profiles in D, n ≥ 2, such that

R1 ≡ R, Rn ≡ R′, and R2 ∈ S i(R1), · · · , Rn ∈ S i(Rn−1). We call S̄ i(R) the

contamination set relative to R and i. Then every R′ ∈ S̄ i (R) is reachable

from R through iterative unilateral variations that are 0-indifference-monotonic

for −i, and conversely. Note that when D is everywhere reachable∗ and R−i is

strictly monotonic, every R′ ∈ D is reachable from R through iterative unilateral

variations that are 0-indifference-monotonic for −i; so S̄ i (R) = D.

Lemma 4: Let ϕ : D → Z be efficient and strategy-proof . If there exist i ∈ N

and R ∈ D such that ϕi(R) = Ω, then ϕ is dictatorial over S̄ i(R).

Proof: Let R ∈ D, i ∈ N, and R′ ∈ S i (R). Suppose ϕi (R) = Ω. We only have

to show that ϕi (R
′) = Ω. By definition of S i (R) , I ′

−i (0) ⊇ I−i (0) and there

exists R′′
i ∈ Di such that R′

i ∈ Di(R
′
−i), R′

−i ∈ D−i(R
′′
i ), and R′′

i ∈ Di(R−i). Since

Ri is strictly monotonic over Rl
++, then by i’s incentive compatibility condition

relative to (Ri, R
′′
i , Ω) , ϕi (R

′′
i , R−i) = Ω and so ϕ−i (R

′′
i , R−i) = 0. By −i’s incen-

tive compatibility condition relative to (R−i, R
′
−i, 0), ϕ−i

(
R′′

i , R
′
−i

)
I−i 0. Since

I ′
−i (0) ⊇ I−i (0) , ϕ−i

(
R′′

i , R
′
−i

)
I ′
−i 0. Therefore, by efficiency, ϕ−i

(
R′′

i , R
′
−i

)
= 0

and so ϕi

(
R′′

i , R
′
−i

)
= Ω. Finally, by i’s incentive compatibility condition relative

to (R′′
i , R

′
i, Ω), ϕi

(
R′

i, R
′
−i

)
= Ω. Q.E.D.

Let D be rich with respect to D̄ ⊆ D and M ⊂ Z. Given (D̄,M), we

call
⋃

R∈{R′∈D̄ : P (R′)=M} S̄ i(R) i’s minimal contamination set relative to(D̄, M
)
.

Proposition 1: Assume that domain D is rich with respect to D̄ ⊆ D and M ⊂
Rl

+. Then if a rule over D is efficient and strategy-proof , then for some i ∈ N,

the rule is dictatorial over i’s minimal contamination set relative to
(D̄,M

)
.12

12Proposition 1 corresponds to Steps 2, 5, and 6 in Proof of Theorem 1 by Zhou (1991) and
Proof of Theorem 1 by Schummer (1997). Zhou and Schummer construct kinked preferences
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Proof: Let ϕ : D → Z be efficient and strategy-proof. Let d be an allocation

such that for all R′ ∈ D̄, if P (R′) = M, then ϕ(R′) = d. By A1 and Lemma 3,

d is well-defined. Let R ∈ D̄ be such that P (R) = M. By Lemmas 3 and 4, we

only have to show that d1 ∈ {0, Ω}. Suppose to the contrary that d1 /∈ {0, Ω}.
By double transformability, there exists R ∈ D̄ such that (i) P1(R)∩M1 = {0, Ω}
and (ii) for all z ∈ P (R) with z1 �= d1, there exists R′

1 ∈ D̄1(R2) such that if

z′1 ∈ P1(R
′
1, R2) ∩ LC(R1, z1) ∩ UC(R′

1, z1), then either

(ii-1) for some R′′
1 ∈ D̄1(R2),

P1(R
′′
1, R2) ∩ LC(R′

1, z
′
1) ∩ UC(R′′

1, z
′
1) = {z′1} and d1 P ′′

1 z′1
or

(ii-2) for some R′
2 ∈ D̄2(R

′
1),

P2(R
′
1, R

′
2) ∩ LC(R2, z

′
2) ∩ UC(R′

2, z
′
2) = {z′2} and d2 P ′

2 z′2.
Let z ≡ ϕ(R). Then clearly z ∈ P (R) and by (i), z1 �= d1. Therefore by

efficiency and strategy-proofness and (ii), there exists R′
1 ∈ D̄1(R2) such that

either (ii-1) or (ii-2) holds at z′1 ≡ ϕ1(R
′
1, R2). When (ii-1) holds, there exists

R′′
1 ∈ D1(R2) such that d1 P ′′

1 z′1 and P1(R
′′
1, R2) ∩ LC(R′

1, z
′
1) ∩ UC(R′′

1, z
′
1) =

{z′1}. By Lemma 2, ϕ(R′′
1, R2) = z′. By A2, there exists R̄1 ∈ D1(R2) such that

P (R̄1, R2) = M. Since ϕ(R̄1, R2) = d, ϕ1(R̄1, R2) P ′′
1 ϕ1(R

′′
1, R2). This contradicts

strategy-proofness. When (ii-2) holds, we can derive a contradiction, using the

same argument as above. Q.E.D.

When the domain satisfies everywhere reachability∗ in addition, the minimal

contamination set in Proposition 1 coincides with the entire domain.

Theorem 1: Given a rich and everywhere reachable∗ domain, a rule is efficient

and strategy-proof if and only if it is dictatorial.

Proof: Let D be rich and everywhere reachable∗. Then there exist D̄ ⊆ D and

M ⊂ Rl
+ satisfying A1, A2, A3, and double transformability. Let ϕ : D → Z

be efficient and strategy-proof. Then by Proposition 1, there exists i ∈ N such

that ϕ is dictatorial over i’s minimal contamination set relative to (D̄,M). By

A1, there exists R ∈ D̄ such that P (R) = M and both R1 and R2 are strictly

monotonic. Note that by strict monotonicity, I−i (0) = {0} and so for all R′ ∈ D,

I−i (0) ⊆ I ′
−i (0). Then by everywhere reachable∗, every other profile is reachable

from R through iterative unilateral variations that are 0-indifference monotonic

for −i. Therefore S̄ i(R) = D and ϕ is dictatorial. Q.E.D.

and make use of the invariance of strategy-proof and efficient rules with respect to Maskin
monotonic transformations. Our proof is simpler and works well without kinked preferences.
This is because our proof makes use of the stronger invariance property in Lemma 2.
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Since every product domain is everywhere reachable∗, Theorem 1 applies to

rich product domains.

Remark 1: Both richness and everywhere reachability∗ are essential in Theo-

rem 1. Example 1 shows that without richness, the impossibility does not hold.

Without everywhere reachability∗, the impossibility does not hold either. The

following example shows this. Let Da and Db be such that D ≡ Da∪Db. Suppose

that for all R ∈ Da and all R′ ∈ Db, R′ is not reachable from R through iterative

unilateral variations. Now let ϕ be dictatorial over Da and agent 1 be the dictator

over Da. Let ϕ be dictatorial over Db and agent 2 be the dictator over Db. Then

ϕ is efficient, strategy-proof, and non-dictatorial.

4 Applications

In this section, we apply our result in Section 3 to “intertemporal exchange prob-

lem”, “risk sharing problem”, and two restricted domains, the “CES domain”

and the “quasilinear domain”.

4.1 Intertemporal exchange

Let T be the number of periods, T ≥ 2. For each t = 1, · · · , T, let Ωt > 0 be

the endowment of a single consumption good at period t. Suppose that there

exists no saving technology. Then an allocation (zi)N ∈ RT×N
+ is feasible if for all

t = 1, · · · , T,
∑

i zit ≤ Ωt.

Each agent i ∈ N has a preference Ri represented by a temporal utility func-

tion ui : R+ → R and a discount factor δi ∈ (0, 1) as follows: for all x, y ∈ RT
+,

x Ri y ⇔
T∑

t=1

δt−1
i ui (xt) ≥

T∑
t=1

δt−1
i ui (yt) .

Note that when the temporal utility function ui is concave (respectively, strictly

concave), Ri is convex (respectively, strictly convex ). Let RIE be the class of

all such preferences represented by concave, strictly monotonic, and continuous

temporal utility functions. We refer to RN
IE as the intertemporal exchange

domain. Let RIE-s.con be the class of all preferences in RIE with strictly concave

temporal utility functions. Let RIE-lin be the class of preferences in RIE with the

linear temporal utility function, ulin (m) = m, for all m ∈ R+.

In order to show that the intertemporal exchange domain is rich, we make

use of the following subsets of Z. Let P � ≡ {z ∈ Z : for some t ∈ {1, · · · , T},
z1 = (Ω1, · · · , Ωt−1, z1t, 0, · · · , 0) and z2 = (0, · · · , 0, z2t, Ωt+1, · · · , ΩT )}. Let P � ≡
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{z ∈ Z : for some t ∈ {1, · · · , T}, z2 = (Ω1, · · · , Ωt−1, z2t, 0, · · · , 0) and z1 =

(0, · · · , 0, z1t, Ωt+1, · · · , ΩT )}. Note that for each i ∈ N, both P �
i and P �

i are

monotonic path from 0 to (Ω1, · · · , ΩT ).

Proposition 2: The intertemporal exchange domain RN
IE and the two subdo-

mains, RN
IE-lin and RN

IE-s.con, are rich and everywhere reachable∗.13

Proof : Everywhere reachability∗ is obvious. We only have to show that both

RN
IE-lin and RN

IE-s.con are rich. In what follows, we show richness of RN
IE-lin. A

similar argument applies for RN
IE-s.con.

14

Throughout the proof, the linear preference with discount factor δ ∈ (0, 1)

is denoted by Rδ. Then Rδ is represented by the following utility function Uδ:

for all x ∈ RT
+, Uδ(x) ≡ ∑

t δ
t−1xt. We make use of the following claim, which

states that when both agents have linear preferences, the Pareto set is equal to

P � (respectively, P �) if and only if agent 2 is more (respectively, less) patient

than agent 1. We omit the proof.

Claim 1: For all δ1, δ2 ∈ (0, 1) , (i) P (Rδ1 , Rδ2) = P � ⇔ δ1 < δ2 and (ii)

P (Rδ1 , Rδ2) = P � ⇔ δ1 > δ2 .

Let M ≡ P � and D̄ ≡ RN
lin. Then both A1 and A2 follow from Claim 1.

A3: Let (δ1, δ2) , (δ′1, δ
′
2) ∈ (0, 1)2 and z, z′ ∈ M be such that z �= z′ and

P (Rδ1 , Rδ2) = P (Rδ′1 , Rδ′2) = M. Without loss of generality, we assume z1 ≤ z′1.
By Claim 1, δ1 < δ2 and δ′1 < δ′2. There exists δ∗1 ∈ (0, 1) such that δ∗1 ≤
min{δ1, δ

′
1}. Then by Claim 1, P (Rδ∗1 , Rδ2) = P �. Since P � is a monotonic path,

P1(Rδ∗1 , Rδ2)∩LC(Rδ1 , z1)∩UC(Rδ∗1 , z1) = {z1}. Also by Claim 1, P1(Rδ∗1 , Rδ′2) =

13In the two period case, T = 2, for each agent, there are infinitely many admissible linear
preferences in RIE-lin. Schummer (1997) shows that in the 2-good exchange economy case, given
any domain with at least four admissible linear preferences for each agent, dictatorial rules are
the only efficient and strategy-proof rules. Therefore his result applies. Schummer (1997)
extends this result for the 2-good case to the l-good case using specific preferences in which
commodities are partitioned into two groups with identical marginal utilities. Such preferences
are not admissible in RN

IE-lin, since marginal utility decreases in the rate of discount factor over
periods. Therefore, when T ≥ 3, Schummer’s result does not apply.

14Fix ρ ∈ (0, 1). Let u such that u (m) = −e−ρm for all m ∈ R+. Let D̄ be the family of
profiles of preferences represented by u and a discount factor δ ∈ (0, 1). Then D̄ ⊆ RN

IE-s.con.
For each discount factor δ ∈ (0, 1) , let Uδ : R2

+ → R be the utility function associated with u

and δ and let Rδ be the corresponding preference. We can establish the following claim, similar
to Claim 1 in Proof of Proposition 2.

Claim 1: For all δ1, δ2 ∈ (0, 1) , (i) P (Rδ1 , Rδ2) = P � ⇔ δ2
δ1

≥ eρ(Ω1+Ω2) ;
(ii) P (Rδ1 , Rδ2) = P � ⇔ δ1

δ2
≥ eρ(Ω1+Ω2) .

Using this claim and the same argument with a slight modification as in Proof of Proposi-
tion 2, we can show that D̄ and M ≡ P � satisfy A1-A3 and double transformability.
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P �. Hence P1(Rδ∗1 , Rδ′2) ∩ {x ∈ Z0 : Ω − x ∈ LC(Rδ2 , z2) ∩ UC(Rδ′2 , z2)} = {z}.
Since z1 ≤ z′1, z1 ∈ LC0(Rδ∗1 , z

′
1). �

Double transformability: Let d ∈ M. Let δ1 > δ2. Then P (Rδ1 , Rδ2) = P �

and so Pi (Rδ1 , Rδ2) ∩ Mi = {0, Ω} for each i ∈ N. Let z ∈ P (Rδ1 , Rδ2) be such

that z1 �= d1. When Uδ1 (z1) < Uδ1 (d1) , if we let R′
1 = R′′

1 ≡ Rδ1 , then (ii-1) of

double transformability holds. When Uδ2 (z2) < Uδ2 (d2) , if we let R′
1 ≡ Rδ1 and

R′
2 ≡ Rδ2 , then (ii-2) of double transformability holds.

Now assume Uδ1 (z1) ≥ Uδ1 (d1) and Uδ2 (z2) ≥ Uδ2 (d2) . Then d1 ∈ P �\{0, Ω}.
So d is not efficient for (Rδ1 , Rδ2) . Hence either Uδ1 (z1) > Uδ2 (d1) or Uδ2 (z2) >

Uδ2 (d2) . We consider the case Uδ1 (z1) > Uδ2 (d1) and Uδ2 (z2) ≥ Uδ2 (d2) (the

same argument applies in the other case). Since Uδ2 (z2) =
∑

t δ
t−1
2 (Ωt − z1t) ≥∑

t δ
t−1
2 (Ωt − d1t) = Uδ2 (d2) , then Uδ2 (z1) ≤ Uδ2 (d1) . Since Uδ1 (z1) > Uδ1 (d1) ,

Uδ2 (z1) ≤ Uδ2 (d1) , and δ1 > δ2, then there exists δ′2 ∈ (δ2, δ1) such that

Uδ′2 (z1) > Uδ′2 (d1) . Then, Uδ′2 (z2) < Uδ′2 (d2) . Now let R′
1 ≡ Rδ1 and R′

2 ≡ Rδ′2 .

Then P (R′
1, R

′
2) = P � and (ii-2) of double transformability holds. � Q.E.D.

Remark 2: Intertemporal exchange domains with bounded difference in agents’

discount factors: It may be the case that both agents share a common cultural

background relevant to impatience. Then it is appealing to assume that their im-

patience levels are not too different; that is, the difference of their discount factors

is bounded by a fixed positive number. For each µ > 0, let Dµ
IE be the family

of preference profiles R in RN
IE such that the difference between the two discount

factors δ1 and δ2 for R1 and R2 respectively is less than µ, that is, |δ1 − δ2| < µ.

Similarly, we define Dµ
IE-lin ⊆ RN

IE-lin and Dµ
IE-s.con ⊆ RN

IE-s.con. The proof of

Proposition 2 can be modified to show richness of the three non-product domains

for each µ > 0. To show everywhere reachability∗, let R,R′ ∈ Dµ
IE (or Dµ

IE-lin or

Dµ
IE-s.con) be such that for all i ∈ N , Ri and R′

i are represented by temporal util-

ity functions ui and u′
i, respectively, and discount factors δi and δ′i, respectively.

Since all preferences in Dµ
IE are strictly monotonic, we only have to show that R′ is

reachable from R through iterative unilateral variations, which can be constructed

by changing discount factors first as follows (δ1, δ2) → (δ′1, δ2) → (δ′1, δ
′
2) and then

changing temporal utility functions as follows (u1, u2) → (u′
1, u2) → (u′

1, u
′
2).

4.2 Risk sharing

Let S be the number of states, S ≥ 2. For each s = 1, · · · , S, let Ωs > 0 be

the endowment at state s. We consider the problem of allocating these endow-

ments prior to the realization of state. An allocation is a list of state contingent

consumption bundles indexed by agents, z ≡ (zi)i∈N ∈ RS×N
+ .
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Each agent i ∈ N has a preference Ri that is represented by a subjective prob-

ability distribution, or belief, πi ≡ (πis)s ∈ ∆S−1 and a utility index ui : R+ → R
in the expected utility form as follows: for all x, y ∈ RS

+

x Ri y ⇔
S∑

s=1

πisui (xs) ≥
S∑

s=1

πisui (ys) .

We assume that πi > 0 and that ui is strictly increasing and continuous. We

further assume that ui is concave. Let RRS be the family of all such expected

utility preferences. We refer to RN
RS as the risk sharing domain. Preference

Ri is risk averse if ui is strictly concave. It is risk neutral if ui is the linear

function ulin, that is, for all m ∈ R+, ulin (m) = m. Let RRS-aver be the family

of all risk averse preferences. Let RRS-neut be the family of all risk neutral

preferences. Note that in the risk sharing domain both belief and utility index of

each agent are private information and so it differs from Example 1.15

Let R0 ∈ RIE be the preference in Section 4.1, which is represented by a tem-

poral convex utility function u0 and discount factor δ ∈ (0, 1) . Then R0 is repre-

sented by the following utility function U : for all x ∈ RT
+, U (x) ≡ ∑

t δ
t−1u0 (xt) .

Therefore, when T = S, R0 coincides with the preference in RRS with utility index

u0 and the following belief,(
1∑

t δ
t−1 ,

δ∑
t δ

t−1 , · · · ,
δT∑
t δ

t−1

)
.

This shows that RN
IE-lin ⊆ RN

RS-neut ⊆ RN
RS and RN

IE-s.con ⊆ RN
RS-aver. Therefore, it

follows directly from Propositions 2 that:

Proposition 3: The risk sharing domain RN
RS and two subdomains, RN

RS-aver and

RN
RS-neut, are rich and everywhere reachable∗.

Remark 3 Risk sharing domains with bounded difference in agents’ beliefs:

When both agents share information on the state space, their beliefs will be

affected commonly. Then, agents’ beliefs may not be too far from each other.

For each µ > 0, let Dµ
RS be the family of preference profiles (R1, R2) ∈ RN

RS such

that the difference between the two beliefs π1 and π2 for R1 and R2 respectively

is less than µ, that is, |π1−π2| < µ. Similarly, we define Dµ
RS-neut ⊆ RN

RS-neut and

Dµ
RS-aver ⊆ RN

RS-aver. Then as in Remark 2, these three non-product domains are

rich and everywhere reachable∗.

15Ju (2001) considers the case when all of agents have an identical and revealed belief or an
objective distribution as in Example 1.
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4.3 Other restricted domains

In this section, we show that the domain of “CES preferences” is flexible (so,

rich) and the domain of “quasilinear”, strictly convex, and smooth preferences is

rich.

A preference R0 is a CES preference if there exist (a1, · · · , al) ∈ Rl
++ and

ρ ∈ (−∞, 1) such that R0 is represented by the following utility function u0: for

all x ∈ Rl
++,

u0 (x) ≡
{

(
∑

k akx
ρ
k)

1/ρ , if ρ �= 0;

xa1
1 × · · · × xak

k , if ρ = 0,

for all x ∈ Rl
+\Rl

++, if ρ > 0, u0 (x) ≡ (
∑

k akx
ρ
k)

1/ρ; if ρ ≤ 0, u0 (x) ≡ 0.

Let RCES be the class of all CES preferences. We refer to RN
CES as the CES-

domain.

Proposition 4: The CES-domain is flexible and everywhere reachable∗.

Proof: Everywhere reachability∗ is obvious. Let M ≡ {z ∈ Z : z1 ∈ 0, Ω}. We

show that RN
CES and M satisfy A1, A2, A3, F1, and F2. The first four properties

can be shown similarly to Example 2. We are left with F2. In what follows, we

only consider the 2-good case; our argument can be extended to the l-good case.16

We use the following property of Pareto set for homothetic preferences.

Fact 1 (Thomson, 1995): Let l = 2. When R1 and R2 are homothetic preferences

in R, P (R) is “doubly visible”, that is, for all z1, z
′
1 ∈ Rl

++, if z1, z
′
1 ∈ P1(R)

and z11 < z′11, then either (a) z12/z11 ≥ z′12/z
′
11 and z22/z21 ≥ z′22/z

′
21 or (b)

z12/z11 ≤ z′12/z
′
11 and z22/z21 ≤ z′22/z

′
21.

Let i ∈ N and di ∈ Mi. Without loss of generality we set i ≡ 1. We show

that for some R ∈ RN
CES, (i) P1(R) ∩ M1 = {0, Ω} and (ii) if z ∈ P (R) \{d} and

p · z1 = p · d1 for all p ∈ ∇R(z), then there exists R̄1 ∈ RCES such that for all

z̄1 ∈ P1(R̄1, R2)∩LC(R1, z1)∩UC(R̄1, z1), p·z̄1 �= p·d1 for some p ∈ ∇(R̄1, R2)(z̄).

16For the l-good case, we simply use the following relations between some special preference
profiles in the l-good case and their counterparts in the 2-good case.

Let a, b ∈ R++ and (c2, · · · , cl) ∈ Rl−1
++ . Let U1 : Rl

+ → R and U2 : Rl
+ → R be defined as

follows: for all x ∈ Rl
+, U1(x) ≡ (a(x1/Ω1)ρ1 +

∑l
k=2 ck(xk/Ωk)ρ1)1/ρ1 ; U2(x) ≡ (b(x1/Ω1)ρ2 +∑l

k=2 ck(xk/Ωk)ρ2)1/ρ2 . Let u1 : R2
+ → R, and u2 : R2

+ → R be defined as follows: for all
(x1, x2) ∈ R2

+, u1(x1, x2) ≡ (a(x1/Ω1)ρ1 +(
∑l

k=2 ck)(x2/Ω2)ρ1)1/ρ1 ; u2(x1, x2) ≡ (b(x1/Ω1)ρ2 +
(
∑l

k=2 ck)(x2/Ω2)ρ2)1/ρ2 . Then for all x ∈ Rl
++, (i) if (x,Ω − x) is efficient in l-good economy

(U1, U2,Ω), then x2
Ω2

= x3
Ω3

= · · · = xl

Ωl
and ((x1, x2), (Ω1 − x1,Ω2 − x2)) is efficient in 2-good

economy (u1, u2, (Ω1,Ω2)), and (ii) if ((x1, x2), (Ω1−x1,Ω2−x2)) is efficient in 2-good economy
(u1, u2, (Ω1,Ω2)), then ((x1, x2,

Ω3
Ω2

x2 · · · , Ωl

Ω2
x2), (Ω1−x1,Ω2−x2,Ω3(1− x2

Ω2
), · · · ,Ωl(1− x2

Ω2
)))

is efficient in l-good economy (U1, U2,Ω).
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Clearly, (i) holds. If d1 ∈ {0, Ω}, (ii) holds vacantly.

Assume that d1 /∈ {0, Ω}. Without loss of generality, let Ω ≡ (1, · · · , 1). Let

u1 : Rl
+ → R and u2 : Rl

+ → R be defined as follows: for all x ∈ Rl
+, u1(x) ≡

(ax
ρ1
1 + x

ρ1
2 )

1/ρ1 and u2(x) ≡ (bx
ρ2
1 + x

ρ2
2 )

1/ρ2 , where ρ1, ρ2 ∈ (0, 1) and a, b ∈
R++. Let R1 and R2 be the two preferences represented by u1 and u2 respectively.

Let ρ1, ρ2 ∈ (0, 1) and a, b ∈ R++ be chosen in such a way that P1(R) ∩ 0, Ω =

{0, Ω}, P1(R)\{0} ⊂ Rl
++, and for all z′1 ∈ P1(R)\{0, Ω}, z′1 ∈ Rl

++ and z′12/z
′
11 >

d12/d11.

Let z ∈ P (R) be such that z1 �= d1 and for all p′ ∈ ∇R(z), p′ ·z1 = p′ ·d1. Then

clearly, z1 /∈ {0, Ω}. Then since P1(R)\{0} ⊂ Rl
++, z1 ∈ Rl

++ and z2 ∈ Rl
++. Let

p ≡ ∇u1(z1). Since d1 ∈ 0, Ω and (Ω1, Ω2) = (1, 1) , then for all i ∈ N, di1 = d12.

Since p ∈ Rl
++ and p · z1 = p · d1, then z1 �≤ d1 and z1 �≥ d1.

Let (x̄1, x̄2) ∈ R2
++ be such that u2(1 − x̄1, 1 − x̄2) = u2(z21, z22) and x̄1 < z11

(since z1, z2 ∈ Rl
++, there exists such (x̄1, x̄2) ∈ R2

++). Let (p̄1, p̄2) ∈ R2
++ be a

vector normal to (x̄1, x̄2), (d11, d12). Then

(�) (p̄1, p̄2) · (x̄1, x̄2) = (p̄1, p̄2) · (d11, d12) < (p̄1, p̄2) · (z11, z12).

Then there exists a CES function ū such that ū1(x̄1, x̄2) = ū1(z11, z12) and

∇ū1(x̄1, x̄2) = (p̄1, p̄2). Without loss of generality, we assume that ū1(x1, x2) ≡(
āx

ρ̄1
1 + x

ρ̄1
2

)1/ρ̄1 , where ā ∈ R++ and ρ̄1 ∈ (−∞, 1). Then ∇ū1(x) ≡ K·(āxρ̄−1
1 , xρ̄−1

2 ),

where K ≡ (
āxρ̄

1 + xρ̄
2

)1/ρ̄−1
, for all x ∈ Rl

++.

By (�), ∇ū1 (x̄) · x̄ = ∇ū1 (x̄) · d1. By Fact 1, we can show that for all

z̄1 ∈ P1(R̄1, R2) ∩ LC(R1, z1) ∩ UC(R̄1, z1), x̄2/x̄1 > z̄12/z̄11 > d12/d11 = 1.

Clearly, ∇ū1 (x̄) · z̄1 > ∇ū1 (x̄) · x = ∇ū1 (x̄) · d1. Then āx̄ρ̄−1
1 z̄11 + xρ̄−1

2 z̄12 >

āx̄ρ̄−1
1 d11 + x̄ρ̄−1

2 d12, that is, āz̄11 − ād11 + ( x̄1

x̄2
)1−ρ̄(z̄12 − d12) > 0. Since z̄11 <

d11, z̄12 > d12. Since x̄1

x̄2
< z̄11

z̄12
, āz̄11 − ād11 + ( z̄11

z̄12
)1−ρ̄(z̄12 − d12) > 0. Therefore,

∇ū1 (z̄1) · z̄1 > ∇ū1 (z̄1) · d1. Q.E.D.

A preference R0 ∈ R is quasilinear with respect to numeraire good k

∈ {1, · · · , l} if for all x, y ∈ Rl
+ and all α ∈ R, whenever x + αek, y + αek ∈ Rl

+,

where ek is the unit vector with zero components except at the kth component,

x I0 y ⇒ (x + αek) I0 (y + αek) . Let RQ be the family of quasilinear, strictly

convex, and smooth preferences with respect to a common numeraire good. We

refer to RN
Q as the quasilinear domain.

Proposition 5: The quasilinear domain is rich and everywhere reachable∗.

Proof : Everywhere reachability∗ is obvious. Let ρ ∈ (0, 1). For each a > 0, let

ua : Rl
+ → R be such that: for all x ∈ Rl

+, ua(x) ≡ a · x1

Ω1
+

∑l
k=2

(
xk

Ωk
+ 1

)ρ

.
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Let RQ,ρ be the set of preferences represented by ua for some a > 0. Let M1 ≡
{z ∈ Z̄ : z11 = 0 or z12

Ω2
= z13

Ω3
= · · · = z1l

Ωl
= 1}, and M2 ≡ {z ∈ Z : z11

Ω1
= 1 or

z12

Ω2
= z13

Ω3
= · · · = z1l

Ωl
= 0}. Let D̄ ≡ RN

Q,ρ and M ≡ M1. We show that D̄ and M

satisfy A1, A2, A3 and double transformability. It is easy to show the following

claim.

Claim 1: Let R1, R2 be represented by ua1 , uα2 respectively . Then for all i ∈ N,

P (R) = M i ⇔ ai ≤ a−i · 21−ρ .

A1 and A2 are trivial.

A3: Let R,R′ ∈ D̄ and zi, z
′
i ∈ Mi be such that P (R) = P (R′) = M and

zi �= z′i. Without loss of generality, assume z1 ≤ z′1. For all i ∈ N, let Ri be

represented by uai and R′
i by ua′

i , where ai, a
′
i > 0. Then by Claim 1, a1 ≤

a2 · 21−ρ and a′
1 ≤ a′

2 · 21−ρ. Let ā1 ≡ min{a1, a
′
1}. Let R̄1 be represented by uā1 .

Then since ā1 ≤ a2 · 21−ρ and ā1 ≤ a′
2 · 21−ρ, then by Claim 1, P (R̄1, R2) =

P (R̄1, R
′
2) = M. Since M1 is a monotone path and all preferences are strictly

monotonic, P1(R̄1, R2) ∩ LC(R1, z1) ∩ UC(R̄1, z1) = {z1}. Hence part (i) of A3

holds. Similarly, P1(R̄1, R
′
2)∩{x ∈ Z0 : Ω−x ∈ LC(R2, z2)∩UC(R′

2, z2)} = {z1}.
Since z1 ≤ z′1 and R̄1 is strictly monotonic, z′1 P̄1 z1. Therefore part (ii) of A3

also holds. �
Double transformability: Let d1 ∈ M1. Let R ∈ D̄ be such that P (R) = M2.

Let z ∈ P (R) and z1 �= d1. Then clearly, P1(R) ∩ M1 = {0, Ω}. When d1 ≥ z1

or d1 ≤ z1, if we let R′
1 ≡ R1, then P1(R

′
1, R2) ∩ LC(R1, z1) ∩ UC(R′

1, z1) =

{z1}. Therefore when d1 ≥ z1, by strict monotonicity of R1, (ii-1) of double

transformability is satisfied with respect to R′′
1 ≡ R1. When d1 ≤ z1, (ii-2) of

double transformability is satisfied with respect to R′
2 ≡ R2.

Now assume that d1 � z1 and d1 � z1. Then d11 < z11 and d12 > z12.

Let a1, a2 > 0 be such that R1 is represented by ua1 and R2 is represented by

ua2 . Then by Claim 1, a2 ≤ a1 · 21−ρ. Let a′
2 > (l − 1) · (z22+1)ρ−(d22+1)ρ

d21−z21
. Let

a′
1 ≥ max{a1,

a′
2

21−ρ}. Let R′
1 be represented by ua′

1 and R′
2 be represented by ua′

2 .

Then since a′
1 ≥ a1, a′

1 · 21−ρ ≥ a2. Hence by Claim 1, P1(R
′
1, R2) = M2. Since

M2
1 is a monotone path through z1 and all preferences are strictly monotonic,

P1(R
′
1, R2) ∩ LC(R1, z1) ∩ UC(R′

1, z1) = {z1}. Since a′
1 ≥ a′

2/2
1−ρ, by Claim 1,

P (R′
1, R

′
2) = M2. Since M2

2 is a monotone path through z2 and all preferences

are strictly monotonic, P2(R
′
1, R

′
2) ∩ LC(R2, z2) ∩ UC(R′

2, z2) = {z2}. Since a′
2 >

(l − 1) · (z22+1)ρ−(d22+1)ρ

d21−z21
, d2 P ′

2 z2. Therefore, (ii-2) of double transformability is

satisfied. � Q.E.D.
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5 Concluding remarks

1. In several other economic environments, a number of authors have reported the

same impossibility results as in the 2-agent exchange economy. Among others are

Walker (1980), Zhou (1991b), Schummer (1999), Serizawa (2000), and Le Breton

and Weymark (1999). Identification of general domain properties that induce

their impossibility results will be an interesting research agenda.

2. Our conclusion makes use of the strong invariance property of efficient and

strategy-proof rules, which is established in Lemma 2. The same invariance

property will hold in other economic environments with the addition of “non-

bossiness” in more than two agents cases. Examples are exchange economies with

more than two agents, classical production economies, public goods economies,

etc. Application of the strong invariance property may lead to simpler proofs and

extensions of the existing results, for example, by Walker (1980), Satterthwaite

and Sonnenschein (1981), Serizawa (2000), and Schummer (1999).
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