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Abstract. Many economic and social situations can be represented by a di-
graph. Both local and global methods to determine the strength or power of
all the nodes in a digraph have been proposed in the literature. We propose a
new method, where the power of a node is determined by both the number of
its successors and the powers of its successors. Our method, called the posi-
tional power function, determines a full ranking of the nodes for any digraph.
The positional power function can either be determined as the unique solu-
tion to a nonhomogeneous system of equations, or as the limit point of an
iterative process. The solution can easily be obtained explicitly, which enables
us to derive a number of interesting properties of the positional power
function. We also consider the Copeland variant of the positional power
function. Finally, we extend our method to the class of all weighted graphs.

1 Introduction

Many economic and social situations can be modelled by means of a digraph.
A digraph is an irreflexive directed graph consisting of a finite set of nodes
and a collection of ordered pairs of these nodes, called arcs or arrows, e.g. see
Behzad et al. [1]. An arc from one node to another node represents a domi-
nance relation of the former node over the latter node. For instance, in a
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sports competition each node is a player or team and an arc going from node i
to node j means that player i has won a play against player j, e.g., see Moon
and Pullman [22], Rubinstein [24], and Laffond et al. [20]. Gilles et al. [13] and
van den Brink [4] model a hierarchical structure in an organization by a
digraph. Within this framework the nodes represent economic agents and an
arc going from node i to node j means that agent i has economic power over
agent j, e.g., to set trading conditions.

In social choice theory the set of nodes represents the set of available
alternatives. The problem is that several individuals (voters) may have dif-
ferent, often conflicting, preferences over the available alternatives and that
only one alternative can be implemented. The problem to choose the most
preferred alternative can be modelled as a digraph by assigning an arc from
node i to node j when in a pairwise comparison of the alternatives, alternative
i is preferred to j by a majority of the voters. In case the majority voting is
decisive for any pair of alternatives the resulting digraph is a so-called
tournament, otherwise a so-called weak tournament. For selecting a best
alternative on tournaments we refer to David [9], Sen [26], Kano and
Sakamoto [17], and on weak tournaments to Peris and Subiza [23], Dutta and
Laslier [12], and Duggan and Le Breton [10]. For a general survey, see the
monograph of Laslier [21]. In this paper our aim is not just to select a best
element but to obtain a full ranking of the nodes in an arbitrary digraph. We
will cover both tournaments and weak tournaments. We also show that our
method can easily be extended to weighted digraphs, and it is therefore
applicable to so-called generalized tournaments.

To rank or measure the power of the nodes in a digraph, several methods
have been proposed in the literature. One may distinguish between local and
global methods. To determine the power of a node, a local method only uses
partial information about the stucture of the digraph. A well-known local
method is the score of a node, which equals the number of its successors.
Other local methods are the Copeland score and the dominance function. In
general, a drawback of local methods is that the power of a node does not
depend on the power of the other nodes. These local methods have been
axiomatized, see Behzad et al. [1], Rubinstein [24], Henriet [15], Bouyssou [3],
van den Brink [4], and van den Brink and Gilles [6], [7].

Global methods use information on the entire structure of the digraph and
are typically specified by an iterative procedure. This type of methods goes
back to Wei [29] and Kendall [19]. For tournaments these methods have been
discussed extensively in Laslier [21]. The method proposed by Wei [29], called
the long-path method by Laslier [21], iterates the score vector. Other iterative
procedures are the so-called Markov solution proposed by e.g., Daniels [8],
and a procedure proposed in Borm, van den Brink and Slikker [2], which is
based on the axiomatic dominance function of van den Brink [4]. In Moon
and Pullman [22], see also Keener [18], it is shown that only under restrictive
assumptions on the digraph, the long-path method converges to a non-zero
vector. In particular it must hold that each node must be dominated by at
least one other node, excluding for instance digraphs like hierarchies, trees or
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digraphs with isolated nodes. The Markov solution is only well-defined on the
class of generalized tournaments. The procedure of Borm, van den Brink and
Slikker [2] gives a unique outcome to any digraph, but has the disadvantage
that it only ranks the players in the top cycles. Although this property is often
required in case of the social choice problem of choosing a best alternative, it
implies that the procedure cannot be used to obtain a full ranking of all the
nodes. Both local and global methods will be discussed more extensively in
Sect. 2.

In this paper we propose the so-called positional power function, a new
method for measuring the power of the nodes in a digraph. The positional
power of a node is determined by both the number of its successors, as in the
local score method, and the power of these successors, as in the global
methods. Whereas the global methods proposed so far in the literature yield
solutions to a homogeneous system of linear equations, our power vector is a
solution to a non-homogeneous system. It will be shown that this solution
does not suffer from the drawbacks of the iterative procedures mentioned
above. In particular, the system has a unique solution for any digraph and
therefore the new method is not restricted to a subclass of digraphs. More-
over, the solution vector gives zero power to a dummy node and a positive
power to any node that dominates at least one other node, so that it does not
only rank the nodes in the top cycles, but also the other nodes. We also
introduce a Copeland version of the positional power function.

This paper is organized as follows. In the next section we discuss both the
local and global methods considered in the literature and we show that the
solutions generated by these latter methods are solutions of homogeneous
systems of linear equations. In Sect. 3 we introduce the new power function as
the unique solution of a non-homogeneous system of equations. We also
introduce the Copeland variant of this new power function. In Sect. 4 we
discuss several properties of the power function and show that the solution of
the system of equations can be seen as the limit point of an iterative process.
In Sect. 5 we extend the new power function to the class of all weighted
graphs.

2 Power functions on digraphs

A directed graph consists of a set of nodes and a set of directed edges or arcs.
The set of nodes is denoted by N and consists of a finite number of n elements,
indexed by i ¼ 1; . . . ; n. An arc points from some node i 2 N to some node
j 2 N and is denoted by the ordered pair ði; jÞ. A directed graph on the set N
of nodes is denoted by its set A of arcs, i.e., A � N � N . If ði; jÞ 2 A we say
that node i dominates node j. A directed graph is called irreflexive if ði; iÞ 62 A
for every i 2 N . An irreflexive directed graph is shortly called a digraph. A
digraph A is said to be a tournament if for any two different nodes i; j 2 N it
holds that either ði; jÞ 2 A or ðj; iÞ 2 A. A digraph is called to be transitive
when for any three nodes h, i and j it holds that ðh; jÞ 2 A when both ðh; iÞ 2 A
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and ði; jÞ 2 A. Clearly, when A is a transitive tournament then A reflects a
linear order on the set of nodes. Finally, a digraph A is called empty when
A ¼ ; and complete when A ¼ N � N n fði; iÞji 2 Ng. Throughout this paper
A denotes the collection of all digraphs on a given set N of n nodes, i.e., A is
the collection of all irreflexive directed graphs on N .

A ranking or power function f on the collection A of digraphs on N
assigns for any A 2A a real number to every node i in N , which can be seen
as its strength, as in a sports competition, its power, as in a digraph reflecting
a hierarchical structure, or determining its rank, as in a digraph reflecting
preferences over a finite set of alternatives. To facilitate the introduction of
power functions, we first define for every node i 2 N its sets of predecessors
and successors in A by

P A
i ¼ fj 2 N jðj; iÞ 2 Ag and SA

i ¼ fj 2 N jði; jÞ 2 Ag;

respectively, i.e. P A
i is the set of all nodes by which i is dominated in N and SA

i
is the set of all nodes in N dominated by i. We denote the cardinality of these
sets by pA

i and sA
i , respectively, i.e. pA

i ¼ jP A
i j and sA

i ¼ jSA
i j, i 2 N . Observe that

when A is a tournament we have for all i and all h 6¼ i that h belongs to either
P A

i or SA
i , so that pA

i þ sA
i ¼ n� 1.

Node i 2 A is a dummy node if it does not dominate any other node; node
i 2 A is a top node if it dominates any node that has at least one predecessor.
A power function f :A! IRn satisfies the dummy node property if for every
A 2A it holds that fiðAÞ ¼ 0 if sA

i ¼ 0. Also, f satisfies the top node property
if for every A 2A and for every top node i 2 N , it holds that fiðAÞ � fhðAÞ for
all h 2 N . A function f :A! IRn satisfies the symmetry property if
fiðAÞ ¼ fhðAÞ when both P A

i ¼ P A
h and SA

i ¼ SA
h .

The power functions described in the literature fall into two classes: the
local methods and the global methods.

2.1 Local power functions

Three local power functions are the well-known score function, the Copeland
score function, and the dominance function and are defined as follows.

Definition 2.1. (i) The score function is the function f s:A! Rn
þ given by

f s
i ðAÞ ¼ sA

i ; i 2 N ;A 2A.

(ii) The Copeland score function is the function f Cs:A! Rn
þ given by

f Cs
i ðAÞ ¼ sA

i � pA
i ; i 2 N ;A 2A.

(iii) The dominance function is the function f d :A! Rn
þ given by

f d
i ðAÞ ¼

P
j2SA

i

1
pA

j
; i 2 N ;A 2A.

In van den Brink [4], see also van den Brink and Gilles [7], both the score and
dominance functions have been axiomatized. In Rubinstein [24] a charac-
terization of the ranking by the Copeland score function has been given on
the subclass of tournaments, see also Henriet [15]. In tournaments the ranking

442 P. J.-J. Herings et al.



by the score function, given by the numbers of successors of the nodes, is the
same as the ranking by the Copeland score function, being the differences of
the numbers of successors and predecessors of the nodes. For more properties
on the score function we refer to Behzad et al. [1], Delver et al. [11] and van
den Brink and Gilles [6], and on the Copeland score function to Bouyssou [3].
The score function and the dominance function have the dummy node, top
node, and symmetry property.

2.2 Global power functions

First we consider the long-path method, originating fromWei [29] and Kendall
[19], see also Daniels [8], Moon and Pullman [22], Saaty [25], Keener [18],
Laslier [21], and Slutzki and Volij [27]. Let T A denote the n� n adjacency
matrix T A of a digraph A with elements tij ¼ 1 if ði; jÞ 2 A and tij ¼ 0 other-
wise and let e be equal to the n-vector of ones. For a given digraph A the long-
path method considers the sequence xt ¼ T Axt�1; t ¼ 1; 2; . . . ; starting with x0

equal to e. By definition of T A the vector x1 is the score vector sA, x2 is the
vector that assigns to any node i the scores of all its successors, and so on.
This procedure is said to converge if limt!1 xt=

P
i xt

i is well defined. In case of
convergence the limit vector is called the long-path vector, denoted LP(A). The
procedure is not guaranteed to converge to a reasonable solution. For in-
stance, when A is a transitive tournament, then the procedure converges to the
zero vector within a finite number of iterations and so does not give a
ranking. Only under severe restrictions the procedure converges to a nonzero
solution. More precisely, let ~A be the subset of strongly connected digraphs,
i.e. A 2fA if for every two nodes i and j there exists a sequence i1; i2; . . . ; ik

such that i1 ¼ i, ik ¼ j and ðih; ihþ1Þ 2 A for all h ¼ 1; . . . ; k � 1. Moon and
Pullman [22] show that if A is a strongly connected digraph, then the long-
path method converges to the unique strictly positive eigenvector (up to
normalization) of T A. This eigenvector corresponds to the highest positive
eigenvalue kA of T A. LP(A) is therefore a solution of the homogeneous system
of linear equations

kAx ¼ T Ax: ð1Þ
The fact that LP(A) is often not well defined when A 62fA limits the usefulness
of this power concept.

The next procedure, called the Markov procedure, has been proposed by
Daniels [8] and others, see Laslier [21], and is given by the iterative system
xt ¼ 1

n�1 ðT A þ SAÞxt�1; t ¼ 1; 2; . . . ; with x0 ¼ e and SA being the n� n diag-
onal matrix with ith diagonal element equal to sA

i . When A is a tournament
and thus pA

i ¼ n� 1� sA
i for all i, each column of the matrix

MA ¼ 1
n�1 ðT A þ SAÞ sums up to one, and so MA is a Markov transition matrix.

From the elementary theory of stochastic processes it follows that in that case
the iterative process has a unique limit point, denoted MðAÞ, being an
eigenvector with eigenvalue 1 of the matrix MA. So, when A is a tournament
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the Markov vector MðAÞ is a solution of the homogeneous system of linear
equations

x ¼ MAx: ð2Þ
However, the iterated Markov power vector of a digraph may not be well
defined when the digraph is not a tournament, which also limits its usefulness.1

The iterated dominance procedure proposed in Borm et al. [2] works for

any digraph. The procedure is given by the iterative system xt ¼ bT Axt�1; t ¼
1; 2; . . . ; with x0 ¼ e and bT A being the modified adjacency matrix with ele-
ments btA

ij ¼ 1
pA

j þ1
if ði; jÞ 2 A or when j ¼ i, and btij ¼ 0 otherwise. Since each

column of the matrix bT A sums up to one, bT A is a Markov transition matrix.
Hence, the iterative process has a unique limit point, denoted IDðAÞ, being an
eigenvector with eigenvalue 1 of the matrix bT A. So, the iterated dominance
vector IDðAÞ is a solution of the homogeneous system of linear equations

x ¼ bT Ax: ð3Þ
Also this iterative procedure has some drawbacks. First, it should be noticed
that for both this process and the Markov process it holds that the procedure
converges to an eigenvector with eigenvalue 1 of the corresponding matrix,
but that the matrix may not have a unique (normalized) eigenvector with
eigenvalue 1. A different initial x0 may therefore lead to a different solution.
Second, the iterated dominance vector only discriminates between the nodes
in top cycles. A set K of nodes is a top cycle of digraph A if for any two nodes
i and j in K, there exists a sequence i1; . . . ; i‘ of nodes such that i1 ¼ i, i‘ ¼ j
and ðik; ikþ1Þ 2 A, k ¼ 1; . . . ; ‘� 1, and when for any i 2 K and h 62 K it holds
that ðh; iÞ 62 A. Note that there may be multiple top cycles. Any node not
being in a top cycle gets value equal to zero, also when it dominates other
nodes. Further, the solution does not satisfy the dummy node property. In
particular, an isolated node (being a top cycle on its own) gets value 1.

3 The positional power of nodes

The solutions to the iterative procedures described before measure the power
of the nodes in a global way. The homogeneous systems of Eqs. (1), (2) and
(3) show that in all cases, the power of a node is determined in one way or
another by the powers of its successors, which in turn are determined by the
powers of their successors, and so on. According to these measures, the power
of a node is completely determined by the powers of all nodes within the
digraph. On the other hand, the local power functions considered before do
not take into account the power of other nodes at all, but are completely

1 Notice that the Markov procedure can also be applied to generalized tournaments,
see Laslier [21], p. 218. However, when restricted to digraphs, a generalized
tournament is either a tournament or the complete digraph.

444 P. J.-J. Herings et al.



determined by local dominance relations. The power function to be intro-
duced in this paper takes into account both the local and the global influence
exercized by a node on other nodes.

The main idea of the new power function is that the power of a node is
determined by both the number of its successors, as in the score measure, and
the powers of its successors, as in an iterative procedure. In general, for given
positive numbers a and c, when node i dominates node j, node i gets a fixed
amount c plus 1=a times the power of node j. So, the power xi of node i in a
digraph A 2A is defined as the solution of the system

xi ¼
X

j2SA
i

�
cþ 1

a
xj

�
; i 2 N : ð4Þ

Notice that the system is not homogeneous, contrary to the systems corre-
sponding to the global methods discussed in Sect. 2.
Rewriting the system of Eq. (4) in matrix notation we obtain

x ¼ csA þ 1

a
T Ax;

or
�

I � 1

a
T A
�

x ¼ csA; ð5Þ

with I the identity matrix of appropriate dimension. The next theorem shows
that for every digraph the system of linear equations has a unique nonneg-
ative solution if a > n� 1.

Theorem 3.1. For every digraph A 2A the system of Eqs. (5) has a unique
solution if a > n� 1, and this solution is nonnegative. Moreover, it then holds
that the matrix ðI � 1

a T AÞ has an inverse and all elements of this inverse are
nonnegative.

Proof. Let bij be the ði; jÞth element of the matrix BA ¼ I � 1
a T A. Since bii ¼ 1

for all i and bij � 0 for all i 6¼ j, according to Hawkins and Simon [14] the
inverse of BA exists and is nonnegative iff there exists a nonnegative vector
y 2 IRn such that each component of z ¼ BAy is positive. Take y ¼ e: Then,
zi ¼

Pn
j¼1 bij ¼ 1�

P
fj6¼ijtij¼1g

1
a � 1� 1

a ðn� 1Þ, where tij is the ði; jÞ-th ele-

ment of the matrix T A. Hence, if a > n� 1, we have that zi > 0 for all i.
Hence, z is strictly positive and therefore the inverse of BA exists and all
elements of the inverse are nonnegative. Since also c and the vector sA is
nonnegative, it follows that system (5) has a unique nonnegative solution.

Theorem 3.1 implies that for a > n� 1 the system of Eq. (4) has a unique
nonnegative solution xA given by

xA ¼ cðI � 1

a
T AÞ�1s A: ð6Þ
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The system of Eq. (6) shows that the number c only determines the absolute
value of the solution, but not the relative powers or the ranking of the nodes.
Therefore, without loss of generality we take c ¼ 1, so that according to (4), a
node gets one unit of power for each of its successors. Moreover, a node gets
a fraction 1=a of the powers of its successors. With c ¼ 1, the system of Eq.
(6) further shows that the solution xA converges to the score vector f sðAÞ ¼ sA

when a goes to infinity. To maximize the influence of the power of the suc-
cessors to the power of a node, we take a equal to n; the smallest feasible
integer under the constraint that the solution exists for every digraph.

We now define the positional power vector of a digraph A as the solution
to the system

xi ¼
X

j2SA
i

�
1þ 1

n
xj

�
; i 2 N : ð7Þ

From Eq. (6) we obtain the following definition.

Definition 3.2. The positional power function is the function f p : A! Rn

which assigns to every A 2A the solution of (7), i.e. f pðAÞ ¼ ðI � 1
n T AÞ�1sA.

According to Theorem 3.1 the positional power function is well-defined
and assigns a nonnegative power vector f pðAÞ to any digraph A 2A. This
overcomes the drawback of the long-path vector, which is restricted to the
subclassfA of strongly connected digraphs, and the drawback of the Markov
solution, which is restricted to (generalized) tournaments.

We remark that instead of taking c equal to one, in some applications
other normalizations may be useful. For instance, when A is not the empty
set, c can be taken such that the sum of the powers is normalized to one. This
is achieved by setting c equal to cA; where

cA ¼
�

e>
�

I � 1

n
T A
��1

sA
��1

:

We denote the resulting normalized positional power function by f np. This
function can be used to determine whether a collection of nonempty digraphs
is balanced, see Herings et al. [16]. A collection fA1; . . . ;Akg of k nonempty
digraphs is said to be balanced if the system

Xk

i¼1
kif npðAiÞ ¼ e

has a nonnegative solution. Balancedness of digraphs can be used to give
sufficient conditions for the nonemptiness of the core as solution concept for a
nontransferable utility game in graph structure.

As for the score function we may define the Copeland variant of the
positional power function. While the score function f s assigns to a node its
number of successors, the Copeland score function assigns to each node of a
digraph its number of successors minus its number of predecessors. The
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function which assigns to every node i the number of predecessors, pA
i , can be

seen as a measure of the local weakness of node i within the digraph A, while
the score function is a measure for the local strength or power of node i within
A. Notice that pA

i ¼ sAR

i for all i 2 N , where

AR ¼ fði; jÞ 2 N � N j ðj; iÞ 2 Ag

is the reverse of the digraph A. So, the Copeland score vector of the digraph A
is equal to f CsðAÞ ¼ sA � sAR

. In the same way we define the Copeland variant
of the positional power function, called the Copeland positional power func-
tion, as the difference of the positional power and positional weakness. The
positional weakness vector in digraph A is defined to be the solution of the
system

yi ¼
X

j2P A
i

�
1þ 1

n
yj

�
; i 2 N : ð8Þ

Similar as for the score function, the positional weakness of a node in digraph
A is equal to the positional power of that node in the reverse AR of A, i.e.,
f pðARÞ is the unique solution to Eq. (8).

Definition 3.3. The Copeland positional function is the function f Cp : A! Rn

which assigns to every A 2A the vector f CpðAÞ ¼ f pðAÞ � f pðARÞ.
A positive Copeland positional value of a node means that the node ex-

ercizes more power in the digraph than it suffers from the powers being
exercized on it, while a negative position means the opposite.

4 Properties

The positional power function satisfies several nice properties. First, it satisfies
the dummy node property, i.e. f p

i ðAÞ ¼ 0 if SA
i ¼ ;. Moreover, since xA is a

nonnegative vector it also follows immediately from the system of Eq. (7) that
xA

i > 0 when SA
i 6¼ ;, implying that the positional power function assigns zero

power to a node if and only if it is a dummy node. So, the power function f p

also overcomes the drawback of the iterative dominance solution IDðAÞ,
which assigns zero power to any node not in a top cycle on the one hand and
positive power to an isolated node on the other hand. From the system of
Eq. (7) it follows that f p

i ðAÞ � f p
j ðAÞ if SA

j � SA
i with strict inequality when SA

j
is a proper subset of SA

i . This monotonicity property implies that f p satisfies
both the top node property and the symmetry property. It even satisfies the
stronger property that any two nodes having the same set of successors have
the same power. When A is a tournament there is a unique top cycle and we
have that SA

j � SA
i n fjg and thus f p

i ðAÞ > f p
j ðAÞ for any i in the top cycle and

any j not in the top cycle. So, when applying the positional power function to
select a best alternative in a social choice problem, the function selects an
alternative from the top cycle. Summarizing, we have the following properties.

Power of nodes in digraphs 447



Corollary 4.1. The positional power function f p : A! Rn
þ satisfies for any

A 2A the following properties.

� For every node i 2 N it holds that f p
i ðAÞ > 0 if and only if SA

i 6¼ ;.
� For every pair of nodes i; j 2 N it holds that f p

j ðAÞ � f p
i ðAÞ if SA

i � SA
j with

equality only when SA
i ¼ SA

j .
�When A is a tournament, f p

i ðAÞ > f p
j ðAÞ for any i in the top cycle and any j not

in the top cycle.

Before discussing more properties of f p we derive the following lemma about
the inverse matrix ðI � 1

n T AÞ�1. In the sequel we denote this matrix by V A,
with ði; jÞth element equal to vij.

Lemma 4.2. The elements vij, i; j 2 N , have the following properties.

(i) vii ¼ 1þ
P

h2P A
i

vih=n and vij ¼
P

h2P A
j

vih=n for j 6¼ i.
(ii)
Pn

j¼1ðn� sA
j Þvij ¼ n.

(iii) 1 � vii � 2n=ðnþ 1Þ and 0 � vij � n=ðnþ 1Þ for j 6¼ i.
(iv) vij ¼ 0 for j 6¼ i (vii ¼ 1Þ if and only if there does not exists an ordered path

of arcs from node i to node j (node i).

Proof. Since V AðI � 1
n T AÞ ¼ I ; we find by rearranging terms that

V A ¼ I þ 1
n V AT A. Recalling that the ðh; jÞth element thj of the matrix T A is

equal to 1 if h 2 P A
j and 0 otherwise, we obtain property (i). Postmultiplying

both sides of the equality V AðI � 1
n T AÞ ¼ I by the vector e, we obtain for any

i 2 N

Xn

j¼1
vij ¼ 1þ

Xn

j¼1

X

h2P A
j

vih=n ¼ 1þ
Xn

h¼1

X

j2SA
h

vih=n ¼ 1þ
Xn

h¼1
sA

h vih=n;

which, by rearranging terms, yields property (ii). From Theorem 3.1 we al-
ready know that vij � 0 for all j 6¼ i and thus from property (i) it follows that
vii � 1 for all i 2 N . Since sA

h � n� 1 for all h, it follows from property (ii)
that

Xn

h¼1
vih �

Xn

h¼1
ðn� sA

h Þvih ¼ n:

Hence, for j 6¼ i, from property (i) we obtain

vij ¼
X

h2P A
j

vih=n �
Xn

h¼1
vih=n� vij=n � 1� vij=n;

because j =2 P A
j . This shows that vij � n=ðnþ 1Þ for j 6¼ i. Similarly, we obtain

vii � 1þ
Xn

h¼1
vih=n� vii=n � 2� vii=n:
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To prove property (iv), notice that 0 � ððT AÞkÞij � ðn� 1Þk for all k, so
P1

k¼1
1
nk ðT AÞk exists. Since the product of I þ

P1
k¼1

1
nk ðT AÞk and I � 1

n T A equals

I ; we obtain that

V A ¼ I þ
X1

k¼1

1

nk ðT
AÞk: ð9Þ

Clearly, ððT AÞkÞij > 0 if and only if there exists at least one ordered path of
adjacent arcs of length k from node i to node j. This implies that if there is no
path at all from node i to node j we must have that vij ¼ 1 when i ¼ j and
vij ¼ 0 when j 6¼ i; and conversely.

The next result follows easily from the previous lemma.

Lemma 4.3. For any A 2A it holds that f pðAÞ ¼ nðV A � IÞe.

Proof. From Eq. (6) it follows that f pðAÞ ¼ V AsA and thus

f p
i ðAÞ ¼

Xn

j¼1
sA

j vij; i ¼ 1; . . . ; n:

From property (ii) of Lemma 4.2 we obtain

f p
i ðAÞ ¼

Xn

j¼1
nðvij � 1Þ; i ¼ 1; . . . ; n;

which proves the lemma.
Since Eq. (9) shows that V A � I ¼

P1
k¼1

1
nk�1 ðT AÞk it follows from Lemma

4.3 that

f pðAÞ ¼
X1

k¼1

1

nk�1 T A
� �k

 !

e

and thus that for any starting vector x0, the power vector f pðAÞ is the limit
point of the iterative process

xt ¼ T Aeþ 1

n
T Axt�1; t ¼ 1; 2; . . . : ð10Þ

For example, when taking as starting vector x0 ¼ 0, we obtain that x1 ¼ sA,
i.e. the first iteration gives the score vector, which corresponds to the first
iteration of the long-path method. However, any next iteration differs from
the long-path method because of the fixed term T Ae ¼ sA, giving to a node i a
fraction 1=n of the current power of its successors plus the fixed amount 1 for
each of its successors. For any i; j ¼ 1; . . . ; n, the nonnegative number
ððT AÞkÞij=nk�1, k 2 IN, is precisely the contribution of node j to the power of
node i over all ordered paths of length k in A leading from node i to node j.
Remark that a path may contain several cycles and contain a cycle more than
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once. Adding up all these contributions over k 2 IN yields the total contri-
bution vij of node j to the power of node i 6¼ j (vii � 1 when i ¼ j). Adding up
all these total contributions over j yields the positional power of node i in the
digraph A. Recall from property (iv) of Lemma 4.2 that vij (vii � 1 when i ¼ j)
is positive if and only if there exists at least one ordered path from node i to
node j.

The next lemma shows that the positional power function is increasing in
A and that adding an arc from h to k increases the power of node h more than
the power of any other node.

Lemma 4.4. Let A and A0 be two digraphs such that A0 ¼ A [ fðh; kÞg for some
ðh; kÞ not in A. Then the following properties hold for f pðAÞ and f pðA0Þ.
(i) For any i ¼ 1; . . . ; n, f p

i ðA0Þ � f p
i ðAÞ.

(ii) f p
h ðA0Þ � f p

h ðAÞ > maxi2Nnfhg f p
i ðA0Þ � f p

i ðAÞ.
(iii) For every i 6¼ h, f p

i ðA0Þ ¼ f p
i ðAÞ if and only if there is no ordered path of any

length in A from node i to node h.

Proof. Let Eh;k ¼ T A0 � T A, so element ði; jÞ of the matrix Eh;k is equal to 1 for
ði; jÞ ¼ ðh; kÞ and equal to zero otherwise. Let DxA ¼ xA0 � xA. It holds that
ðI � 1

n T AÞxA ¼ sA, ðI � 1
n T A0 ÞxA0 ¼ sA0 and sA0 ¼ sA þ eh, where eh is the hth unit

vector inRn. By subtracting the first equality from the second onewe obtain that
�

I � 1

n
T A0
�
DxA � 1

n
Eh;kxA ¼ eh

and so

I � 1

n
T A0

� �

DxA ¼ 1

n
Eh;kxA þ eh ¼ 1þ xA

k

n

� �

eh:

Therefore,

DxA ¼ aV A0eh;

where a ¼ 1þ 1
n xA

k . From Theorem 3.1 it follows that V A0 is a nonnegative
matrix. Since a is positive and eh is a nonnegative vector, it follows that DxA is
a nonzero nonnegative vector, which proves property (i).
From DxA ¼ aV A0eh it follows that for i ¼ 1; . . . ; n,

DxA
i ¼ av0ih;

where v0ih is the ði; hÞth element of the matrix V A0 . Applying property (iii) of
Lemma 4.2 to V A0 we obtain for i 6¼ h

DxA
h ¼ av0hh � a > av0ih ¼ DxA

i ;

which proves property (ii). Finally, when A does not contain an ordered path
from node i 6¼ h to node h, then also A0 does not contain such a path. So,
according to property (iv) of Lemma 4.2 applied to V A0 we have that v0ih ¼ 0
and thus DxA

i ¼ 0, which proves property (iii).
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Finally, we consider the total positional power being assigned to the nodes
in a digraph A. The total positional power of a digraph A,

Pn
i¼1 f p

i ðAÞ, can be
interpreted as a measure of the total amount of power being exercized by the
nodes of the digraph A.

Lemma 4.5. The following properties hold for the total power assigned by the
positional power function.

(i)
Pn

i¼1 f p
i ðAÞ ¼ ne>V Ae� n2:

(ii) jAj �
Pn

i¼1 f p
i ðAÞ � njAj:

(iii)
Pn

i¼1 f p
i ðAÞ ¼ 0 if A is the empty digraph, while

Pn
i¼1 f p

i ðAÞ ¼ n2ðn� 1Þ in
case A is complete.

Proof. Clearly, from Lemma 4.3 it follows that

Xn

i¼1
f p

i ðAÞ ¼ ne>ðV A � IÞe ¼ ne>V Ae� n2;

which shows property (i). By the system of Eq. (7),

Xn

i¼1
f p

i ðAÞ ¼
Xn

i¼1

X

j2SA
i

ð1þ 1

n
f p

j ðAÞÞ ¼ jAj þ
Xn

j¼1

p A
j

n
f p

j ðAÞ;

which implies that
Pn

i¼1 f p
i ðAÞ � jAj: Rearranging terms gives

Pn
i¼1ðn� p A

i Þ
f p

i ðAÞ ¼ njAj; from which it follows that
Pn

i¼1 f p
i ðAÞ � njAj; thereby showing

property (ii). Since p A
j ¼ 0 and jAj ¼ 0 in case of the empty digraph, and

pA
j ¼ n� 1 and jAj ¼ nðn� 1Þ in case of the complete digraph,Pn

i¼1 f p
i ðAÞ ¼ 0 if A is the empty digraph, while in case A is complete

Xn

i¼1
f p

i ðAÞ ¼ nðn� 1Þ þ
Xn

i¼1

n� 1

n
f p

i ðAÞ

and thus
Pn

i¼1 f p
i ðAÞ ¼ n2ðn� 1Þ, which proves property (iii).

Lemmas 4.4 and 4.5 show that the total positional power of the nodes in a
graph is strictly increasing in A and lies between jAj and njAj. It should be
noticed that, although the total positional power is increasing in A, it is not
like the score function (strictly) increasing in the number of arcs.

The next lemma shows that the sum of the components of the Copeland
positional vector of any digraph is equal to zero.

Lemma 4.6. For any digraph A 2A it holds that
Pn

i¼1 f Cp
i ðAÞ ¼ 0.

Proof. Since T AR ¼ ðT AÞ>, we have that V AR ¼ ðI � 1
n T ARÞ�1 ¼ ðV AÞ>. From

property (i) of Lemma 4.5 it then follows that
Pn

i¼1 f Cp
i ðAÞ ¼

Pn
i¼1ðf

p
i ðAÞ � f p

i ðARÞÞ ¼ ne>ðV A � ðV AÞ>Þe ¼ 0.
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The property that the total power in any digraph is equal to the total
power in its reverse digraph also holds for the score function, but not for the
dominance function.

5 Weighted digraphs

Until now we restricted ourselves to irreflexive unweighted graphs. In this
section we extend our power function to weighted graphs. A weighted graph
is given by a set of nodes N and a nonnegative n� n matrix W , where the
ði; jÞth element wij of W denotes the weight on the arc from node i to node j.
Notice that we allow for an arc from a node to itself with positive weight wii.
The value wij measures how strongly node i dominates node j. When wii ¼ 0
for all i and wij 2 f0; 1g for all i 6¼ j, a weighted graph corresponds to a
digraph.

Some special important cases of weighted graphs are generalized tour-
naments and ratio-scaled comparison matrices. In a generalized tournament
there exists m > 0 such that for every i; j 2 N with i 6¼ j it holds that wii ¼ 0
and wij þ wji ¼ m. Generalized tournaments are widely considered in the
literature. The matrix W is called a ratio-scaled comparison matrix if
wijwji ¼ 1 for all i; j 2 N . Saaty [25] and many others later on, see e.g., Vargas
and Whittaver [28], applied the long-path method on ratio-scaled comparison
matrices in order to rank alternatives.

It is easy to adapt the positional power function to weighted graphs. For
given weighted graph with matrix W , we define the positional power vector of
W to be equal to the solution of the system of equations

xi ¼
Xn

j¼1
ðwij þ

1

aW
wijxjÞ; i 2 N : ð11Þ

Rewriting the system of Eq. (11) in matrix notation we obtain

x ¼ Weþ 1

aW Wx;

or

ðI � 1

aW
W Þx ¼ We: ð12Þ

For any aW larger than maxi2N
Pn

j¼1 wij it follows by the analogue of the
proof of Theorem 3.1 that this system of equations has a unique nonnegative
solution.

Theorem 5.1. For every weighted graph with nonnegative matrix W, the system
of equations (12) has a unique nonnegative solution if aW > maxi2N

Pn
j¼1 wij.

Moreover, it then holds that all elements of the inverse matrix of ðI � 1
aW W Þ are

nonnegative.
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A further analysis of the properties of the power function for (special
classes) of weighted digraphs remains the subject for further research.
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