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Arrow�s theorem in judgment aggregation
Franz Dietrich and Christian List1

4/2005, revised 9/2005

In response to recent work on the aggregation of individual judgments on logically
connected propositions into collective judgments, it is often asked whether judgment
aggregation is a special case of Arrowian preference aggregation. We argue the op-
posite. After proving a general impossibility result on judgment aggregation, we
construct an embedding of preference aggregation into judgment aggregation and
prove Arrow�s theorem as a corollary of our result. Although we provide a new proof
of Arrow�s theorem, our main aim is to identify the analogue of Arrow�s theorem
in judgment aggregation, to clarify the relation between judgment and preference
aggregation and to illustrate the generality of the judgment aggregation model.
JEL Classi�cation: D70, D71

1 Introduction

A new aggregation problem has recently received much attention. How can
the judgments of several individuals on logically connected propositions be ag-
gregated into corresponding collective judgments? To illustrate the di¢ culties
involved in judgment aggregation, suppose a three-member committee has to
make collective judgments on three connected propositions:
a: "Carbon dioxide emissions are above the threshold x."
a ! b: "If carbon dioxide emissions are above the threshold x, then there

will be global warming."
b: "There will be global warming."

a a! b b
Individual 1 True True True
Individual 2 True False False
Individual 3 False True False
Majority True True False

Table 1: The discursive dilemma

As shown in Table 1, the �rst committee member accepts all three proposi-
tions; the second accepts a but rejects a! b and b; the third accepts a! b but
rejects a and b. Then the judgments of each committee member are individually
consistent, and yet the majority judgments on the propositions are inconsistent:
a majority accepts a, a majority accepts a! b, but a majority rejects b.

1We thank Richard Bradley, Ruvin Gekker, Ron Holzman and Philippe Mongin for com-
ments and suggestions. Addresses: F. Dietrich, Department of Quantitative Economics, Uni-
versity of Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands; C. List, Dep-
tartment of Government, London School of Economics, London WC2A 2AE, U.K.



This problem �the so-called discursive dilemma (Pettit 2001) �has led to a
growing literature on the possibility of consistent judgment aggregation under
various conditions. List and Pettit (2002, 2004) have developed a �rst model of
judgment aggregation based on propositional logic and proved an impossibility
result, followed by several stronger impossibility results (Pauly and van Hees
2004; Dietrich 2004a; Gärdenfors 2004; van Hees 2004; Nehring and Puppe
2005; Dietrich and List 2005; Dokow and Holzman 2005) and possibility results
(Bovens and Rabinowicz 2004; Dietrich 2004a; List 2003, 2004, 2005; Pigozzi
2004). Generalizing the propositional logic framework, Dietrich (2004b) has
developed a model of judgment aggregation in general logics, also used in the
present paper, which allows the representation of a larger class of aggregation
problems.
Although there are obvious di¤erences between judgment aggregation and

the more familiar problem of preference aggregation, the recent results resemble
earlier results in social choice theory. The discursive dilemma resembles Con-
dorcet�s paradox of cyclical majority preferences, and the various impossibility
theorems on judgment aggregation resemble Arrow�s theorem on preference ag-
gregation. This has led critics to ask whether the recent work on judgment
aggregation is a reinvention of the wheel.
In response, it can be argued that the work on judgment aggregation is

not a reinvention, but a generalization. The preference aggregation model of
Condorcet and Arrow can be embedded into a judgment aggregation model by
representing preference orderings as sets of binary ranking judgments (List and
Pettit 2004; List 2003, fn. 4), whereas the converse embedding cannot easily
be achieved. (This embedding claim applies only to the ordinal preference-
relation-based strand of Arrowian social choice theory, but not to the cardinal
welfare-function-based strand.)
In this paper, we reinforce this argument. After introducing the judgment

aggregation model in general logics and proving a general impossibility result
(stated in terms of two theorems), we construct an explicit embedding of pref-
erence aggregation into judgment aggregation and prove Arrow�s theorem (for
strict preferences) as a direct corollary of our result on judgment aggregation.
Our aim is not primarily to provide a new proof of Arrow�s theorem, but to
identify the analogue of Arrow�s theorem in judgment aggregation, to clarify
the logical relation between judgment and preference aggregation and to high-
light the logical structure underlying Arrow�s result.
Related results were given by List and Pettit (2004), who derived a sim-

ple impossibility theorem on preference aggregation from an earlier result on
judgment aggregation, and Nehring (2003), who proved an Arrow-like theorem
in the related framework of property spaces. But neither result fully matches
Arrow�s theorem. List and Pettit�s result requires additional neutrality and
anonymity conditions, but no Pareto principle. Nehring�s result requires an
additional monotonicity condition.
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2 The judgment aggregation model

We consider a group of individuals 1; 2; : : : ; n (n � 2). The group has to make
collective judgments on logically connected propositions.

Formal logic. Propositions are represented in an appropriate formal logic.
A logic (with negation symbol :) is a pair (L; �) such that

� L is a non-empty set of propositions, where p 2 L implies :p 2 L,
� � is an entailment relation (� P(L)� L), where, for each set of
propositions A � L and each proposition p 2 L, A � p is read as
"A entails p" (we write p � q as an abbreviaton for fpg � q).

A set A � L is inconsistent if A � p and A � :p for some p 2 L, and consistent
otherwise. A set A � L is minimal inconsistent if it is inconsistent and every
proper subset B ( A is consistent. A proposition p 2 L is contingent if fpg
and f:pg are consistent. We require our logic to satisfy the following minimal
conditions:

(L1) For all p 2 L, p � p.
(L2) For all p 2 L and A � B � L, if A � p then B � p.
(L3) ; is consistent, and each consistent set A � L has a consistent

superset B � L containing a member of each pair p;:p 2 L.
Many di¤erent logics satisfy conditions L1 to L3, including standard proposi-
tional logic, standard modal and conditional logics and, for the present purposes,
predicate logic, as de�ned below.

The agenda. The agenda is a non-empty subset X � L, interpreted as the
set of propositions on which judgments are to be made, where X is a union
of proposition-negation pairs fp;:pg (with p not itself a negated proposition).
For simplicity, we assume that double negations cancel each other out, i.e. ::p
stands for p.2 In the example above, the agenda is X = fa;:a; b;:b; a !
b;:(a! b)g in standard propositional logic (or alternatively in a simple condi-
tional logic). We consider agendas X with di¤erent types of interconnections.
For any p; q 2 X, we write p �� q if fp;:qg [ Y is inconsistent for some Y � X
consistent with p and with :q.3

� X is minimally connected if
(i) there exists a minimal inconsistent set Y � X with jY j � 3, and
(ii) there exists a minimal inconsistent set Y � X such that (Y nZ)[

f:z : z 2 Zg is consistent for some subset Z � Y of even size.
� X is path-connected if, for every contingent p; q 2 X, there exist p1;

p2; :::; pk 2 X (with p = p1 and q = pk) such that p1 �� p2, p2 �� p3, ...,
pk�1 �� pk.

2When we use the negation symbol : hereafter, we mean a modi�ed negation symbol
�, where � p := :p if p is unnegated and � p := q if p = :q for some q.

3For non-paraconsistent logics (in the sense of L4 in Dietrich 2004b), fp;:qg[Y is incon-
sistent if and only if fpg [ Y � q.
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Dokow and Holzman (2005) have recently introduced an algebraic condition
on �nite agendas, which is equivalent to part (ii) of minimal connectedness, as
Ron Holzman has indicated to us. If the logic is compact, path-connectedness
is equivalent to Nehring and Puppe�s (2005) total blockedness; in the general
case, path-connectedness is weaker.
The agenda of our example above is minimally connected, but not path-

connected. Below we show that preference aggregation problems can be repre-
sented by agendas that are both minimally connected and path-connected.

Individual judgment sets. Each individual i�s judgment set is a subset Ai �
X, where p 2 Ai means that individual i accepts proposition p. A judgment set
Ai is consistent if it is a consistent set as de�ned above; Ai is complete if, for
every proposition p 2 X, p 2 Ai or :p 2 Ai. A pro�le (of individual judgment
sets) is an n-tuple (A1; : : : ; An).

Aggregation rules. A (judgment) aggregation rule is a function F that as-
signs to each admissible pro�le (A1; : : : ; An) a single collective judgment set
F (A1; : : : ; An) = A � X, where p 2 A means that the group accepts propo-
sition p. The set of admissible pro�les is called the domain of F , denoted
Domain(F ). Examples of aggregation rules are the following.

� Propositionwise majority voting. For each (A1; :::; An), F (A1; :::; An)
= fp 2 X : more individuals i have p 2 Ai than p =2 Aig.

� Dictatorship of individual i: For each (A1; :::; An), F (A1; :::; An) = Ai.
� Inverse dictatorship of individual i: For each (A1; :::; An), F (A1; :::; An)

= f:p : p 2 Aig.

Regularity conditions on aggregation rules. We impose the following condi-
tions on the inputs and outputs of aggregation rules.

Universal domain. The domain of F is the set of all possible pro�les of
complete and consistent individual judgment sets.

Collective rationality. F generates complete and consistent collective judg-
ment sets.

Propositionwise majority voting, dictatorships and inverse dictatorships sat-
isfy universal domain, but only dictatorships generally satisfy collective ratio-
nality. As the discursive dilemma example of Table 1 shows, propositionwise
majority voting sometimes generates inconsistent collective judgment sets. In-
verse dictatorships satisfy collective rationality only in special cases (i.e. when
the agenda is symmetrical : for every consistent Z � X, f:p : p 2 Zg is also
consistent).

4



3 An impossibility result on judgment aggre-
gation

Are there any non-dictatorial judgment aggregation rules satisfying universal
domain and collective rationality? The following conditions are frequently used
in the literature.

Independence. For any proposition p 2 X and pro�les (A1; : : : ; An); (A�1; : : : ;
A�n) 2 Domain(F ), if [for all individuals i, p 2 Ai if and only if p 2 A�i ] then
[p 2 F (A1; : : : ; An) if and only if p 2 F (A�1; : : : ; A�n)].

Systematicity. For any propositions p; q 2 X and pro�les (A1; : : : ; An);
(A�1; : : : ; A

�
n) 2 Domain(F ), if [for all individuals i, p 2 Ai if and only if

q 2 A�i ] then [p 2 F (A1; : : : ; An) if and only if q 2 F (A�1; : : : ; A�n)].

Unanimity principle. For any pro�le (A1; : : : ; An) 2 Domain(F ) and any
proposition p 2 X, if p 2 Ai for all individuals i, then p 2 F (A1; : : : ; An).

Independence requires that the collective judgment on each proposition
should depend only on individual judgments on that proposition. Systematic-
ity strengthens independence by requiring in addition that the same pattern of
dependence should hold for all propositions (a neutrality condition). The una-
nimity principle requires that if all individuals accept a proposition then this
proposition should also be collectively accepted. The following result holds.

Proposition 1. For a minimally connected agenda X, an aggregation rule F
satis�es universal domain, collective rationality, systematicity and the unanim-
ity principle if and only if it is a dictatorship of some individual.

Proof. All proofs are given in the appendix. �

Proposition 1 is related to an earlier result by Dietrich (2004b), which re-
quires an additional assumption on the agenda X but no unanimity principle
(the additional assumption is that X is also asymmetrical : for some inconsistent
Z � X, f:p : p 2 Zg is consistent). This result, in turn, generalizes an earlier
result on systematicity by Pauly and van Hees (2004).
From Proposition 1, we can derive two new results of interest. The �rst is a

generalization of List and Pettit�s (2002) theorem on the non-existence of an ag-
gregation rule satisfying universal domain, collective rationality, systematicity
and anonymity (i.e. invariance of the collective judgment set under permu-
tations of the given pro�le of individual judgment sets). Our result extends
the earlier impossibility result to any minimally connected agenda and weakens
anonymity to the requirement that there is no dictator or inverse dictator.

Theorem 1. For a minimally connected agenda X, an aggregation rule F
satis�es universal domain, collective rationality and systematicity if and only if
it is a (possibly inverse) dictatorship of some individual.
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Moreover, the agenda assumption of Theorem 1 is maximally weak if n � 3
and the agenda is �nite or the logic is compact (andX contains at least one con-
tingent proposition), i.e. minimal connectedness is necessary for characterizing
(possibly inverse) dictatorships by the conditions of Theorem 2.4

The second result we can derive from Proposition 1 is the analogue of Arrow�s
theorem in judgment aggregation, from which we subsequently derive Arrow�s
theorem on preference aggregation as a corollary. Note the following lemma.

Lemma 1. For a path-connected agenda X, an aggregation rule F satisfy-
ing universal domain, collective rationality, independence and the unanimity
principle also satis�es systematicity.

Let us call an agenda strongly connected if it is both minimally connected
and path-connected. Using Lemma 1, Proposition 1 now implies the following
impossibility result.

Theorem 2. For a strongly connected agenda X, an aggregation rule F sat-
is�es universal domain, collective rationality, independence and the unanimity
principle if and only if it is a dictatorship of some individual.

Dokow and Holzman (2005) have recently shown that, if n � 3 and the
agenda is �nite and contains only contingent propositions, the agenda assump-
tion of Theorem 2 is maximally weak, i.e. strong connectedness is necessary
for characterizing dictatorships by the conditions of Theorem 2. In fact, the
necessity holds whenever n � 3 and the agenda is �nite or the logic is compact
(and X contains at least one contingent proposition). A related result with
an additional monotonicity condition has been proved by Nehring and Puppe
(2005).
Our impossibility results continue to hold under slightly generalized de�ni-

tions of minimally connected and strongly connected agendas.5

Of course, it is debatable whether and when independence or systematicity
are plausible requirements on judgment aggregation. The literature contains
extensive discussions of these conditions and their possible relaxations. In our

4It can then be shown that, if X is not minimally connected, there exists an aggregation
rule that satis�es universal domain, collective rationality and systematicity and is not a
(possibly inverse) dictatorship. Let M be a subset of f1; :::; ng of odd size at least 3. If part
(i) of minimal connectedness is violated, then majority voting among the individuals in M
satis�es all requirements. If part (ii) is violated, the aggregation rule F with universal domain
de�ned by F (A1; :::; An) := fp 2 X : the number of individuals i 2 M with p 2 Ai is oddg
satis�es all requirements.

5In the de�nition of minimal connectedness, (i) can be weakened to the following: (i*) there
is an inconsistent set Y � X with pairwise disjoint subsets Z1; Z2; Z3 such that (Y nZj)[f:p :
p 2 Zjg is consistent for any j 2 f1; 2; 3g. In the de�nition of strong connectedness (by (i), (ii)
and path-connectedness), (i) can be dropped altogether, as path-connectedness implies (i*).
In the de�nitions of minimal connectedness and strong connectedness, (ii) can be weakened
to (
*) in Dietrich (2004b).
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view, the importance of Theorems 1 and 2 lies not so much in establishing the
impossibility of consistent judgment aggregation, but rather in indicating what
conditions must be relaxed in order to make consistent judgment aggregation
possible. The theorems describe boundaries of the logical space of possibilities.

4 Arrow�s theorem

We now show that Arrow�s theorem (for strict preferences) can be stated in the
judgment aggregation model, where it is a direct corollary of Theorem 2. We
consider a standard Arrowian preference aggregation model, where each indi-
vidual has a strict preference ordering (asymmtrical, transitive and connected,
as de�ned below) over a set of options K = fx; y; z; :::g with jKj � 3. We em-
bed this model into our judgment aggregation model by representing preference
orderings as sets of binary ranking judgments in a simple predicate logic.6

A simple predicate logic for representing preferences. We consider a predi-
cate logic with constants x; y; z; ::: 2 K (representing the options), variables v,
w, v1, v2 , ..., identity symbol =, a two-place predicate P (representing strict
preference), logical connectives : (not), ^ (and), _ (or), ! (if-then), and uni-
versal quanti�er 8. Formally, L is the smallest set such that

� L contains all propositions of the forms �P� and � = �, where � and
� are constants or variables, and

� whenever L contains two propositions p and q, then L also contains
:p, (p ^ q), (p _ q), (p! q) and (8v)p, where v is any variable.

Notationally, we drop brackets when there is no ambiguity. The entailment
relation � is de�ned as follows. For any set A � L and any proposition p 2 L,

A � p if and only if A [ Z entails p in the standard
sense of predicate logic,

where Z is the set of rationality conditions on strict preferences:
(8v1)(8v2)(v1Pv2 ! :v2Pv1) ("asymmetry");
(8v1)(8v2)(8v3)((v1Pv2 ^ v2Pv3)! v1Pv3) ("transitivity");
(8v1)(8v2)(: v1=v2 ! (v1Pv2 _ v2Pv1)) ("connectedness").7

The agenda. The preference agenda is the set X of all propositions of the
forms xPy;:xPy 2 L, where x and y are distinct constants.

Lemma 2. The preference agenda X is strongly connected.

6Although we consider strict preferences for simplicity, a similar embedding is also possible
for weak preferences.

7For technical reasons, Z also contains, for each pair of distinct constants x; y, the condition
:x=y, re�ecting the mutual exclusiveness of the options.

7



The correspondence between preference orderings and judgment sets. It is
easy to see that each (asymmetrical, transitive and connected) preference order-
ing over K can be represented by a unique complete and consistent judgment
set in X and vice-versa, where individual i strictly prefers x to y if and only if
xPy 2 Ai. For example, if individual i strictly prefers x to y to z, this is uniquely
represented by the judgment set Ai = fxPy; yPz; xPz;:yPx;:zPy;:zPxg.

The correspondence between Arrow�s conditions and conditions on judgment
aggregation. For the preference agenda, the conditions of universal domain,
collective rationality, independence and the unanimity principle ("Pareto"), as
stated above, exactly match the standard conditions of Arrow�s theorem.

As the preference agenda is strongly connected, Arrow�s theorem now follows
from Theorem 2.

Corollary 1. (Arrow�s theorem) For the preference agenda X, an aggregation
rule F satis�es universal domain, collective rationality, independence and the
unanimity principle if and only if it is a dictatorship of some individual.

5 Concluding remarks

After proving a general impossibility result on judgment aggregation, stated in
terms of Theorems 1 and 2, we have shown that Arrow�s theorem (for strict
preferences) is a corollary of this result, speci�cally of Theorem 2 applied to the
aggregation of binary ranking judgments in a simple predicate logic.
This �nding illustrates the generality of the judgment aggregation model.

The model can represent a large class of judgment aggregation problems in
general logics �all logics satisfying conditions L1 to L3 �of which a predicate
logic for representing preferences is a special case. Other logics to which the
model applies are propositional, modal or conditional logics and predicate logics
representing relational structures other than preference orderings. Impossibility
and possibility results on judgment aggregation, such as Theorems 1 and 2, can
apply to aggregation problems in all these logics.
An alternative, very general model of aggregation is the one introduced by

Wilson (1975) and recently used by Dokow and Holzman (2005), where a group
has to determine its yes/no views on several issues based on the group members�
views on these issues (subject to feasibility constraints). Wilson�s model can
also be represented in our model; here Dokow and Holzman�s results apply to
a logic satisfying L1 to L3 and a �nite agenda.8

8In Wilson�s model, the notion of consistency (feasibility) rather than that of entailment
is a primitive. This is slightly less general than our model, as the notion of entailment fully
speci�es a notion of consistency, while the converse does not hold for all logics satisfying L1
to L3.
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Although we have constructed an explicit embedding of preference aggre-
gation into judgment aggregation, we have not proved the impossibility of a
converse embedding. We suspect that such an embedding is hard to achieve, as
Arrow�s standard model cannot easily capture the di¤erent informational basis
of judgment aggregation. It is unclear what an embedding of judgment aggrega-
tion into preference aggregation would look like. In particular, it is unclear how
to specify the options over which individuals have preferences. The propositions
in an agenda are not candidates for options, as propositions are usually not mu-
tually exclusive. Natural candidates for options are perhaps entire judgment sets
(complete and consistent), as these are mutually exclusive and exhaustive. But
in a preference aggregation model with options thus de�ned, individuals would
feed into the aggregation rule not a single judgment set (option), but an entire
preference ordering over all possible judgment sets (options). This would be a
di¤erent informational basis from the one in judgment aggregation. In addition,
the explicit logical structure within each judgment set would be lost under this
approach, as judgment sets in their entirety, not propositions, would be taken
as primitives. However, although we are sceptical, the construction of a useful
converse embedding remains an open challenge.
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A Appendix

Proof of Proposition 1. Let X be minimally connected and let F be any ag-
gregation rule. Put N := f1; :::; ng. If F is dictatorial, F obviously satis-
�es universal domain, collective rationality, systematicity and the unanimity
principle. Now assume F satis�es the latter conditions. Then there is a set
C of ("winning") coalitions C � N such that, for every p 2 X and every
(A1; :::; An) 2 Domain(F ), F (A1; :::; An) = fp 2 X : fi : p 2 Aig 2 Cg. For
every consistent set Z � X; let AZ be some consistent and complete judgment
set such that Z � AZ .
Claim 1. N 2 C, and, for every coalition C � N , C 2 C if and only if

NnC =2 C.
The �rst part of the claim follows from the unanimity principle, and the

second part follows from collective rationality together with universal domain.
Claim 2. For any coalitions C;C� � N; if C 2 C and C � C� then C� 2 C.
Let C;C� � N with C 2 C and C � C�. Assume for contradiction that

C� =2 C. Then NnC� 2 C. Let Y be as in part (ii) of the de�nition of minimally
connected agendas, and let Z be a smallest subset of Y such that (Y nZ)[f:z :
z 2 Zg is consistent and Z has even size. We have Z 6= ;; since otherwise the
(inconsistent) set Y would equal the (consistent) set (Y nZ) [ f:z : z 2 Zg.
So, as Z has even size, there are two distinct propositions p; q 2 Z. Since Y is
minimal inconsistent, (Y nfpg)[ f:pg and (Y nfqg)[ f:qg are each consistent.
This and the consistency of (Y nZ) [ f:z : z 2 Zg allow us to de�ne a pro�le
(A1; :::; An) 2 Domain(F ) as follows. Putting C1 := C�nC and C2 := NnC�
(note that fC;C1; C2g is a partition of N), let

Ai :=

8<:
A(Y nfpg)[f:pg if i 2 C
A(Y nZ)[f:z:z2Zg if i 2 C1
A(Y nfqg)[f:qg if i 2 C2.

(1)

10



p
q

C
C1

C2

p
q

r

C1

C2 C0

Figure 1: The pro�les constructed in the proofs of claims 2 (left) and 3 (right).

By (1), we have Y nZ � F (A1; :::; An) as N 2 C. Also by (1); we have q 2
F (A1; :::; An) as C 2 C, and p 2 F (A1; :::; An) as C2 = NnC� 2 C. In summary,
writing Z� := Znfp; qg, we have (*) Y nZ� � F (A; :::; An): We distinguish two
cases.
Case C1 =2 C. Then C [ C2 = NnC1 2 C. So Z� � F (A1; :::; An) by (1),

which together with (*) implies Y � F (A1; :::; An). But then F (A1; :::; An) is
inconsistent, a contradiction.
Case C1 2 C. So f:z : z 2 Z�g � F (A1; :::; An) by (1). This together with

(*) implies that (Y nZ�) [ f:z : z 2 Z�g � F (A1; :::; An). So (Y nZ�) [ f:z :
z 2 Z�g is consistent. As Z� also has even size, the minimality condition in the
de�nition of Z is violated.
Claim 3. For any coalitions C;C� � N; if C;C� 2 C then C \ C� 2 C.
Consider any C;C� 2 C. Let Y � X be as in part (i) of the de�nition of min-

imally connected agendas. As jY j � 3, there are pairwise distinct propositions
p; q; r 2 Y . As Y is minimally inconsistent, each of the sets (Y nfpg) [ f:pg,
(Y nfqg) [ f:qg and (Y nfrg) [ f:rg is consistent. This allows us to de�ned a
pro�le (A1; :::; An) 2 Domain(F ) as follows. Putting C0 := C\C�, C1 := C�nC
and C2 := NnC� (note that fC0; C1; C2g is a partition of N), let

Ai :=

8<:
A(Y nfpg)[f:pg if i 2 C0
A(Y nfrg)[f:rg if i 2 C1
A(Y nfqg)[f:qg if i 2 C2.

(2)

By (2); Y nfp; q; rg � F (A1; :::; An) as N 2 C. Again by (2), we have q 2
F (A1; :::; An) as C0[C1 = C� 2 C. As C 2 C and C � C0[C2, we have C0[C2 2
C by claim 2. So, by (2); r 2 F (A1; :::; An). In summary, Y nfpg � F (A1; :::; An):
As Y is inconsistent, p =2 F (A1; :::; An); and hence :p 2 F (A1; :::; An): So, by
(2), C0 2 C.
Claim 4. There is a dictator.
Consider the intersection of all winning coalitions, eC := \C2CC: By claim

3, eC 2 C. So eC 6= ;, as by claim 1 ; =2 C. Hence there is a j 2 eC: As j belongs
to every winning coalition C 2 C, j is a dictator: indeed, for each pro�le
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(A1; :::; An) 2 Domain(F ) and each p 2 X, if p 2 Aj then fi : p 2 Aig 2 C, so
that p 2 F (A1; :::; An); and if p =2 Ai then :p 2 Ai, so that fi : :p 2 Aig 2 C,
implying :p 2 F (A1; :::; An), and hence p =2 F (A1; :::; An). �

Proof of Theorem 1. Let X be minimally connected, and let F satisfy
universal domain, collective rationality and systematicity. If F satis�es the
unanimity principle, then, by Proposition 1, F is dictatorial. Now suppose F
violates the unanimity principle.
Claim 1 . X is symmetrical, i.e. if A � X is consistent, so is f:p : p 2 Ag.
Let A � X be consistent. Then there exists a complete and consistent

judgment set B such that A � B. As F violates the unanimity principle (but
satis�es systematicity), the set F (B; :::; B) contains no element of B, hence con-
tains no element of A, hence contains all elements of f:p : p 2 Ag by collective
rationality. So, again by collective rationality, f:p : p 2 Ag is consistent.
Claim 2 . The aggregation rule bF with universal domain de�ned bybF (A1; :::; An) := f:p : p 2 F (A1; :::; An)g is dictatorial.
As F satis�es collective rationality and systematicity, so does bF , where the

consistency of collective judgment sets follows from claim 1. bF also satis�es
the unanimity principle: for any p 2 X and any (A1; :::; An) in the universal
domain, where p 2 Ai for all i, p =2 F (A1; :::; An), hence :p 2 F (A1; :::; An),
and so p = ::p 2 bF (A1; :::; An). Now Proposition 1 applies to bF , and hence bF
is dictatorial.
Claim 3 . F is inverse dictatorial.
The dictator for bF is an inverse dictator for F . �
Proof of Lemma 1. Let X and F be as speci�ed. To show that F is system-

atic, consider any p; q 2 X and any (A1; :::; An); (A�1; :::; A
�
n) 2 Domain(F ) such

that C := fi : p 2 Aig = fi : q 2 A�i g, and let us prove that p 2 F (A1; :::; An) if
and only if q 2 F (A�1; :::; A�n). If p and q are both tautologies (f:pg and f:qg are
inconsistent), the latter holds since (by collective rationality) p 2 F (A1; :::; An)
and q 2 F (A�1; :::; A�n). If p and q are both contradictions (fpg and fqg are
inconsistent), it holds since (by collective rationality) p =2 F (A1; :::; An) and
q =2 F (A�1; :::; A�n). It is impossible that one of p and q is a tautology and the
other a contradiction, because then one of fi : p 2 Aig and fi : q 2 A�i g would
be N and the other ;.
Now consider the remaining case where both p and q are contingent. We

say that C is winning for r (2 X) if r 2 F (B1; :::; Bn) for some (hence by
independence any) pro�le (B1; ::; Bn) 2 Domain(F ): with fi : r 2 Big = C.
We have to show that C is winning for p if and only if C is winning for q.
Suppose C is winning for p, and let us show that C is winning for q (the
converse implication can be shown analogously). As X is path-connected and
p and q are contingent, there are p = p1; p2; :::; pk = q 2 X such that p1 �� p2,
p2 �� p3, ..., pk�1 �� pk. We show by induction that C is winning for each of
p1; p2; :::; pk. If j = 1 then C is winning for p1 by p1 = p. Now let 1 � j < k
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and assume C is winning for pj. We show that C is winning for pj+1. By
pj �� pj+1, there is a set Y � X such that (i) fpjg [ Y and f:pj+1g [ Y are
each consistent, and (ii) fpj;:pj+1g [ Y is inconsistent. Using (i) and (ii), the
sets fpj; pj+1g [ Y and f:pj;:pj+1g [ Y are each consistent. So there exists a
pro�le (B1; :::; Bn) 2 Domain(F ) such that fpj; pj+1g[Y � Bi for all i 2 C and
f:pj;:pj+1g [ Y � Bi for all i =2 C. Since Y � Ai for all i, Y � F (A1; :::; An)
by the unanimity principle. Since fi : pj 2 Aig = C is winning for pj, we
have pj 2 F (A1; :::; An). So fpjg [ Y � F (A1; :::; An). Hence, using collective
rationality and (ii), we have :pj+1 =2 F (A1; :::; An), and so pj+1 2 F (A1; :::; An).
Hence, as fi : pj+1 2 Aig = C, C is winning for pj+1. �

Proof of Lemma 2. Let X be the preference agenda. X is minimally con-
nected, as, for any pairwise distinct constants x; y; z, the set Y =
fxPy; yPz; zPxg � X is minimal inconsistent, where f:xPy;:yPz; zPxg is
consistent.
To prove path-connectedness, note that, by the axioms of our predicate logic

for representing preferences, (*) :xPy and yPx are equivalent (i.e. entail each
other) for any distinct x; y 2 K. Now consider any (contingent) p; q 2 X, and let
us construct a sequence p = p1; p2; :::; pk = q 2 X with p j=� p2; :::; pk�1 j=� q.
By (*), if p is a negated proposition :xPy, then p is equivalent to the non-
negated proposition yPx ; and similarly for q. So we may assume without loss
of generality that p and q are non-negated propositions, say p is xPy and q is
x0Py0. We distinguish three cases, each with subcases.
Case x = x0. If y = y0, then xPy �� xPy = x0Py0 (take Y = ;). If y 6= y0,

then xPy �� xPy0 = x0Py0 (take Y = fyPy0g).
Case x = y0. If y = x0, then, taking any z 2 Knfx; yg, we have xPy �� xPz

(take Y = fyPzg), xPz �� yPz (take yPx), and yPz �� yPx = x0Py0 (take
Y = fzPxg). If y 6= x0, then xPy �� x0Py (take Y = fx0Pxg) and x0Py ��
x0Py0 (take Y = fyPy0g).
Case x 6= x0; y0. If y = x0, then xPy �� xPy0 (take Y = fyPy0g) and

xPy0 �� x0Py0 (take Y = fx0Pxg). If y = y0, then xPy �� x0Py = x0Py0 (take
Y = fx0Pxg). If y 6= x0; y0, then xPy �� x0Py0 (take Y = fx0Px; yPy0g). �
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