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Abstract

In this paper we present an innovative approach for ranking pro-
files of capability sets on the basis of equality. We begin by in-
troducing and defining the concept of common capability sets as
all those functioning vectors that are shared by certain subgroups
of the population under study. This allows us to rank profiles of
capability sets without the sometimes stringent requirement of
having a complete binary relation that orders the capability sets
from the worst-off to the better-off. In order to overcome some of
the shortcomings found in similar approaches, we then introduce
a capability set ranking that takes into account both the intrinsic
and the instrumental value of freedom.
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1 Introduction

When it comes to comparing the well-being offered by social states, the in-
fluential works of Amartya Sen ([13], [14]) have convincingly argued that
conventional evaluative spaces for the analysis of well-being are doomed to
failure. This is the case of the space of commodities (opulence), and some
of its transformations such as the space of utilities. The focus on commodi-
ties, he argues, does not take into account the pervasive human diversity
that may prevent two different human beings from enjoying a given bundle
of commodities in the same way. A bicycle, for instance, cannot be enjoyed
by a disabled person to the same extent as it is by someone who is young,
healthy and able-bodied. The problems when using utilities as the evaluative
space arise from the fact that utilities are states of mind. With no variation
in her living conditions, and without a glimpse of hope of any qualitative im-
provement in those conditions, a person’s utility could increase. The utility
could increase as consequence of the person adapting to her living condi-
tions (see Elster [4] for further research on the notion of adaptive preference

formation).

Well-being would be adequately measured, and therefore evaluated, when
dimensions of the space to be used were directly states of being. To provide an
appropriate evaluative space for social arrangements, Sen puts forward that
of functionings (Sen [13],[14]). Each dimension - or functioning - represents
a state of being. Typical examples of what a functioning could be are being
well-sheltered, well-educated and well-fed. In the current paper, well-being
will be evaluated within the space of functionings.

A further issue that arises when evaluating the well-being provided by
social states involves the choice between evaluating the achieved well-being
and evaluating the freedom to have well-being. In our context, this is the
choice between focusing on the person’s achieved functionings and on her
capabilities (see Sen [13], [14]). Focusing on the achieved functionings by
each individual is the same as addressing only the options actually chosen

by the individual (see Dutta et al. [3], Chakraborty [2]). If, however, we
are interested in taking into account the freedom of individuals to achieve
well-being, we will need to focus on their respective capability sets, which
can be defined as the various combinations of functionings that lie within
an individual’s reach (see Farina et al.[5], Xu [15]). This paper is concerned
with the second approach. Hence, social states will be thought of as profiles

of capability sets. Each person in the society has her own specific capability
set.
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In order to rank profiles of capability sets, our main concern will lie with
the equality of capabilities. Our formal framework for ranking capability
profiles has many similarities with the framework for ranking opportunity
profiles in terms of equality of opportunities (see [7], [8], [9], [10], and Sen
[14] for a discussion about the conceptual differences between the notion
of equality of capabilities and that of equality of opportunities). Different
procedures can be used to capture the notion of equality. For example, in
Herrero et al. [7], the focus is placed on the set of opportunities within
each individual’s reach. This is called the common opportunity set. The
main difference between our proposal and that of Herrero et al. [7] is that
we examine the functionings simultaneously shared by certain population
subgroups. Other similarities and differences are discussed throughout the
paper.

The ranking of profiles of capability sets is closely related to the general
framework of the ranking of sets of objects. As a matter of fact, in order to
fully specify how a capability profile ranking works, we will need to specify a
way to rank capability sets vis-à-vis each other. In this context it is important
to recall that such rankings can take two extreme positions: they may focus
either on the instrumental value of freedom or on its intrinsic value. In the
former procedure, the set is ranked according to its best element(s), whereas,
in the latter, freedom is considered to be valuable in itself and not simply
as a means by which to attain a desired state of being (see Pattanaik and
Xu [11, 12] as one of the leading pioneers of this literature, or Barberà et
al. [1] for a survey on ranking sets of objects). We will consider rankings of
capability sets that take into account both the instrumental and the intrinsic
value of freedom (see Pattanaik and Xu [12]).

Explicitly dealing with the ranking of capability sets, Xu [15] ranks those
that are non-degenerate, compact, comprehensive and convex. In a related
paper, Farina et al.[5] also ranks those that are compact, convex, comprehen-
sive but not necessarily non-degenerate. In this paper, we study the ranking
of profiles of capability sets in which the respective capability sets are not nec-
essarily convex, but are non-degenerate, compact and comprehensive. This
way, we are working in a more general framework than what is done in Xu
[15]. Let us finally recall that our ranking of capability sets will not be asked
to be necessarily complete as is usually done in related papers.

The plan of the paper is as follows. In section 2, we introduce the general
notation and definitions. In section 3 we present a binary relation to rank
profiles of capability sets, as well as an innovative relation to rank capability
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sets vis-à-vis each other. In section 4 we show an example to better illustrate
how the proposed capability profile and capability set rankings work. Section
5 presents the conclusion, while the proofs are included in the appendix.

2 General Notation and Definitions.

Let N = {1, . . . , n} be the set of individuals we are going to consider, and let
{f1, . . . , fm} be a list of functionings representing valued states of being. Let
Rm

+ be the non-negative orthant of the Euclidean m-dimensional space. Each
dimension is used to measure the achieved levels of one of the functionings
in the list. Hence, the points in Rm

+ are to be interpreted as functioning

vectors which will be denoted by x, y, z, a, b, and so on. We will write x =
(x1, . . . , xm), where each xi denotes the achieved level of the i -th functioning
in vector x.

For each individual one can consider the set of functioning vectors at
his disposal. Such a set is a subset of Rm

+ and is to be interpreted as that
individual’s capability set. We will denote by C the set of capability sets we
will be dealing with. Usually, the elements of C will be denoted by capital
letters: A, B, C, . . .. Every member of C (that is: every capability set) will
be required to satisfy the following properties

Non-degenerate: A capability set C ⊂ Rm
+ is non-degenerate if and only

if there exists x = (x1, . . . , xm) ∈ C such that xi > 0 for all i = 1, . . . , m.

Compact: A capability set C ⊂ Rm
+ is compact if and only if C is closed

and bounded.

Comprehensive: A capability set C ⊂ Rm
+ is comprehensive if and

only if, for all x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Rm
+ , if xi ≥ yi for all

i = 1, . . . , m and x ∈ C, then y ∈ C.

There is another property that in similar contexts has also been invoked
(see Xu [15]): Convexity (A capability set C ⊂ Rm

+ is convex if and only if
for all x, y ∈ C and for all λ ∈ [0, 1], λx + (1 − λ)y ∈ C holds). We contend
that in the context of capability sets it does not make much sense to ask for
convexity since there are no intuitive or appealing arguments supporting it.
On the contrary: if m = 2 and an individual is able to achieve (0, 1) and
(1, 0), why should she be able to achieve ( 1

2
, 2

5
) or (1

2
, 1

2
) but not (1

2
, 3

5
)? Hence,

the framework we will be dealing with is more general and less restrictive,
and includes the capability sets introduced by Xu in [15] as a particular case.
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Now, if x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Rm
+ , we write x > y if xi ≥ yi

for all i = 1, . . . , m and xj > yj for some j ∈ {1, . . . , m}. In a similar vein,
we will write x ≥ y if xi ≥ yi for all i = 1, . . . , m. If C ∈ C and λi > 0 for
all i = 1, . . . , m, we define λiC := {x ∈ Rm

+ |xi = λiyi and xj = yj for all
j 6= i, ∀y ∈ C}. Thus λiC is an homothetic expansion or contraction of the
capability set C of factor λi along the ith coordinate axis of Rm

+ .

In this paper we are mainly concerned with the ranking of social states,
where each social state is represented by a profile of capability sets or capabil-

ity profile. One can define a capability profile as a vector A = (A1, . . . , An)
where each Ai represents individual’s i capability set. We will denote by
Cn =

∏
i∈N C the set of all profiles of capabilities available in a given so-

ciety. One can define the following subfamilies in Cn. If one has a profile
A = (A1, . . . , An) such that A1 ⊆ . . . ⊆ An we say that A is a nested profile.
We will denote by N n the family of all nested profiles in Cn. In the special
case in which Ai = Aj ∀ i, j ∈ N we to refer to a uniform profile which is
denoted by A = (A). Let Un denote the set of all uniform profiles in Cn.
Recall that Un ⊆ N n ⊆ Cn.

For the purpose of ranking profiles of capability sets, let us consider a
binary relation �n defined on Cn that can satisfy some of the following prop-
erties

(2.4) Reflexivity: For all A ∈ Cn, one has that A �n A.

(2.5) Transitivity: For all A,B,C ∈ Cn, if A �n B and B �n C, then
A �n C.

(2.6) Completeness: For all A,B ∈ Cn with A 6= B, then either
A �n B or B �n A.

When �n satisfies both Reflexivity and Transitivity we say that it is a
quasi-ordering or partial ordering. If, moreover, �n also satisfies Complete-
ness we say that it is a complete ordering. Given two profiles, A,B ∈ Cn, we
will write A �n B when A is considered to be at least as good as B. �n and
∼n will denote the usual asymmetric and symmetric parts of �n.

Now, in order to fully specify how the capability profile ranking �n works
we might need to specify how to rank individual capability sets. Then, we
will need to talk about a binary relation � defined over C (the set of all
capability sets that are non-degenerate, compact and comprehensive). As
before, � could be reflexive, transitive and/or complete. Given any two
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capability sets A, B ∈ C, the relation A � B is to be interpreted as ‘The
well-being offered by capability set A is at least as good as the well-being
offered by capability set B’. As usual, � and ∼ will respectively denote the
asymmetric and symmetric parts of �.

In order to rank profiles of capability sets we will be concerned with
certain fairness criteria, such as that of equality of capabilities available to
different individuals. An interesting way of capturing the notion of equality
consists in giving priority to the common capabilities, i.e: those capabilities
that are shared by all members in the society (see Herrero et al. [7]). Given
a profile of capability sets A = (A1, . . . , An) one can define the common ca-
pability set as the set of functioning vectors that are within each individual’s
reach, that is

A0 :=
⋂

i∈N

Ai (1)

In the context of non-degenerate, compact and comprehensive capability
sets of Rm

+ one can readily verify that A0 ∈ C and that A0 6= ∅.

Whenever � is a complete ordering, for any profile A = (A1, . . . , An) ∈ Cn

one can define a permutation qA : N → N such that AqA(n) � AqA(n−1) �
. . . � AqA(1). This way, given a capability profile A ∈ Cn, one can define
q(A) := (AqA(1), AqA(2), . . . , AqA(n)) an opportunity profile that places the in-
dividuals from the worst-off to the better-off in an increasing order. When
� is complete, Herrero et al.[7] have defined the lexmin opportunity relation,
denoted �n

lo, as

A �n
lo B ⇔ (A0, AqA(1), AqA(2), . . . , AqA(n)) >L (B0, BqB(1), BqB(2), . . . , BqB(n))

(2)

for any A,B ∈ Cn, where >L denotes the usual lexicographical relation:
A >L B ⇔ Ai ∼ Bi for all i ∈ {1, . . . , k} and Ak+1 � Bk+1.

In order to rank two profiles, the rule �n
lo first focuses on the well-being

offered by their corresponding common capability set. When both common
capability sets offer the same degree of well-being, the rule ranks those profiles
by comparing the well-being of the worst-off in each profile. If the well-being
of the worse-off is the same in both profiles, the rule then compares the
profiles by comparing the well-being of the second worse-off, and so on.
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3 A ranking of capability profiles and capa-

bility sets

In this section we firstly introduce a ranking of profiles in Cn that incorporates
certain egalitarian-distributional criteria. Then, we introduce a capability set
ranking that takes into account both the instrumental and the intrinsic value
of freedom. Let us start with the following definitions.

Definition 1. Given a profile of capability sets (A1, . . . , An) ∈ Cn we
denote by ai = (ai1 , . . . , aim) a generic element of Ai. Given a functioning
vector p = (p1, . . . , pm) ∈ Rm

+ , one defines

I(A1, . . . , An; p) :=
]{i ∈ N |∃ ai ∈ Ai such that ai ≥ p}

n
. (3)

Equation (3) represents the number of people in the society that can
achieve or improve the functioning vector p. This could be intuitively inter-
preted as a sort of ‘probability of achieving or improving the vector p in the
society’. Furthermore, it is straightforward to verify that I(A1, . . . , An; p) ∈
[0, 1]. We can now give the following definition.

Definition 2. For a given α ∈ [0, 1] one defines

C(A1, . . . , An; α) = {p ∈ Rm
+ |I(A1, . . . , An; p) ≥ α}. (4)

Equation (4) represents the set of functioning vectors that can be achieved
or improved by at least dnαe individuals. The different sets C(A1, . . . , An; α)
obtained for the different possible values of α ∈ [0, 1] satisfy some interesting
properties.

(3.1.) The sets C(A1, . . . , An; α) have a clear and intuitive interpreta-
tion. Take, for example, the extreme case C(A1, . . . , An; 1): this is the set of
functioning vectors that can be achieved or improved by all the members in
the society, i.e: A0 =

⋂
i∈N Ai. On the other hand, C(A1, . . . , An; 1/n) is the

set of functioning vectors that can be achieved or improved by at least one in-
dividual. This is the set

⋃
i∈N Ai. Furthermore, it is straightforward to verify

that, for any sequence {αi}i∈{1,...,k} such that 0 ≤ α1 ≤ α2 ≤ . . . ≤ αk ≤ 1,
then one has that

C(A1, . . . , An; αk) ⊆ C(A1, . . . , An; αk−1) ⊆ . . . ⊆ C(A1, . . . , An; α1),

that is, the C(A1, . . . , An; α) have a nested structure.
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(3.2.) One can verify that, for any α ∈ (0, 1], C(A1, . . . , An; α) ∈ C, that
is, they are capability sets (in the extreme case of α = 0, by definition one
would have that C(A1, . . . , An; α1) = Rm

+ , which obviously is not a member
of C). In order not to burden the text too much we show the proof in the
appendix.

(3.3.) By definition, one can easily verify that if α ∈ ( i−1
n

, i
n
] then

C(A1, . . . , An; α) = C(A1, . . . , An; i/n) for all i = 1, . . . , n. Thus, instead
of considering the C(A1, . . . , An; α) for any α ∈ [0, 1], it will be enough to
consider the discrete values α ∈ { 1

n
, 2

n
, . . . , n−1

n
, 1}. We can now present the

following definition.

Definition 3. Given any profile of capability sets A = (A1, . . . , An) ∈ Cn

and any k ∈ {1, . . . , n} one can define

CA

k := C(A1, . . . , An;
k

n
) (5)

The set CA

k is called the Common Capability Set related to k people out of
the total population. Each CA

k is to be interpreted as the set of functioning
vectors that can be achieved or improved by at least k individuals at the
same time.

Definition 4. Given any profile of capability sets A = (A1, . . . , An) ∈ Cn

and its corresponding common capability sets CA

k , we define the vector

CA := (CA

n , . . . , CA

1 ). (6)

The vector in equation (6) is going to be named the Common Capability

Profile related to the profile A. Given any profile of capability sets A ∈ Cn,
it is straightforward to verify not only that CA ∈ Cn, but also that, as
CA

n ⊆ CA

n−1 ⊆ . . . ⊆ CA

1 , then CA ∈ N n.

One of the main purposes of this paper is to rank profiles in Cn according
to certain egalitarian-distributional criteria. For this purpose, we will pay
attention to the well-being offered by the common capability sets. That is,
given a pair of capability profiles (A1, . . . , An), (B1, . . . , Bn) ∈ Cn, we will
consider that

(A1, . . . , An) �n (B1, . . . , Bn) ⇔ (CA

n , . . . , CA

1 ) �n (CB

n , . . . , CB

1 ). (7)

This is one of the most important contributions of the current paper:
we contend that in order to rank profiles of capability sets the key informa-
tion to be considered are the functioning vectors that are shared by differ-
ent subgroups of the population (instead of focusing on individual distribu-
tions as in similar approaches). It is readily seen that a ranking focused on
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the common capability sets is more “community-oriented” than “individual-
oriented”. This may make it specially well-suited for equality measurement
purposes.

Another attractive characteristic of this kind of ranking is the following.
Having been created with a nested structure, common capability sets are
hierarchically ordered from smallest to largest. Thus, it is not necessary to
have a complete ordering � over C a priori to rank individuals from worst-
off to best-off. This way, one is able, if reasonable or necessary, to introduce
a partial ordering � that might not be capable of ordering the individual
capability sets in a capability profile but still be conceptually operational.
The only methodologically implicit restriction in such a procedure is that the
ranking � should be a non necessarily strict extension of the set inclusion
relation. That is, if A, B ∈ C are such that A ⊆ B then B � A.

There are many available options from which the decision-maker may
choose the precise �n and � that will be used. Our proposal pays attention
to both the intrinsic and the instrumental value of freedom and is concerned
with some egalitarian-distributional criteria. We start by defining �n and
then proceed with �.

3.1 Ranking profiles with Common Capability Sets

We are interested in ranking profiles in Cn using information about their
corresponding common capability profiles. Hence, we propose a binary rela-
tionship of the type shown in (7). For this purpose, we transform the relation
�n

lo as follows.

Definition 5. Given any pair of capability profiles, A = (A1, . . . , An) and
B = (B1, . . . , Bn) ∈ Cn, one defines the lexmin common capability relation,
denoted �n

lcc, as

(A1, . . . , An) �n
lcc (B1, . . . , Bn) ⇔ (CA

n , . . . , CA

1 ) >L (CB

n , . . . , CB

1 ), (8)

where >L denotes the usual lexicographical relation. (Recall that in order
to be fully operational, this profile ranking needs to specify how any two
common capability sets are to be ranked vis-à-vis each other. A specific
capability set ranking will be introduced in section 3.2.).

This way, the first piece of information that is taken into account is the
set of functioning vectors shared by all individuals in the society. If these are
ranked as indifferent then one proceeds with the functioning vectors simula-
taneously shared by at least n−1 individuals, and so on. It is straightforward

9



to verify that �n
lcc is a reflexive and transitive binary relation which is not

necessarily complete. Recall that, as mentioned before, the fact that are
dealing with a non complete capability set ordering � does not prevent us
from using �n

lcc: Given any pair (A1, . . . , An), (B1, . . . , Bn) ∈ Cn, if CA

i ∼ CB

i

for n ≥ i > k ≥ 1 and � fails to rank CA

k vis-à-vis CB

k , then we simply say
that (A1, . . . , An) could not be ranked vis-à-vis (B1, . . . , Bn) by �n

lcc .

Let us now show which are the main properties satisfied by the ranking
�n

lcc. We will present them one by one.

(3.1.1.) Anonymity (AN): For any A ∈ Cn and any permutation p :
N → N,A ∼n p(A).

Anonymity ensures that no individual in the society is privileged or
treated differently from the others.

(3.1.2.) Strong Pareto Efficiency on Common Capability profiles (SPEC):
For all A = (A1, . . . , An),B = (B1, . . . , Bn) ∈ Cn, if CA

i � CB

i ∀i ∈
{1, . . . , n}, then A �n B. If moreover some preference is strict, then A �n B.

This is a reasonable property when ranking profiles of capability sets: if
every common capability set in the first profile is at least as good as every
respective common capability set in the second, then the former is at least
as good as the latter. In the present context this is clearly verified because
of the lexicographical nature of �n

lcc.

(3.1.3.) Common Improvement (CI): For any A ∈ Cn and any B =
(B) ∈ Un, such that CA

n ⊂ B and B � CA

n , then, B �n A.

Common improvement prioritizes the set of functioning vectors simulta-
neously shared by all members of the society. If the set of functioning vectors
shared by all members in a society is expanded, then the new situation is
socially preferable, no matter how great the well-being offered by the com-
mon capability sets related to the various subgroups of the population. The
same intuition is captured by Hammond’s equity principle (see Hammond
[6]). The following is a transformation of Hammond’s equity principle to the
context of common capability profiles.

(3.1.4.) Strong Hammond Equity on Common Capability Profiles (SHEC):
For all A,B ∈ Cn with CA

j = CA

j−1 = . . . = CA

j−s, CB

j = CB

j−1 = . . . = CB

j−s

for some j ∈ {2, . . . , n − 1} and for some non negative s that j − s ≥ 1, if
CB

j � CA

j � CA

k � CB

k for some n ≥ k > j, and CA

i ∼ CB

i ∀i 6= k, j, then,
A �n B.

10



This is a property ensuring that if a potentially large number of com-
mon capability sets CA

j , CA

j−1, . . . , C
A

j−s being equal are improved, while a
capability set CA

k with k > j is worsened, then the former social state is
socially preferable to the latter. Thus, SHEC emphasizes the priority of the
“smaller” common capability sets over the “larger”.

Up to this point we have seen four important properties that are satisfied
by the binary relation �n

lcc. Actually, it can be easily proved that, with the
addiction of a couple of hypotheses, these four properties do axiomatically
characterize the relation �n

lcc. The hypotheses we need are labeled as Weak

efficiency on uniform profiles (WEUP) and Richness (RIC).

(3.1.5.) Weak Efficiency on Uniform Profiles WEUP: For any A,B ∈
Un,A = (A),B = (B), if A ⊆ B, then B �n A.

(3.1.6.) Richness RIC: For all A,B,C ∈ Un,A = (A),B = (B),C =
(C), such that A �n C,B �n C, there exist D,E ∈ Un,D = (D),E = (E),
with C = D ∩ E such that A ∼n D,B ∼n E.

Now, the characterization result for �n
lcc can be presented:

Theorem 1. Let �n be a binary relation on Cn fulfilling WEUP and
RIC. Then �n satisfies AN, SPEC, SHEC and CI if and only if �n=�n

lcc.

Proof: See the appendix.

3.2 The ranking of capability sets.

Our next step is to specify how the different common capability sets are to
be ranked vis-à-vis each other. We present the axioms we would like the
binary relation � over C to satisfy.

(3.2.1) Monotonicity: If A, B ∈ C and if A ⊆ B, then B � A. Moreover,
if A ⊂ B, then B � A.

(3.2.2) Invariance of Scaling effects: Given any pair A, B ∈ C and
any λi > 0, then A � B ⇔ λiA � λiB.

(3.2.3) Continuity : For all A ∈ C and a sequence of capability sets
{Bk}k=1,...,+∞ such that Bk ∈ C for all k and B = limk→∞ Bk ∈ C, if Bk � A
for all k, then B � A.

These axioms try to reflect some of the intuitive ideas that we feel a ca-
pability set ranking should satisfy. Monotonicity, for example, states that
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any expansion of any given capability set is always desirable. It has else-
where been argued (see Barberà et al. [1]) that the expansion of opportunity
sets should not invariably be taken to be in itself desirable, due to the fact
that the newly available options may in fact offer the agents no relevant or
interesting choices. However, this objection does not apply in our context:
by construction, each of the chosen functionings (the {f1, . . . , fm}) is sup-
posed to measure a certain characteristic considered to be desirable by all n
individuals.

The invariance of scaling effects means that the ranking of any two capa-
bility sets should not be altered if the units in which one measures a certain
functioning are re-scaled while the others are left unchanged. Furthermore,
by m successive applications of the same axiom (one for each re-scaled func-
tioning), the ranking remains unaltered even if all the units of measurement of
the different functionings are re-scaled. It is worth noting that the invariance
of scaling effects does not allow any kind of inter-functioning comparability.

The Continuity axiom states that the ranking � should not be suddenly
reversed. If each member of the sequence {Bk}k is considered to be at least
as good as A, then the limit of the sequence should also be considered to be
at least as good as A.

Apart from satisfying the aforementioned axioms, we also want the rela-
tion � to take into account both the intrinsic and the instrumental value of
freedom. On the one hand, in the attempt to rank capability sets according
to the intrinsic value of freedom, one might end up with a sort of quantita-
tive approach as in the cardinal relation (see Pattanaik and Xu [11]). In that
case,

A � B ⇔ |A| ≥ |B|. (9)

In this context, a capability set is considered to be good if it offers a great
deal of opportunities; the fact of having many available options within reach
is a valuable asset.

On the other hand, if the ranking of capability sets is done according to
the instrumental value of freedom, one ends up by valuing a capability set
according to its best element(s). That is, consider a non-negative, increasing
in its argument function Vj : Rm

+ → R+, where Vj(x1, . . . , xm) represents
the value attached to the functioning vector (x1, . . . , xm). Each Vj will be
called a valuation function and represents a different way of evaluating the
functioning vectors (x1, . . . , xm) ∈ Rm

+ . Now, if one has to rank two capability
sets A, B ∈ C according to Vj then one has
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A � B ⇔ max
a∈A

Vj(a) ≥ max
b∈B

Vj(b). (10)

Now, we would like to have a ranking that combines the spirit of these
two extreme approaches. As in Pattanaik and Xu [12], we propose a proce-
dure whereby the ranking increases with the number of alternatives, and is
sensitive to individuals’ preferences.

Definition 6. Given the capability set A, the evaluation of A according
to the valuation function Vj is defined as,

∫

A

Vj(x1, . . . , xm)dx1 . . . dxm. (11)

As long as no confusion arises, the last expression can be written as Vj(A).
This way of evaluating a capability set has the advantage of taking into
account both the intrinsic and the instrumental value of freedom. While the
integral is performed over the whole of A, taking the amount of available
choices into account, at the same time a valuation of the value of each point
is also being considered.

With respect to the explicit formulation of Vj(x1, . . . , xm), many possibil-
ities can be given. A simple one would be a Cobb-Douglas type of function.

That is, Vj(x1, . . . , xm) = x
w

j
1

1 . . . xw
j
m

m , where
∑k=m

k=1 wj
k = 1 and each wj

k rep-
resents the relative weight that the valuation function Vj attaches to the
k-th functioning. Consider now a set V of p valuation functions (p ∈ N),
that is: V = {V1, . . . , Vp}, each of which representing a “reasonable” way
of valuating functioning vectors (see Pattanaik and Xu [12] for a discussion
about reasonableness). Our proposal for ranking capability sets is defined as
follows.

Definition 7. Given any two capability sets A, B ∈ C and any set
V = {V1, . . . , Vp} of valuation functions, we define the capability set relation
�V as,

A �V B ⇔ Vj(A) ≥ Vj(B) for all j = {1, . . . , p}. (12)

Recall that the set V could be interpreted as the set of preferences that
are to be taken into account when ranking the capability sets A and B. One
possibility is to consider the case in which each individual in the society has a
given preference, so |V| = n and each Vi could be interpreted as individual’s
i preference. Another is to interpret the set V as the different preferences
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that a group of decision-makers (not necessarily the individuals in N) could
have.

One can readily verify that the ranking �V is reflexive and transitive,
but not necessarily complete (non-completeness appears when the different
valuation functions Vj do not all rank A and B equally). This is an example
of the intersection approach, advocated among others by Sen in [13], [14]
as a useful methodology for social evaluative exercises in which different and
conflicting opinions are present. Recall that in the specific case in which |V| =
1 (that is, when just one preference is taken into account), the ranking �V is
complete. It is routinely verified that such a ranking (employing the Cobb-
Douglas valuation functions) verifies the axioms of Monotonicity, Invariance
of Scaling Effects and Continuity.

Remark. There is another interesting way of considering how a capabil-
ity set A can be evaluated through the evaluation functions Vj apart from
the one presented above. We could evaluate A with the formula

Ṽj(A) :=

∫

U(A)

Vj(x1, . . . , xm)dx1 . . . dxm (13)

where U(A) are the non-dominated elements of A, that is, U(A) := {x ∈
A|@ y ∈ A such that y > x}. This way of evaluating a capability set also also
has the advantage of considering the quantitative and qualitative approaches
at the same time. Moreover, it could be reasonably argued that with Ṽj(A),
one is focusing specifically on the relevant opportunities offered by a given
capability set. When the integral is performed all over A, most of the oppor-
tunities we are taking into account are not relevant (i.e.: dominated) and we
could well get rid of them.

Alas, although such arguments are strong and convincing, there is a
methodological hurdle that deters us from using such formula to evalu-
ate capability sets in the present context. If our capability sets A are
non-degenerate, compact and comprehensive subsets of Rm

+ , then U(A) can
happen to be a set which is the disjoint union of sets that do not neces-
sarily have the same dimensions. For example, one could well have that
U(A) = S0 t S1 t . . . t Sm−1 where dim(Si) = i for all i = 0, . . . , m − 1. In
such cases, it is not clear how the operator

∫
U(A)

should be defined. (In the

case in which one considers the additional hypotheses that the capability sets
should also be convex, this problem would disappear. Indeed, U(A) would be
a m−1 dimensional subset of Rm

+ and
∫

U(A)
Vidx1 . . . dxm could be computed
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without problem. However, as we mentioned before, we do not consider con-
vexity a reasonable property that a capability set should satisfy.) In the face
of this and other related problems, this interesting approach has not been
adopted. More research would be needed to present another framework in
which it might be computationally feasible.

4 An example.

In order to illustrate more clearly how our proposed rankings �n
lcc and �V

work, we will present a simple example in the context of a three-member
society in which only 2 functionings are taken into account. We will present
a pair of capability profiles (A1, A2, A3) and (B1, B2, B3) ∈ C3 and show how
they are ranked.

Before proceeding, let us remark that the different capability sets C ∈ C
are univocally represented by its non dominated elements U(C). The com-
prehensiveness of such sets fills the rest of dominated vectors. For exam-
ple, C = {(1, 5), (4, 2)} represent the members of R2

+ included in any of
the following closed rectangles: {(x, y) ∈ R2| x ∈ [0, 1], y ∈ [0, 5]} and
{(x, y) ∈ R2| x ∈ [0, 4], y ∈ [0, 2]}.

Now, let A = (A1, A2, A3) = ({(1, 5), (3, 1)}, {(3, 4), (4, 3)}, {(2, 3), (5, 2)})
and B = (B1, B2, B3) = ({(1, 5), (5, 1)}, {(4, 4)}, {(2, 3), (3, 2)}) be the capability
profiles we would like to rank. For this purpose, we need to compute their
respective common capability sets. One clearly has that:
C

A=(CA
3

, CA
2

, CA
1

) = ({(1, 3), (3, 1)}, {(1, 4), (2, 3), (4, 2)}, {(1, 5), (3, 4), (4, 3), (5, 2)})
and that
C

B=(CB
3 , CB

2 , CB
1 ) =({(1, 3), (3, 1)}, {(1, 4), (2, 3), (3, 2), (4, 1)}, {(1, 5), (4, 4), (5, 1)}).

First, we have to rank CA

3 vis-à-vis CB

3 according to �V . These common
capability sets are to be evaluated with the valuation functions in V. Let
us suppose that one has two decision-makers d1, d2 with different opinions
about the weights to be attached to the functionings f1 and f2. Furthermore,
we assume that the respective valuation functions of d1 and d2 are V =
{V1(x, y) = x

1

2 y
1

2 , V2(x, y) = x
1

3 y
2

3}.

Then one computes the following,
∫

CA
3

V1(x, y)dxdy =

∫

CA

3

√
xydxdy =

∫
1

0

∫
3

0

√
xydydx +

∫
3

1

∫
1

0

√
xydydx =

4

9
(2(3)3/2 − 1) (14)
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∫
CB

3

V1(x, y)dxdy =

∫

CB

3

√
xydxdy =

∫
1

0

∫
3

0

√
xydydx +

∫
3

1

∫
1

0

√
xydydx =

4

9
(2(3)3/2 − 1) (15)

∫
CA

3

V2(x, y)dxdy =

∫

CA

3

x
1

3 y
2

3 dxdy =

∫ 1

0

∫ 3

0

x
1

3 y
2

3 dydx +

∫ 3

1

∫ 1

0

x
1

3 y
2

3 dydx =
9

20
(35/3 + 34/3 − 1) (16)

∫
CB

3

V2(x, y)dxdy =

∫

CB

3

x
1

3 y
2

3 dxdy =

∫
1

0

∫
3

0

x
1

3 y
2

3 dydx +

∫
3

1

∫
1

0

x
1

3 y
2

3 dydx =
9

20
(35/3 + 34/3 − 1) (17)

By comparing equations (14) and (15), on one side, and equations (16)
and (17) on the other, we obtain that CA

3 and CB

3 are indifferent from the
point of view of both d1 and d2. As both decision-makers coincide, CA

3

and CB

3 are declared to be indifferent: CA

3 ∼V CB

3 . According to the �3
lcc

ranking, one proceeds to compare and rank CA

2 with CB

2 . Then, we need
to check whether both decision makers agree with their respective rankings
or not. Thus, one should compute the respective integrals and compare the
results. One obtains that

∫

CA
2

√
xydxdy >

∫

CB
2

√
xydxdy (18)

and that ∫

CA
2

x
1

3 y
2

3 dxdy >

∫

CB
2

x
1

3 y
2

3 dxdy. (19)

This means that both d1 and d2 consider that CA

2 is strictly preferred to CB

2 ,
so one has that CA

2 �V CB

2 . Therefore, one concludes that (A1, A2, A3) �3
lcc

(B1, B2, B3).

5 Concluding Remarks.

In this paper we have presented an innovative approach for ranking profiles of
capability sets. Throughout our description we have presented highly explicit
formulations of the capability profile ranking �n (with the lexicographical
relation >L) and of the valuation functions {Vj}1≤j≤p (with the Cobb-Douglas
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type of functions). However, we must point out that these were actually
chosen for illustrative purposes, in order to show explicitly how our proposed
ranking worked. If deemed necessary, they could be replaced in different
context with other more appropriate functions. These would only be minor
changes and would not modify the core ideas of our approach; namely, the use
of common capability sets to rank profiles and the use of valuation functions
to evaluate them.

The main concern of this paper has been to offer an appropriate frame-
work in which to rank profiles of capability sets. We contend that the ap-
proach presented here could also be extended to other more general contexts,
such as opportunity sets or opportunity profile rankings. In such a general
context there is no need for the opportunity sets to be of an explicit topolog-
ical structure, as in the present case, and different results might emerge. As
the present approach could also be insightful and useful in other contexts,
we consider that such a generalization merits further research.

We believe that the approach presented here is a potentially useful ad-
dition to the social planner’s toolkit, since it offers a relatively new and
complementary view of how to evaluate and modify a given social state of
affairs.

Appendix.

Preposition: For any α ∈ (0, 1], C(A1, . . . , An; α) ∈ C.

Proof : To prove that, one has to prove that the C(A1, . . . , An; α) are:
a) non-degenerate, b) compact and c) comprehensive. We see them one
by one. a) Take C(A1, . . . , An; 1) =

⋂
i∈N Ai. As we have already men-

tioned, in the context of non-degenerate, compact and comprehensive capa-
bility sets,

⋂
i∈N Ai 6= ∅. Moreover, it can be proven that there exists some

x = (x1, . . . , xm) ∈ ⋂
i∈N Ai such that xi > 0 for all i = 1, . . . , m. To see

this consider, for each Ai, an element ai = (ai1 , . . . , aim) such that aij > 0
for all j = 1, . . . , m. Since the Ai are non-degenerate, such ai can be found
for all i = 1, . . . , n. Now, consider the values di := min{ai1 , . . . , aim}. It
is then clear that [B(0, di) ∩ Rm

+ ] ⊆ Ai for all i = 1, . . . , n (where B(0, di)
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is the set of points in Rm
+ which are at a distance less than di from the

origin). If we define ε := min(d1, . . . , dn), then, by comprehensivity of
each of the Ai, one clearly has that the vector (

√
ε
m

, . . . ,
√

ε
m

) ∈ Ai for

all i = 1, . . . , n. So (
√

ε
m

, . . . ,
√

ε
m

) ∈ ⋂
i∈N Ai is the non-degenerate el-

ement we were looking for. Now, one concludes by observing that each
C(A1, . . . , An; α) ⊇ C(A1, . . . , An; 1). b) For any α ∈ (0, 1], one has that
C(A1, . . . , An; α) ⊆ ⋃

i∈N Ai (even for those α̃ ∈ (0, 1/n), for which, by def-
inition, C(A1, . . . , An; α̃) =

⋃
i∈N Ai). Thus, as each of the Ai is bounded,

and the finite union of bounded sets is bounded, the C(A1, . . . , An; α) are
also bounded. Let us now see that they are also closed. Recall that each
C(A1, . . . , An; α) can be interpreted as the set of functioning vectors that
can be achieved or improved by at least dnαe individuals at the same time.
Thus, one could say that the C(A1, . . . , An; α) are obtained as the union of
all possible intersections of the sets {Ai}i∈{i1,...,idnαe}, where {i1, . . . , idnαe} ⊆
{1, . . . , n}. That is:

C(A1, . . . , An; α) =
⋃

{i1,...,idnαe}⊆{1,...,n}

[ ⋂

i∈{i1,...,idnαe}

Ai

]

Since each Ai is closed and the finite unions and intersections of closed
sets is closed, one concludes that, as we wanted to see, C(A1, . . . , An; α)
is closed. Thus, the C(A1, . . . , An; α) are compact. c) Suppose that x ∈
C(A1, . . . , An; α) and x ≥ y for a certain y ∈ Rm

+ . By definition, it is clear
that if x is achieved of improved by j ≤ n individuals, then those j in-
dividuals will also achieve or improve the vector y, so I(A1, . . . , An; x) ≤
I(A1, . . . , An; y). Thus, one concludes that y ∈ C(A1, . . . , An; α). Q.E.D.

Theorem 1. Let �n be a binary relation on Cn fulfilling WEUP and
RIC. Then �n satisfies AN, SPEC, SHEC and CI if and only if �n=�n

lcc.

Proof: Let us start by noting that, for any capability profile A =
(A1, . . . , An) ∈ Cn one has that CA = (CA

n , . . . , CA

1 ) ∈ N n, and that ev-
ery nested profile B = (B1, . . . , Bn) ∈ N n can be thought as a common
capability profile (one can readily verify that CB = B). In other words: the
space of common capability profiles and the space of nested profiles N n is
exactly the same.

One can define the following binary relation on Cn: given any A,B ∈ Cn

we say that A is related to B (written as A ∼ B) if and only if CA =
CB. This way one can define a partition of Cn through the equivalence
classes established by ∼. Each of the equivalence classes will be denoted by
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[(D1, . . . , Dn)] for a certain representative (D1, . . . , Dn) ∈ Cn. It is straight-
forward to verify that there is a one-to-one correspondence ϕ : (Cn/ ∼) →
N n, where ϕ([(D1, . . . , Dn)]) is the only nested profile included in the equiv-
alence class [(D1, . . . , Dn)]. We will now show that, given any A,B ∈ Cn,
then

A �n
lcc B ⇔ ϕ([A]) �n

lo ϕ([B]). (20)

From one side, by definition one has that A �n
lcc B ⇔ (CA

n , . . . , CA

1 ) >L

(CB

n , . . . , CB

1 ). From the other side, one has that ϕ([A]) = CA and ϕ([B]) =
CB. Now, it is easily checked that, by construction, CA �n

lo CB ⇔ (CA

n , . . . , CA

1 ) >L

(CB

n , . . . , CB

1 ), so (20) is proven. What this relation is telling us is that
ranking capability profiles with �n

lcc is exactly the same as ranking nested

capability profiles with �n
lo. This means that in order to characterize the

capability set ranking �n
lcc we will just have to characterize the capability

set ranking �n
lo when this one is restricted to N n. Now, the relation �n

lo has
been univocally characterized in [7] with the following axioms:

Anonymity : For any A ∈ Cn and any permutation p : N → N,A ∼n

p(A).

Strong Pareto Efficiency : For all A = (A1, . . . , An),B = (B1, . . . , Bn) ∈
Cn, if Ai � Bi ∀i ∈ {0, . . . , n}, then A �n B. If moreover some preference is
strict, then A �n B.

Strong Hammond Equity : For all A,B ∈ Cn,A = q(A),B = q(B),
such that: Aj = Aj+1 = . . . = Aj+s; Bj = Bj+1 = . . . = Bj+s for some
j ∈ {2, . . . , n − 1} and s such that j + s ≤ n, Ak � Bk for some 0 < k < j,
Ai ∼ Bi for all i 6= k, j, and Bj � Aj � Ak � Bk, then A �n B.

Common Improvement : For any A ∈ Cn,A = q(A), any B ∈ C, A0 ⊂
B, B � A0, B = (B) ∈ Un, then B �n A.

Finally, it is routinely verified that when these axioms are restricted to
the set of nested profiles they coincide respectively with the properties AN,
SPEC, SHEC and CI presented in this paper. Q.E.D.
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Barberà S, Hammond P J, Seidl C (Eds.), Handbook of Utility Theory, vol.2.
Kluwer Academic Publishing, Dordrecht.

[2] Chakraborty A (1996) On the possibility of a weighting system for function-
ings, Indian Economic Review 31(2): 241-50.

[3] Dutta I, Pattanaik P K, Xu Y (2003) On measuring deprivation and the
standard of living in a multidimensional framework on the basis of aggregate
data, Economica 70: 197-221.

[4] Elster I (1982) Sour grapes - utilitarianism and the genesis of wants. In: Sen
A K, Williams B (Eds.), Utilitarianism and Beyond, Cambridge University
Press; 219-249.

[5] Farina F, Peluso E, Savaglio E (2004) Ranking Opportunity Sets in the Space
of Functionings, Journal of Economic Inequality, 2: 105-116.

[6] Hammond, PJ, (1976) Equity, Arrow’s Conditions and Rawls’s Difference
Principle, Econometrica 44: 793-804.

[7] Herrero C, Iturbe-Ormaetxe I, Nieto J (1997) Ranking Opportunity Profiles
on the Basis of the Common Opportunities, Mathematical Social Sciences,
35: 273-289.

[8] Kranich L (1996) Equitable Opportunities: An Axiomatic Approach, J. Econ.
Theory, 71: 131-147.

[9] Ok E A (1997) On Opportunity Inequality Measurement, Journal of Economic
Theory 77: 300-329.

[10] Ok E, Kranich L (1998) The measurement of opportunity inequality: a car-
dinality based approach, Social Choice and Welfare, 15: 263-287.

[11] Pattanaik P K, Xu Y (1990) On Ranking Opportunity Sets in terms of Free-
dom of Choice, Rech. Econ. Louvain, 56: 383-390.

[12] Pattanaik P K, Xu Y (2000) On Ranking Opportunity Sets in Economic
Environment, J. Econ. Theory, 93: 48-71.

[13] Sen A K (1985) Commodities and Capabilities, (Hennipman Lecture given on
22 April 1982), Oxford University Press, Oxford.

[14] Sen A K (1992) Inequality Re-examined, Oxford University Press, Oxford.

[15] Xu Y (2002) Functioning, capability and the standard of living-an axiomatic
approach, Economic Theory, 20: 387-399.

20


