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Abstract
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teams as the main obstacle to lobbies' collective action. In this paper,
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both in the absence and in the presence of moral hazard. Three notable
results emerge from such an exercise: (i) an equilibrium lobby structure
exists under both speci�cations of the model, (ii) moral hazard in
teams may raise large groups' equilibrium lobby size, and (iii) it may
also raise the total contribution to lobbying of large groups with low
organizational costs.
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1 Introduction
In many situations of interest in economics and political science, agents with
common goals form groups or organizations. The achievement of these goals
often depends on nonveri�able, individual contributions by group members to
the collective cause. Then, the activity carried out by such groups is referred
to as collective action; political in�uence, labor unions, military alliances,
and global pollution control, being canonical examples. For concreteness,
the present paper focuses on self-interest groups.

There is now a large literature on ine�ciencies arising in groups or orga-
nizations' collective action, dating back to the seminal work of Olson (1965).
All of these papers point to free riding within organized groups (or moral
hazard in teams) as an important obstacle to collective action: Each mem-
ber of the group has an incentive to bene�t from the e�ort contributed by
other members while contributing insu�ciently herself. As the incentive to
shirk grows with the group's size, large groups are consequently expected to
be the most a�ected by the free-rider problem. Thus, we can conjecture that,
paraphrasing Mueller (2003, p. 473),

the appearance of organizations that e�ectively represent large
numbers of individuals requires that separate and selective incen-
tive(s) be used to curb free-riding behavior.

The point we wish to make in this paper is that this apparently com-
pelling conclusion may actually be questioned. Much of the analysis of collec-
tive action has been concerned with the free-rider problem within organized
groups. However casual observation suggests that, lobbying, as many similar
collective-action situations, involves a preliminary stage that does not explic-
itly appear in the Olsonian theory: before engaging e�ectively in activities of
interest to their members, groups have to get organized. That is, potential
members of a lobby must �rst bear initial organization costs that consist of
developing administrative structures, or communication networks, to name
a few. A complete analysis of the implication of moral hazard in teams on
collective action should, accordingly, include the lobby-formation stage.

Thus, this paper asks the following question: does moral hazard in teams
impede large groups' collective action in a setting that takes lobby forma-
tion into consideration? To answer this question, we cast the analysis of
the free-rider problem within a two-stage framework in which groups �rst
organize in a lobby, and then compete to further their interests. An imme-
diate consequence of this assumption is that, in addition to the traditional
free-riding phenomenon described in the collective-action literature, another
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one appears here: At the lobby formation stage, some members of a given
group may choose to remain out of the lobby that represents the group's
interests. When we refer to free-riding, we must thus distinguish between
the behavior of individuals who do not join the lobby in the �rst stage of the
game, and the behavior of those who join the lobby but shirk in the second
stage. To avoid any confusion, we use hereon the term moral hazard in teams
(Holmström, 1982) to designate free riding within organized lobbies, while a
free-rider is exclusively referred to as any individual who stays out of a lobby
while bene�ting from its action.

Examples of such situations abound in collective action. Among the most
conspicuous of these are environmental lobbies and some labor unions, the
members of which engage in activities that also bene�t many non-members.
Moreover, most of these activities (demonstrations, letter-writing, telephone
campaigns) are particularly subject to moral hazard. But this coexistence of
free-riding and moral hazard phenomena is not limited to lobbying. Another
example is provided by international environmental agreements. While some
countries do not participate, some others sign the agreement but then cheat
on it (see Petrakis and Xepapadeas, 1996).

The process through which lobbies compete to in�uence government pol-
icy is extremely complex. Our aim here is to concentrate on moral hazard in
teams within organized lobbies, and then to abstract from any other complex-
ity that such a situation might realistically entail. Esteban and Ray (2001)
o�er a model of collective action that appears to be particularly well suited
to this purpose. In this model, groups of identical individuals hold di�erent
views about the relative desirability of feasible alternatives, and each would
like its favorite to be chosen. The simpli�cation taken here is to let in�uence
mechanisms lurk in a win-probability function that maps lobbies' aggregate
contributions into a probability distribution over favored alternatives. Al-
though this is a highly abstract version of groups' competition for in�uence,
it contains all the elements needed to study the impact of moral hazard in
teams on lobby formation and collective action, which is the main focus of
the present paper. We model the lobby formation process as Nash, in the
sense that an equilibrium structure is one in which no individual wants to
leave his or her lobby, given the equilibrium behavior of the other individuals
in the society, and no individual has an incentive to become a lobbyist.

We consider two di�erent speci�cations of this model, which both possess
an equilibrium lobby structure (Proposition 1). To highlight the impact of
moral hazard on groups' ability to organize in a lobby, we �rst study the case
in which individual contributions are veri�able, and cooperation between
lobby members is then feasible. This benchmark case displays a notewor-
thy feature: whatever the value of the exogenous cost of getting organized,
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the equilibrium size of each lobby cannot exceed some upper-bound, which
does not depend on the total size of the group it represents (Proposition 2).
Therefore, large groups (with a membership that exceeds the upper-bound
under consideration) comprise free-riders when there is no moral hazard in
teams. We then do the same exercise with a more realistic framework in
which contributions are not veri�able. Proposition 3 establishes that there
is no upper-bound, except the group size, on a lobby's equilibrium member-
ship: its equilibrium size can be arbitrarily large as long as its �xed costs
are su�ciently low. Our model thus predicts that the lobby's membership
of large groups with low �xed costs is larger with than without moral haz-
ard in teams. This is a somewhat surprising, but actually quite intuitive,
result: the non-veri�ability of individual contributions allows lobbyists to
reduce their contribution costs, and thus raises individuals' incentives to be-
come lobbyists. If it is too costly for an individual to join the lobby that
defends her interests, she may refrain from doing so. By lowering the cost
of being a lobby member, moral hazard in teams favors participation in lob-
bying activities. In fact something stronger is true: provided that a group's
size is large enough and its �xed organization cost is su�ciently low, moral
hazard in teams raises that group's total contribution to lobbying (Proposi-
tion 4). This last result stands in sharp contrast with the above-mentioned
Olsonian conjecture, inviting a reassessment of the role of moral hazard in
teams in collective action. In particular, curbing moral hazard within an
organized group, as urged by Olson (1965), may sometimes have a perverse
e�ect, undermining individuals' incentives to take part in collective action.

The paper is organized as follows. In Section 2 we present the model.
Existence and characterization results are presented in Section 3. Finally,
Section 4 is devoted to concluding remarks. Proofs are gathered in the ap-
pendix.

Related Literature
In The Logic of Collective Action, Olson (1965) has o�ered the �rst steps
of a theory on collective action. A large literature has followed from this
initial work, which explores the relationship between group size and collective
action.1 The most recent theoretical contributions are due to Agrawal and
Goyal (2001), and Esteban and Ray (2001). Another branch of this literature,
including Petrakis and Xepapadeas (1996) and Pecorino (1998, 2001), studies
groups' ability to overcome the free-rider (or moral-hazard) problem. To

1We refer the reader to Sandler and Hartley (2001) for a recent account of the literature
on collective action.
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the best of our knowledge, the present paper is the �rst contribution that
questions the negative impact of moral hazard in teams on collective action.

Most of the political-economy literature on lobbying has been focused on
the in�uence process (an extensive survey can be found in Grossman and
Helpman, 2001). Although these authors clearly recognized the importance
of group formation in the lobbying process, issues of formation and organi-
zation have been little discussed in formal models. Focusing on the case of
trade policy, Mitra (1999) was the �rst contribution to study lobbying with a
model involving an explicit coalition-formation stage: In the �rst stage of the
game, individuals with common interests in the trade policy decide whether
or not to bear the cost of getting organized; in the second stage, groups that
have formed lobby the government in order to in�uence its policy. Mitra
(1999) however assumes that, once formed, lobbies act as a single entity, and
consequently ignores the free rider problem raised by the collective-action lit-
erature. Felli and Merlo (2006) o�er a theory of endogenous lobbying center-
ing on a bargaining game between an elected decision-maker and a coalition
of lobbies chosen by the latter. Lobbying is endogenous in their model, for
the policy-maker selects the lobbies that participate in the lobbying process.

Recently, Le Breton and Salanié (2003), and Martimort (2004) have ex-
plored lobby formation in common-agency settings. Both papers emphasize
how government's private information a�ects the participation in the lob-
bying process. But there is no explicit organization step in their models,
as participation means nonzero contribution. They have little to say about
biases in collective action that may result from groups' organization. Our
contribution here is in examining the linkage between moral hazard in teams
and collective action via its e�ects on lobby formation.

Our analysis of collective-action problems is also related to recent papers
in the literature on coalition-formation games. The paper most closely related
to our model is that by Espinosa and Macho-Stadler (2003), who study the
impact of moral hazard in teams on the formation of partnerships in a model
of Cournot competition. In their paper, coalition formation is modelled as
an in�nite-horizon sequential game. They show that, when moral hazard
within partnerships is not too severe, the coalition structure may be more
concentrated then it would be in the absence of moral hazard.

2 The Model
As mentioned in the introduction, a natural way to model lobby formation
in collective-action settings is as a two-stage process in which each lobby �rst
forms, and then competes with other organized groups to in�uence decision-
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making. Following Mitra (1999), we thus study a two-stage lobby-formation
game with the following structure2:

1. Lobby formation: Every individual decides whether to join or not the
organized group that represents her interests.

2. Collective action: Lobbies that have formed play a collective-action
game.

This formalism allows us to distinguish between two free-riding phenom-
ena. The �rst may arise in the �rst stage of the game, when some individuals
do not join the lobby, although bene�ting from its action in the second stage.
The second, called moral hazard in teams throughout the paper, arises in the
second stage when e�ort is not veri�able and lobby members contribute in-
su�ciently to the lobbying action.

We will study (pure strategy) subgame perfect Nash equilibria of this
game. Moving backward, we �rst describe the collective-action stage, and
then turn to lobby formation.

2.1 Collective Action
In this subsection we sketch the abstract collective-action model proposed by
Esteban and Ray (2001). We will describe this model below, but refer the
reader to that paper for an in-depth discussion of the basic assumptions.

Consider a society in which individuals belong to one of G distinct groups,
labelled with an index i ∈ {1, . . . , G}. Let ni ≥ 2 be the size of group i, and n
be the size of the entire population: n ≡ ∑

i ni. The members of each group
share a common interest in the choice of a collective good (public project,
government...) for the whole society. G mutually exclusive alternatives are
available: members of group i favor alternative i. Each member of group i
enjoys a per-capita bene�t of wi > 0 if alternative i is chosen by the society,
and a bene�t normalized to be zero if another alternative is chosen.3

Group i's interests may be defended by a lobby (or organized group),
called lobby i, with membership ci ∈ [0, ni]. In the original version of the
model, the ci's are exogenously given and equivalent to the total size of each
group (ci = ni, i = 1, . . . , G). We postpone to the next subsection to explain

2Murdoch, Sandler, and Vijverberg (2003) use a similar framework in the context of
an environmental treaty. Nations �rst decide whether or not to participate and then they
choose their level of participation.

3Esteban and Ray (2001) distinguish between the public and the private components
of the collective good. This distinction would not play any role in the present analysis.
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how, in the present paper, individuals in the society decide to become either
lobbyists or free-riders.

Collective action takes place as follows: Within each lobby, individuals
simultaneously contribute a certain level of e�ort to the collective cause, thus
yielding lobbies' aggregate e�orts. Let Ai denote lobby i's aggregate e�ort,
and A−i be the aggregate e�ort of lobby i's opponents plus some positive
term A0. This parameter models the presence of a group of individuals who,
for some reasons, are unable to organize in order to in�uence the decision-
making process. A0 thus represents the decision-maker's consideration for
those individuals irrespective of other groups' contributions. It can also re-
�ects the presence of an alternative that only bene�ts the decision-maker, as
diversion of public funds for private use. Actually, assuming A0 > 0 allows
us to sidestep discontinuity and existence problems.4 The probability for
alternative i to be chosen is then given by

πi (Ai, A−i) ≡ Ai

Ai + A−i

.

The cost of contributing e�ort level a to the lobbying is given by v(a), where
v is an increasing, continuous, strictly convex function with v′(0) = 0. As in
Esteban and Ray (2001), the shape of the v function will play an important
role in the statement of the formal results. More precisely, we will use the
following convexity index:

α(a) ≡ av′′(a)

v(a)
,

which can be interpreted as the elasticity of the marginal rate of substitution
between reward and e�ort. For technical convenience, α is assumed to be
bounded from above.

Given group e�orts (A1, . . . , AG), the expected utility of a member of
lobby i contributing a is therefore equal to

πi (Ai, A−i) wi − v(a).

Two possible formulations of the model will successively be studied. We
begin with the veri�able-contribution case because it creates a benchmark
against which to measure the impact of moral hazard in teams on groups'
collective action.

4To see this, suppose A0 = 0 and consider a continuation game in which only one lobby
has formed. This game has no Nash equilibrium, and therefore the general game has no
subgame perfect Nash equilibrium.
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Collective Action when E�ort is Veri�able
Consider �rst the equilibrium arising in this model when lobbyists' contri-
bution levels are veri�able. In such a case, cooperation within lobbies is
feasible, for lobbyists can write ex ante contracts contingent on their individ-
ual contribution. We assume that each lobby's objective is to maximize its
members net welfare, with the same contribution for all members. A Nash
equilibrium of this game is thus a pro�le (a1, . . . , aG), such that each group
i maximizes

ci

[
ciai

ciai + A−i

wi − v(ai)

]

with respect to ai, taking the equilibrium aggregate e�ort exerted by the
other groups as given. Hence, if (a1, . . . , aG) is a Nash equilibrium, these
e�ort levels must satisfy the following �rst-order condition:

ciwi

ciai + A−i

(
1− ciai

ciai + A−i

)
= v′(ai), (1)

for every i = 1, . . . , G.
Following the reasoning used in Esteban and Ray (2001), it is easy to

check that the system of equations de�ned by (1) has a unique solution for
every vector (c1, . . . , cG) ∈ RG

+. Let the collection of functions {ai(ci, c−i)}G
i=1

stand for these solutions, where c−i denotes the vector of memberships of all
lobbies except i.

Collective Action with Moral Hazard in Teams
We now turn to the situation in which e�ort levels are not veri�able. In this
case, lobbyists' behavior is subject to moral hazard: Instead of maximizing
the lobby's aggregate welfare, each member of lobby i chooses a contribution,
a, which maximizes her individual expected utility

Ai

Ai + A−i

wi − v(a)

taking as given the other individuals' contribution. The level of e�ort ai

exerted by the members of lobby i must therefore satisfy the �rst-order con-
dition

wi

ciai + A−i

(
1− ciai

ciai + A−i

)
= v′(ai) (2)

for every i = 1, . . . , G.
As in the case without moral hazard, one can show that the system of

equations (2) de�nes the unique Nash equilibrium of the second-stage game.
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Denoting by {am
i (ci, c−i)}G

i=1 the solutions of these equations, we can immedi-
ately note that am

i (ci, c−i) < ai(ci, c−i) whenever ci > 1. Hence, moral hazard
leads to a decrease in the individuals' e�ort levels. This occurs because each
individual fails to consider the bene�ts for other lobbyists of her contribution
to the lobbying activity.

Up to this point, we have taken each lobby's membership as given. We
now propose a model of lobby formation in which lobbies' memberships are
endogenously derived.

2.2 Lobby Formation and Equilibrium Structures
In the �rst-stage of the game, all individuals in society simultaneously choose
whether to join or not the lobby that defends their interest. That is, a player's
action set in this stage is {in, out}. As in Mitra (1999), we assume that
forming a lobby involves a �xed cost Fi for group i. Here lobby formation is
regarded as a sunk investment (establishing links with politicians, building an
administrative structure and communication networks). Those in society who
do not initially bear that set-up investment do not have access to lobbying
during the decision process.5

Since players perfectly anticipate the e�ort levels that will be exerted
in the second stage, their payo�s can be expressed as functions of lobbies'
sizes (c1, . . . , cG). We describe these payo�s using the functions Pi, Qi in the
absence of moral hazard, and Pm

i , Qm
i in the presence of moral hazard: If an

individual of group i plays �in�, she becomes a lobbyist and her payo� when
ci > 0 is given by

Pi(ci, c−i) ≡ ciai(ci, c−i)

A0 +
∑G

j=1 cjaj(cj, c−j)
wi − v (ai(ci, c−i))− Fi

ci

in the absence of moral hazard, and

Pm
i (ci, c−i) ≡ cia

m
i (ci, c−i)

A0 +
∑G

j=1 cjam
j (cj, c−j)

wi − v (am
i (ci, c−i))− Fi

ci

with moral hazard. If an individual of group i plays �out�, she has no e�ect
on the future play since the second stage of the game only involves lobbyists.

5This assumption is comforted by a recent empirical analysis by Hojnacki and Kimball
(2001). Their study con�rms that political action committee (PAC) a�liates in the US
enjoy signi�cantly greater access to members of Congress than non-a�liated lobbyists.
Furthermore, they show that this lobbying advantage stems from the base of support
PACs have established around the country, and not from their contributions.
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This individual is a free-rider in that she bene�ts from the lobbying without
contributing to it; she thus receives

Qi(ci, c−i) ≡ ciai(ci, c−i)

A0 +
∑G

j=1 cjaj(cj, c−j)
wi,

or
Qm

i (ci, c−i) ≡ cia
m
i (ci, c−i)

A0 +
∑G

j=1 cjam
j (cj, c−j)

wi.

Consider now the subgame-perfect Nash equilibria of the game without
moral hazard. In a subgame perfect equilibrium with memberships (ci, c−i),
every individual who has chosen to join a lobby does at least as well by doing
so as she would do if she were to change her decision to �out�, given the
anticipated outcome of the second-stage collective-action game. Put formally,

Pi(ci, c−i) ≥ Qi(ci − 1, c−i). (3)

Similarly, every individual who has chosen to remain out of her lobby does
at least as well by doing so as she would do if she were to change her decision
to �in�:

Qi(ci, c−i) ≥ Pi(ci + 1, c−i). (4)
To use the language of coalition-formation games, conditions (3) and (4)

ensure internal and external stability, respectively.6 The same reasoning
applies to the equilibria of the game with moral hazard.

The next de�nitions make precise the meaning of equilibrium structure
in the lobby formation game under both speci�cations of the model. For
notational ease, we de�ne the stability functions {Li(ci, c−i)}G

i=1, as

Li(ci, c−i) ≡ Pi(ci, c−i)−Qi(ci − 1, c−i).

These functions, introduced by Carraro and Siniscalco (1997), capture indi-
viduals' incentives to become (and remain) lobbyists. They will be handy
when we come to study equilibrium memberships in Section 3.

De�nition 1 In the absence of moral hazard, an equilibrium structure of
the lobby formation game is a pro�le (c∗1, . . . , c

∗
G) ∈ ({0} ∪ N)G such that:

(i) c∗i ≤ ni,
(ii) Li(c

∗
i , c

∗
−i) ≥ 0 if c∗i > 0, and

(iii) Li(c
∗
i + 1, c∗−i) ≤ 0 if c∗i < ni,

for every i = 1, . . . , G.
6The concept of internal and external stability was introduced by d'Aspremont et al.

(1983) who used it to study cartel stability in single-coalition games.
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The last two conditions of De�nition 1 correspond to internal and external
stability, respectively. They ensure that, in equilibrium, nobody wants to
leave (condition (ii)) or to join (condition (iii)) a lobby. Condition (i) is
a natural feasibility condition. We similarly de�ne an equilibrium structure
under moral hazard. As above, we �rst introduce the stability functions
{Lm

i (ci, c−i)}G
i=1:

Lm
i (ci, c−i) ≡ Pm

i (ci, c−i)−Qm
i (ci − 1, c−i).

De�nition 2 With moral hazard in teams, an equilibrium structure of the
lobby formation game is a pro�le (cm

1 , . . . , cm
G ) ∈ ({0} ∪ N)G such that:

(i) cm
i ≤ ni,

(ii) Lm
i (cm

i , cm
−i) ≥ 0 if cm

i > 0, and
(iii) Lm

i (cm
i + 1, cm

−i) ≤ 0 if cm
i < ni,

for every i = 1, . . . , G.

Let C∗(F ) [resp. Cm(F )] be the set of equilibrium structures in the absence
[resp. in the presence] of moral hazard when the vector of �xed costs is
F = (F1, . . . , Fn). Characterizing these equilibrium structures occupies the
section to follow.

3 Equilibrium Lobby Structures
In this section, we are interested in three questions. First, what conditions
guarantee the existence of equilibrium lobby structures? Second, assuming
that such stable structures exist, what can we say about the equilibrium
size of lobbies in the di�erent contexts envisioned by the model? And �-
nally, under what conditions can we infer from equilibrium lobby structures
that, contrary to the Olsonian conjecture, moral hazard in teams favors large
groups' collective action? We begin the analysis with an introductory exam-
ple, postponing the statement of general results until the next subsections.

3.1 A Simple Example
To facilitate a clear understanding of the impact of moral hazard in teams on
lobby formation, it may be helpful to begin with a simple graphical represen-
tation. We assume that G = 1 in order to be able to represent the equilibrium
structure in a single graph. Let w1 = 1, A0 = 0.5, and let v(a) = a2/2. As
we want to depict a situation in which the �xed cost is arbitrarily low, we
further assume that F1 = 0.
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Figure 1 represents group 1's stability function under both speci�cations
of the model. The grey curve represents L1(c1), and the black curve repre-
sents Lm

1 (c1).
FIGURE 1 HERE: Stability Functions

To begin with, consider the without-moral-hazard curve. Applying Def-
inition 1 and assuming n1 ≥ 2, the unique equilibrium membership is easily
seen to be c∗1 = 2. Indeed, at every c1 < 2, condition (ii) is violated and it is
consequently pro�table for free-riders to become lobbyists. On the contrary,
leaving the lobby is a pro�table move for lobbyists whenever c1 ≥ 3. Thus
c∗1 = 2 is the unique integer satisfying both stability conditions. An imme-
diate consequence of this is that, even if the exogenous cost of forming the
lobby is zero, group 1 comprises n1 − 2 free-riders in the equilibrium of the
game without moral hazard.

Now, let us introduce moral hazard in teams in the game. Looking at
the black curve in Figure 1, we can see that Lm

1 (c1) > 0 for every c1 ≤ 4,
and Lm

1 (c1) < 0 for every c1 ≥ 5. This in turn implies that cm
1 = 4 must

be the unique equilibrium structure of the game with moral hazard. Thus,
two individuals who were free-riders in the previous case are now lobbyists,
and the size of the lobby is consequently larger in the presence than in the
absence of moral hazard: cm

1 ≥ c∗1.
For any membership c1 to survive as an equilibrium structure, it must

be that neither lobbyists nor free-riders have an incentive to deviate: while
deviation to lobbying may be desirable for a free-rider as a means of raising
the win probability, π1, deviation to free-riding may also be desirable for a
lobbyist in order to avoid the cost of contribution, v(a1). An intuition for
the above result can be obtained by comparing the two cost-of-contribution
curves in Figure 2. Indeed, the cost of contribution appears to be quite dif-
ferent depending on whether the lobby faces moral hazard or not. Inspecting
�rst the problem solved by cooperating lobbyists in the absence of moral
hazard, we see that we can break the e�ect of the size change (dci > 0) on
individual contributions into two e�ects: (i) a positive e�ect from the increase
in the marginal gain from individual contributions (a marginal increase of a1

induces a larger increase of group 1's win probability), and (ii) a negative ef-
fect from the fact that the same level of aggregate e�ort, A1 = c1a1, requires
lower individual contributions. Thus, even if the second e�ect dominates, it
is attenuated by the �rst one. As a result, even when c1 is large, lobbyists
have strong incentive to leave the lobby in order to escape the onerous cost
of contribution to lobbying.

The positive e�ect of the size on individual contribution dies out when
the lobby faces moral hazard, for lobbyists no longer internalize the positive
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impact of their contribution on the other members of the lobby. With moral
hazard in teams, an increase in c1 only strengthens lobbyists' incentives to
free ride their partners, thereby lessening individual contributions to lobby-
ing: in Figure 2, the black curve lies everywhere below the grey one. This
makes lobbying su�ciently attractive to induce some free-riders to join the
lobby.

FIGURE 2 HERE: Costs of Contributions

This example illustrates the simple fact that, although moral hazard in
teams causes individual contributions to decline, it may also raise the lobby
size by reducing individual contribution costs.

3.2 Existence and Characterization of EquilibriumMem-
berships

Equipped with a general intuition, we now turn to the formal analysis. Before
worrying about the features of equilibrium structures, it is important to ask
whether such structures are likely to exist. The following proposition provides
a general existence result, which motivates the analysis to follow.

Proposition 1 An equilibrium structure exists both in the absence and in
the presence of moral hazard in teams. That is, for any F ∈ RG

++,

C∗(F ) 6= ∅ and Cm(F ) 6= ∅.
Thus, no speci�c condition is needed to guarantee the existence of equi-

librium structures.
We propose now to investigate whether the intuition provided in the above

example carries over to the general model with several groups. This appears
far less obvious, however, and it turns out that an additional assumption is
needed here. Let Am(ci, c−i) ≡ A0 +

∑G
j=1 cja

m
j (cj, c−j) be the equilibrium

level of total contributions in the presence of moral hazard, and let ηi(ci, c−i)
stand for its elasticity with respect to the size of lobby i:

ηi(ci, c−i) ≡ ci

Am(ci, c−i)

∂Am(ci, c−i)

∂ci

.

We will make the following
Assumption A: For very group i and any vector c−i ∈ RG−1

+ :

lim
ci→+∞

[
1

1− ηi(ci, c−i)

]
< inf

a
α(a).
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As shown by Subsection 3.1, this assumption is not necessary for our
results to hold. It is generally satis�ed in cases where α is large (take the
example of Subsection 3.1 with v(a) = a3/3, for instance). Intuitively, for
a given gap between ai and am

i , the larger α(·) the larger the impact of
moral hazard on the cost of contribution (and then the incentive to become
a lobbyist), v(ai) − v(am

i ). Note that, even if Assumption A is a condition
on parameters, it does not impose any restriction on groups' size and on the
vector of organizational costs, F , which are the relevant data in the next
propositions.7

Let us now turn to the characterization of equilibrium lobby memberships.
We start with the important base case in which organized lobbies do not face
moral hazard in teams.

Proposition 2 For every i = 1, . . . , G, there exists an upper-bound c̄i ≥ 0
(that does not depend on ni) such that (c∗i , c

∗
−i) ∈ C∗(F ) implies c∗i ≤ c̄i.

Proposition 2 asserts the existence of an upper bound on the equilibrium
size c∗i of each lobby i in the absence of moral hazard in teams. An immediate
consequence of this is that large groups (ni > c̄i) comprise free-riders in any
equilibrium.

We now turn to the case where e�ort is not observable. While Proposition
2 places no restriction on the pro�le of �xed costs, the next proposition
characterizes the equilibrium structures of the game with moral hazard when
�xed costs are low.

Proposition 3 Suppose A holds. For every lobby i = 1, . . . , G, there exists
ñi > 0 such that the following statement is true whenever ni > ñi: for every
ci < ni, there is F̃i > 0 such that, whenever Fi < F̃i, ci < cm

i for some
(cm

i , cm
−i) ∈ Cm(F ).

Of particular importance here is this: if a group is large (ni > max{ñi, c̄i}),
and if its �xed costs are low (Fi < F̃i), then moral hazard in teams raises the
equilibrium size of the lobby that represents this group (cm

i > c∗i ). Proposi-
tion 3 thus con�rms the intuitions of Subsection 3.1. As we have visualized
in Figure 1, this is something to be expected in groups with moral hazard in
teams. A similar logic is at work here: The main reason members of groups
with a low �xed cost become lobbyists is that the non-observability of contri-
butions allows them to contribute less than in a world with observable e�ort,
thus raising their incentive to join the lobby.

7A brief inspection of equation (2) indeed reveals that the functions {am
i (ci, c−i)}G

i=1,
and then Am(ci, c−i), do not depend on the ni's and F . Consequently, A only places
restrictions on G, v(·), A0, and the wi's.

14



Moreover, applying Proposition 3 with ci = ni − 1, we immediately see
that, in contrast to the case without moral hazard, group i does not comprise
free-riders in equilibrium whenever its organizational cost is su�ciently low.

3.3 Moral Hazard in Teams and Collective Action
In the preceding discussion, we considered the impact of moral hazard in
teams on lobbies' size. An interesting question now is whether the small
individual contribution caused by moral hazard might be swamped by a
larger group of contributors, so that the group's equilibrium contribution
would be larger than that when cooperation among lobbyists is feasible. As
noted by Costain (1980), lobbies representing a large number of individuals
may sometimes be very e�ective in collective action, even if their activities
are subject to moral hazard. Focusing on women's lobbies, she argues that,
despite the pessimistic predictions of the classical theory of collective action,
the strong lobbying e�ort in support of women's rights in the 1970s should
lead to a reassessment of their potential for political in�uence.

We then turn to groups' aggregate contribution, and ask whether moral
hazard may �favor� collective action, in the following sense:

De�nition 3 Moral hazard in teams is said to favor group i's collective
action if there exists

(
cm
i , cm

−i

) ∈ Cm(F ) such that, for every
(
c∗i , c

∗
−i

) ∈ C∗(F ),
cm
i am

i

(
cm
i , cm

−i

)
> c∗i ai

(
c∗i , c

∗
−i

)
.

In other words, moral hazard in teams favors a group's collective action
if, and only if, there exists an equilibrium with moral hazard in which the
aggregate contribution of that group is larger than its aggregate contribu-
tion in any equilibrium without moral hazard. The next proposition gives
su�cient conditions for this to happen.

Proposition 4 Suppose A holds. There exist n̄i > 0 and F̄i > 0 such that
moral hazard in teams favors group i's collective action whenever ni > n̄i

and Fi < F̄i.

Unlike the standard theory of collective action, it turns out that moral
hazard and groups' size here may favor collective action. While moral hazard
decreases individual contributions to lobbying, it also raises the number of
these contributions. Proposition 4 states that the second e�ect dominates
the �rst when the group under consideration is large and its organizational
cost is low. It thus makes moral hazard in teams somewhat less detrimental
than one might have inferred from the pessimistic Olsonian conclusions.
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4 Concluding Remarks
The model used here describes the lobbying process at a fairly high level of
abstraction, focusing exclusively on free-riding issues. Our aim, however, is
not to provide a comprehensive theory of lobby formation, but to develop a
simple intuition for how two di�erent free-riding phenomena interact in this
process. By restricting attention only to incentives to free ride, our model
has deliberately ignored considerations that may be generated by other fac-
tors such as the existence of a collective identity, or some divergence in lobby
members' objectives and valuations of the public project (heterogeneity).
Such an oversimpli�cation of the collective-action problem has largely been
emphasized by empirical studies, like Gupta, Hofstetter and Buss (1997),
and Masters and Delaney (1987), and the experimental literature on collec-
tive action, like Schneider and Pommerehne (1981), or Ostrom (1998). Before
further complicating the game-theoretic model, however, it was worth asking
what could be said about the actual impact of moral hazard in teams on
lobbies' collective action, when the other factors are abstracted away. Pos-
sible generalizations and extensions of the present model are left for future
research.

Appendix
We use the following notation throughout this appendix:

Ai(ci, c−i) ≡ ciai(ci, c−i),

A−i(ci, c−i) ≡ A0 +
∑

j 6=i

cjaj(cj, c−j),

A(ci, c−i) ≡ Ai(ci, c−i) + A−i(ci, c−i),

π̃i(ci, c−i) ≡ Ai(ci, c−i)/A(ci, c−i),

for every i = 1, . . . , G. Similar notation applies to the with-moral-hazard case
with a superscript �m� indicating the di�erence. For instance, Am

i (ci, c−i) ≡
cia

m
i (ci, c−i).

Proof of Proposition 1
Denote by Ci ≡ {0, 1, . . . , ni} the set of all possible sizes of lobby i, and by
C ≡ ×G

i=1Ci the set of all possible lobby structures. We construct a self-map
ϕ : C → C, observe that a �xed point of ϕ constitutes an equilibrium lobby
structure, and prove that ϕ has a �xed point.
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We construct ϕ(c1, . . . , cG) = (ϕ1(c−1), . . . , ϕG(c−G)) as follows. First, if
Li(ni, c−i) ≥ 0, then ϕi(c−i) = ni. Otherwise, if Li(ni − 1, c−i) ≥ 0 and
Li(ni, c−i) < 0, then ϕi(c−i) = ni − 1. Thus, ϕi(c−i) is equal to the largest
ci ∈ Ci such that Li(ci, c−i) ≥ 0 and Li(c, c−i) < 0 for every integer c > ci,
ϕi(c−i) = ci. If such a ci does not exist, then ϕi(c−i) = 0. It is easy to see
that a �xed point of ϕ satis�es all the conditions of De�nition 1.

In order to show that ϕ has a �xed point, we now check that all the
conditions of the Caristi's Fixed Point Theorem are satis�ed. Consider the
complete metric space (C, d), where d(c, c′) ≡ ∑G

i=1 |ci − c′i| for all c and c′

in C, and de�ne the continuous (and then lower semicontinuous) function
f : C → R as

f(c) ≡ 1

1− n
d (c, ϕ(c)) ,

for every c ∈ C. Note that f is bounded from below by n/n− 1, and

f(c)− f (ϕ(c)) =
1

1− n

[
d (c, ϕ(c))− d

(
ϕ(c), ϕ(2)(c)

)]

≥ 1

1− n
[d (c, ϕ(c))− nd (c, ϕ(c))]

= d (c, ϕ(c))

for every c ∈ C such that ϕ(c) 6= c (it is easy to see that, otherwise,
f(c) − f(ϕ(c)) = d(c, ϕ(c))). The above inequality is due to the fact that
d(c, ϕ(c))/d(ϕ(c), ϕ(2)(c)) ≥ 1/n when ϕ(c) 6= c. Thus, ϕ satis�es all the
condtions of Caristi's Fixed Point Theorem and, consequently, has a �xed
point. This completes the proof of Proposition 1.

Proof of Proposition 2
We proceed with a series of lemmas.

Lemma 1 For every i = 1, . . . , G,

∂π̃i (ci, c−i)

∂ci

> 0 , ∂A(ci, c−i)

∂ci

> 0 , and lim
ci→∞

∂A (ci, c−i)

∂ci

= 0.

Proof: A slight change in the proof of Proposition 2 in Esteban and Ray
(2001) gives:

∂π̃i(ci, c−i)

∂ci

> 0 , ∂A(ci, c−i)

∂ci

> 0 , and ∂A−i(ci, c−i)

∂ci

< 0.
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Di�erentiating equation (1) with respect to ci, and rearranging terms, we
obtain (with some abuse of notation):

∂π̃i(ci, c−i)

∂ci

=
πi(α(ai) + 1)

α(ai) + πi

1−πi

[
1

ci

− 1

A(ci, c−i)

∂A(ci, c−i)

∂ci

]
.

But we have just established that this derivative is positive, hence

0 <
∂A (ci, c−i)

∂ci

<
A (ci, c−i)

ci

= ai (ci, c−i) +
A−i (ci, c−i)

ci

. (5)

As the marginal bene�t from an increase in ci is zero when lobby i's size
is in�nite (see equation (1)), limci→∞ ai (ci, c−i) = 0 (v′(0) = 0). More-
over, A−i (ci, c−i) is decreasing in ci. It consequently results from (5) that
∂A(ci,c−i)

∂ci
→ 0 as ci →∞.

¤
Lemma 2 For every i = 1, . . . , G, let τi : C → (1,∞) be de�ned as

τi (ci, c−i) ≡ 1 +
π̃i (ci, c−i)− π̃i (ci − 1, c−i)

π̃i (ci − 1, c−i) [1− π̃i (ci, c−i)]
.

Then, for every c−i, limci→∞ τi (ci, c−i) = 1.
Proof: Let σi be de�ned as

σi (ci, c−i) ≡ π̃i (ci, c−i)− π̃i (ci − 1, c−i)

π̃i (ci − 1, c−i) [1− π̃i (ci, c−i)]
.

To prove the lemma, we must show that σi → 0 as ci →∞. Noting that

σi (ci, c−i) =
π̃i (ci, c−i)− π̃i (ci − 1, c−i)

π̃i (ci − 1, c−i)

A (ci, c−i)

A−i (ci, c−i)

=
Ai (ci, c−i)− Ai (ci − 1, c−i)

π̃i (ci − 1, c−i) A−i (ci, c−i)
,

we immediately see that this boils down to showing that Ai (ci, c−i)−Ai (ci − 1, c−i)
tends to 0 as ci becomes arbitrarily large (A−i is bounded from below by A0).
Applying the Mean Value Theorem to Ai (·, c−i), we know that there exists
ω ∈ (ci − 1, ci) such that

Ai (ci, c−i)− Ai (ci − 1, c−i) =
∂Ai(c, c−i)

∂c

∣∣∣∣
c=ω

.

It then remains to show that this derivatives converges to zero. But Lemma
1 tells us that

∂Ai(ci, c−i)

∂c
=

∂A(c, c−i)

∂c
− ∂A−i(c, c−i)

∂c
= 0.
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Lemma 3 There exists δ̄ > 0 such that the following statement is true when-
ever δ < δ̄:

v(a) > δ[av′(a)],∀a > 0. (6)

Proof: As v(a) and av′(a) are both strictly increasing functions that are zero
at a = 0, a su�cient condition for (6) to hold is that v′(a) > δ(av′(a))′ for
any a > 0.

Let δ̄ ≡ 1/(1 + supa>0 α(a)) (δ̄ is well-de�ned since α is assumed to be
bounded from above). Therefore, for all δ < δ̄, we have

1

δ
> 1 +

av′′(a)

v′(a)
,

or
δ [v′(a) + av′′(a)] < v′(a), ∀a ∈ B.

This completes the proof of Lemma 3.

¤

We now complete the proof of the main proposition. De�ne δi(ci, c−i) as

δi (ci, c−i) ≡ (τi (ci, c−i)− 1)
1

π̃i(ci, c−i) + τi(ci, c−i) (1− π̃i (ci, c−i))
,

and note that, by Lemma 2, it tends to zero as ci gets arbitrarily large (it
is easy to check that π̃ → 1 as ci → ∞). This implies that, for every
c−i ∈ C−i ≡ ×j 6=iCj, there exists c̄i(c−i) > 0 such that δi < δ̄ whenever
ci > c̄i(c−i).

Now, let (ci, c−i) ∈ C∗(F ) and suppose that, contrary to the statement of
the proposition, ci > c̄i ≡ maxc−i∈C−i

. It follows from Lemma 3 that

Li(ci, c−i) =

[
ci

ci (1 + γi (ci, c−i))
− ci − 1

(ci − 1)(1 + (1 + γi (ci − 1, c−i))

]
wi

− v(ai(ci, c−i))

= ai(ci, c−i)v
′(ai(ci, c−i))δi (ci, c−i)− v(ai(ci, c−i)) < 0,

where the second equality is due to equation (1). But this is a contradiction
with (ci, c−i) being an equilibrium structure.
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Proof of Proposition 3
Suppose �rst that, for every c−i,

`m
i (ci, c−i) ≡ Qm

i (ci, c−i)−Qm
i (ci − 1, c−i) > v(am

i (ci, c−i)) (7)

at some ci < ni. This implies that there exists F̃i(ci) > 0 such that, for
every c−i, Lm

i (ci, c−i) ≡ `m
i (ci, c−i) − v (am

i (ci, c−i)) − Fi/ci > 0 whenever
Fi < F̃i(ci). This in turn implies that there exists an equilibrium structure,
(cm

i , cm
−i), such that cm

i > ci (De�nition 2 and Proposition 1).
Let us show (7). To do so, note �rst that, using equation (2) and rear-

ranging terms, we can express `m
i (ci, c−i) as follows:

`m
i (ci, c−i) = am

i (ci, c−i)v
′(am

i (ci, c−i))δ
m
i (ci, c−i),

where
δm
i (ci, c−i) ≡ ci

π̃m
i (ci, c−i)− π̃m

i (ci − 1, c−i)

π̃m
i (ci, c−i) [1− π̃m

i (ci, c−i)]
.

Hence, equation (7) holds for a given c−i if δm
i (ci, c−i) > 1/α(am

i (ci, c−i)),
or

ci [π̃
m
i (ci, c−i)− π̃m

i (ci − 1, c−i)] >
π̃m

i (ci, c−i) [1− π̃m
i (ci, c−i)]

α(am
i (ci, c−i))

. (8)

From the Mean Value Theorem, there exists θ ∈ (ci − 1, ci) such that

π̃m
i (ci, c−i)− π̃m

i (ci − 1, c−i) =
∂π̃m

i (c, c−i)

∂c

∣∣∣∣
c=θ

.

As θ < ci and π̃m
i (ci, c−i) is strictly increasing in ci (Proposition 2 in Esteban

and Ray, 2001), inequality (8) holds whenever

ci
∂π̃m

i (c, c−i)

∂c

∣∣∣∣
c=θ

>
π̃m

i (ci, c−i) [1− π̃m
i (θ, c−i)]

α(am
i (ci, c−i))

. (9)

Then, di�erentiating (2) and rearranging terms yields:

∂π̃m
i (c, c−i)

∂c
=

π̃m
i (c, c−i)

c

α(am
i )

α(am
i ) +

π̃m
i (c,c−i)

1−π̃m
i (c,c−i)

− π̃m
i (c, c−i)(1 + α(am

i ))

α(am
i ) +

π̃m
i (c,c−i)

1−π̃m
i (c,c−i)

t(c, c−i)

where
t(ci, c−i) ≡ 1

Am(ci, c−i)

∂Am(ci, c−i)

∂ci

.
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Therefore, (9) can be rewritten as
ci

θ

π̃m
i (θ, c−i) α (am

i (θ, c−i))

[1− π̃m
i (θ, c−i)] α(am

i (θ, c−i)) + π̃m
i (θ, c−i)

− π̃m
i (ci, c−i)

α (a (ci, c−i))
>

π̃m
i (θ, c−i) [1 + α(am

i (θ, c−i))]

[1− π̃m
i (θ, c−i)] α(am

i (θ, c−i)) + π̃m
i (θ, c−i)

cit(θ, c−i).

As θ →∞ when ci →∞ (θ > ci−1), we can see that, under Assumption
A, the above condition is satis�ed when ci is arbitrarily large. Consequently,
there exists c̃i(c−i) > 0 such that inequality (8) holds whenever ci > c̃i(c−i).

Now, let c̃i ≡ maxc−i∈C−i
c̃i(c−i). Then, inequality (7) holds for every

c−i ∈ C−i whenever ci > c̃i, and we obtain Proposition 3 by setting ñi = c̃i.
Indeed, if ci ≤ c̃i, the stability function is always strictly positive at c̃i + 1
for any Fi < F̃i(c̃i + 1) and there is consequently an equilibrium structure
(cm

i , cm
−i) such that cm

i > c̃i + 1 > ci. The same reasoning applies if ci > c̃i by
taking Fi < F̃i(ci). This completes the proof of the proposition.

Proof of Proposition 4
The proof of Proposition 4 hinges on the following result.

Lemma 4 Given c−i ∈ RG−1
+ ,

∂Am
i (ci, c−i)

∂ci

> 0 and lim
ci→∞

Am
i (ci, c−i) = ∞.

Proof: By de�nition,

Am
i (ci, c−i) ≡ π̃m

i (ci, c−i)A
m(ci, c−i). (10)

Since both terms on the right-hand side are increasing in ci, so is Am
i .

This implies that if Am
i is bounded above, there exists Ki > 0 such that

limci→∞ Am
i (ci, c−i) = Ki. But since π̃m

i (ci, ĉ−i) ≤ 1, this in turn implies
from (10) that there exists K > 0 such that limci→∞ Am(ci, c−i) = K. Thus
we get a contradiction since equation (2)

Am
−i(ci, c−i)wi

Am(ci, c−i)2
= v′

(
Am

i (ci, c−i)

ci

)

does not hold for limiting values of ci. Indeed, the right-hand side converges
to zero, whereas the left-hand side always exceeds A0wi/K

2 > 0. As a
consequence, for a given c−i, we have

∂Am
i (ci, c−i)

∂ci

> 0 and lim
ci→∞

Am
i (ci, c−i) = ∞. (11)
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Now, for every i, let ĉi ≥ 0 be de�ned as follows

ĉi ≡
{

c̄i if c̄i ≤ ni,
ni otherwise

where c̄i is the upper-bound de�ned in Proposition 2. Note that the set
S ≡ ⋃G

i=1 [0, ĉi] is nonempty and compact. Then, by continuity of Ai, the
upper-bound Āi ≡ max {Ai(ci, c−i) : (ci, c−i) ∈ S} > 0 is well-de�ned.

From Lemma 4, there exists ni(c−i) > 0 such that Am
i (ni(c−i), c−i) = Āi,

and Am
i (ni, c−i) ≥ Am

i (ni(c−i), c−i) whenever ni ≥ ni(c−i). We set n̄i ≡
max {ni(c−i) : c−i ∈ ×j 6=i{0, . . . , nj}}.

Now, applying Proposition 3 with ci = n̄i, we know that there exists
F̄i > 0 and some

(
cm
i , cm

−i

) ∈ Cm(F ) such that cm
i > n̄i whenever Fi < F̄i.

Thus, for any structure
(
c∗i , c

∗
−i

) ∈ C∗(F ), we obtain

Am
i

(
cm
i , cm

−i

)
> Am

i

(
n̄i, c

m
−i

) ≥ Āi ≥ Ai

(
c∗i , c

∗
−i

)
,

whenever Fi ≤ F̄i and ni > n̄i. Proposition 3 establishes the �rst inequality,
and Proposition 2 establishes the last inequality. This ends the proof of the
proposition.
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