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Abstract

A recurring theme in the mathematical social sciences istoaelect the “most desirable” elements
given a binary dominance relation on a set of alternativebw@rtz's tournament equilibrium set (TEQ)
ranks among the most intriguing, but also among the mostneatig, tournament solutions that have
been proposed so far in this context. Due to its unwieldy nsee definition, little is known about
TEQ. In particular, its monotonicity remains an open prablgp to date. Yet, if TEQ were to satisfy
monotonicity, it would be a very attractive tournament siolu concept refining both the Banks set and
Dutta’s minimal covering set. We show that the problem ofidieg whether a given alternative is
contained in TEQ is NP-hard.

1 Introduction

The central problem of the literature on tournament sohgtis as appealing as it is simple: Given an ir-
reflexive, asymmetric, and complete binary relation ovestaftnd the most attractive elements of this set.
As the standard notion of maximality is not well-defined ia firesence of cycles, numerous alternative so-
lution concepts have been devised and axiomatized ¢sgeMoulin,|1986] Laslien, 1997). In social choice
theory, the base relation, which we call dominance relatisrcommonly defined via pairwise majority
voting, and many well-known tournament solutions yieldaadtive social choice correspondences.

Over the years, the computational complexity of almost afhmon solution concepts has been com-
pletely characterized (see,g, Woeginger, 2003; Conitzer, 2006; Brandt etial., 2007; Bramd Fischer,
2007). One notable exception is the tournament equilibsab{TEQ) proposed hy Schwartz (1990). Due to
its unwieldy recursive definition, little is known about TEDutta, 1990; L &#ond et al., 1993). However, if
a certain technical conjecture stated almost two decadetiaged out to be true, it would constitute one of
the most attractive tournament solutions, refining bothntirémal covering set and the Banks set (Laslier,
1997 Ldfond et al., 1993). Laslier states that “Unfortunately, rgoathm has yet been published for find-
ing the Minimal Covering set or the tournament equilibriuet sf large tournaments. For tournaments of
order 10 or more, it is almost impossible to find (in the geheaiae) these sets at hand” (Laslier, 1997, p. 8).
While it has recently been shown that computing the mininoaiedng set is feasible in polynomial time
(Brandt and Fischer, 2007), it turns out that this is not theecfor TEQ unless P equals NP. We prove this
by first providing an alternative hardness proof for the Basét which is then modified so as to apply to
TEQ as well. In contrast to the Banks set, there is no obvieasan to suppose that the TEQ membership
problem is in NP; it may very well be even harder.
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2 Preliminaries

A tournament Tis a pair @, >), whereA is a finite set ofalternativesand> an irreflexive, anti-symmetric,
and complete binary relation ok also referred to as th#ominance relation Intuitively, a > b signifies
that alternativea beatsb in a pairwise comparison. We wrif€ for the class of all tournaments and we have
7 (A) denote the set of all tournaments on a fixedfseft alternatives. IfT is a tournament oA, then every
subsetX of A induces a tournameiity defined asX, >|x), where>|x = {(X,y) € X x X: X > y}.

As the dominance relation is not assumed to be transitivemeil, it may contain cycles. Moreover,
there need not be a so-call€dndorcet winneri.e., an alternative that dominates all others. This makes that
the usual notions of maximum and maximal elements are nceldiegsible in this context. Other concepts
have been suggested to take over the role of singling ou¢ thlbsrnatives that can somehow be considered
the “winners” of the tournament. Formallytaurnament solution $ defined as a function that associates
with each tournamer® on A a subse8(T) of A. The definition of a tournament solution commonly includes
the requirement th&®(T) be non-empty ifT is defined on a non-empty set of alternatives and that it selec
the Condorcet winner if there is one (Laslier, 1997, p.370r X a subset ofA, we also writeS(X) for
the more cumbersom®(T|x), provided that the tournameifit is known from the context. In this paper
we will be concerned with two particular tournament solnsipthe Banks set and Schwartz’s tournament
equilibrium set (TEQ). For a proper definition, however, veed some auxiliary notions and notations.

Let R be a binary relation on a sét We write R* for the transitive reflexive closure & By thetop
cycle TG(R) we understand the maximal elements of the asymmetric pdrt.0A subsetX of A is said
to betransitiveif Ris transitive onX. ForX C Y C A, X is calledmaximal in Yif no proper superset of
in Y is transitive,i.e,, if there is no transitiveZ C Y with X c Z. Clearly, every transitive set is contained in
a maximal transitive set. Given a sét= {Z}ic| of pairwise disjoint subsets &, a subseX of A will be
called achoice set for 4f it contains precisely one element from each sulfset Z.

In tournaments, maximal transitive sets are also refeoebtBanks trajectories. Tlganks set BA)
of a tournament then collects the maximal elements of the Banks trajeorie

Definition 1 (Banks set) Let T be a tournament on A. An alternative & is in theBanks seBA(T) of T
if a is a maximal element of some maximal transitive setin T.

The tournament equilibrium sedf a tournamentl on A is defined as the top cycle of a particular
subrelation of the dominance relation, the TEQ relatione Thderlying idea is that an alternative is only
“properly” dominatedj.e., dominated according to the subrelation, if it is dominabgdan element that is
selected by some tournament solution con@pTo make this idea precise, fof C A, we write Dx(a) =
{b e X: b> a}for thedominatorsof ain X, omitting the subscript wheX = A. Thus, for each alternativee
one examines the dominator €2a), and solves the subtournamélf1*5(a) by means of the solutio8. In

the subrelatiora is then only dominated by the alternativesS(D(a)). This of course, still leaves open
the question as to the choice of the solution con&@piNow, in the case oTEQ S is taken to beTEQ
itselfl The reason why this is a proper recursive definitithiat ifa € X for someX C A the setDx(a)

of dominators ofain X is a proper subset of. l.e,, in order to determine the TEQ relation in a particular
subtournament, one has to calculate the TEQ of a proper subtournament of

Definition 2 (Tournament equilibrium set) Let T be a tournament on A. For each subset X of A we define
thetournament equilibrium s&EQ(X) for X as follows:

TEQ(X) = TCx(=x).
where—y is defined as the binary relation on X such that for gy x X,

x = y if and only if xe TEQ(Dx(Y)).



Figure 1: Example due to Schwairtz, 1990, whBAT) = {a, b, c,d} andTEQ(T) = {a, b, ¢}. The relation—»
is indicated by thick edges.

Observe that the TEQ relatiory is invariably a subset of the dominance relatioand that ifDx(x) # 0,
then there is somge Dx(X) with y —x X.

It can easily be established that the Banks set and TEQ biettt §ee Condorcet winner in a tournament
if there is one. Moreover, in a cyclic tournament on threeralitives, the Banks set and TEQ both consist
of all alternatives. Yet, the Banks set and TEQ do not coméial all tournaments. For an example consider
the tournament depicted in Figureé 1. First we calculate tB® Telation—. Observe thaD(a) = {c}.
Hence,c is the Condorcet winner iD(a) and we havefEQD(a)) = {c} andc — a. For alternativeb we
haveD(b) = {a, €}. Sincea > e, alternativea is the Condorcet winner iBD(b), and we may conclude that
TEQ(B(b)) = {a}. Hence,a —» b whereas 4 b. In an analogous fashion we find for alle {a, b, c, d, €}
thatx — cif and only if x = b as well as thak — d if and only if x = a. For alternativee, however,
D(e) = {a,c,d}. Sincea > d > ¢ > a, a three-cycle, we have thAEQD(e)) = {a, ¢, d} and hencex — ¢,

c —» eas well asd —» e. The top cycle of the relatiors thus found can then be seen to coincide with
the set{a, b, c}, which then also constitutes the TEQ of this tournament. &ytrast, the Banks set in this
example consists of the four elemeaid, c andd. Maximal transitive sets of which, b, c andd are the
maximal elements are.g, {a,b,d}, {b,c}, {c,a e} and{d, c, €}, respectively. Alternative is not included

in the Banks set. The only transitive subsets of whdghthe maximal element afe} and{e, b}. However,
both these sets are included in maximal transitive sets @ftwdis not the maximal elemengé.g, the set
{a,e b}. Thus TEQ and the Banks set mayfdi. However, the former is known to always be included in
the latter.

Proposition 1 (Schwartz)1990)Let T = (A, >) be a tournament. Then, TEQ) € BA(T).

Proof: We prove by structural induction oxthat TEQ(X) € BA(X) for all subsetsX of A. The caseX = 0

is trivial, as thenTEQ(X) = BA(X) = (. So, assume th&tEQ(X’) € BA(X’), for all X’ ¢ X. We prove that
TEQX) € BA(X) as well. To this end, consider an arbitrarye TEQ(X). EitherDx(a) = 0 or Dx(a) # 0.

In the former casea is the Condorcet winner iX and therefora € BA(X). In the latter casex —x a for
somex € X. Having assumed tha € TEQX), i.e,, a € TC(—), there is also ax’ € X with a -»x X.
Accordingly,a € TEQ(Dx(X)). By the induction hypothesis, alsos BA(Dx(X)). Therefore, there is some
maximal transitive seY in Dx(X) of whichais the maximal element. Thel,u {x'} is a transitive set iiX.
Now letY’ € X be a maximal transitive set K containingY U{x'} with @ as maximal element. Observe that
a € BAXX). Then,a@ > x and saa’ € Dx(x’). Now considelY’ N Dx(x). Clearly,Y n Dx(x) is a transitive
set inDx(x’) which contains’ as its maximal element. Moreovéf,C Y’ n Dx(x’). By maximality ofY it
then follows thaty = Y’ n Dx(x’) and thata = &. We may conclude that € BA(X). m]

In the remainder of this paper, we assume the reader to bdidamith the well-known complexity
classes P and NP and the notion of polynomial-time redutyiliee,e.g, [Papadimitrioul, 1994).
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Algorithm 1 Tournament Equilibrium Set

procedure TEQ(X)

R0

B « C « arg Minex |D(a)|

loop
R« RU{(b,a): ac CAbe TEQD())}
D Uacc TEQ(D(a))
if D € Bthen return TCg(R) end if
C«D
B—~BuC

end loop

3 A Heuristic for Computing the Tournament Equilibrium Set

Itis not very hard to see that the naive algorithm for commmiEQ, which simply recursively computes,
requires exponential time in the worst case. Running tinmebeagreatly reduced by using a heuristic that
relies on the conjecture that the top cycle of any TEQ ratationsists of only one strongly connected
component. This conjecture was already made by Schwar@)jEhd has later been shown to be equivalent
to the (conjectured) monotonicity of TEQ (ffand et al.| 1993). Algorithri]l1l computes TEQ by starting
with the setB of all alternatives that have dominator sets of minimal .sizkese alternatives are likely to
be included in TEQ and the small size of their dominator spéeds up the determination of their TEQ-
dominators. In the following, all alternatives that TEQruinate any alternative iB are iteratively added
to B until no more such alternatives can be found, in which caseatborithm returns the top cycle of
B. Clearly, theworst-caserunning time of this algorithm is still exponential, and itlbbe shown in the
remainder of the paper that this has to be the case for evgoyithim computing TEQ unled® = NP.

4 An Alternative NP-Hardness Proof for Membership in the Barks Set

The problem of deciding whether a particular alternativiegtuded in the Banks set of a given tournament
T is known to be NP-complete. This was first demonstrated bydiiger (2003) by means of a reduction
from graph three-colorability. Here we will give an altetina proof of this result. Our proof works by a
reduction from3SAT, the NP-complete satisfiability problem for Boolean forasiln conjunctive normal
form with exactly three literals per clause (seqy, |Papadimitriou, 1994). The construction used in this
paper is arguably simpler than Woeginger’s. Moreover, almgimilar construction will be used in the next
section to prove NP-hardness of the analogous decisiordgmolor TEQ. The tournaments used in these
reductions will both be taken from a special cl&ss which we introduce next.

Definition 3 (The class7*) A tournameni(A, >) is in the classy ™ if it satisfies the following properties.
There is some odd integer B 1, the size of the tournament, such that A CuU U; U --- U Uy, where
C,Uq,...,U, are pairwise disjoint and C= {co,...,Ch}. Each U is a singleton if i is even, and U=
{uil, uiz, ui3} if i is odd. The complete and asymmetric dominance relatiaa such that the following five
properties hold for all ce Cj, ¢;j € Cj, u e Uj, u; e U; (0<i, j < n):

(i) ci>cj ifi<ij,
(i) ui>cj, ifi=]j,

i) cj>u, ifi#]j,



(iv) u >uj, ifi < jand atleastone ofiand jis eveni.€, u or uj is a separating node),
(v) K'>d, ifiisoddandk=1-1 (mod3) (ie,u >u?>u®>ul).

We also refer togby d, for “decision node” and t¢ J,.;<, Un by U. Fori = 2k, we have as a notational
convention Y = Yk = {yk} and set Y= |U1<x<n Yk- These nodes are calleparating nodes

Observe that this definition fixes the dominance relatiowbeh any two alternatives except for some pairs
of alternatives that are both .

As a next step in the argument, we associate with each irs@i8SATa tournament in the class®.
An instance of3SATis given by a formulap in 3-conjunctive normal form (3CNF).e., ¢ = (xi Y% xf Y
) A A (X V XE VX3, where eachx e {x!, %%, %31 1 < i < m}is aliteral. For each clausé v x2 v x3
we assumes', x? and? to be distinct literals. We moreover assume the literalsstimdexed and by we
denote the se{lxil, xl?, xi3}. For literalsx we havex = —pif x = p, andx = pif x = =p, wherep is some
propositional variable. We may also assume thatahdy are literals in the same clause, ther: y. We
say a 3CNRp = (X V X2V X3) A -+ A (X5, V X3, V X3) is satisfiableif there is a choice séf for {Xi}1<i<m
such that’ = vfor nov,Vv € V. Next we define for eacRSATformulay the tournamenTEA.

Definition 4 (Banks construction) Leto be a8CNF (x} v 34 v 35) A -+ A (X, V X3, V X3). Define T4 =
(CuU U, >) as the tournament in the clags* of size2m - 1 such that for alll < j < 2m,

X ifj=2i-1,
"y ifj=2

and such that for all x X; and X € X; (1 <i,j <m),
x> X ifboth j<iand X = Xorbothi< jand X # X.

Observe that in conjunction with the other requirementsi@endominance relation of a tournamentirt,
this completely fixes the dominance relationf T2,

An example for such a tournament is shown in Fidure 2. We areima position to prove NP-completeness
of deciding whether a particular alternative is in the Basiis

Theorem 1 The problem of deciding whether a particular alternativénishe Banks set of a tournament is
NP-complete.

Proof: Membershign NP is obvious. For a fixed alternativke we can simply guess a transitive subset of
alternativesv with d as maximal element and verify thdtis also maximal w.r.t. set inclusion.

For NP-hardness, we show th‘E}fA contains a maximal transitive set with maximal elemeiift and
only if ¢ is satisfiable. First observe thdtis a maximal transitive subset with maximal elemdri TEA
only if

(i) forall 1 <i < 2mthereis aie U; such thau € V, and
(if) thereareno ki< j <2m,ue U, U € Ujwith u,u’” € V such thau; > u;.

Regarding i(} if there is an 1< i < 2m such that no element &f; is contained irV, we can always add
to V in order to obtain a larger transitive set/[iifjwere not to hold, both and j have to be odd fou; to
dominateu;. However, in light of ()} there has to b& with i < k < j andu” € Ui such thatu” € V. It
follows thatV is not transitive becausg u”, andu’ form a cycle. If there is maximal transitive sétwith
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Figure 2: Tournamenit BA for the 3-CNF formulap = (-pV SV ) A(PV SVI)A(PV gV ).
[

maximal elementl complying with botH {)]and {i)} a satisfying assignment gfcan be obtained by letting
all literals contained itrX NV be true.

For the opposite direction, assume thds satisfiable. Then there is a choice ¥éfor {X}1<j<m such
thatx = xfor no x,xX € W. ObviouslyV = WU {y1,...,¥mn1} U {d} does not contain any cycles and
thus is transitive with maximal elemedt In order to obtain a larger transitive set with &elient maximal
element, we need to adglifor some 1< i < mto V. However,V U {¢;} always contains a cycle consisting
of ¢;, d, andu for someu € Uj, contradicting the transitivity o¥ U {c;}. We have thus shown thdltis the
maximal element of some maximal transitive seTﬁﬁA containingV as a subset. m]

5 NP-hardness of Membership in the Tournament Equilibrium Sat

As the main result of this paper, we demonstrate that thdgmobf deciding whether a particular alternative
is in the TEQ of a tournament is NP-hard. To this end, we refireebnstruction used in the previous section
to prove NP-completeness of membership in the Banks set.

Definition 5 Let ¢ a 3-conjunctive normal forngx; v x2 v x3) A -+ A (X, V X5 V X3). Further for each

1<i<m,letthere be a set Z {z}, Z, 7%).Define '@EQ as the tournamertA, >) in 7* of size4n — 3 such
that A=CuUUjU---UUygzandforalll <i <m,

Xi ifj=4i-3,
U=z ifj=4i-1,
{yi} otherwise.

As in the Banks construction, we let for alexXj and X € X (L <i, j <m)

x> X ifboth j<iand X = Xorbothi< jand X # X.
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Figure 3: Tournamen'f;EQ for the 3-CNF formulap = (=-pVv sV A(pVSVI)A(pV gV -r). Omitted
edges are again assumed to point downwards.
Finally, forall 1< i, j < m, ¥ € X; and % €Zj,

X¢ > z; ifand only if i < jor both i = jand k=1.

An example for such a tournament is shown in Figure 3.
We now proceed to show thaBSATformulay is satisfiable if and only if the decision nodés in the
tournament equilibrium set &, .

Lemmal Let T = (CUU,>) be a tournament iff * and let BC C U U such that de B. Then, for each
u e U n B there exists € CN B such that e u

Proof: Letc € Cn B be such thaDg(c;)) N C = 0, i.e. ¢ is the alternative irC with the highest index
among those included iB. Then,

¢ —»pcforallce BnCwithc # . D



For this, merely observe that by constructiprs the Condorcet winner iBg(c). Hencec, € TEQDg(C))
andc; =g C.

The lemma itself then follows from the stronger claim thatdachu € U n B there is some e CN B
with bothc - uandc € TEQ(B). This claim we prove by structural induction on supersets {d}.

If B = {d}, Un B = 0 and the claim is satisfied trivially. So l&l} be a proper subset &. Again, if
U N B = 0, the claim holds trivially. So we may assume there be sareeU N B. Then,d € Dg(u) by
construction off. If Dg(u)NU = 0, Dg(u) is a non-empty subset 6N B, and so iSTEQ(Dg(u)). It follows
that for somec € TEQDg(u)) N C we havec —g u. If, on the other handDg(u) N U # 0, the induction
hypothesis is applicable and we have TEQ(Dg(u)) for somec € C n B. Hence,c —g u. With u having
been chosen arbitrarily, we actually have that forual U N B, there is some& € Cn B with ¢ -»g u. It
remains to be shown that there is sooeC N TEQ(B) with ¢ - u.

To this end, again consider € C N B such thaiDg(ci) N C = 0. It suffices to show that; -y bforall
b € B, as then botlt; € TEQB) N C and¢; =5 u. So, consider an arbitraty € B. If b = ¢, the case is
trivial. If be Cn Bbutb # ¢, we are done by (1). If instedule U N B, thenc -5 b for somec € C N B,
as we have shown in the first part of the proofc K ¢;, we are done. Otherwise, we can apply (1) to obtain
¢ —p € — band hence; - b. O

Theorem 2 Deciding whether a particular alternative is in the tournam equilibrium set of a tournament
is NP-hard.

Proof: By reduction from 3-SAT. Consider an arbitrary 3-DNFand construct the tournamef =2 =
(Cu U,>). This can be done in polynomial time. We show that

¢ is satisfiable if and only ifl € TEQ(T, 9.

For the direction from left to right, observe that by an argmmanalogous to the proof of Theoréin 1 it
can be shown that is satisfiable if and only ifl € BA(T,"9. So assuming that is not satisfiable yields
d ¢ BA(T,™9. By the inclusion of TEQ in the Banks set (Proposifion 1jplows thatd ¢ TEQT, 9.

For the opposite direction, assume thés satisfiable. Then there is a choice ¥éfor {Xi}1<i<m such
thatx' = Xfor nox, x' € W. ObviouslyW U {ys,...,ym-1} U {Z € Z: x' € W} = {uy, ..., Uy} contains no
cycles and thus is transitive. Without loss of generalitymegy assume that € U; forall 1 <i < n. For

each 1< i < n+1, define a subs®; """ of alternatives as follows. S&,";"" = Aand letD; """ denote

— . —Uus,...,u, u1,..., U . . .
Ni<j<ne1 D(uj) for each 1< i < n. Hence,Dl1 "Ce G Dnil ". In an dfort to simplify notation, we

.....

de TEQDy), forall1<k<n+1. (2)

The theorem then follows as the special case in wkiehn + 1. We first make the following observations
concerning the TEQ relatiom; in eachD;, for each 1<i,j <n+ 1:

(i) uj €D ifand onlyif j <i,
(i) cj e Djifandonly if j <1,
(i) ¢ >acif j<i<n,

(iv) u =i G, ifi<n.



For[()} observe that if < i, u; € D(u) by transitivity of the sefus, . . ., un}. Henceu; € D;. If on the other
handj > i, thenu; ¢ D(u;) and thusu; ¢ D;. For[(i), observe that; € D(u;) for all i # j and thuscj € D;
if j <i. However,c; ¢ B(Uj) and hence; ¢ Dj if j > i. For[{ii)} merely observe that is the Condorcet
winner inDj,1(c)), if j < i < n. To appreciatéiy), observe that by constructiddi,1(ci) has to be either a
singleton{u;} for someu; € Uj;, or U; itself. The former is the cased; C Y, or if U; € X andi # n. The
latter holds ifU; = U, or if U; € Z. In either caseTEQDi.1(c)) = Di;1(¢) andu; —i,1 ¢ holds. For
the case in whictJ; ¢ X with i # n, letU; = {u;, u’, u’}. By constructionUj,> € Z andu, u” ¢ D(ui;2).
Accordingly,u/,u” ¢ Dj,1. Formu; € Dj,; it then follows thatDi,1 N U; = {uj}.

We are now in a position to provil (2) by inductionlarFork = 1, observe thad is a Condorcet winner
in D1 and thusd € TEQD;). For the induction step, lé¢ = i + 1. With observatiofiij] we know that
u; € Di,1 and, in virtue of the induction hypothesis, also tHat TEQ(D;). Hence,d —i,1 Uj. Moreover,
by observation§ii{)] and[{v)} ¢ —i;1 d =1 U =41 G, i.e, ¢, d andy; constitute a—;,1-cycle. In

virtue of Lemma_]L and observati¢n)f we may conclude that —; , afor all a € Di.1. Accordingly,

{ci,d,ui} C TCBi+1(_’i+1) andd € TEQ(Dj,1), which concludes the proof. O
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