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Abstract

A recurring theme in the mathematical social sciences is howto select the “most desirable” elements
given a binary dominance relation on a set of alternatives. Schwartz’s tournament equilibrium set (TEQ)
ranks among the most intriguing, but also among the most enigmatic, tournament solutions that have
been proposed so far in this context. Due to its unwieldy recursive definition, little is known about
TEQ. In particular, its monotonicity remains an open problem up to date. Yet, if TEQ were to satisfy
monotonicity, it would be a very attractive tournament solution concept refining both the Banks set and
Dutta’s minimal covering set. We show that the problem of deciding whether a given alternative is
contained in TEQ is NP-hard.

1 Introduction

The central problem of the literature on tournament solutions is as appealing as it is simple: Given an ir-
reflexive, asymmetric, and complete binary relation over a set, find the most attractive elements of this set.
As the standard notion of maximality is not well-defined in the presence of cycles, numerous alternative so-
lution concepts have been devised and axiomatized (see,e.g., Moulin, 1986; Laslier, 1997). In social choice
theory, the base relation, which we call dominance relation, is commonly defined via pairwise majority
voting, and many well-known tournament solutions yield attractive social choice correspondences.

Over the years, the computational complexity of almost all common solution concepts has been com-
pletely characterized (see,e.g., Woeginger, 2003; Conitzer, 2006; Brandt et al., 2007; Brandt and Fischer,
2007). One notable exception is the tournament equilibriumset (TEQ) proposed by Schwartz (1990). Due to
its unwieldy recursive definition, little is known about TEQ(Dutta, 1990; Laffond et al., 1993). However, if
a certain technical conjecture stated almost two decades ago turned out to be true, it would constitute one of
the most attractive tournament solutions, refining both theminimal covering set and the Banks set (Laslier,
1997; Laffond et al., 1993). Laslier states that “Unfortunately, no algorithm has yet been published for find-
ing the Minimal Covering set or the tournament equilibrium set of large tournaments. For tournaments of
order 10 or more, it is almost impossible to find (in the general case) these sets at hand” (Laslier, 1997, p. 8).
While it has recently been shown that computing the minimal covering set is feasible in polynomial time
(Brandt and Fischer, 2007), it turns out that this is not the case for TEQ unless P equals NP. We prove this
by first providing an alternative hardness proof for the Banks set which is then modified so as to apply to
TEQ as well. In contrast to the Banks set, there is no obvious reason to suppose that the TEQ membership
problem is in NP; it may very well be even harder.
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2 Preliminaries

A tournament Tis a pair (A,≻), whereA is a finite set ofalternativesand≻ an irreflexive, anti-symmetric,
and complete binary relation onA, also referred to as thedominance relation. Intuitively, a ≻ b signifies
that alternativea beatsb in a pairwise comparison. We writeT for the class of all tournaments and we have
T (A) denote the set of all tournaments on a fixed setA of alternatives. IfT is a tournament onA, then every
subsetX of A induces a tournamentT |X defined as (X,≻|X), where≻|X = {(x, y) ∈ X × X : x ≻ y}.

As the dominance relation is not assumed to be transitive in general, it may contain cycles. Moreover,
there need not be a so-calledCondorcet winner, i.e., an alternative that dominates all others. This makes that
the usual notions of maximum and maximal elements are no longer feasible in this context. Other concepts
have been suggested to take over the role of singling out those alternatives that can somehow be considered
the “winners” of the tournament. Formally, atournament solution Sis defined as a function that associates
with each tournamentT onA a subsetS(T) of A. The definition of a tournament solution commonly includes
the requirement thatS(T) be non-empty ifT is defined on a non-empty set of alternatives and that it select
the Condorcet winner if there is one (Laslier, 1997, p.37). For X a subset ofA, we also writeS(X) for
the more cumbersomeS(T |X), provided that the tournamentT is known from the context. In this paper
we will be concerned with two particular tournament solutions, the Banks set and Schwartz’s tournament
equilibrium set (TEQ). For a proper definition, however, we need some auxiliary notions and notations.

Let R be a binary relation on a setA. We writeR∗ for the transitive reflexive closure ofR. By the top
cycle TCA(R) we understand the maximal elements of the asymmetric part of R∗. A subsetX of A is said
to betransitive if R is transitive onX. For X ⊆ Y ⊆ A, X is calledmaximal in Yif no proper superset ofX
in Y is transitive,i.e., if there is no transitiveZ ⊆ Y with X ⊂ Z. Clearly, every transitive set is contained in
a maximal transitive set. Given a setZ = {Zi}i∈I of pairwise disjoint subsets ofA, a subsetX of A will be
called achoice set for Zif it contains precisely one element from each subsetZi ∈ Z.

In tournaments, maximal transitive sets are also referred to as Banks trajectories. TheBanks set BA(T)
of a tournamentT then collects the maximal elements of the Banks trajectories.

Definition 1 (Banks set) Let T be a tournament on A. An alternative a∈ A is in theBanks setBA(T) of T
if a is a maximal element of some maximal transitive set in T.

The tournament equilibrium setof a tournamentT on A is defined as the top cycle of a particular
subrelation of the dominance relation, the TEQ relation. The underlying idea is that an alternative is only
“properly” dominated,i.e., dominated according to the subrelation, if it is dominatedby an element that is
selected by some tournament solution conceptS. To make this idea precise, forX ⊆ A, we writeDX(a) =
{ b ∈ X : b ≻ a } for thedominatorsof a in X, omitting the subscript whenX = A. Thus, for each alternativea
one examines the dominator setD(a), and solves the subtournamentT |D(a) by means of the solutionS. In

the subrelationa is then only dominated by the alternatives inS(D(a)). This of course, still leaves open
the question as to the choice of the solution conceptS. Now, in the case ofTEQ, S is taken to beTEQ
itself! The reason why this is a proper recursive definition is that ifa ∈ X for someX ⊆ A the setDX(a)
of dominators ofa in X is a proper subset ofX. I.e., in order to determine the TEQ relation in a particular
subtournamentT, one has to calculate the TEQ of a proper subtournament ofT.

Definition 2 (Tournament equilibrium set) Let T be a tournament on A. For each subset X of A we define
the tournament equilibrium setTEQ(X) for X as follows:

TEQ(X) = TCX(→X),

where→X is defined as the binary relation on X such that for all x, y ∈ X,

x→X y if and only if x∈ TEQ(DX(y)).

2



b c

a

d e

Figure 1: Example due to Schwartz, 1990, whereBA(T) = {a, b, c, d} andTEQ(T) = {a, b, c}. The relation→
is indicated by thick edges.

Observe that the TEQ relation→X is invariably a subset of the dominance relation≻ and that ifDX(x) , ∅,
then there is somey ∈ DX(x) with y→X x.

It can easily be established that the Banks set and TEQ both select the Condorcet winner in a tournament
if there is one. Moreover, in a cyclic tournament on three alternatives, the Banks set and TEQ both consist
of all alternatives. Yet, the Banks set and TEQ do not coincide for all tournaments. For an example consider
the tournament depicted in Figure 1. First we calculate the TEQ relation→. Observe thatD(a) = {c}.
Hence,c is the Condorcet winner inD(a) and we haveTEQ(D(a)) = {c} andc → a. For alternativeb we
haveD(b) = {a, e}. Sincea ≻ e, alternativea is the Condorcet winner inD(b), and we may conclude that
TEQ(D(b)) = {a}. Hence,a→ b wherease 6→ b. In an analogous fashion we find for allx ∈ {a, b, c, d, e}
that x → c if and only if x = b as well as thatx → d if and only if x = a. For alternativee, however,
D(e) = {a, c, d}. Sincea ≻ d ≻ c ≻ a, a three-cycle, we have thatTEQ(D(e)) = {a, c, d} and hencea→ e,
c → e as well asd → e. The top cycle of the relation→ thus found can then be seen to coincide with
the set{a, b, c}, which then also constitutes the TEQ of this tournament. By contrast, the Banks set in this
example consists of the four elementsa, b, c andd. Maximal transitive sets of whicha, b, c andd are the
maximal elements are,e.g., {a, b, d}, {b, c}, {c, a, e} and{d, c, e}, respectively. Alternativee is not included
in the Banks set. The only transitive subsets of whiche is the maximal element are{e} and{e, b}. However,
both these sets are included in maximal transitive sets of which e is not the maximal element,e.g., the set
{a, e, b}. Thus TEQ and the Banks set may differ. However, the former is known to always be included in
the latter.

Proposition 1 (Schwartz, 1990)Let T = (A,≻) be a tournament. Then, TEQ(T) ⊆ BA(T).

Proof: We prove by structural induction onX thatTEQ(X) ⊆ BA(X) for all subsetsX of A. The caseX = ∅
is trivial, as thenTEQ(X) = BA(X) = ∅. So, assume thatTEQ(X′) ⊆ BA(X′), for all X′ ( X. We prove that
TEQ(X) ⊆ BA(X) as well. To this end, consider an arbitrarya ∈ TEQ(X). EitherDX(a) = ∅ or DX(a) , ∅.
In the former case,a is the Condorcet winner inX and thereforea ∈ BA(X). In the latter case,x→X a for
somex ∈ X. Having assumed thata ∈ TEQ(X), i.e., a ∈ TC(→X), there is also anx′ ∈ X with a →X x′.
Accordingly,a ∈ TEQ(DX(x′)). By the induction hypothesis, alsoa ∈ BA(DX(x′)). Therefore, there is some
maximal transitive setY in DX(x′) of whicha is the maximal element. Then,Y∪ {x′} is a transitive set inX.
Now letY′ ⊆ X be a maximal transitive set inX containingY∪{x′}with a′ as maximal element. Observe that
a′ ∈ BA(X). Then,a′ ≻ x′ and soa′ ∈ DX(x′). Now considerY′ ∩DX(x′). Clearly,Y∩DX(x′) is a transitive
set inDX(x′) which containsa′ as its maximal element. Moreover,Y ⊆ Y′ ∩ DX(x′). By maximality ofY it
then follows thatY = Y′ ∩ DX(x′) and thata = a′. We may conclude thata ∈ BA(X). �

In the remainder of this paper, we assume the reader to be familiar with the well-known complexity
classes P and NP and the notion of polynomial-time reducibility (see,e.g., Papadimitriou, 1994).
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Algorithm 1 Tournament Equilibrium Set
procedureTEQ(X)
R← ∅
B← C← arg mina∈X |D(a)|
loop

R← R∪ {(b, a) : a ∈ C ∧ b ∈ TEQ(D(a))}
D←

⋃

a∈C TEQ(D(a))
if D ⊆ B then return TCB(R) end if
C← D
B← B∪C

end loop

3 A Heuristic for Computing the Tournament Equilibrium Set

It is not very hard to see that the naive algorithm for computing TEQ, which simply recursively computes→,
requires exponential time in the worst case. Running time can be greatly reduced by using a heuristic that
relies on the conjecture that the top cycle of any TEQ relation consists of only one strongly connected
component. This conjecture was already made by Schwartz (1990) and has later been shown to be equivalent
to the (conjectured) monotonicity of TEQ (Laffond et al., 1993). Algorithm 1 computes TEQ by starting
with the setB of all alternatives that have dominator sets of minimal size. These alternatives are likely to
be included in TEQ and the small size of their dominator sets speeds up the determination of their TEQ-
dominators. In the following, all alternatives that TEQ-dominate any alternative inB are iteratively added
to B until no more such alternatives can be found, in which case the algorithm returns the top cycle of
B. Clearly, theworst-caserunning time of this algorithm is still exponential, and it will be shown in the
remainder of the paper that this has to be the case for every algorithm computing TEQ unlessP = NP.

4 An Alternative NP-Hardness Proof for Membership in the Banks Set

The problem of deciding whether a particular alternative isincluded in the Banks set of a given tournament
T is known to be NP-complete. This was first demonstrated by Woeginger (2003) by means of a reduction
from graph three-colorability. Here we will give an alternative proof of this result. Our proof works by a
reduction from3SAT, the NP-complete satisfiability problem for Boolean formulas in conjunctive normal
form with exactly three literals per clause (see,e.g., Papadimitriou, 1994). The construction used in this
paper is arguably simpler than Woeginger’s. Moreover, a much similar construction will be used in the next
section to prove NP-hardness of the analogous decision problem for TEQ. The tournaments used in these
reductions will both be taken from a special classT ∗, which we introduce next.

Definition 3 (The classT ∗) A tournament(A,≻) is in the classT ∗ if it satisfies the following properties.
There is some odd integer n≥ 1, the sizeof the tournament, such that A= C ∪ U1 ∪ · · · ∪ Un, where
C,U1, . . . ,Un are pairwise disjoint and C= {c0, . . . , cn}. Each Ui is a singleton if i is even, and Ui =
{u1

i , u
2
i , u

3
i } if i is odd. The complete and asymmetric dominance relation≻ is such that the following five

properties hold for all ci ∈ Ci , cj ∈ C j , ui ∈ Ui , uj ∈ U j (0 ≤ i, j ≤ n):

(i) ci ≻ c j , if i < j,

(ii) u i ≻ c j , if i = j,

(iii) c j ≻ ui , if i , j,
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(iv) ui ≻ u j , if i < j and at least one of i and j is even (i.e., ui or uj is a separating node),

(v) uk
i ≻ ul

i , if i is odd and k≡ l − 1 (mod 3) (i.e., u1
i ≻ u2

i ≻ u3
i ≻ u1

i ).

We also refer to c0 by d, for “decision node” and to
⋃

1≤i≤n Un by U. For i = 2k, we have as a notational
convention Ui = Yk = {yk} and set Y=

⋃

1≤2k≤n Yk. These nodes are calledseparating nodes.

Observe that this definition fixes the dominance relation between any two alternatives except for some pairs
of alternatives that are both inU.

As a next step in the argument, we associate with each instance of 3SATa tournament in the classT ∗.
An instance of3SAT is given by a formulaϕ in 3-conjunctive normal form (3CNF), i.e., ϕ = (x1

1 ∨ x2
1 ∨

x3
1) ∧ · · · ∧ (x1

m ∨ x2
m ∨ x3

m), where eachx ∈ {x1
i , x

2
i , x

3
i : 1 ≤ i ≤ m} is a literal. For each clausex1

i ∨ x2
i ∨ x3

i
we assumex1

i , x2
i andx3

i to be distinct literals. We moreover assume the literals to be indexed and byXi we
denote the set{x1

i , x
2
i , x

3
i }. For literalsx we have ¯x = ¬p if x = p, and x̄ = p if x = ¬p, wherep is some

propositional variable. We may also assume that ifx andy are literals in the same clause, thenx , ȳ. We
say a 3CNFϕ = (x1

1 ∨ x2
1 ∨ x3

1) ∧ · · · ∧ (x1
m ∨ x2

m ∨ x3
m) is satisfiableif there is a choice setV for {Xi}1≤i≤m

such thatv′ = v̄ for no v, v′ ∈ V. Next we define for each3SATformulaϕ the tournamentTBA
ϕ .

Definition 4 (Banks construction) Letϕ be a3CNF (x1
1 ∨ x2

1 ∨ x3
1) ∧ · · · ∧ (x1

m ∨ x2
m∨ x3

m). Define TBA
ϕ =

(C ∪ U,≻) as the tournament in the classT ∗ of size2m− 1 such that for all1 ≤ j < 2m,

U j =















Xi if j = 2i − 1,

{yi} if j = 2i

and such that for all x∈ Xi and x′ ∈ X j (1 ≤ i, j ≤ m),

x ≻ x′ if both j < i and x′ = x̄ or both i< j and x′ , x̄.

Observe that in conjunction with the other requirements on the dominance relation of a tournament inT ∗,
this completely fixes the dominance relation≻ of TBA

ϕ .

An example for such a tournament is shown in Figure 2. We are now in a position to prove NP-completeness
of deciding whether a particular alternative is in the Banksset.

Theorem 1 The problem of deciding whether a particular alternative isin the Banks set of a tournament is
NP-complete.

Proof: Membershipin NP is obvious. For a fixed alternatived, we can simply guess a transitive subset of
alternativesV with d as maximal element and verify thatV is also maximal w.r.t. set inclusion.

For NP-hardness, we show thatTBA
ϕ contains a maximal transitive set with maximal elementd if and

only if ϕ is satisfiable. First observe thatV is a maximal transitive subset with maximal elementd in TBA
ϕ

only if

(i) for all 1 ≤ i < 2m there is au ∈ Ui such thatu ∈ V, and

(ii ) there are no 1≤ i < j < 2m, u ∈ Ui, u′ ∈ U j with u, u′ ∈ V such thatu j ≻ ui .

Regarding (i), if there is an 1≤ i < 2m such that no element ofUi is contained inV, we can always addci

to V in order to obtain a larger transitive set. If (ii ) were not to hold, bothi and j have to be odd foru j to
dominateui . However, in light of (i), there has to bek with i < k < j andu′′ ∈ Uk such thatu′′ ∈ V. It
follows thatV is not transitive becauseu, u′′, andu′ form a cycle. If there is maximal transitive setV with
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p q ¬r

p s r

¬p s q

y2

y1

d

c1

c3

c5

c2

c4

Figure 2: TournamentTBA
ϕ for the 3-CNF formulaϕ = (¬p∨ s∨ q) ∧ (p∨ s∨ r) ∧ (p∨ q∨ ¬r).

maximal elementd complying with both (i) and (ii ), a satisfying assignment ofϕ can be obtained by letting
all literals contained inX ∩ V be true.

For the opposite direction, assume thatϕ is satisfiable. Then there is a choice setW for {Xi}1≤i≤m such
that x′ = x̄ for no x, x′ ∈ W. ObviouslyV = W ∪ {y1, . . . , ym−1} ∪ {d} does not contain any cycles and
thus is transitive with maximal elementd. In order to obtain a larger transitive set with a different maximal
element, we need to addci for some 1≤ i ≤ m to V. However,V ∪ {ci} always contains a cycle consisting
of ci , d, andu for someu ∈ Ui , contradicting the transitivity ofV ∪ {ci}. We have thus shown thatd is the
maximal element of some maximal transitive set inTBA

ϕ containingV as a subset. �

5 NP-hardness of Membership in the Tournament Equilibrium Set

As the main result of this paper, we demonstrate that the problem of deciding whether a particular alternative
is in the TEQ of a tournament is NP-hard. To this end, we refine the construction used in the previous section
to prove NP-completeness of membership in the Banks set.

Definition 5 Let ϕ a 3-conjunctive normal form(x1
1 ∨ x2

1 ∨ x3
1) ∧ · · · ∧ (x1

m ∨ x2
m ∨ x3

m). Further for each

1 ≤ i < m, let there be a set Zi = {z1
i , z

2
i , z

3
i }.Define TTEQ

ϕ as the tournament(A,≻) in T ∗ of size4n− 3 such
that A= C ∪ U1 ∪ · · · ∪U4n−3 and for all 1 ≤ i ≤ m,

U j =



























Xi if j = 4i − 3,

Zi if j = 4i − 1,

{yi} otherwise.

As in the Banks construction, we let for all x∈ Xi and x′ ∈ X j (1 ≤ i, j ≤ m)

x ≻ x′ if both j < i and x′ = x̄ or both i< j and x′ , x̄.
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p q ¬r

z1
2 z2

2 z3
2

p s r

z1
1 z2

1 z3
1

¬p s q

y4

y3

y2

y1

d

c1

c3

c5

c7

c9

c2

c4

c6

c8

Figure 3: TournamentTTEQ
ϕ for the 3-CNF formulaϕ = (¬p∨ s∨ q) ∧ (p∨ s∨ r) ∧ (p∨ q∨ ¬r). Omitted

edges are again assumed to point downwards.

Finally, for all 1 ≤ i, j ≤ m, xki ∈ Xi and zlj ∈ Z j ,

xk
i ≻ zl

j if and only if i< j or both i = j and k= l.

An example for such a tournament is shown in Figure 3.
We now proceed to show that a3SATformulaϕ is satisfiable if and only if the decision noded is in the

tournament equilibrium set ofTTEQ
ϕ .

Lemma 1 Let T = (C ∪ U,≻) be a tournament inT ∗ and let B⊆ C ∪ U such that d∈ B. Then, for each
u ∈ U ∩ B there exists c∈ C ∩ B such that c→∗B u

Proof: Let ci ∈ C ∩ B be such thatDB(ci ) ∩ C = ∅, i.e., ci is the alternative inC with the highest index
among those included inB. Then,

ci →B c for all c ∈ B∩C with c , ci . (1)

7



For this, merely observe that by constructionci is the Condorcet winner inDB(c). Hence,ci ∈ TEQ(DB(c))
andci →B c.

The lemma itself then follows from the stronger claim that for eachu ∈ U ∩ B there is somec ∈ C ∩ B
with bothc→∗B u andc ∈ TEQ(B). This claim we prove by structural induction on supersetsB of {d}.

If B = {d}, U ∩ B = ∅ and the claim is satisfied trivially. So let{d} be a proper subset ofB. Again, if
U ∩ B = ∅, the claim holds trivially. So we may assume there be someu ∈ U ∩ B. Then,d ∈ DB(u) by
construction ofT. If DB(u)∩U = ∅, DB(u) is a non-empty subset ofC∩B, and so isTEQ(DB(u)). It follows
that for somec ∈ TEQ(DB(u)) ∩ C we havec →B u. If, on the other hand,DB(u) ∩ U , ∅, the induction
hypothesis is applicable and we havec ∈ TEQ(DB(u)) for somec ∈ C ∩ B. Hence,c→B u. With u having
been chosen arbitrarily, we actually have that for allu ∈ U ∩ B, there is somec ∈ C ∩ B with c →B u. It
remains to be shown that there is somec ∈ C ∩ TEQ(B) with c→∗B u.

To this end, again considerci ∈ C ∩ B such thatDB(ci) ∩C = ∅. It suffices to show thatci →
∗
B b for all

b ∈ B, as then bothci ∈ TEQ(B) ∩ C andci →
∗
B u. So, consider an arbitraryb ∈ B. If b = ci , the case is

trivial. If b ∈ C ∩ B but b , ci , we are done by (1). If insteadb ∈ U ∩ B, thenc→∗B b for somec ∈ C ∩ B,
as we have shown in the first part of the proof. Ifc = ci , we are done. Otherwise, we can apply (1) to obtain
ci →B c′ →∗B b and henceci →

∗
B b. �

Theorem 2 Deciding whether a particular alternative is in the tournament equilibrium set of a tournament
is NP-hard.

Proof: By reduction from 3-SAT. Consider an arbitrary 3-DNFϕ and construct the tournamentTTEQ
ϕ =

(C ∪ U,≻). This can be done in polynomial time. We show that

ϕ is satisfiable if and only ifd ∈ TEQ(TTEQ
ϕ ).

For the direction from left to right, observe that by an argument analogous to the proof of Theorem 1 it
can be shown thatϕ is satisfiable if and only ifd ∈ BA(TTEQ

ϕ ). So assuming thatϕ is not satisfiable yields

d < BA(TTEQ
ϕ ). By the inclusion of TEQ in the Banks set (Proposition 1), itfollows thatd < TEQ(TTEQ

ϕ ).
For the opposite direction, assume thatϕ is satisfiable. Then there is a choice setW for {Xi}1≤i≤m such

that x′ = x̄ for no x, x′ ∈ W. ObviouslyW ∪ {y1, . . . , ym−1} ∪ {z
j
i ∈ Z : x j

i ∈ W} = {u1, . . . , un} contains no
cycles and thus is transitive. Without loss of generality wemay assume thatui ∈ Ui for all 1 ≤ i ≤ n. For
each 1≤ i ≤ n+1, define a subsetD

u1,...,un

i of alternatives as follows. SetD
u1,...,un

n+1 = A and letD
u1,...,un

i denote
⋂

i≤ j≤n+1 D(u j) for each 1≤ i ≤ n. Hence,D
u1,...,un

1 ( · · · ( D
u1,...,un

n+1 . In an effort to simplify notation, we
write→i andDi(x) for →D

u1,...,un
i

andDD
u1,...,un
i

(x), respectively. We will also assumeu1, . . . , un to be fixed

and writeDi for D
u1,...,un

i . It then suffices to prove that

d ∈ TEQ(Dk), for all 1 ≤ k ≤ n+ 1. (2)

The theorem then follows as the special case in whichk = n+ 1. We first make the following observations
concerning the TEQ relation→i in eachDi , for each 1≤ i, j ≤ n+ 1:

(i) u j ∈ Di if and only if j < i,

(ii ) c j ∈ Di if and only if j < i,

(iii ) ci →i+1 c j if j < i ≤ n,

(iv) ui →i+1 ci , if i ≤ n.
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For (i), observe that ifj < i, u j ∈ D(ui ) by transitivity of the set{u1, . . . , un}. Hence,u j ∈ Di. If on the other
hand j ≥ i, thenu j < D(u j) and thusu j < Di. For (ii ), observe thatc j ∈ D(ui) for all i , j and thusc j ∈ Di

if j < i. However,c j < D(u j) and hencec j < Di if j ≥ i. For (iii ), merely observe thatci is the Condorcet
winner inDi+1(c j), if j < i ≤ n. To appreciate (iv), observe that by constructionDi+1(ci) has to be either a
singleton{ui} for someui ∈ Ui , or Ui itself. The former is the case ifUi ⊆ Y, or if Ui ⊆ X and i , n. The
latter holds ifUi = Un or if Ui ⊆ Z. In either case,TEQ(Di+1(ci)) = Di+1(ci) andui →i+1 ci holds. For
the case in whichUi ⊆ X with i , n, let Ui = {ui , u′i , u

′′
i }. By construction,Ui+2 ⊆ Z andu′i , u

′′
i < D(ui+2).

Accordingly,u′i , u
′′
i < Di+1. Formui ∈ Di+1 it then follows thatDi+1 ∩Ui = {ui}.

We are now in a position to prove (2) by induction onk. Fork = 1, observe thatd is a Condorcet winner
in D1 and thusd ∈ TEQ(D1). For the induction step, letk = i + 1. With observation (i) we know that
ui ∈ Di+1 and, in virtue of the induction hypothesis, also thatd ∈ TEQ(Di). Hence,d →i+1 ui . Moreover,
by observations (iii ) and (iv), ci →i+1 d →i+1 ui →i+1 ci , i.e., ci , d andui constitute a→i+1-cycle. In
virtue of Lemma 1 and observation (ii ), we may conclude thatci →

∗
i+1 a for all a ∈ Di+1. Accordingly,

{ci , d, ui } ⊆ TCDi+1
(→i+1) andd ∈ TEQ(Di+1), which concludes the proof. �
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sciences humaines, 31(123):37–44, 1993.

J.-F. Laslier.Tournament Solutions and Majority Voting. Springer, 1997.

H. Moulin. Choosing from a tournament.Social Choice and Welfare, 3:271–291, 1986.

C. H. Papadimitriou.Computational Complexity. Addison-Wesley, 1994.

T. Schwartz. Cyclic tournaments and cooperative majority voting: A solution. Social Choice and Welfare,
7:19–29, 1990.

G. J. Woeginger. Banks winners in tournaments are difficult to recognize.Social Choice and Welfare, 20:
523–528, 2003.

9


	Introduction
	Preliminaries
	A Heuristic for Computing the Tournament Equilibrium Set
	An Alternative NP-Hardness Proof for Membership in the Banks Set
	NP-hardness of Membership in the Tournament Equilibrium Set

