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Abstract

We present a model of information aggregation in which agents’ information is rep-

resented through partitions over states of the world. We discuss three axioms, meet

separability, upper unanimity, and non-imposition, and show that these three axioms

characterize the class of oligarchic rules, which combine all of the information held by

a pre-specified set of individuals.

JEL classification: D70, D71, D72

1 Introduction

The difficulty of appropriately defining rules for sharing information in differential informa-

tion economies is well-documented. Efficiency and core concepts are necessarily information

dependent. Privacy of information opens the door to strategic manipulation of information
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revelation on the part of agents. Early works on efficiency concepts in differential informa-

tion economies include Wilson (1978) and Holmstrom and Myerson (1983).

Here we point out a different difficulty with information sharing. Imagine two agents,

each of whom face two distinct signals about the true state of the world. Agent 1 observes

whether or not the sun comes out, and Agent 2 observes whether or not the temperature

falls below freezing. These are “weather” signals. Likewise, Agent 1 observes the demand for

oranges in New York, whereas Agent 2 observes the demand for oranges in New England.

These are “demand” signals. The two agents agree ahead of time on a prespecified rule

that is to be used in aggregating signals, resulting in a group signal. The rule need not

recommend sharing of all information between the agents. The agents can apply their

rule to the weather signals; likewise they can apply their rule to the demand signals. The

resulting aggregates are a group weather signal and a group demand signal.

On the other hand, each agent has a large signal about “weather and demand,” which

results from combining her private signal about weather with her private signal about

demand. This agent uses this combined “weather and demand” signal to predict the price

of orange futures. When aggregating the “weather and demand” signals across agents, the

rule produces a group “weather and demand” signal. In general, it need not be the case that

the group “weather and demand” signal is the same signal that results from combining the

group weather and group demand signal. This fact opens the door to strategic manipulation

of the rule—how signals are specified becomes relevant for determining the final group signal.

In order to rule out the possibility of such manipulation, we require that these group signals

always coincide: a property we call meet separability.

Formally, all informational content of a signal in our model is captured by a partition
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of the states of the world. Therefore, a signal is identified with a partition over states of

the world.

We consider two other requirements that a rule should satisfy. The first, upper una-

nimity, says that when all agents face an identical signal, the group signal should be a

coarsening of this one. (In general, we might require that the group signal is a coarsening of

the coarsest common refinement; this turns out to be implied by our axioms.) The second,

non-imposition, simply states that the rule is non-imposed; that is, any conceivable signal

might be the realized signal of the group for some profile of individual signals.

These three axioms, taken together, characterize the oligarchic rules. A rule is oligarchic

if there is a prespecified group of agents (the oligarchy) who determine the outcome of the

rule. In our case, we take the group signal of an oligarchic rule to be the totality of

information contained in the signals of the oligarchy (the coarsest common refinement of

their signals). Our main result states that a rule satisfies meet separability, upper unanimity,

and non-imposition if and only if it is oligarchic. Together with a basic symmetry axiom,

this states that the only information sharing rule satisfying the three properties is the rule

which always aggregates all information.

1.1 Related Literature

The oldest result on the aggregation of partitions is an Arrovian-style impossibility theorem

discovered by Mirkin (1975), and refined by Leclerc (1984).1 This theorem characterized

oligarchic rules as the class of rules satisfying an Arrovian-style independence condition
1See also Barthélemy et al. (1986), Fishburn and Rubinstein (1986), Barthélemy (1988), and Day and

McMorris (2003). More recently, Nehring (2006) provides a proof of Mirkin’s theorem using tools created
to study judgment aggregation.
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and a unanimity condition. The independence axiom requires that individual signals about

demand in New England be ignored when determining the collective signal about demand in

New York. The unanimity condition applies when each individual receives the same signal.

In that case, the commonly-received signal becomes the collective signal.

Miller (2008) investigates the concept of meet separability in the context of group iden-

tification. Vannucci (2008) studies the property in a more general model of group identifi-

cation in which opinions may be in the form of partitions of the society.

Recently, others have independently proven a result similar to our own. Dimitrov et al.

(2009) characterize oligarchic rules as the class of rules satisfying meet separability and two

other axioms, pareto-plus and non-triviality. Pareto-plus requires that, if none of the indi-

vidual signals distinguish between two states (“rain” and “clouds”), then the group signal

also does not distinguish between those two states. Pareto-plus implies the upper unanim-

ity axiom. The non-triviality axiom requires that the group signal must be informative for

some profile of individual signals. Non-triviality is implied by the non-imposition axiom.

The proof of their theorem, however, is completely different from our own.

2 The Model

2.1 Notation and the Model

The set of agents is a finite set N ≡ {1, ..., n} of individuals. States of the world

are elements of a finite set Ω. A signal is a partition over Ω. Formally, a signal can be

identified with an equivalence relation p ⊆ Ω× Ω. Two states stand in the relation if they

cannot be distinguished according to the signal.
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Let E denote the set of equivalence relations on Ω. Let P denote the set of partitions

of Ω. There is a one to one correspondence between E and P such that two states ω and

ω′ are equivalent if and only if they are in the same cell of the partition. While this paper

focuses on equivalence relations, all results apply to partitions.2

The set E forms a lattice when ordered under set inclusion. A profile is an N -

dimensional vector of equivalence relations P ≡ (P1, ..., Pn) ∈ E N , one for each agent.

The set E N also forms a lattice under the product order. For any two elements P and Q of

a lattice, we denote by P ∧ Q their greatest lower bound, and by P ∨ Q their least upper

bound. An aggregator is a function f : E N → E mapping from signal profiles into the

aggregate signal.

2.2 The axioms and the main result

Our first axiom eliminates strategic manipulation by framing of signals. It was described

at length in the introduction.

Meet Separability: For all P,Q ∈ E N , f(P ) ∧ f(Q) = f(P ∧Q).

Our next axiom is a very weak unanimity property.

Upper Unanimity: If Pi = Pj for all i, j ∈ N , then f(P ) ≥ P1 = ... = Pn.

Lastly, we require that, for any signal, there is a signal profile realizing that signal.

Non-Imposition: For all p ∈ E , there exists an Q ∈ E N such that f(Q) = p.
2For information on lattices and equivalence relations, please see Blyth and Janowitz (1972); Birkhoff

(1973); Aigner (1979); Szasz (1964); Ore (1942); Davey and Priestley (2002); Grätzer (2003); Roman (2008).
We thank the associate editor and an anonymous referee for these references.
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The next definition defines a class of rules. An oligarchy is a maximal set of agents

whose signals are combined to make the group signal.

Oligarchic Aggregator: There exists S ⊆ N , S 6= ∅, such that f(P ) ≡
∧
i∈S Pi.

Theorem 1. An aggregator satisfies meet separability, upper unanimity, and non-

imposition if and only if it is oligarchic. Moreover, all three axioms are independent.

The proof of the theorem can be found in the appendix.

2.3 Anonymity

The principle of anonymity requires that each agent’s signal be given the same weight.

Formally, let individuals trade signals amongst themselves according to a permutation π :

N → N of the set of agents. Anonymity requires that the collective signal should not

change because agents have traded their signals.

Anonymity: For all π and P ∈ E , f(P ) = f
(
Pπ(1), ..., Pπ(n)

)
.

The only oligarchic aggregator which satisfies anonymity is the one which includes all

of the agents’ information. The proof of the following proposition is trivial and is left for

the readers.

Proposition 2. An aggregator f satisfies meet separability, upper unanimity, non-

imposition, and anonymity if and only if f(P ) ≡
∧
i∈N Pi.

3 Meet Homomorphisms and Inverse Functions

To prove Theorem 1, we use a more general result about finite lattices.
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Let A,Z be finite lattices. Without loss of generality we denote the orders corresponding

to the lattices by ≤. Any finite lattice has a maximal and minimal element. Without loss

of generality we denote these by 1 and 0 respectively.

We say that a function f : A→ Z is a meet-homomorphism if for all a, b ∈ A, f (a ∧ b) =

f (a) ∧ f (b). Likewise, a function is a join-homomorphism if for all a, b ∈ A, f (a ∨ b) =

f (a) ∨ f (b).

A function f : A → Z is monotonic if for all a, b ∈ A, a ≤ b implies f (a) ≤ f (b).

Defining x < y to mean x ≤ y and x 6= y, say f is strictly monotonic if for all a, b ∈ A,

a < b implies f (a) < f (b). We say that f is surjective if for all z ∈ Z, there exists a ∈ A

such that f (a) = z. We say that f is injective if for all a, b, f (a) = f (b) implies a = b.

Theorem 3. A function f : A→ Z is a surjective meet-homomorphism if and only if there

exists an injective join-homomorphism g : Z → A satisfying g (0) = 0 such that, for all

a ∈ A, both g(f(a)) ≤ a and

f (a) =
∨
{z ∈ Z : g (z) ≤ a} .

The proof of the theorem can be found in the appendix.

4 Conclusion

We have presented a model of information aggregation and have characterized oligarchic ag-

gregation rules as the unique class of rules satisfying meet separability, upper unanimity, and

non-imposition. Oligarchic aggregation rules combine all of the information received by a

pre-selected set of agents. Other rules will necessarily violate one of the three axioms. Rules
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which violate the meet separability axiom allow the possibility of strategic manipulation—

the group signals may be affected by the questions asked. Independent questions about the

weather and about demand for oranges may lead to different conclusions about the price of

orange futures than would follow from a more direct question. Rules which violate upper

unanimity and non-imposition have very undesirable properties—the resulting group signals

are derived from something other than the agents’ information.

Of interest for future research is the investigation of the aggregation of modal opera-

tors. Instead of working with partitions directly, one would work with the corresponding

knowledge operators, and investigate axioms placed directly on these.

Appendices

A Proofs

We prove the theorems in reverse order.

A.1 Proof of Theorem 3

Proof. All references are to Blyth and Janowitz (1972); terminology can be found there as

well.3

First, because f is surjective, we know that for all z ∈ Z, {a ∈ A : f(a) ≥ z} 6= ∅.

Because f is a meet-homomorphism, it follows that f is monotonic. Consequently, f is

quasi-residual. (See page 9.) Because f is a quasi-residual meet homomorphism, it follows
3We thank an anonymous referee for showing us how this proof could be established from known results

in the literature.

8



from Theorem 5.2 that it is residual. Let g : Z → A be the residuated mapping having f as

its residual. Then, for all a ∈ A, g(f(a)) ≤ a and f has the following representation (page

11):

f(a) =
∨
{z ∈ Z : g(z) ≤ a}.

Because f is surjective, it follows from Theorem 2.6 that g is injective. Lastly, as g is

residuated, it follows from Theorem 5.2 that it is a quasi-residuated join-homomorphism.

Therefore {z ∈ Z : g(z) ≤ 0} 6= ∅. Because g it is one-to-one and monotone; we conclude

that g(0) = 0.

Conversely, suppose that f has the representation as described in the theorem. Then f

is residual, and is the residual of g. (See page 11.) Because f is residual, it follows from

Theorem 5.2 that it is a meet homomorphism. Since g is injective, Theorem 2.6 implies

that f must be surjective.

A.2 Proof of Theorem 1

Proof. Step 1. As noted in section 2.1, the set E forms a lattice under set inclusion, and

the set E N thus forms a lattice under the product order. The meet separability and non-

imposition axioms imply that f is a meet-homomorphism and is a surjection, respectively.

As a consequence, Theorem 3 implies that there is an injective join-homomorphism g : E →

E N satisfying g (0) = 0, such that, for all P ∈ E N , both g(f(P )) ≤ P and

f (P ) =
∨
{p ∈ E : g (p) ≤ P} .
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Let J ≡ {p ∈ E : p > 0, p ≥ r > 0 implies that p = r} be the set of atoms of E . For

each atom there is a unique pair of states of the world α, β ∈ Ω which are equivalent. The

lattice of partitions is atomistic: every nonzero element of p ∈ E can be expressed as the

finite join of elements of J . (See Roman, 2008, pp. 80, 110.)

Step 2. We show that there is a non-empty subset S ⊆ N \∅ such that, for all p ∈ J ,

g (p)i = p if i ∈ S, and g (p)i = 0 if i /∈ S.

Let p ∈ J . By upper unanimity, f (p, ..., p) ≥ p. From step one, g (f (p, ..., p)) ≤ (p, ..., p).

Therefore, from the monotonicity of g, it follows that (p, ..., p) ≥ g (f (p, ..., p)) ≥ g (p).

From step one, g is injective and g (0) = 0. Therefore, because p > 0, it follows that

(p, ..., p) ≥ g(p) > 0. This implies that there is a subset S ⊆ N \ ∅ such that gi(p) = p if

i ∈ S and gi (p) = 0 if i /∈ S. If |Ω| < 3, we may proceed to the last step. Otherwise, define

Sp ≡ {i ∈ N : g(p)i = p}. Let q ∈ J \ {p}, and define Sq accordingly. To complete this step

we must show that Sp = Sq.

Let r, t ∈ J \ {p} such that r ∨ t ≥ p and define Sr and St accordingly.4 Because g is

a join-homomorphism, it follows that g (r) ∨ g (t) = g (r ∨ t) ≥ g (p). Now (g (r) ∨ g (t))i ≥

gi (p) ≥ p if and only if i ∈ Sr ∩ St, which implies that Sp ⊆ Sr ∩ St. Next, because

r ∨ t ≥ p it follows that p∨ r ≥ t and p∨ t ≥ r. By repeating this argument, it follows that

Sr ⊆ Sp ∩ St and St ⊆ Sp ∩ Sr. Therefore Sp = St = Sr.

If there exists s ∈ J \ {p, q} such that p ∨ q ≥ s, this concludes the step. If not, we can

always find r, s, t ∈ J \{p, q} such that p∨ r ≥ s and q∨ r ≥ t and therefore Sp = Sr = Sq.5

4To see why r and t necessarily exist, recall that for each atom in J , there is a unique pair of states of
the world which are equivalent. Without loss of generality, let the unique pair for p be α, β ∈ Ω, and refer
to p by this pair, so that 〈αβ〉 ≡ p. Because |Ω| ≥ 3, there must exist another element γ ∈ Ω \ {α, β} and,
consequently, distinct atoms r ≡ 〈αγ〉 and t ≡ 〈βγ〉. In the partition denoted by 〈αγ〉 ∨ 〈βγ〉, the pair α
and γ are equivalent and the pair β and γ are equivalent. It follows that α and β must also be equivalent,
so therefore 〈αγ〉 ∨ 〈βγ〉 ≥ 〈αβ〉.

5To see why r, s, t necessarily exist in this case, suppose that p = 〈αβ〉 and q = 〈αγ〉. Then p ∨ q =
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Step 3. We show that there is a non-empty subset S ⊆ N \∅ such that, for all p ∈ E ,

gi (p) = p if i ∈ S, and gi (p) = 0 if i /∈ S.

We have shown that there exists S ⊆ N such that, for all q ∈ J , gi(q) = q if i ∈ S and

gi(q) = 0 if i /∈ S. Let P ∈ E N . The result now follows as every nonzero element p ∈ E can

be expressed as a finite join of elements of J , and as g is a join homomorphism.

Step 4. Completing the proof.

Recall f (P ) =
∨
{p ∈ E : g (p) ≤ P}. The statement g (p) ≤ P is true if and only if

for all i ∈ S, p ≤ Pi, which is true if and only if p ≤
∧
i∈S Pi. Consequently, f (P ) =∨{

p ∈ E : p ≤
∧
i∈S Pi

}
=
∧
i∈S Pi.

Independence of the Axioms. We present three rules; each satisfies two of the

axioms but violates the third.

Rule 1. The degenerate rule, f(P ) = 1 for all P ∈ E N . This rule trivially satisfies meet

separability and upper unanimity but violates non-imposition.

Rule 2. The rule f(P ) = P2, if P1 = 1; f(P ) = 0, otherwise. This rule satisfies meet

separability and non-imposition but violates upper unanimity.

Rule 3. The lattice polynomial, or majority rule: Let G ≡
{
S ⊆ N : |S| > N

2

}
. f(P ) =∨

S∈G
∧
i∈S Pi. This rule satisfies upper unanimity and non-imposition but violates meet

separability.

This completes the proof.

〈αβ〉∨ 〈αγ〉 ≥ 〈βγ〉. This would contradict the assumption that there is no s ∈ J \{p, q} such that p∨ q ≥ s.
So there must be a distinct α, β, γ, δ such that p = 〈αβ〉 and q = 〈γδ〉. It follows then that there must also
be elements r ≡ 〈αγ〉, s ≡ 〈βγ〉, and t ≡ 〈αδ〉.
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