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Abstract: The division problem consists of allocating a given amount of an homo-

geneous and perfectly divisible good among a group of agents with single-peaked

preferences on the set of their potential shares. A rule proposes a vector of shares for

each division problem. The literature has implicitly assumed that agents will �nd

acceptable any share they are assigned to. In this paper we consider the division

problem when agents�participation is voluntary. Each agent has an acceptable inter-

val of shares where his preferences are single-peaked. A rule has to propose to each

agent either an acceptable share or the zero share because otherwise, he would prefer

to exclude himself and leave with the zero share; this would require to reassign the

remaining agents�shares. We study a subclass of e¢ cient and consistent rules and

characterize extensions of the uniform rule that deal explicitly with agents�voluntary

participation.
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1 Introduction

The division problem consists of a set of agents that have to share an amount of an

homogeneous and perfectly divisible good. Each agent has single-peaked preferences on

the set of his potential shares; namely, there is an amount of the good (the peak of the

agent) that is his most-preferred share and in both sides of the peak the preference is

monotonic, decreasing at its right and increasing at its left. Since preferences re�ect

idiosyncratic characteristics of the agents, they have to be elicited by a rule that maps

each division problem (a set of agents, a preference pro�le of declared list of single-peaked

preferences, one for each agent, and the amount of the good to be allocated) into a vector

of shares. But in general, the sum of the peaks will be either larger or smaller than the

total amount to be allocated. A positive or negative rationing problem emerges depending

on whether the sum of the peaks exceeds or fails short the �xed amount. Rules di¤er

from each other in how this rationing problem is resolved in terms of incentives, e¢ ciency,

fairness, monotonicity, consistency, etc.

There are many examples of allocation problems that �t with this general description.

For instance, a group of agents participate in an activity that requires a �xed amount of

labor (measured in units of time). Agents have a maximal number of units of time to

contribute and consider working as being undesirable. Suppose that labor is homogeneous

and the wage is �xed. Then, strictly monotonic and quasi-concave preferences on the set

of bundles of money and leisure generate single-peaked preferences on the set of potential

shares where the peak is the amount of working time associated to the optimal bundle.

Similarly, a group of agents join a partnership to invest in a project (an indivisible bond

with a face value, for example) that requires a �xed amount of money (neither more nor

less). Their risk attitudes and wealth induce single-peaked preferences on the amount to

be invested. In both cases, a rule is required to solve the rationing problem arising from a

vector of peaks that do not add up the needed amount.

However, in many applications (like those described above), agents�participation can

not be compulsory. Hence, the rule can not propose to an agent an unacceptable share;

otherwise, the agent would prefer to not participate at all and leave with the zero share.

In this paper we study rules that solve the rationing problem when agents�participation

is voluntary. We call an allocation problem of this type, a division problem with voluntary
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participation (a problem, for short). Now, in a problem each agent�s preferences are char-

acterized by an interval of acceptable shares where preferences are single-peaked. Only

shares inside this interval are considered to be acceptable. A rule will have to propose, for

each problem, a vector where each agent receives either an acceptable share or zero. Now

the vector of zero shares to everybody is a feasible allocation.

We are interested in rules that satisfy a set of desirable properties. First, e¢ ciency. A

rule is e¢ cient if it always selects Pareto optimal allocations. E¢ ciency guarantees that

in solving the rationing problem (either positive or negative) no amount of the good is

wasted. Second, consistency. A rule is consistent if the proposed shares at a given problem

coincide with the shares that the rule would propose at any smaller problem obtained

after that a subset of agents, agreeing with the amounts the rule has assigned to them,

leave the society taking with them their already assigned shares. Consistency guarantees

that, in order to follow the rule�s prescription at the reduced problem, the remaining

agents do not have to reallocate their shares. Third, individual rationality from equal

division. Suppose that we assign to each agent his smallest acceptable share. The rest is

divided as equally as possible under the condition that no agent receives more than his

largest acceptable share. A rule satis�es this property by choosing a Pareto improvement

from the previous allocation.1 Individual rationality from equal division embeds to the

rule a minimal egalitarian principal only broken for two reasons. First, to keep biding the

restrictions derived from the requirement that agents have to receive acceptable shares and

second, to admit Pareto improvements from this egalitarian allocation. In contrast with the

division problem when all shares are acceptable,2 we show that when agents�participation

is voluntary the fundamental properties of e¢ ciency, anonymity and strategy-proofness are

incompatible.3 In particular, strategy-proofness and e¢ ciency together makes the rule to

be too stringent since e¢ ciency requires it to be sensitive to agents�participation intervals

1See Sönmez (1994) for an analysis of rules satisfying this property in the context of division problems

with compulsory participation.
2In this setting Sprumont (1991) characterizes the uniform rule as the unique rule satisfying e¢ ciency,

anonymity (the names of the agents do not play any role), and strategy-proofness (truth-telling is a

dominant strategy in the direct revelation game induced by the rule).
3Speci�cally, strategy-proofness is incompatible with a much weaker requirement of e¢ ciency (see

Subsection 3.1 for its formal de�nition). Moreover, strategy-proofness is incompatible with anonymity in

the subclass of reasonable rules (those that satisfy the minimal requirement that if the sum of all ideal

shares is equal to the amount of the good to be allocated, the proposed shares coincide with the ideal

shares). Finally, e¢ ciency is also incompatible with anonymity. In Subsection 3.2 we give formal proofs

of these incompatibilities.
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but then it would respond too much to agents�preferences, becoming easily manipulable.4

We proceed by leaving aside incentive issues and by focusing on the class of e¢ cient and

consistent rules that are individually rational from equal division.

Before moving to the general description of our results we want to stress a fundamental

attribute of rules when applied to division problems with voluntary participation. Fix a

problem (a set of agents, their preferences, and the amount of the good to be allocated). A

rule has to make two choices. First, it has to select a subset of agents (a coalition) among

whom the good will be allocated. This coalition has to be admissible for the problem: it

should be possible to allocate the total amount of the good among its members without

harming their participation constraints. Second, and given this chosen coalition (if non-

empty), the rule has to select (among potentially many) a particular share allotted to

each of its members. When participation is compulsory rules disregard the �rst issue and

select always the grand coalition. In this setting the uniform rule has emerged as the most

appealing one.5 At each division problem with compulsory participation the uniform rule

tries to allocate the amount of the good among all agents as equally as possible, keeping

the e¢ ciency constraints binding. Hence, all agents are constrained in the same way; i.e.,

either each receives a share below his peak (when the sum of all their ideals is larger than

the total amount) or each agent receives a share above his peak (when the sum of all their

ideals is smaller than the total amount).

Our results identify axiomatically three nested classes of rules. In all cases the set

of axioms will single out a unique way of allocating the amount of the good among the

members of an admissible chosen coalition. The classes will di¤er precisely on how their

elements choose the admissible coalition. This unique allotting way consists of the following

natural extension of the uniform rule. Fix a problem. If no coalition is admissible, assign

the zero share to all agents. Otherwise, take the chosen non-empty admissible coalition.

Then the allocation of the good among its members can be described as a two steps

procedure. First, assign to each agent in the coalition his smallest acceptable share. The

remainder is assigned by adding uniformly the same amount to every agent in the coalition.

If the sum of the peaks exceeds the amount to be allocated then the rule stops adding to

those agents whose peak is reached, and keeps adding uniformly to the rest. Observe that

4In contrast again, Barberà, Jackson and Neme (1997) shows that when agents�participation is com-

pulsory the class of strategy-proof and e¢ cient rules is extremely large.
5See Ching (1992, 1994), Schummer and Thomson (1997), Sönmez (1994), Sprumont (1991), Thomson

(1994, 1995, 1997), and Weymark (1999) for alternative characterizations of the uniform rule in the division

problem. In the surveys on strategy-proofness of Barberà (1996, 2001), Jackson (2001) and Sprumont

(1995) the division problem and the uniform rule plays a prominent role.
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in this case the remainder will eventually be exhausted before all peaks are reached. If the

sum of the peaks is smaller than the amount to be allocated then the rule also keeps adding

uniformly to all agents, and stops adding only to those agents whose largest acceptable

share is reached, and keeps adding uniformly to the rest. Observe now that since the

coalition was admissible the remainder will eventually be exhausted before reaching all

largest acceptable shares. We call any rule satisfying this allotment procedure an extended

uniform rule. There are many because at many problems there are many admissible

coalitions. Hence, extended uniform rules di¤er only on the choice of the subset of agents

among whom the amount of the good is allocated.

Theorem 1 characterizes the class of e¢ cient, consistent and individually rational from

equal division rules as the subset of extended uniform rules that select the admissible

coalition by choosing coherently the full set of agents whenever it is possible. Theorem 2

characterizes the subclass of rules that, in addition to the previous properties, satisfy an

independence of irrelevant alternatives like property (that we call admissible contraction).

This class consists of the subset of extended uniform rules that at each problem choose the

admissible coalition by maximizing a given monotonic order on the set of all �nite coali-

tions. Theorem 3 characterizes the smaller subclass of rules that in addition to e¢ ciency,

consistency, and individually rationality form equal division also satisfy order preservation

with respect to a given order of priority among individual agents. This class consists of

the subset of extended uniform rules that at each problem choose the admissible coalition

by selecting lexicographically according to the given order. We also show that in all three

characterizations the axioms are independent.

The paper is organized as follows. In Section 2 we describe the model. In Section 3

we de�ne several properties that a rule may satisfy and show some basic incompatibilities

among them. In Section 4 we de�ne extended uniform rules. In Section 5 we present

the main results of the paper. In Section 6 we conclude with some �nal remarks. Three

appendices at the end of the paper collect the proofs of the three theorems.

2 The model

Let t > 0 be a �xed amount of an homogeneous and perfectly divisible good. A �nite set of

agents is considering the possibility of dividing t among a subset of them, to be determined

according to their preferences. Since we will be considering situations where the amount

of the good t and the �nite set of agents may vary, let N be the set of positive integers
and let N be the family of all non-empty and �nite subsets of N. The set of agents is
then N 2 N with cardinality n. In contrast with Sprumont (1991), we consider situations
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where each agent has the right to exclude himself from the division problem (a feasible

allocation is that the good is not divided at all) and obtain a share equal to zero. Thus,

and since each agent i can not be forced to receive an unacceptable share of the good,

his preferences �i are de�ned on the set f0g [ [li; ui], where [li; ui] � [0;+1] is agent i�s
interval of acceptable shares. We assume that �i is a complete, re�exive, and transitive
binary relation on f0g [ [li; ui]. Given �i let �i be the antisymmetric binary relation
induced by �i (i.e., for all xi; yi 2 f0g [ [li; ui], xi �i yi if and only if yi � xi does not

hold) and let �i be the indi¤erence relation induced by �i (i.e., for all xi; yi 2 f0g[ [li; ui],
xi �i yi if and only if xi �i yi and yi � xi). We will also assume that �i is single-peaked
on [li; ui] and we will denote by pi 2 [li; ui] agent i�s peak. Formally, agent i�s preferences
�i is a complete preorder on the set f0g [ [li; ui] that satis�es the following additional
properties:

(P.1) there exists pi 2 [li; ui] such that pi �i xi for all xi 2 [li; ui]nfpig;

(P.2) xi �i yi for any pair of shares xi; yi 2 [li; ui] such that either yi < xi � pi or

pi � xi < yi; and

(P.3) xi �i 0 for all xi 2 [li; ui]nf0g.

Observe that agent i�s preferences are de�ned on f0g[ [li; ui] and are independent of t:
Moreover, we are admitting the possibilities that li = 0 and li = pi = ui. A preference �i
of agent i is (partly) characterized by the triple (li; pi; ui). There are many preferences of

agent i with the same (li; pi; ui); however, they di¤er only on how two shares on di¤erent

sides of pi are ordered while all of them coincide on the ordering on the shares on each

of the sides of pi. This multiplicity will often be irrelevant. A pro�le �N= (�i)i2N is an
n�tuple of preferences satisfying properties (P.1), (P.2) and (P.3) above. Given a pro�le
�N and agent i�s preferences �0i we denote by (�0i;�Nnfig) the pro�le where �i has been
replaced by �0i and all other agents have the same preferences. When no confusion arises
we denote the pro�le �N by �.
A division problem with voluntary participation (a problem for short) is a triple (N;�; t)

where N is the set of agents, � is a pro�le and t is the amount of the good to be divided.
Let P be the set of all problems. A problem where for all agents their participation is

compulsory and preferences are single-peaked on [0;+1) is known as the division problem
(see Ching and Serizawa (1994)); i.e., for all i 2 N , li = 0, ui = +1 and (P.1) and (P.2)

hold. Observe that in a division problem agent i may strictly prefer the 0 share to some

strictly positive share. Thus, if participation is voluntary and li = 0 then, either ui = 0 or

else xi �i 0 for all xi 2 (0; ui] (that is, (P.3) holds).
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The set of feasible allocations of problem (N;�; t) is

FA (N;�; t) =
n
(x1; :::; xn) 2 RN+ j

P
j2N xj 2 f0; tg and for each i 2 N; xi 2 f0g [ [li; ui]

o
:

Note that this set is never empty since the allocation (0; :::; 0) 2 RN+ is always feasible.

Moreover, there are problems for which (0; :::; 0) is the unique feasible allocation; for in-

stance the problem (N;�; t) where N = f1; 2g; t = 10; and �1 and �2 are characterized
by (l1; p1; u1) = (l2; p2; u2) = (1; 2; 3).

A coalition S � N is admissible (at pro�le � and amount t) if it is either empty or it is
possible to divide t among the agents in S according to their preferences; namely, coalition

S 6= ? is admissible at (N;�; t) if there exists x = (xj)j2S 2 RS+ such that
P

j2S xj = t

and li � xi � ui for all i 2 S: It is obvious that S 6= ? is admissible if and only ifP
j2S lj � t �

P
j2S uj: We denote by AC (N;�; t) the set of all admissible coalitions at

(N;�; t). Namely,

AC (N;�; t) = fS � N j S is admissible at (N;�; t)g :

Observe that AC(N;�; t) is never empty because it always contains the empty coalition.
A rule f assigns to each problem in P a feasible allocation; that is, f(N;�; t) 2

FA (N;�; t) for all (N;�; t) 2 P. Hence, a rule f can be seen as a systematic way of
assigning to each (N;�; t) 2 P the two di¤erent aspects of the solution of the problem.

First, the admissible coalition S 2 AC(N;�; t): If S 6= ? we denote it by

cf (N;�; t) = fi 2 N j fi (N;�; t) 2 [li; ui]g.

Obviously, if i =2 cf (N;�; t) then fi(N;�; t) = 0. Second, how the amount t is divided

among the members of cf (N;�; t); i.e.,

t =
P

j2cf (N;�;t) fj (N;�; t) :

We will later see that to identify rules satisfying appealing properties we may have some

freedom when choosing one among the set of admissible coalitions while the properties will

determine a unique way of dividing the amount of the good.

3 Properties of rules

3.1 De�nitions

In this subsection we de�ne several properties that a rule may satisfy.
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Rules require each agent to report a preference. A rule is strategy-proof if it is always

in the best interest of agents to reveal their preferences truthfully; namely, it induces

truth-telling as a dominant strategy in the direct revelation game generated by the rule.

(Strategy-proofness) A rule f is strategy-proof if for each (N;�N ; t) ; i 2 N , and �0i,

fi (N;�N ; t) �i fi
�
N;
�
�0i;�Nnfig

�
; t
�
:

Given a problem (N;�N ; t) we say that agent i 2 N manipulates f at pro�le �N via �0i
if fi

�
N;
�
�0i;�Nnfig

�
; t
�
�i fi (N;�N ; t). Thus, a rule f is strategy-proof if no agent can

manipulate it at any pro�le.

A rule is anonymous if it only depends on the characteristics of the pro�le and not on

the name of the agents having the corresponding preference; that is, it is invariant with

respect to the index given to the agents. Let � : N! N be a one-to-one mapping, N a set

of agents and �N a pro�le. De�ne the set of agents �(N) = fj 2 N jthere exists i 2 N
such that �(i) = jg and the pro�le �(�N) = (�(�N)j)j2�(N) by letting �(�N)�(i) =�i for
each i 2 N .

(Anonymity) A rule f is anonymous if for any one-to-one mapping � : N! N and any
problem (N;�N ; t), fi (N;�N ; t) = f�(i) (�(N); �(�N); t) for all i 2 N .

A rule is e¢ cient if it always selects a Pareto optimal allocation.

(Efficiency) A rule f is e¢ cient if for each problem (N;�; t) there is no feasible allo-
cation (yj)j2N 2 FA(N;�; t) with the property that yi �i fi (N;�; t) for all i 2 N and

yj �j fj (N;�; t) for some j 2 N:

A rule is weak e¢ cient if it distributes the amount t whenever there exists a feasible

allocation that does it.

(Weak Efficiency) A rule f is weak e¢ cient if for each problem (N;�; t) such that
there exists a feasible allocation (yj)j2N 2 FA(N;�; t) with the property that

P
j2N yj = t,

then
P

j2N fj(N;�; t) = t:

A rule is reasonable if it satis�es the minimum requirement of e¢ ciency saying that if

the sum of the peaks of the agents is equal to the amount t then, the share of each agent

has to be equal to his peak.

(Reasonability) A rule f is reasonable if for each problem (N;�; t) such that
P

j2N pj =

t then, fi (N;�; t) = pi for all i 2 N:6

6Notice that if f is e¢ cient then, f is weakly e¢ cient and reasonable.
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A rule is consistent if the following requirement holds. Apply the rule to a given problem

and assume that a subset of agents leave with their corresponding shares. Consider the

new problem formed by the set of agents that remain with the same preferences that they

had in the original problem and the total amount of the good minus the sum of the shares

received by the subset of agents that already left. Then, the rule does not require to

reallocate the shares of the remaining agents.

(Consistency) A rule f is consistent if for each problem (N;�N ; t), each non-empty
subset of agents S � N; and each i 2 S,

fi (N;�N ; t) = fi
�
S;�S; t�

P
j2NnS fj (N;�N ; t)

�
:

For the division problem with compulsory participation Sönmez (1994) proposed the

principle of individual rationality from equal division. A rule f is individually rational from

equal division if all agents receive a share that is at least as good as the equal division

share; namely, for each division problem (N;�; t),

fi (N;�; t) �i
t

n

for all i 2 N . In a division problem equal division is always feasible but often is not

e¢ cient. Precisely, this principle tries to make compatible equal division with e¢ ciency

by allowing for Pareto improvements from the equal division share. Observe that in our

setting the allocation ( t
n
; :::; t

n
) may not be feasible and/or there may not even exist a

vector of shares at which all agents are better o¤ than at equal division. Thus, when

agents�participation is voluntary, this property is too strong (no rule satis�es it) and it

can not be applied directly. However, and since we think that its content is appealing

we suggest to use the same principle as follows. Assume that in the problem (N;�; t)
the coalition N is admissible. Preliminarily assign to each agent i the amount li (which is

possible since N is admissible). The remaining amount t�
P

j2N lj has still to be allocated,

but again, by feasibility, each agent i must receive overall at most ui: Then, allocate the

remaining amount t �
P

j2N lj as equally as possible, but making sure that no agent i

receives additionally more than ui � li: Each agent must receive a share at least as good
as the previous allocation. Formally,

(Individual Rationality from Equal Division) A rule is individual rational from

equal division if for each problem (N;�; t) for which N is an admissible coalition,

fi (N;�; t) �i li +min f�; ui � lig
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for all i 2 N , where � 2 R satis�es
P

j2N min f�; uj � ljg = t�
P

j2N lj:
7

The next two properties refer explicitly on how the rule chooses the admissible coalition.

A rule satis�es admissible contraction if the following requirement holds. Consider two

problems where the set of admissible coalitions of the �rst one is contained in the set of

admissible coalitions of the second one. Assume that the coalition chosen by the rule in the

second problem is admissible for the �rst one. Then, the rule chooses the same coalition

in the two problems.

(Admissible Contraction) A rule satis�es admissible contraction if for any two prob-

lems (N;�; t) and (N 0;�0; t0) such that AC (N 0;�0; t0) � AC (N;�; t) and cf (N;�; t) 2
AC (N 0;�0; t0) then,

cf (N 0;�0; t0) = cf (N;�; t) :

An order � is a one-to-one mapping � : N �! N. A rule satis�es order preservation
with respect to � if agent i has more rights to be in the coalition sharing t than any agent

that goes after him according to �. Namely,

(Order Preservation) A rule satis�es order preservation with respect to � if for each

problem (N;�; t) such that i =2 cf (N;�; t) and cf (N;�; t) \ fj 2 N j �(j) > �(i)g 6= ?
then, there is no admissible coalition containing (fig[fj 2 N j �(j) < �(i)g)\cf (N;�; t).

3.2 Some basic incompatibilities

The constant rule assigning zero to all agents in all problems is strategy-proof and anony-

mous, but it is very ine¢ cient. Proposition 1 below shows that strategy-proofness is a

very strong requirement when agents�participation is voluntary. The reason is that the

rule has to depend not only on the agents�peaks but also on their intervals of acceptable

shares; this makes it too vulnerable to manipulation. Thus, strategy-proof rules do not

satisfy other basic and desirable properties related to e¢ ciency.

Proposition 1 The following statements hold:

(1.1) There is no strategy-proof and weak e¢ cient rule.

(1.2) There is no strategy-proof, anonymous and reasonable rule.

Proof To prove (1.1) let N = f1; 2g be the set of agents, t = 10 and consider any two
pro�les �= (�1;�2) and �0= (�01;�02) characterized by (li; pi; ui) = (4; 6; 10) for i = 1; 2,
(l01; p

0
1; u

0
1) = (6; 8; 10), and (l

0
2; p

0
2; u

0
2) = (6; 9; 10). By weak e¢ ciency, f (f1; 2g; (�1;�02) ; 10) =

7Note that in the division problem with compulsory participation our version of the principle says that

fi(N;�; t) �i t
n for all i 2 N .
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(4; 6) and f (f1; 2g; (�01;�2) ; 10) = (6; 4) : By strategy-proofness, f (f1; 2g; (�1;�2) ; 10) =
(4; 6) to avoid that agent 2manipulates f at pro�le (�1;�02) via�2, and f (f1; 2g; (�1;�2) ; 10) =
(6; 4) to avoid that agent 1 manipulates f at pro�le (�01;�2) via �1. But this is a contra-
diction.

To prove (1.2) let N = f1; 2g be the set of agents, t = 10 and consider any two

pro�les �= (�1;�2) and �0= (�01;�02) characterized by (li; pi; ui) = (2; 6; 9) for i = 1; 2,
(l01; p

0
1; u

0
1) = (0; 3; 6), and (l02; p

0
2; u

0
2) = (6; 7; 9). By anonymity, f(f1; 2g; (�1;�2); 10)

is equal to either (0; 0) or (5; 5): Assume f(f1; 2g; (�1;�2); 10) = (0; 0): Consider any

preference �001 characterized by (l001 ; p001; u001) = (0:5; 4; 7:9): By reasonability, f(f1; 2g; (�001
;�2); 10) = (4; 6): Hence, by (P.3), 4 �1 0 and agent 1 manipulates f at (�1;�2) via
�001, a contradiction with strategy-proofness. Thus, assume f(f1; 2g; (�1;�2); 10) = (5; 5)
and suppose additionally that �2 is such that 5 �2 8:5. Then, by strategy-proofness,
f2(f1; 2g; (�1;�02); 10) =2 (5; 8:5): By voluntary participation, f2(f1; 2g; (�1;�02); 10) = 0

because otherwise, f2(f1; 2g; (�1;�02); 10) 2 [6; 9] would imply 8:5 � f2(f1; 2g; (�1;�02
); 10) � 9; violating, together with feasibility, voluntary participation of agent 1 at pro�le
(�1;�02): Thus, f(f1; 2g; (�1;�02); 10) = (0; 0): Moreover, by reasonability, f(f1; 2g; (�01
;�02); 10) = (3; 7): But then, by (P.3), 3 �1 0 and agent 1 manipulates f at pro�le (�1;�02)
via �01. �

Observe that e¢ ciency is also incompatible with anonymity. To see that, let N = f1; 2g
be the set of agents, t = 1 and consider any pro�le � where each �i is characterized by
(li; pi; ui) = (1; 1; 1) for i = 1; 2. By anonymity, for all i 2 N , fi(N;�; 1) = k for some

k: By feasibility, k = 0. But this contradicts e¢ ciency because the feasible allocation

y = (1; 0) Pareto dominates (0; 0).

4 The uniform rule and some of its extensions

The uniform rule (Sprumont, 1991) has played a central role in the division problem with

compulsory participation because it is the unique rule satisfying di¤erent sets of desirable

properties. For instance, Sprumont (1991) shows that the uniform rule is the unique rule

satisfying strategy-proofness, e¢ ciency and anonymity.

The uniform rule U is de�ned as follows: for each division problem (N;�; t) and for
each i 2 N ,

Ui (N;�; t) =
(
min f�; pig if

P
j2N pj � t

max f�; pig if
P

j2N pj < t;

where � is the unique number satisfying
P

j2N Uj (N;�; t) = t: Namely, U tries to allocate
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the good as equally as possible, keeping the e¢ cient constraints binding: if
P

j2N pj � t
then Ui (N;�; t) � pi for all i 2 N , and if

P
j2N pj < t then Ui (N;�; t) � pi for all i 2 N .

Observe that when applied to division problems with voluntary participation U is not

a rule since at some problems it chooses non-feasible allocations. In the rest of this section

we extend the uniform rule to our environment. We do it in two steps. First, we extend the

uniform rule only to the subclass of problems where the grand coalition is admissible and

the lower bounds of agents�intervals of acceptable shares are equal to zero. Let (N;�; t)
be a problem with the properties that N 2 AC (N;�; t) and li = 0 for all i 2 N . Then,
de�ne F at (N;�; t) as follows: for all i 2 N ,

Fi (N;�; t) =
(
min f�; pig if

P
j2N pj � t

min fmax f�; pig ; uig if
P

j2N pj < t;

where � is the unique number satisfying
P

j2N Fj (N;�; t) = t:Notice that when
P

j2N pj �
t (the upper bounds of the participation intervals do not play any role) F coincides with

the uniform rule. When
P

j2N pj < t some of the upper bounds may be binding, so F

makes sure that, for all i 2 N , max f�; pig is never larger than ui.
But F is not a rule itself because it only applies to a subclass of problems. To de�ne

a rule f that extends the egalitarian principle behind the uniform rule (by keeping the

bounds imposed by e¢ ciency), select for each problem (N;�; t) an admissible coalition.
If the empty set is the unique admissible coalition at (N;�; t) ; set fi(N;�; t) = 0 for all
i 2 N: Otherwise, let cf (N;�; t) be the (non-empty) admissible coalition (chosen by f)
among whom t is allocated in two steps.8 First, preliminarily assign to each agent in the

chosen coalition cf (N;�; t) the lower bound of his interval of acceptable shares, and then
apply the rule F to the adjusted problem where the set of agents is cf (N;�; t) and their
preferences are 0�normalized. Formally, let (N;�; t) be a problem and let S be one of

its non-empty admissible coalitions. The adjusted problem (S; (�lj)j2S; t�
P

j2S lj) is the

problem where S is the set of agents, and for each i 2 S, �li is characterized by the triple
(0; pi � li; ui � li) and given any pair xi; yi 2 [0; ui�li], xi �li yi if and only if xi+li �i yi+li;
i.e., �li translates �i by substracting li:

(Extended Uniform Rule) We say that f is an extended uniform rule if for all (N;�
; t) 2 P and all i 2 N; fi (N;�; t) = 0 whenever AC (N;�; t) = f?g and otherwise,

fi(N;�; t) =
(
li + Fi

�
cf (N;�; t) ;

�
�lj
�
j2cf (N;�;t) ; t�

P
j2cf (N;�;t) lj

�
if i 2 cf (N;�; t)

0 if i =2 cf (N;�; t)
8Remember that for a given problem there may be many admissible coalitions; hence, to fully describe

the rule f we will have to specify how cf (N;�; t) is chosen by f . But we will deal with this selection later
on.
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where cf (N;�; t) 2 AC (N;�; t) and cf (N;�; t) 6= ?.

Observe again that there are many problems with more than one admissible coalition

and hence, there are many extended uniform rules. We exhibit an example of a rule in

this family by describing a procedure to select, for each problem, an admissible coalition:

This procedure is based on the idea of selecting the admissible coalition by given priority

to agents according to a �xed order �:

To roughly describe the procedure assume momentarily thatN = f1; :::; ng and �(i) = i
for all i 2 N . If the empty coalition is the unique admissible coalition at (N;�; t) then,
choose the empty coalition and the share assigned to each agent is equal to zero. If there

are non-empty admissible coalitions at (N;�; t) preselect �rst those coalitions containing
agent 1; if there are several, keep only those containing also agent 2, and so on. If there

are no admissible coalitions containing agent 1, preselect those coalitions containing agent

2; if there are several, keep only those containing also agent 3, and so on.

The formal de�nition is recursive and depends on the one-to-one mapping � : N �! N.
Given N 2 N and 1 � k � n let (abusing a bit the notation) ��1(k) � i be the agent in N
such that jfj 2 N j �(j) � �(i)gj = k; namely, ��1(1) is the agent that goes �rst according
to the order �; and in general, for 1 � k � n, ��1(k) is the agent that has exactly k � 1
agents before him according to �. Thus, given �, we de�ne the extended uniform rule F �

as follows. If AC(N;�; t) = f?g then set F �i (N;�; t) = 0 for all i 2 N . Assume now
that the set of admissible coalitions AC(N;�; t) for problem (N;�; t) contains at least one
non-empty coalition.

� Stage 0 (initialization): Given AC(N;�; t); set X0 � AC(N;�; t) and go to Stage 1.

� Stage 1 (de�nition of X1): Given X0; the output of Stage 0.

1. If for each S 2 X0; ��1(1) =2 S then, set X1 � X0 and go to Stage 2.

2. If there exists S 2 X0 such that ��1(1) 2 S then, setX1 � fS 2 X0 j ��1(1) 2 Sg
and go to Stage 2.

� Stage k (de�nition of Xk): Given Xk�1, the output of Stage k � 1.

1. If for each S 2 Xk�1; ��1(k) =2 S then, set Xk � Xk�1 and go to Stage k + 1:

2. If there exists S 2 Xk�1 such that ��1(k) 2 S then, setXk �
�
S 2 Xk�1 j ��1(k) 2 S

	
and go to Stage k + 1.
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The procedure stops at Stage n with Xn � Xn(N;�; t) having a unique coalition.
Observe that Xn(N;�; t) 2 AC(N;�; t): Then, the ��extended uniform rule F � is the

extended uniform rule such that, for each (N;�; t) 2 P, F �i (N;�; t) = 0 for all i 2 N
whenever AC(N;�; t) = f?g and cF� (N;�; t) = Xn(N;�; t) otherwise.

5 Results

We are now ready to describe and state the main results of the paper. They axiomatically

identify three nested subclasses of extended uniform rules. All of them use the same

principle to allocate the amount of the good (the same one used by the uniform rule for

division problems with compulsory participation) but di¤er on how to select the admissible

coalition. The larger class imposes only two restrictions on the choice of the admissible

coalition. First, it chooses the full set of agents whenever it is admissible. Second, it

chooses the coalition coherently. The three axioms characterizing this class are e¢ ciency,

consistency and individual rationality from equal division. The intermediate class consists

of those extended uniform rules that choose the admissible coalition according to a priority

relation among all groups of agents that comes from a given monotonic order. This priority

ordering on N has to be monotonic in a double sense. First, adding an agent to a given set

gives priority to the larger set. Second, if a set S has priority over a set T then the priority

is maintained after adding a player i =2 S [ T to both sets. This class is identi�ed by the
same axioms characterizing the larger class plus the property of admissible contraction.

Finally, the smaller class consists of those extended uniform rules that choose the admissible

coalition according to an order � on N that gives priority directly to agents; namely, it is
the class of all ��extended uniform rules that have been de�ned in the previous section.

This class consists of all e¢ cient, consistent, and individually rational from equal division

rules that satisfy order preservation with respect to some �: We now turn to the formal

statements of the three results.

Theorem 1 characterizes all e¢ cient, consistent, and individually rational from equal

division rules as a subclass of extended uniform rules.

Theorem 1 Let f be a rule. Then, f is e¢ cient, consistent, and individually rational

from equal division if and only if f is an extended uniform rule with the properties that,

for all (N;�; t) 2 P,
(1.a) cf (N;�; t) = N when N is an admissible coalition at (N;�; t).
(1.b) cf

�
S;�S; t�

P
i2NnS fi (N;�; t)

�
= cf (N;�; t) \ S for each S � N:

Moreover, the three properties are independent.
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Proof See Appendix 1.

Theorem 2 characterizes all e¢ cient, consistent, and individually rational from equal

division rules that satisfy admissible contraction as the subclass of extended uniform rules

with the property that they choose the admissible coalition according to a monotonic order

given directly to coalitions (which is not necessarily induced by a unique order of agents).

Formally, let � be a liner order on N ; i.e., � is a complete, antisymmetric and transitive
binary relation on N . We say that the order � is monotonic if:
(i) for all S 2 N and i =2 S; (S [ fig) �S; and
(ii) for all S; T 2 N and i =2 S [ T , S�T implies (S [ fig) � (T [ fig) :

Theorem 2 Let f be a rule. Then, f is e¢ cient, consistent, individually rational from

equal division and satis�es admissible contraction if and only if f is an extended uniform

rule with the property that there exists a monotonic order � on N satisfying the property

that for all (N;�; t) 2 P,
(2.a) cf (N;�; t) �S for all S 2 AC(N;�; t)ncf (N;�; t):
Moreover, the four properties are independent.

Proof See Appendix 2.

Theorem 3 characterizes, for each order � on N, the extended uniform rule F � as the

unique e¢ cient, consistent, and individually rational from equal division rule that satis�es

order preservation with respect to �.

Theorem 3 Let f be a rule and let � be an order. Then, f is e¢ cient, consistent,

individually rational from equal division and satis�es order preservation with respect to �

if and only if f = F �. Moreover, the four properties are independent.

Proof See Appendix 3.

6 Final remarks

Before moving to the proofs of the three theorems, few remarks are in order.

First, the (larger) class of extended uniform rules identi�ed in Theorem 1 satisfy also

several appealing properties.

A rule satis�es the property of independence of irrelevant agents if at a given problem an

agent receives the zero share then, at the problem where the agent is not present anymore,

all other agents receive the same share they had received in the original problem. Formally,
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(Independence of Irrelevant Agents) A rule f is independent of irrelevant agents

if for each problem (N;�N ; t) such that fi (N;�N ; t) = 0 for some agent i 2 N then,

fj (N;�N ; t) = fj
�
Nn fig ;�Nnfig; t

�
for all j 2 Nnfig.

A rule satis�es non-bossiness if one agent receives the same share at two problems that

are identical except for the preferences of this agent then, the shares of all the other agents

also coincide at the two problems. Formally,

(Non-bossy) A rule f is non-bossy if for each problem (N;�; t), each agent i 2 N ,

and each i0s preferences �0i such that fi
�
N;
�
�i;�Nnfig

�
; t
�
= fi

�
N;
�
�0i;�Nnfig

�
; t
�
then,

fj
�
N;
�
�i;�Nnfig

�
; t
�
= fj

�
N;
�
�0i;�Nnfig

�
; t
�
for all j 2 Nn fig :

A rule satis�es maximality if the set of agents that receive a positive share constitutes

(according to set-wise inclusion) a maximal admissible coalition.

(Maximality) A rule is maximal if the following holds. Let S be an admissible coalition

for the problem (N;�; t) and assume that
P

j2S fj (N;�; t) = t and fi (N;�; t) < li for all
i 2 NnS: Then, for any T ) S, T is not an admissible coalition for (N;�; t):

By condition (1.a) in Theorem 1, all e¢ cient, consistent and individually rational from

equal division rules are maximal. Moreover, Remark 1 below states that non-bossyness

and independence of irrelevant agents follow from consistency.

Remark 1 Let f be a consistent rule. Then, f is independent of irrelevant agents and

non-bossy.

To show that the statement in Remark 1 holds, assume f is consistent. It follows

immediately that f is independent of irrelevant agents. To show that f is non-bossy,

consider a problem (N;�N ; t), an agent i 2 N and a preference �0i such that

fi
�
N;
�
�i;�Nnfig

�
; t
�
= fi

�
N;
�
�0i;�Nnfig

�
; t
�
: (1)

Since f is consistent, for all j 2 Nnfig,

fj
�
N;
�
�i;�Nnfig

�
; t
�
= fj

�
Nn fig ;�Nnfig; t� fi

�
N;
�
�i;�Nnfig

�
; t
��
and

fj
�
N;
�
�0i;�Nnfig

�
; t
�
= fj

�
Nn fig ;�Nnfig; t� fi

�
N;
�
�0i;�Nnfig

�
; t
��
:

By (1), fj
�
N;
�
�i;�Nnfig

�
; t
�
= fj

�
N;
�
�0i;�Nnfig

�
; t
�
: Hence, f is non-bossy.

Second, there are several natural extensions of our model that we do not consider

here but we are planning to study in other papers. First, the existence of voluntary

participation constraints suggests as special interesting case the subdomain of preferences

where the lower bounds of agents�intervals of acceptable shares are zero (we already used
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this subdomain in the de�nition of extended uniform rules). Second, the incompatibility

of strategy-proofness with the most basic e¢ ciency properties suggests also the interest of

studying the set of allocations that are obtained as outcomes of Nash equilibria in direct

revelation games induced by rules satisfying desirable properties like those characterized

in our results (for instance, the ��extended uniform rule).

Third, in some steps in the proofs of the theorems we use pro�les � where agents�

intervals of acceptable shares depend on a small number " > 0 and are degenerated since

for all i 2 N , li = pi = ui. However, we could also choose " > 0 in such a way that for
each i 2 N , �i could be characterized by (li; pi; ui) with 0 < li < pi < ui. However, the
case li = pi = ui makes the arguments more transparent.
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Appendix 1. Proof of Theorem 1

A1.1. Preliminaries

We �rst introduce the property of bilateral peaks-and-bounds onlyness. It says that for

problems with only two agents at which the set of the two agents is an admissible coalition,

the rule depends only on the peaks and the bounds of the two agents�preferences.

(Bilateral Peaks-and-bounds Only) A rule f is bilateral peaks-and-bounds only if

for any pair of problems (N;�; t) and (N;�0; t) with jN j = 2; N 2 AC (N;�; t) ; and
(li; pi; ui) = (l

0
i; p

0
i; u

0
i) for each i 2 N , then f (N;�; t) = f (N;�0; t) :

Before proving Theorem 1 we state and prove two claims and one lemma. The proofs

of the two claims adapt to our setting the corresponding proofs of Lemmata 5 and 6 in

Dagan (1996).

Claim 1 Let f be an e¢ cient and consistent rule that satis�es individual rationality from

equal division. Then, f satis�es bilateral peaks-and-bounds onlyness.

Proof of Claim 1 Let (N;�; t); (N�;��; t) 2 P be such that N = fi; jg, N� = fk;mg;
fi; jg \ fk;mg = ?; �i=��k; �j=��m, N 2 AC(N;�; t), and N� 2 AC(N�;��; t): De�ne
x = f(N [ N�; (�;��); 2t): Since N and N� are admissible at their respective problems,

N [ N� 2 AC(N [ N�; (�;��); 2t): By (P.3), e¢ ciency implies xi + xj + xk + xm = 2t:

Since f is consistent,

fi (fi; ; kg ; (�i;��k) ; xi + xk) = xi and fk (fi; kg ; (�i;��k) ; xi + xk) = xk:

Since f satis�es individual rationality from equal division,

fi (fi; kg ; (�i;��k) ; xi + xk) = fk (fi; kg ; (�i;��k) ; xi + xk) :

Thus, xi = xk: Similarly, we conclude that xj = xm: Thus, xi + xj = xk + xm = t: By

consistency,

fi (N;�; t) = xi = xk = fk (N�;��; t) and fj (N;�; t) = xj = xm = fm (N�;��; t) : (2)

Now, let �0= ( �0i;�0j) be such that (l0i; p0i; u0i) = (li; pi; ui) and (l0j; p0j; u0j) = (lj; pj; uj):
We want to show that f(N;�; t) = f(N;�0; t): De�ne x0 = f(N [N�; (�0;��); 2t): Using
arguments similar to those used above we can conclude that

fi (N;�0; t) = x0i = x
0
k = fk (N

�;��; t) and
fj (N;�0; t) = x0j = x

0
m = fm (N

�;��; t) :
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Thus, f(N;�; t) = f(N;�0; t): �

Claim 2 Let f be an e¢ cient and consistent rule that satis�es individual rationality

from equal division and let (fi; jg;�; t) 2 P be such that fi; jg is an admissible coalition.
Then, fk (fi; jg;�; t) = lk + Fk

�
fi; jg;�l; t� li � lj

�
for all k 2 fi; jg:

Proof of Claim 2 Let (fi; jg;�; t) 2 P be such that fi; jg 2 AC (fi; jg;�; t). For
each k 2 fi; jg; de�ne xk = lk + min f�; uk � lkg ; where � 2 R is such that xi + xj = t
(as in the de�nition of individual rationality from equal division applied to the problem

(fi; jg;�; t)). We distinguish between the two rationing situations.
Consider the case pi + pj � t: Assume �rst that xk � pk for all k 2 fi; jg: Since f is

e¢ cient and satis�es individual rationality from equal division,

fk (fi; jg;�; t) = xk = lk + Fk
�
fi; jg;�l; t� li � lj

�
for all k 2 fi; jg:Without loss of generality assume now that xi < pi. Thus, t�xi = xj > pj.
By e¢ ciency, fi (fi; jg;�; t) � pi > xi: Suppose that fi (N;�; t) > pi: We can �nd �0i
such that (l0i; p

0
i; u

0
i) = (li; pi; ui) and xi �0i fi (N;�; t) : By Claim 1, fi (fi; jg;�; t) =

fi (fi; jg; (�0i;�j) ; t) : Let x0i = l0i+min f�0; u0i � l0ig be as in the de�nition of individual ra-
tionality from equal division as applied to the problem (fi; jg; (�0i;�j) ; t) : It is obvious that
x0i = xi: Hence, x0i �0i fi (fi; jg; (�0i;�j) ; t) ; which contradicts that f satis�es individual
rationality from equal division at the problem (fi; jg; (�0i;�j) ; t) : Then, fi (fi; jg;�; t) =
pi = li+Fi

�
fi; jg;�l; t� li � lj

�
and hence, fj (fi; jg;�; t) = lj+Fj

�
fi; jg;�l; t� li � lj

�
:

A similar argument can be used to show that the desirable statement also holds when

pi + pj > t. �

Lemma 1 Let f be an e¢ cient and consistent rule that satis�es individual rationality

from equal division. Let (N;�; t) be a problem at which N is an admissible coalition.

Then, for each i 2 N; fi (N;�; t) = li + Fi
�
N;�l; t�

P
j2N lj

�
:

Proof of Lemma 1 Let (N;�; t) be an arbitrary problem with N 2 AC(N;�; t). We
proceed by induction on jN j : If jN j = 2; the result follows from Claim 2. Assume jN j > 2
and suppose that the statement holds for all problems (N 0;�0; t0) with jN 0j < jN j and
N 0 2 AC(N 0;�0; t0): We prove that it also holds for (N;�; t): For each i 2 N; de�ne

gi (N;�; t) = li + Fi
�
N;�l; t�

P
j2N lj

�
:

Since N is admissible, by individual rationality from equal division,
P

j2N fj (N;�; t) = t:
To obtain a contradiction, suppose that f (N;�; t) 6= g (N;�; t) : Then, there exist i; j 2 N
such that

fi (N;�; t) > gi (N;�; t) and fj (N;�; t) < gj (N;�; t) : (3)
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Without loss of generality, assume that i = 1 and j = 2: Since f is consistent,

fi (N;�; t) = fi
�
Nn f1g ;�Nnf1g; t� f1 (N;�; t)

�
for all i 2 Nn f1g , and (4)

fk (N;�; t) = fk
�
Nn f2g ;�Nnf2g; t� f2 (N;�; t)

�
for all k 2 Nn f2g :

In Claim 4 in the proof of Theorem 1 below we will show (without using this result) that

any extended uniform rule is consistent. Thus,

gi (N;�; t) = gi
�
Nn f1g ;�Nnf1g; t� g1 (N;�; t)

�
for all i 2 Nn f1g , and (5)

gk (N;�; t) = gk
�
Nn f2g ;�Nnf2g; t� g2 (N;�; t)

�
for all k 2 Nn f2g .

By the induction hypothesis, for all i 2 Nn f1g ;

fi
�
Nn f1g ;�Nnf1g; t� f1 (N;�; t)

�
= gi

�
Nn f1g ;�Nnf1g; t� f1 (N;�; t)

�
: (6)

Since t� f1 (N;�; t) < t� g1 (N;�; t) ; the de�nition of g implies that for all i 2 Nn f1g ;

gi
�
Nn f1g ;�Nnf1g; t� f1 (N;�; t)

�
� gi

�
Nn f1g ;�Nnf1g; t� g1 (N;�; t)

�
: (7)

Hence, by (4), (5), (6), and (7), fi (N;�; t) � gi (N;�; t) for all i 2 Nn f1g : Analogously,
fk (N;�; t) � gk (N;�; t) for all k 2 Nn f2g : Thus, fi (N;�; t) = gi (N;�; t) for all i 2
Nn f1; 2g : Since f and g are consistent, for each i 2 f1; 2g ;

fi (N;�; t) = fi

�
Nn f1; 2g ;�Nnf1;2g; t�

P
j2f1;2g fj (N;�; t)

�
; and

gi (N;�; t) = gi

�
Nn f1; 2g ;�Nnf1;2g; t�

P
j2f1;2g gj (N;�; t)

�
:

By the induction hypothesis, fi (N;�; t) = gi (N;�; t) for all i 2 f1; 2g ; a contradiction
with (3). �

A1.2. Proof of the characterization

(=)) Let f be an e¢ cient and consistent rule that satis�es individual rationality from
equal division. We �rst show that f is an extended uniform rule. Let (N;�; t) be an
arbitrary problem. By consistency, for each i 2 cf (N;�; t) ;

fi (N;�; t) = fi
�
cf (N;�; t) ;�cf (N;�;t); t

�
: (8)

Since cf (N;�; t) is admissible at
�
cf (N;�; t) ;�cf (N;�;t); t

�
and f is e¢ cient, consistent

and satis�es individual rationality from equal division we deduce, from Lemma 1, that for

all i 2 cf (N;�; t) ;

fi
�
cf (N;�; t) ;�cf (N;�;t); t

�
= li + Fi

�
cf (N;�; t) ;�lcf (N;�;t); t�

P
j2cf (N;�;t) lj

�
:
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Hence, by (8), fi (N;�; t) = li + Fi
�
cf (N;�; t) ;�l

cf (N;�;t); t�
P

j2cf (N;�;t) lj

�
: Moreover,

for each i =2 cf (N;�; t) ; fi (N;�; t) = 0: Thus, f is an extended uniform rule.

To prove that (1.a) holds, let (N;�; t) be a problem at which N is an admissible

coalition and take any i 2 N . By individual rationality from equal division, fi (N;�; t) �i
li + min f�; ui � lig 2 [li; ui] : By de�nition of cf (N;�; t) ; i 2 cf (N;�; t) : Since i 2 N
was arbitrary, cf (N;�; t) = N . Thus, (1.a) holds.
To prove that (1.b) holds, let (N;�; t) be a problem and consider any agent i 2 N:

Since f is consistent, fj (N;�; t) = fj
�
S;�S; t�

P
i2NnS fi (N;�; t)

�
for each j 2 S: Now,

cf
�
S;�S; t�

P
i2NnS fi (N;�; t)

�
=

n
j 2 S j fj

�
S;�S; t�

P
i2NnS fi (N;�; t)

�
2 [lj; uj]

o
= fj 2 S j fj (N;�; t) 2 [lj; uj]g
= cf (N;�; t) n \ S:

Thus, (1.b) holds.

((=) Assume that f is an extended uniform rule that satis�es (1.a) and (1.b). We want to
show that f is e¢ cient, consistent and satis�es individual rationality from equal division.

We do it by proving Claims 3 to 7 below.

Claim 3 The rule F is e¢ cient and consistent on the subdomain of problems (N;�; t)
where li = 0 for all i 2 N and N 2 AC(N;�; t):

Proof of Claim 3 We �rst prove that F (N;�; t) is Pareto optimal by distinguishing
between the two rationing situations.

Assume �rst that
P

j2N pj < t: Then, Fi (N;�; t) = min fmax f�; pig ; uig for all i 2 N .
Let x = (xi)i2N 2 FA (N;�; t) be such that xi �i Fi (N;�; t) for all i 2 N: It is obvious
that

P
j2N xj = t: We prove that xi = Fi (N;�; t) for all i 2 N by distinguishing among

three possible cases.

Case 1: Fi (N;�; t) = pi: Since xi �i Fi (N;�; t) ; xi = pi:
Case 2: Fi (N;�; t) = ui. Since xi �i Fi (N;�; t) ; xi � ui: Suppose that xi < ui: AsP

j2N xj =
P

j2N Fj (N;�; t) = t; there exists k 2 N such that xk > Fk (N;�; t) : By
its de�nition, Fk (N;�; t) can only take three di¤erent values. If Fk (N;�; t) = uk then,

xk > uk which contradicts that x 2 FA (N;�; t). If Fk (N;�; t) = pk then, xk > pk which
contradicts that xk �k Fk (N;�; t) : Finally, if Fk (N;�; t) = � and pk < � < uk then, � <
xk: Since x 2 FA (N;�; t) ; xk � uk; which contradicts, by (P.2), that xk �k Fk (N;�; t) :
Thus, xi = ui:

Case 3: Fi (N;�; t) = � and � > pi (if � = pi; apply Case 1 above). Since xi �i
Fi (N;�; t) ; xi � � by (P.2). Suppose that xi < �: As

P
j2N xj =

P
j2N Fj (N;�; t) = t;
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there exists k 2 N such that xk > Fk (N;�; t) : Using arguments similar to those already
used in Case 2 we obtain a contradiction. Thus, xi = �:

A similar argument can be used to show that F (N;�; t) is Pareto optimal whenP
j2N pj � t (and Fi (N;�; t) = min f�; pig for all i 2 N).
To prove that F is consistent, it is su¢ cient to show that for all i 2 Nnfkg, Fi (N;�; t) =

Fi
�
Nnfkg;�Nnfkg; t� fk (N;�; t)

�
for any arbitrary agent k 2 N: Again, we distinguish

between the two rationing situations.

Assume �rst that
P

j2N pj < t: Then, Fi (N;�; t) = min fmax f�; pig ; uig for all
i 2 N . Thus, pi � Fi (N;�; t) for all i 2 N: Let k 2 N: Then,

P
j2Nnfkg pj �P

j2Nnfkg Fj (N;�; t) : We distinguish between two possible cases.
Case 1:

P
j2Nnfkg pj <

P
j2Nnfkg Fj (N;�; t) = t� Fk (N;�; t) : SinceP

j2Nnfkgmin fmax f�; pjg ; ujg = t� Fk (N;�; t) ;

and Fi
�
Nnfkg;�Nnfkg; t� Fk (N;�; t)

�
= min fmax f�0; pig ; uig where �0 is the unique

number satisfying P
j2Nnfkgmin fmax f�

0; pjg ; ujg = t� Fk (N;�; t) ;

we deduce that � = �0 and, for each i 2 Nnfkg

Fi
�
Nnfkg;�Nnfkg; t� Fk (N;�; t)

�
= min fmax f�; pig ; uig = Fi (N;�; t) :

Case 2:
P

j2Nnfkg pj =
P

j2Nnfkg Fj (N;�; t) = t � Fk (N;�; t) : Then, by e¢ ciency of F ,
Fi (N;�; t) = pi for all i 2 Nnfkg: Moreover, for each i 2 Nnfkg;

Fi
�
Nnfkg;�Nnfkg; t� Fk (N;�; t)

�
= min f�; pig ;

where � is the unique number satisfyingP
j2Nnfkgmin f�; pjg = t� Fk (N;�; t) =

P
j2Nnfkg pj:

Thus, � = maxj2Nnfkg fpjg : Hence, for each i 2 Nn fkg ;

Fi
�
Nnfkg;�Nnfkg; t� Fk (N;�; t)

�
= pi:

The case
P

j2N pj > t is similar and we omit it. This concludes the proof of Claim 3.�

Claim 4 The rule f is consistent.

Proof of Claim 4 Let (N;�; t) 2 P and S ( N: We have to show that for all i 2 S;

fi (N;�; t) = fi
�
S;�S; t�

P
j2NnS fj (N;�; t)

�
:
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It is su¢ cient to prove that it holds for jSj = n � 1. Let k 2 N and i 2 Nn fkg : We
distinguish between two cases.

Case 1: i =2 cf (N;�; t) : Then, fi (N;�; t) = 0: By (1.b), cf
�
Nn fkg ;�Nnfkg; t� fk (N;�; t)

�
=

cf (N;�; t) n fkg : Hence, i =2 cf
�
Nn fkg ;�Nnfkg; t� fk (N;�; t)

�
and then,

fi
�
Nn fkg ;�Nnfkg; t� fk (N;�; t)

�
= 0 = fi (N;�; t) :

Case 2: i 2 cf (N;�; t) : Then, since by hypothesis f is an extended uniform rule,

fi (N;�; t) = li + Fi
�
cf (N;�; t) ;�lcf (N;�;t); t�

P
j2cf (N;�;t) lj

�
:

By (1.b), i 2 cf
�
Nn fkg ;�Nnfkg; t� fk (N;�; t)

�
= cf (N;�; t) n fkg : Then,

fi
�
Nn fkg ;�Nnfkg; t� fk (N;�; t)

�
=

= li + Fi

�
cf (N;�; t) n fkg ;�lcf (N;�;t)nfkg; t� fk (N;�; t)�

P
j2cf (N;�;t)nfkg lj

�
:

We consider two subcases.

Subcase 2.1: k =2 cf (N;�; t) : Then, fk (N;�; t) = 0: Now,

Fi

�
cf (N;�; t) n fkg ;�lcf (N;�;t)nfkg; t� fk (N;�; t)�

P
j2cf (N;�;t)nfkg lj

�
=

= Fi

�
cf (N;�; t) ;�lcf (N;�;t); t�

P
j2cf (N;�;t) lj

�
:

Hence,

fi
�
Nn fkg ;�Nnfkg; t� fk (N;�; t)

�
= fi (N;�; t) :

Subcase 2.2: k 2 cf (N;�; t) : By Claim 3 above, F is consistent (on the smaller subdo-

main). Thus, setting cf � cf (N;�; t) ;

Fi

�
cf ;�lcf ; t�

P
j2cf lj

�
= Fi

�
cfn fkg ;�lcfnfkg; t�

P
j2cf lj � Fk

�
cf ;�lcf ; t�

P
j2cf lj

��
:

Since k 2 cf and f is an extended uniform rule, �lk � Fk

�
cf ;�l

cf
; t�

P
j2cf lj

�
=

�fk (N;�; t) : Now,

fi (N;�; t) = li + Fi

�
cf ;�lcf ; t�

P
j2cf lj

�
= li + Fi

�
cfn fkg ;�lcfnfkg; t�

P
j2cfnfkg lj � fk (N;�; t)

�
= fi

�
Nn fkg ;�Nnfkg; t� fk (N;�; t)

�
:

This concludes the proof of Claim 4. �
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Claim 5 The rule f satis�es individual rationality from equal division.

Proof of Claim 5 Let (N;�; t) be such that N is an admissible coalition. By (1.a),

cf (N;�; t) = N: Since f is an extended uniform rule,

fi (N;�; t) = li + Fi
�
N;�lN ; t�

P
j2N lj

�
for all i 2 N . We will show that for all i 2 N;

fi (N;�; t) �i li +min f�; ui � lig ;

where
P

j2N min f�; uj � ljg = t �
P

j2N lj; by distinguishing between the two rationing

situations.

Assume �rst that
P

j2N pj < t: Then,
P

j2N (pj � lj) < t �
P

j2N lj: Now, for each

i 2 N;
Fi

�
N;�l; t�

P
j2N lj

�
= min fmax f�; pi � lig ; ui � lig ;

where � is the unique number satisfying
P

j2N min fmax f�; pj � ljg ; uj � ljg = t�
P

j2N lj:

Then, � � � becauseP
j2N min fmax f�; pj � ljg ; uj � ljg �

P
j2N min f�; uj � ljg = t�

P
j2N lj:

Let i 2 N: We consider separately the following three cases.
Case 1: min fmax f�; pi � lig ; ui � lig = pi � li: Then, fi (N;�; t) = pi and fi (N;�; t) %i
li +min f�; ui � lig :
Case 2: min fmax f�; pi � lig ; ui � lig = ui � li > pi � li: Then,

min f�; ui � lig = ui � li
fi (N;�; t) = li + (ui � li) = ui; and

li +min f�; ui � lig = ui:

Thus, fi (N;�; t) �i li +min f�; ui � lig :
Case 3: min fmax f�; pi � lig ; ui � lig = � > pi � li: We consider two subcases.
Subcase 3.1: � � ui � li. Then,

min f�; ui � lig = �;

fi (N;�; t) = li + �; and

li +min f�; ui � lig = li + �:

Since li + � � li + � � pi; by (P.2), fi (N;�; t) �i li +min f�; ui � lig :
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Subcase 3.2: � > ui � li. Then,

min f�; ui � lig = ui � li;
fi (N;�; t) = li + �; and

li +min f�; ui � lig = li + ui � li = ui:

Since pi < li + � = fi (N;�; t) � ui; by (P.2), fi (N;�; t) �i li +min f�; ui � lig :
The case

P
j2N pj � t is similar and we omit it. �

Claim 6 Let (N;�; t) 2 P be such that S 2 AC(N;�; t) for some S 6= ?, Then
cf (N;�; t) 6= ?.

Proof of Claim 6 Suppose not. Let S 6= ? be an admissible coalition at (N;�; t).
Since cf (N;�; t) = ?; fi (N;�; t) = 0 for all i 2 N: By (1.a), S 6= N: Let i1 2 NnS: By
(1.b),

cf
�
Nn fi1g ;�Nnfi1g; t

�
= cf

�
Nn fi1g ;�Nnfi1g; t� fi1 (N;�; t)

�
= cf (N;�; t) n fi1g = ?:

If S 6= Nn fi1g ; let i2 2 Nn (S [ fi1g) : By (1.b) again,

cf
�
Nn fi1; i2g ;�Nnfi1;i2g; t� fi2

�
Nn fi1g ;�Nnfi1g; t

��
= cf

�
Nn fi1g ;�Nnfi1g; t

�
n fi2g = ?:

By Claim 4, f is consistent. Then,

fi2
�
Nn fi1g ;�Nnfi1g; t

�
= fi2

�
Nn fi1g ;�Nnfi1g; t� fi1 (N;�; t)

�
= fi2 (N;�; t) = 0:

Thus,

cf
�
Nn fi1; i2g ;�Nnfi1;i2g; t

�
= cf

�
Nn fi1; i2g ;�Nnfi1;i2g; t� fi2

�
Nn fi1g ;�Nnfi1g; t

��
= ?:

Iterating this argument, we conclude that cf (S;�S; t) = ?: Since S is admissible at

(N;�; t), S is admissible at (S;�S; t) as well. Moreover, f satis�es (1.a). Thus, cf (S;�S; t) =
S; a contradiction. �

Claim 7 The rule f is e¢ cient.

Proof of Claim 7 Suppose not. Then, there exist (N;�; t) 2 P, x 2 FA (N;�; t) ;
and j 2 N such that xi �i fi (N;�; t) for all i 2 N and xj �j fj (N;�; t) : We denote
cx = fi 2 N j li � xi � uig : Since xj �j fj (N;�; t) ; j 2 cx and hence cx 6= ?: Moreover,
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cf (N;�; t) � cx. Since cx is an admissible coalition at (N;�; t), by Claim 6, cf (N;�; t) 6=
?.
Since f satis�es consistency and cf (N;�; t) � cx, fi (cx;�cx ; t) = fi (N;�; t) for all

i 2 cx: By (1:a) ; cf (cx;�cx ; t) = cx: By (1:b) ; cf (cx;�cx ; t) = cf (N;�; t) \ cx: Thus,
cx = cf (N;�; t) : Now (xi � li)i2cf (N;�;t) Pareto dominates�

Fi

�
cf (N;�; t) ;

�
�lj
�
j2cf (N;�;t) ; t�

P
j2cf (N;�;t) lj

��
i2cf (N;�;t)

;

which contradicts Claim 3. �
This �nishes the proof of the characterization in Theorem 1.

A1.3. Independence of the axioms

Let � : N �! N be the identity order; i.e., � (i) = i for all i 2 N:
Consider the rule f 1 de�ned as follows. Given (N;�; t) 2 P ; set cf1 (N;�; t) =

cF
�
(N;�; t) and

f 1i (N;�; t) =
(
0 if i =2 cf1 (N;�; t)
li +min f�; ui � lig if i 2 cf1 (N;�; t) ;

where � 2 R satis�es
P

j2cf1 (N;�;t)min f�; uj � ljg = t�
P

j2cf1 (N;�;t) lj: It is not di¢ cult

to prove that f 1 is consistent, satis�es individual rationality from equal division, but it is

not e¢ cient.

Consider the rule f 2 de�ned as follows. Given (N;�; t) 2 P ; set cf2 (N;�; t) =
cF

�
(N;�; t) and

f 2i (N;�; t) =
(
0 if i =2 cf2 (N;�; t)
D�
i

�
cf

2
(N;�; t) ;�cf2 (N;�;t); t

�
if i 2 cf2 (N;�; t) ;

where D�
i

�
cf

2
(N;�; t) ;�cf2 (N;�;t); t

�
denotes the sequential dictatorial rule induced by

the order � in the problem
�
cf

2
(N;�; t) ;�cf2 (N;�;t); t

�
: In the sequential dictatorial rule

agents select, following the order �, the shares they most prefer, as long as there is enough

amount of the good (we skip its formal de�nition). It is not di¢ cult to prove that f 2 is

e¢ cient, consistent but it is not individually rational from equal division.

Let �0 : N �! N be any order di¤erent from �: Consider the rule f 3 de�ned as follows.
First, de�ne f 1;�

0
similarly to f 1 but using order �0 instead of �: Now, for all (N;�; t) 2 P,

f 3 (N;�; t) =
(
f 1 (N;�; t) if jN j is odd
f 1;�

0
(N;�; t) if jN j is even.
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It is not di¢ cult to prove that f 3 is e¢ cient, satis�es individual rationality from equal

division but it is not consistent.

Appendix 2. Proof of Theorem 2

A2.1. Proof of the characterization

((=) We �rst prove that if f is an extended uniform rule with the property that there

exists a monotonic order � on N such that (2.a) holds then, f is e¢ cient, consistent,

individually rational from equal division and satis�es admissible contraction. We do it by

proving Claims 8 and 9 below.

Claim 8 The rule f is e¢ cient, consistent and satis�es individual rationality from equal

division.

Proof of Claim 8 By Theorem 1, it is su¢ cient to prove that f satis�es (1.a) and

(1.b). We �rst show that f satis�es (1.a). Let (N;�; t) 2 P be such that N is admissible

and let � be the monotonic order on N associated to f . By property (i) of �; N�S for all

S ( N: Thus, cf (N;�; t) = N:
We now prove that f satis�es (1.b). Let (N;�; t) 2 P and i 2 N:We consider separately

the following two cases.

Case 1: i =2 cf (N;�; t) : Then, fi (N;�; t) = 0: Obviously,

cf (N;�; t) 2 AC
�
Nn fig ;�Nnfig; t� fi (N;�; t)

�
and

AC
�
Nn fig ;�Nnfig; t� fi (N;�; t)

�
� AC (N;�; t) :

By (2.a), cf (N;�; t) �S for all S 2 AC
�
Nn fig ;�Nnfig; t� fi (N;�; t)

�
ncf (N;�; t) ; which

means that

cf
�
Nn fig ;�Nnfig; t� fi (N;�; t)

�
= cf (N;�; t)
= cf (N;�; t) n fig :

Case 2: i 2 cf (N;�; t) : Then, fi (N;�; t) 2 [li; ui] : It is easy to see that

S 2 AC
�
Nn fig ;�Nnfig; t� fi (N;�; t)

�
implies S [ fig 2 AC (N;�; t) : (9)

Moreover, cf (N;�; t) n fig 2 AC
�
Nn fig ;�Nnfig; t� fi (N;�; t)

�
holds. We prove that�

cf (N;�; t) n fig
�
�S for all S 2 AC

�
Nn fig ;�Nnfig; t� fi (N;�; t)

�
n(cf (N;�; t) n fig):
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Suppose not; there exists S 0 2 A
�
Nn fig ;�Nnfig; t� fi (N;�; t)

�
such that S 0�

�
cf (N;�; t) n fig

�
:

By (9), S 0 [fig 2 A (N;�; t) : By property (ii) of �, (S 0 [ fig) �cf (N;�; t) ; which contra-
dicts (2.a). �

Claim 9 The rule f satis�es admissible contraction.

Proof of Claim 9 Let (N;�; t) and (N 0;�0; t0) be any two problems with the prop-
erty that AC (N 0;�0; t0) � AC (N;�; t) and cf (N;�; t) 2 AC (N 0;�0; t0). By (2.a),

cf (N;�; t) �S for all S 2 AC (N;�; t) ncf (N;�; t) : Since AC (N 0;�0; t0) � AC (N;�; t)
and cf (N;�; t) 2 A (N 0;�0; t0) ; cf (N;�; t) �S for all S 2 AC (N 0;�0; t0) ncf (N;�; t) : By
(2.a), cf (N 0;�0; t0) = cf (N;�; t) : �

(=)) Let f be an e¢ cient and consistent rule that satis�es individual rationality from
equal division and admissible contraction. By Theorem 1, f is an extended uniform rule.

We want to show that there exists a monotonic order � on N such that f satis�es (2.a).

We �rst de�ne (using f) a binary relation � on N . Let S; S 0 2 N . Three cases are
possible.

Case 1: S � S 0. Then, set S�S 0:
Case 2: S 0 � S. Then, set S 0�S:
Case 3: There exist agents j 2 SnS 0 and j0 2 S 0nS: Consider any problem (N;�; t) where
S; S 0 � N and for each i 2 N; li = pi = ui; and

pi =

8>>>>>>>><>>>>>>>>:

" if i 2 S \ S 0

"2 if i 2 Sn (S 0 [ fjg)
t� " jS \ S 0j � "2 jSn (S 0 [ fjg)j if i = j

"3 if i 2 S 0n (S [ fj0g)
t� " jS \ S 0j � "3 jS 0n (S [ fj0g)j if i = j0

"4 if i 2 Nn (S [ S 0) :

Moreover, we choose " > 0 small enough to make sure that 0 < pi < t for all i 2 N and

AC (N;�; t) = fS; S 0g : Observe that such " > 0 exists. Since f is e¢ cient, cf (N;�; t) 2
fS; S 0g: Then, if cf (N;�; t) = S set S�S 0 and if cf (N;�; t) = S 0 set S 0�S:

Since f satis�es admissible contraction, � does not depend on (N;�; t) : Namely, let
(N 0;�0; t0) be such that AC (N 0;�0; t0) = fS; S 0g : Then, cf (N 0;�0; t0) = cf (N;�; t) : Thus,
� is well de�ned.

Claim 10 If S�S 0 and T � S \ S 0 then, (SnT ) � (S 0nT ) :

Proof of Claim 10 If S � S 0 then, the statement follows immediately. Assume

SnS 0 6= ? and S 0nS 6= ? hold. Let i 2 T � S \ S 0 and (N;�; t) be a problem as in the
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de�nition of � applied to S and S 0. Thus, AC (N;�; t) = fS; S 0g ; cf (N;�; t) = S and

AC
�
Nn fig ;�Nnfig; t� fi (N;�; t)

�
= fSn fig ; S 0n figg : Since f satis�es (1.b),

cf
�
Nn fig ;�Nnfig; t� fi (N;�; t)

�
= cf (N;�; t) n fig = Sn fig :

Let (N;�0; t) be as in the de�nition of � applied to Sn fig and S 0n fig : Thus,

AC (N;�0; t) = fSn fig ; S 0n figg = AC
�
Nn fig ;�Nnfig; t� fi (N;�; t)

�
:

Since f satis�es admissible contraction and cf
�
Nn fig ;�Nnfig; t� fi (N;�; t)

�
= Sn fig ;

cf (N;�0; t) = Sn fig : Thus, (Sn fig) � (S 0n fig) : Repeating successively the same argu-
ment for each agent in Tn fig it follows that (SnT ) � (S 0nT ) : �

Claim 11 The binary relation � on N is complete, antisymmetric, and satis�es proper-

ties (i) and (ii) :

Proof of Claim 11 By de�nition, � is a complete and antisymmetric binary relation.

Property (i) holds trivially. Suppose that � does not satisfy property (ii) : Then, there

exist S; T � N and i 2 Nn (S [ T ) such that S�T but (S [ fig) � (T [ fig) does not hold.
Since � is complete, (T [ fig) � (S [ fig). By Claim 10, T�S; which is a contradiction. �

Lemma 2 The rule f satis�es (2.a).

Proof of Lemma 2 Let S 2 AC (N;�; t) ncf (N;�; t) :Wewant to prove that cf (N;�; t) �S:
We distinguish among the following three cases.

Case 1: S ( cf (N;�; t) : Then cf (N;�; t) �S by de�nition of �.
Case 2: cf (N;�; t) ( S: We will obtain a contradiction. Consider the problem (S;�S; t) :
Since S 2 AC(N;�; t), S 2 AC (S;�S; t) : By Theorem 1, f satis�es (1.a). Thus,

cf (S;�S; t) = S: Since cf (N;�; t) ( S; cf (N;�; t) 2 AC (S;�S; t) :Moreover, AC (S;�S; t) �
AC (N;�; t) : Since f satis�es admissible contraction, cf (S;�S; t) = cf (N;�; t) ; a con-
tradiction with cf (S;�S; t) = S:
Case 3: cf (N;�; t) nS 6= ? and Sncf (N;�; t) 6= ?. Let (N;�0; t0) be as in the de�ni-
tion of � applied to the sets cf (N;�; t) and S: Thus, AC (N;�0; t0) =

�
cf (N;�; t) ; S

	
:

Since f satis�es admissible contraction, cf (N;�0; t0) = cf (N;�; t) : By the de�nition of �;
cf (N;�; t) �S: �

Lemma 3 below states that � is transitive, the only remaining property to be proven

in order to �nish the proof of the characterization of Theorem 2.

Lemma 3 The binary relation � on N is transitive.

Proof of Lemma 3 To simplify the notation, given a family fX1; X2; :::; XKg of subsets
of N; we denote [Kk=1Xk by X1X2:::XK : Assume that S�S 0 and S 0�S 00:We must prove that
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S�S 00: We decompose S; S 0, and S 00 according to Figure 1, with S = ABCG; S 0 = CDEG

and S 00 = AEFG; and prove Claims 12-16 below.

AB

C

D

E

F

G

S > S’

S’ > S’’

S  = ABCG
S’ = CDEG
S’’ = AEFG

Figure 1

Claim 12 Assume that AC (N;�; t) = fXkgKk=1 and for each k 6= 1; there exists jk such
that Xjk�Xk: Then, X1�Xk for each k 6= 1:

Proof of Claim 12 Since f is e¢ cient, cf (N;�; t) 2 AC (N;�; t) : Let k 6= 1 and

assume Xjk�Xk: Since f satis�es (2.a), cf (N;�; t) 6= Xk: Thus, cf (N;�; t) = X1: Since f

satis�es (2.a), X1�Xk for each k 6= 1: �

Claim 13 Assume that B 6= ?; D 6= ?; and F 6= ?: Then, S�S 00:

Proof of Claim 13 By assumption, for each X 2 fB;D; Fg ; we can �nd iX 2 X:
Consider any problem (N;�; 1) where BDF � N and for all i 2 N; li = pi = ui and

pi =

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

" if i 2 G
"2 if i 2 C
"3 if i 2 A
"4 if i 2 E
"5 if i 2 Bn fiBg
1� " jGj � "2 jCj � "3 jAj � "5 jBn fiBgj if i = iB
"6 if i 2 Dn fiDg
1� " jGj � "2 jCj � "4 jEj � "6 jDn fiDgj if i = iD
"7 if i 2 Fn fiFg
1� " jGj � "2 jCj � "4 jEj � "7 jFn fiFgj if i = iF
2 otherwise.

30



For " > 0 su¢ ciently small, AC (N;�; 1) = fS; S 0; S 00g : By Claim 12, cf (N;�; 1) = S:

Since f satis�es (2.a), S�S 00: �

Claim 14 Let U;U 0; V; V 0 be such that X \ Y = ? for each X; Y 2 fU;U 0; V; V 0g with
X 6= Y and assume U�U 0 and V �V 0: Then, UV �U 0V 0:

Proof of Claim 14 Since U�U 0 and V �V 0, U 6= ? and V 6= ? hold. We consider four
cases separately.

Case 1: U 0 = V 0 = ?: Obviously, UV �?:

Case 2: U 0 6= ? and V 0 6= ?: For each X 2 fU;U 0; V; V 0g ; take iX 2 X. Consider any
problem (N;�; 3) where UU 0V V 0 � N; and for all i 2 N , li = pi = ui and

pi =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

" if i 2 Un fiUg
2� " jUn fiUgj if i = iU
"2 if i 2 U 0n fiU 0g
2� "2 jU 0n fiU 0gj if i = iU 0

"3 if i 2 V n fiV g
1� "3 jV n fiV gj if i = iV
"4 if i 2 V 0n fiV 0g
1� "4 jV 0n fiV 0gj if i = iV 0

4 otherwise.

It is easy to see that, for " > 0 is su¢ ciently small, AC (N;�; 3) = fUV;UV 0; U 0V; U 0V 0g :
Since U�U 0 and, by Claim 11, � satis�es property (ii) ; UV �U 0V and UV 0�U 0V 0: Since

V �V 0, and again by property (ii), UV �UV 0: Claim 12 implies UV �U 0V 0:

Case 3: U 0 6= ? and V 0 = ?: For each X 2 fU;U 0; V g ; take iX 2 X. Consider any

problem (N;�; 1) where UU 0V � N for all i 2 Nn fiUg ; li = pi = ui; and for " > 0 small
enough,

pi =

8>>>>>><>>>>>>:

" if i 2 Un fiUg
"2 if i 2 U 0n fiU 0g
1� "2 jU 0n fiU 0gj if i = iU 0

"3 if i 2 V
4 otherwise,

and liU = 1 � " jUn fiUgj � "3 jV j and uiU = 1 � " jUn fiUgj : Now, AC (N;�; 1) = U 0 [
fX j U � X � UV g : Since U�U 0 and UV �X for each X 2 AC (N;�; 1) n fUV;U 0g ; by
Claim 12, UV �U 0:

Case 4: U 0 = ? and V 0 6= ?: Since the argument is symmetric to the previous case, we
omit it. �
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Claim 15 Let U; V be such that U \ V = ? and U�V: Then, for each X � V; U�X:

Proof of Claim 15 If X = ?, then U�X follows from property (i) of �. Assume

X 6= ? and take iX 2 X and iU 2 U: Consider any problem (N;�; 1) with UV � N and

for all i 2 Nn fiXg ; li = pi = ui and for " > 0 small enough,

pi =

8>>>>>><>>>>>>:

" if i 2 Un fiUg
1� " jUn fiUgj if i = iU
"2 if i 2 Xn fiXg
"3 if i 2 V nX
4 otherwise,

and liX = 1 � "2 jXn fiXgj � "3 jV nXj and uiX = 1 � "2 jXn fiXgj : Now AC (N;�; 1) =
U[fY j X � Y � V g : Since U�V and V �Y for each Y 2 A (N;�; 1) n fV; Ug we conclude;
by Claim 12, that U�X: �

Claim 16 Assume that for each X; Y 2 fA;B;C;D;E; Fg ; X \ Y = ?; AB�DE; and
CD�AF: Then, ABCD�DEAF:

Proof of Claim 16 We �rst prove that if B 6= ?; D 6= ?; and F 6= ?; then
ABCD�DEAF: Let S = ABC; S 0 = CDE; and S 00 = AEF: Since AB�DE; CD�AF;

and � satis�es property (ii) ; S = ABC�CDE = S 0 and S 0 = CDE�AEF = S 00: By Claim

13, S = ABC�AEF = S 00: By Claim 10, BC�EF: By property (ii) of �; ABCD�DEAF:

We now prove that if C 6= ?; A 6= ?; and E 6= ?; then ABCD�DEAF: Let S = BCD;
S 0 = ABF; and S 00 = DEF: Since AB�DE; CD�AF; and � satis�es property (ii) ; S 0 =

ABF�DEF = S 00 and S = B�ABF = S 0: By Claim 13, S = CDB�DEF = S 00: By Claim

10, BC�EF: By property (ii) of �; ABCD�DEAF:

We proceed by considering several cases:

Case 1: A = ?; D = ?: Thus, B�E and C�F . Then, BC�EF follows from Claim 14 and

hence ABCD�DEAF .

Case 2: A = ?; D 6= ?: Thus, B�DE and CD�F: Since B�DE; B 6= ?: We consider two
subcases.

Subcase 2.1: F 6= ?: Since B 6= ?; D 6= ?; and F 6= ?; ABCD�DEAF holds.
Subcase 2.2: F = ?: Thus, B�DE and C�D: By property (ii) of �; it is su¢ cient to

to prove that BC�E: Since B�DE; by Claim 15, B�E: Since C�? and Claim 14 holds,

BC�E: Thus, ABCD�DEAF:

Case 3: A 6= ?; D = ?: It is symmetric to Case 2.
Case 4: A 6= ?; D 6= ?: We consider three subcases.

32



Subcase 4.1: B 6= ?; F 6= ?: Since B 6= ?; D 6= ?; and F 6= ?, ABCD�DEAF holds.
Subcase 4.2: B 6= ?; F = ?: Thus, AB�DE and CD�A: By property (ii) of �; it is

su¢ cient to to prove that B�E: First, if E = ? it holds trivially. Second, assume E 6= ?
and C 6= ? hold. Then, and since C 6= ?; A 6= ?; and E 6= ?; ABCD�DEAF holds.

Finally, assume E 6= ? and C = ? hold. Suppose E�B: By Claim 14, DE�AB; which

contradicts that AB�DE:

Subcase 4.3: B = ?: Thus, A�DE and CD�AF: We �rst prove that C 6= ?: Suppose
not. Then, D�AF: By Claim 15, D�A: Since A�DE; and by Claim 15 again, A�D; which

contradicts the antisymmetry of �. Hence, C 6= ?. First, assume E = ?: Thus, A�D and

CD�AF: By property (ii) of �; it is su¢ cient to to prove that C�F: Suppose not. Then,

F�C: Since A�D and Claim 14, FA�CD; which contradicts that � is antisymmetric and

CD�AF: Second, assume E 6= ?: Since C 6= ?; A 6= ?; and E 6= ?; ABCD�DEAF
holds. �

To conclude with the proof of Lemma 3, assume S�S 0 and S 0�S 00: We want to show

that S�S 00 holds. Since S�S 0; ABCG�CDEG (see Figure 1). By Claim 10, AB�DE: Since

S 0�S 00; CDEG�AEFG: By Claim 10, CD�AF: By Claim 16, ABCD�DEAF: By Claim

10, BC�EF: By property (ii) of �; S = BCAG�EFAG = S 00: �

A2.2. The independence of the axioms

Let � be such that � (i) = i for all i 2 N: Given S; T 2 N de�ne 1S;S[T 2 RS[T as follows:

1S;S[Ti =

(
1 if i 2 S
0 if i =2 S:

De�ne 1T;S[T analogously. We de�ne the order � on N . For any S; T 2 N , S 6= T , set S�T
if and only if 1S;S[T is strictly larger, according to the lexicographic order, than 1T;S[T :

Now, it is easy to see that for any problem (N;�; t) ; cF� (N;�; t) 2 AC (N;�; t) and
cF

�
(N;�; t) �S for all S 2 AC (N;�; t) ncF� (N;�; t) : It is not di¢ cult to prove that, as

de�ned in A1.3 of Appendix 1,

(1) f 1 is consistent, individually rational from equal division and satis�es admissible con-

traction but it is not e¢ cient;

(2) f 2 is e¢ cient, consistent and satis�es admissible contraction but it is not individually

rational from equal division; and

(3) f 3 is e¢ cient and individually rational from equal division and satis�es admissible

contraction but it is not consistent.
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We de�ne f 4 as follows. Let �0 be the order in which agent 1 is always the last and the

other agents are ordered as in �: Now, for all (N;�; t) 2 P,

f 4 (N;�; t) =
(
F �

0
(N;�; t) if 1 2 N and p1 = 1

F � (N;�; t) otherwise.

It is not di¢ cult to prove that f 4 is e¢ cient, consistent, individually rational from equal

division but it does not satisfy admissible contraction.

Appendix 3. Proof of Theorem 3

A3.1. Proof of the characterization

((=) Let � : N �! N be an order. We �rst prove that the extended uniform rule

F � is e¢ cient, consistent, individually rational from equal division and satis�es order

preservation with respect to �. We do it in Claims 17 and 18 below. In order to simplify

the notation, assume � (i) = i for all i 2 N.

Claim 17 The extended uniform rule F � is e¢ cient, consistent and individually rational

from equal division.

Proof of Claim 17 By Theorem 1, it is su¢ cient to prove that F � satis�es (1.a) and

(1.b). By its de�nition, F � satis�es (1.a). To show that F � also satis�es (1.b), consider

any problem (N;�; t) and let i 2 N be arbitrary. For each 1 � j � n � 1; let X 0j

denote the sets Xj as in the de�nition of F � when the procedure is applied to the problem�
Nn fig ;�Nnfig; t� F �i (N;�; t)

�
: We will prove that

cF
�

(N;�; t) n fig 2 X 0j for all 1 � j � n� 1: (10)

Observe that (1.b) would follow because (10) and jX 0n�1j = 1 imply that cF� (N;�; t) n fig =
X 0n�1 and hence, cF

� �
Nn fig ;�Nnfig; t� F �i (N;�; t)

�
= cF

�
(N;�; t) n fig. To prove (10)

we consider separately two cases.

Case 1: F �i (N;�; t) 2 [li; ui] : Thus, i 2 cf (N;�; t) : We �rst mention two statements:
(s1) Let S 2 AC

�
Nn fig ;�Nnfig; t� F �i (N;�; t)

�
: Then,

P
j2S lj � t � F �i (N;�; t) �P

j2S uj: Hence,
P

j2S[fig lj � t �
P

j2S[fig uj: Namely, S [ fig 2 AC (N;�; t) :
(s2) Let S 2 AC (N;�; t) be such that i 2 S and there exists (xj)j2S 2 FA (S;�S; t) such
that xi = F �i (N;�; t) : Thus, Sn fig 2 AC

�
Nn fig ;�Nnfig; t� F �i (N;�; t)

�
:
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Since cF
�
(N;�; t) 2 X0 � AC (N;�; t) and (s2) holds,

cF
�

(N;�; t) n fig 2 X 00 = AC
�
Nn fig ;�Nnfig; t� F �i (N;�; t)

�
:

We now prove that cF
�
(N;�; t) n fig 2 X 0j for all 1 � j � n� 1: We do it for j = 1; the

�rst step of the procedure (the other steps are similar and we omit them). We consider

two subcases.

Subcase 1.1: For each S 2 X0; 1 =2 S: Then X1 = X0: Suppose that 1 2 S for some
S 2 X 00: By (s1) ; S [ fig 2 X0; which is a contradiction. Then, for each S 2 X 00; 1 =2 S:
Hence X 01 = X 00 and cF

�
(N;�; t) n fig 2 X 01:

Subcase 1.2: There exists S 2 X0 such that 1 2 S: Then, X1 = fS 2 X0j1 2 Sg : Again,
we consider two subcases.

Subcase 1.2.1: i 6= 1: Since cF� (N;�; t) 2 X1; by (s2) ; 1 2 cF� (N;�; t) n fig 2 X 00: Now

X 01 = fS 2 X 00j1 2 Sg and hence cF� (N;�; t) n fig 2 X 01:

Subcase 1.2.2: i = 1: In this case we can not compute X 01: After X 00 we must compute

X 02: We prove that cf (N;�; t) n fig 2 X 02: We again consider two subcases.

Subcase 1.2.2.1: For each S 2 X1; 2 =2 S: Then X2 = X1: Suppose that 2 2 S for some
S 2 X 00: By (s1) ; S [ f1g 2 X0; which is a contradiction. Then, for each S 2 X 00; 2 =2 S:
Hence X 02 = X 00 and cF

�
(N;�; t) n f1g 2 X 02:

Subcase 1.2.2.2: There exists S 2 X1 such that 2 2 S: Then X2 = fS 2 X2j2 2 Sg : Since
cF

�
(N;�; t) 2 X2; by (s2) ; 2 2 cF� (N;�; t) n f1g 2 X 00: Now X 02 = fS 2 X 00j2 2 Sg and

hence cF
�
(N;�; t) n f1g 2 X 02:

Case 2: F �i (N;�; t) =2 [li; ui] : Then, F �i (N;�; t) = 0 < li and i =2 cf (N;�; t) : It is easy to
see that AC

�
Nn fig ;�Nnfig; t

�
= fS 2 AC (N;�; t) j i =2 Sg : Hence, cF� (N;�; t) 2 X 00.

Using arguments similar to those used in Case 1, we can prove that cF
�
(N;�; t) 2 X 0j for

all 1 � j � n� 1: �

Claim 18 The extended uniform rule F � satis�es order preservation with respect to �:

Proof of Claim 18 Let i 2 N be such that i =2 cF
�
(N;�; t) and cF� (N;�; t) \

fi+ 1; :::; ng 6= ?:Wemust prove that there is no admissible coalition containing f1; :::; ig\
cF

�
(N;�; t) : To obtain a contradiction, let S be an admissible coalition containing f1; :::; ig\

cF
�
(N;�; t) : Let j 2 N: If there exists S 0 2 Xj�1 such that j 2 S 0, then Xj =

fT 2 Xj�1 j j 2 Tg : Since, cF� (N;�; t) = Xn � Xj; j 2 cF
�
(N;�; t) : Thus, if j =2

cF
�
(N;�; t) ; fT 2 Xj�1 j j 2 Tg = ? and Xj = Xj�1: We now prove that S 2 Xj for all

1 � j � i: We prove it by induction. First, S 2 X0 holds and let 1 � j � i. Assume that
S 2 Xj�1: We prove that S 2 Xj: We distinguish between two possible cases.
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Case 1: j =2 cF� (N;�; t) : Thus, Xj = Xj�1, which means that S 2 Xj:

Case 2: j 2 cF� (N;�; t) : Thus, Xj = fT 2 Xj�1 j j 2 Tg and S 2 Xj because f1; :::; ig\
cF

�
(N;�; t) � S:

Thus, i 2 S 2 X i; which means that i 2 cF� (N;�; t) : But this contradicts the initial
assumption that i =2 cF� (N;�; t). �

(=)) Let f be an e¢ cient and consistent rule that satis�es individual rationality from
equal division and order preservation with respect to �: By Theorem 1, f is an extended

uniform rule. Claim 19 below �nishes with the proof of the characterization in Theorem

3.

Claim 19 Let (N;�; t) be a problem. Then, cf (N;�; t) = cF� (N;�; t) :

Proof of Claim 19 By de�nition of F �, cF
�
(N;�; t) = Xn: We now prove that if f

satis�es order preservation with respect to �, then cf (N;�; t) = Xn. We show that for

each i 2 N , i 2 cf (N;�; t) if and only if i 2 Xn. Assume, without loss of generality,

that �(i) = i for all i 2 N. We proceed by induction on the index of the agents. If there
exists an admissible coalition S such that 1 2 S; then X1 = fS 2 AC (N;�; t) j 1 2 Sg :
In this case 1 2 Xn because Xn � X1: If there does not exist an admissible coalition S

such that 1 2 S; then X1 = AC (N;�; t) : In this case, 1 =2 Xn: Since f satis�es order

preservation with respect to �; it is easy to see that 1 2 cf (N;�; t) if and only if there
exists an admissible coalition S such that 1 2 S:
Assume that for all j < i � n; j 2 cf (N;�; t) if and only if j 2 Xn: We prove that

i 2 cf (N;�; t) if and only if i 2 Xn: Using arguments similar to those used with agent

1 we can prove that i 2 Xn if and only if there exists an admissible coalition S 2 X i�1

such that i 2 S:We now prove that i 2 cf (N;�; t) if and only if there exists an admissible
coalition S 2 X i�1 such that i 2 S.
Assume i 2 cf (N;�; t) and let S = cf (N;�; t) : By de�nition, cf (N;�; t) is admis-

sible. By induction hypothesis, f1; :::; i� 1g \ cf (N;�; t) = f1; :::; i� 1g \ Xn: Thus,

cf (N;�; t) 2 X i�1:

Assume that there exists an admissible coalition S 2 X i�1 such that i 2 S. By

induction hypothesis, f1; :::; i� 1g\cf (N;�; t) = f1; :::; i� 1g\Xn: Since f1; :::; ig\Xn �
S, S is an admissible coalition containing f1; :::; ig \ cf (N;�; t) : Since f satis�es order
preservation with respect to �, i 2 cf (N;�; t) : �
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A3.2. The independence of the axioms

Assume, by simplicity, that � (i) = i for all i 2 N: We de�ne f 5 as follows. Given S 2
AC (N;�; t), de�ne ID�

i (S;�; t) as the share obtained by i when agents select sequentially,
following the order �, the share they prefer most corresponding to feasible and individually

rational from equal division allocations (we avoid the technical de�nition). Given (N;�; t) ;
set cf

5
(N;�; t) = cF� (N;�; t) and f 5i (N;�; t) = 0 for each i =2 cf

5
(N;�; t) and for each

i 2 cf5 (N;�; t),

f 5i (N;�; t) =
(
F �i
�
cF

�
(N;�; t) ;�cF� (N;�;t); t

�
if
��cF� (N;�; t)�� is odd

ID�
i

�
cF

�
(N;�; t) ;�cF� (N;�;t); t

�
if
��cF� (N;�; t)�� is even.

It is not di¢ cult to show that:

(1) The rule f 1 is consistent, individually rational from equal division and satis�es order

preservation with respect to �; but it is not e¢ cient.

(2) The rule f 2 is e¢ cient, consistent and satis�es order preservation with respect to �;

but it is not individually rational from equal division.

(3) Any extended uniform rule F �
0
with �0 6= � is e¢ cient, consistent and individually

rational from equal division, but it does not satisfy order preservation with respect to �:

(4) The rule f 5 is e¢ cient, individually rational from equal division and satis�es order

preservation with respect to �, but it is not consistent.
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