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Abstract

Poverty evaluations differ from welfare evaluations in one significant aspect,
the existence of a threshold or reference point, the poverty line. It is therefore
possible to build up normative evaluation models in which comparisons are
made taking distances from this reference point and not only from the origin to
be ethically relevant. This is the case in our model of poverty comparisons over
heterogeneous populations, which focuses upon poverty gaps and not incomes.
When poverty lines differ for the different groups in the population we show
that choosing poverty gaps instead of incomes as the relevant indicator brings
in normatively appealing classes of poverty indices not previously accommo-
dated. For these indices poverty comparisons over heterogeneous populations
are implemented through sequential poverty gap curves (or poverty gap dis-
tributions) dominance. These novel conditions are logically related to those
suggested in Atkinson and Bourguignon (1987) for welfare comparisons, and
can also be grounded firmly upon those of Bourguignon (1989). The propor-
tion of poor individuals in the society or their average poverty gap play a role in
our comparisons that was neglected in the existing poverty dominance criteria
for heterogeneous populations. Various intermediate poverty dominance condi-
tions and a generalization of the poverty gap approach are also investigated.
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1 Introduction

Consider two “poor” income units (e.g. households) with different ethically relevant
non-income characteristics (e.g. needs). Now consider the two following statements:

(A) The social marginal utility of income is higher for the needier unit if experiencing
the same, or a lower, income level than the less needy unit.

(B) The social marginal utility of income is higher for the needier unit if experiencing
the same, or a higher, poverty gap than the less needy unit.

Both statements seem reasonable, and turn out to be equivalent if the poverty line
is independent from the ethically relevant non-income characteristics, or if trivially
we consider households which are homogenous in non-income characteristics. But
this is not usually the case. Poverty lines are often implicitly set in order to take into
account non-income characteristics; in particular, higher poverty lines are typically
associated with higher levels of need. Then statements A and B turn out not to be
equivalent any more. Shall we look at income levels, or at shortfalls from relevant
reference points (e.g. poverty lines), in order to make normative statements (e.g.
poverty evaluations)?
Our treatment of poverty comparisons over heterogeneous populations in this pa-

per highlights some implications of following these different statements. The existing
results in the poverty measurement literature within the heterogeneous setting are
derived, without exception, by following approach A; we concentrate here on ap-
proach B, making comparisons based on shortfalls from reference levels (i.e. poverty
gap levels). Once this new perspective is adopted, the ensuing dominance conditions
differ significantly from any of those already presented in the literature. Not least, for
a fixed set of poverty lines, the proportion of poor in the society, and their average
poverty gap, both play roles in our dominance comparisons. Surprisingly, this is not
the case for any of the existing poverty dominance criteria in the heterogeneous case.
In order to evaluate aggregate poverty we consider additively decomposable poverty

measures, defined over a population comprising subgroups that are homogeneous in
terms of needs and can be ranked (in decreasing order) according to them. Individual
poverty contributions are measured as the feeling of deprivation felt by income units
under the poverty line when they compare their situation to the one of being non
poor, that is, of having an income level at or above the poverty line. In order to
take into account the differences in needs, instead of adopting cardinal equivalence
scales, we follow the approach pioneered by Atkinson and Bourguignon (1987) for
welfare comparisons and Atkinson (1992) for poverty comparisons. Namely, we con-
sider distributions of non-equivalized (money) income, and appropriate poverty lines,
and then identify restrictions on evaluation functions that express normative judge-
ments about the relative impact of income changes for differences in income units’
non-income characteristics.
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In the paper, we also allow some flexibility in the assumed poverty lines. In
this, we adhere to the traditions of the existing poverty literature. First, in the
homogeneous case, Atkinson (1987), Foster and Shorrocks (1988a,b,c), Jenkins and
Lambert (1997) and Zheng (1999) all allow latitude in the poverty line to be set.
Second, in the needs-based studies of Atkinson (1992), Jenkins and Lambert (1993),
Chambaz and Maurin (1998) and Duclos and Makdissi (1999), poverty orderings are
provided that are consistent with a variety of views about the respective poverty
lines for different needs groups. But, we contend, there are three questions facing the
poverty analyst, not just two, in case of social heterogeneity:

1. What is the level to assign to the poverty line z? For this purpose we can think
of defining a basic level of standard of living, say α, and allow for the setting
of an income value which, given the characteristics of the income units, enables
them to reach this basic level. Of course people’s opinions could conflict about
both the definition of standard of living and the procedure to follow in order to
measure it.

2. How do poverty lines zi change across needs groups, call these i = 1, 2, ..n? This
follows on from the previous point. Even if agreement is reached in respect of
the minimum level of standard of living α, then disagreement could occur when
we consider the procedure to follow to assign to it an income level zi conditional
on needs i. It is natural to think that higher needs require higher incomes in
order to lead to similar standards of living, i.e. zi ≥ zi+1 if we assume that
groups are ranked in decreasing order w.r.t. needs.

3. How does deprivation, which everyone agrees should be measured in terms of
shortfalls from the poverty line zi − x (where x is the income of a poor income
unit), differ across groups? Indeed, how should we compare shortfalls between
income units belonging to different groups?

The emphasis on shortfalls, as in question 3, has not to our knowledge been
addressed before for heterogeneous populations (though it is common enough in the
homogeneous case: just consider Sen (1976) and Foster et al. (1984)). The approach
we follow is very much in line with that suggested by Atkinson and Bourguignon
(1987), as we explain shortly, but there is a crucial difference: our marginal utility
comparisons across groups are made at fixed absolute poverty gap levels rather than
fixed income levels, as there.
As a consequence of this difference in focus, the sequential poverty dominance

results we obtain are different from those in Atkinson (1992), Jenkins and Lam-
bert (1993), Chambaz and Maurin (1998), Zoli (2000) and Duclos et al. (2003).
They are expressed in terms of distributions of poverty gaps and of absolute poverty
gap profile (APGP) curves, introduced by Spencer and Fisher (1992), Jenkins and
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Lambert (1997) and Shorrocks (1995, 1998).1 Nevertheless, the procedure is very
similar in spirit to the one for checking welfare dominance, advocated by Atkinson
and Bourguignon (1987) using generalized Lorenz curves. Our paper in fact provides
a corresponding rationale for using APGP curves in sequential analysis.
Before moving to the analysis of our dual view, we remark upon the issue which

goes to the heart of the distinction between ours and all the other approaches. Who
should be the “equals” for poverty analysis? In what situation are two income units
with different needs “equally poor”? Not until this question is answered, surely,
can we say which income units of a needier type are socially more deserving (as in
statements A and B, with which we began).
Consider briefly what would be implied for poverty analysis by the adoption of a

specific set of relative equivalence scales, call them e1, e2, ....en (where, say, en = 1,
taking the least needy type n as the reference type), and a minimum standard of
living (equivalent income) α. Then zi = αei and in equivalent income space there
is a common poverty line for all needs groups of α. The normative judgement for a
relative equivalence scale is that those with the same equivalent income are the equals.
If amounts of real income dxi and dxj were to be given to two equals, one of type i
and the other of type j > i, the impact on poverty would be larger (smaller) for the
needier income unit if dxi/zi > (<) dxj/zj, and would be the same if dxi/zi = dxj/zj.
In equivalent income space, then, needs are fully taken care of by equivalizing; in
that space, a common increment to the income of any member of an equals group
has the same effect; there is no distinction between A and B - indeed, no call for a
heterogeneous machinery.
Statements A and B both concern the relative impacts of a transfer of the same

amount, but they differ in identifying the comparable sets of income units across
groups. Statement A considers as comparable two units experiencing the same ab-
solute income level, while for statement B, the comparable units have the same ab-
solute poverty gap. The fundamental normative judgement underpinning B is that the
differential poverty impact of a real income transfer should be (weakly) larger when
applied to a needier household for a fixed poverty gap. If we add the assumption that
the impact of a transfer on poverty deprivation decreases as income increases, for any
given type, then a fortiori the differential poverty impact of a real income transfer is
larger when applied to a needier household with a bigger poverty gap, too: we arrive
at the full statement in B. A similar argument works with A.
Consider Figure 1, in which for the case n = 2, an income x2 is labelled, of

a poor household belonging to the less needy group. What households in group 1
might be included in the comparability set for x2? For approach A, the comparable
households have income x01 = x2, whilst for approach B, the comparable income is
x1, the one that yields the same poverty gap as x2. Assuming that the impact of a

1Davidson and Duclos (2000, pp. 1439-1440) also present a procedure based on comparisons of
absolute poverty gaps evaluated w.r.t. different poverty lines but considering homogeneous popula-
tions.
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Figure 1: Comparability Sets for 2 Groups

transfer on poverty deprivation decreases as income increases, type 1 income units
with less than x01 (respectively, x1) would a fortiori be regarded as more deserving of
additional resources than x2; those with more than x01 (respectively, x1), less so. One
can see that identifying the “poverty equals” of x2 as those with x01 (approach A) or
x1 (approach B) presents merely two polar extremes of a whole plethora of possible
value judgements about the equals; any income in the interval [x01, x1] could serve; in
particular, the income marked in Figure 1 as xr1 could, which has the same relative
poverty gap as the original x2. We return to this issue at the end of the paper.
The structure of the paper is as follows. In Section 2, we lay out the notation

and technical preliminaries in terms of which the analysis will proceed. In Section
3, we obtain our main theorems, linking poverty dominance for defined classes of
poverty indices with sequential poverty gap dominance conditions. Here we also
discuss the issue of checking dominance when poverty lines zi vary within ranges,
indicating algorithms that allow comparisons to be made for a variety of such cases. In
Section 4, we make connections with existing poverty and welfare literature, showing
in particular that when poverty lines are allowed to change without restrictions on
upper and lower bounds, the poverty gap dominance conditions boil down to the one
presented in Bourguignon (1989). We also explain here a specific sense in which our
dominance criteria may be considered “more conservative” - that is, to give higher
relevance to needs - than those of Atkinson (1992). Finally, in Section 5 we show
how corresponding results may be obtained by extending the logic from absolute to
relative poverty gaps. Section 6 concludes.
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2 Preliminaries and notation

We will consider poverty comparisons between income distributions over heteroge-
neous populations partitioned into groups of individuals homogeneous in non-income
characteristics.
The discrete population is composed of m income units and is partitioned into

n non overlapping and exhaustive population subgroups i = 1, 2, ..n ranked in de-
creasing order in terms of needs. Each subgroup i consists of mi > 0 income units,
i.e.

P
imi = m. The income profile of group i is represented by the mi-dimensional

vector xi= (xi1, x
i
2, .x

i
l, .x

i
mi
) where xil ≥ 0 denotes the income level of income unit

l = 1, 2, ..mi belonging to group i. The profile of the overall population is repre-
sented by the m-dimensional vector x = (x1,x2, ...xi, ..xn). The set of all these m-
dimensional vectors is denoted by Xm, while X := ∪m>1X

m denotes the union of the
sets of all vectors in Xm for all m > 1.
Denote by Fi(x) the cumulative income distribution of subgroup i of population

F for i = 1, 2, ..n. The population share of individuals belonging to group i is de-
noted by qFi . It follows that F (x) =

Pn
i=1 q

F
i Fi(x) where F (x) is the cumulative

income distribution function of an income profile with support [0,+∞) and finite
mean µ(F ) =

R +∞
0

xdF (x). Let F be the set of all such cumulative distributions.2

The poverty indices we consider are monotonic increasing transformations of the
class of additively decomposable poverty indices

P (F ) =
nX
i=1

qFi · P (Fi) =
nX
i=1

qFi

ziZ
0

pi(x, zi)dFi(x). (1)

where P (F ) [P (Fi)] measures the aggregate poverty deprivation in distribution F
[Fi], while pi(x, zi) is the individual poverty deprivation function for income units
with income x in group i whose poverty line is zi > 0. Note that since P (F ) is defined
over distribution functions it is within-group anonymous and population replication
invariant. That is, poverty evaluation within each subgroup depends only on the
income distribution and on the group’s poverty line and is not affected by the identities
of the income units within the subgroup i.e. is invariant w.r.t. permutations of
the income profiles xi = (xi1, x

i
2, ..x

i
l, ..x

i
mi
). Furthermore the poverty evaluation is

invariant w.r.t. replications of the income profile x, where to each individual is
associated a finite number of “clones”.
Let F−1i (p) := inf{x : Fi(x) ≥ p} with p ∈ [0, 1] be the left continuous inverse

of Fi(x) showing the income of an individual at the p population quantile of the
distribution of group i. Correspondingly F−1(p) will represent the left continuous

2The results we will present can be extended [with a slight change in notation] to income distri-
bution domains including bounded negative incomes, i.e. considering income profiles with support
[x,+∞) for x ≤ 0.
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inverse of F (x). Let γF (p, z) be the “absolute poverty gap profile” of the censored
distribution F evaluated at the p quantile of the income distribution of the total
population, for a given poverty line z. That is

γF (p, z) =

½
z − F−1(p) if F−1(p) ≤ z,
0 otherwise.

Note that γF (p, z) is non-increasing in p and γF (p, z) = 0 if p ≥ F (z). For a discrete
distribution γF (j/m, z) = z − x∗j where m is the size of the whole population, and
x∗j is a generic element of the vector x

∗ which ranks incomes, censored at level z, in
decreasing order (i.e. x∗j = xj if z > xj and x∗i = z if z ≤ xi, so that x∗j ≥ x∗j−1). If
we denote by π the proportion of poor individuals in the population (i.e. π = F (z))
it will follow that γF (j/m, z) = 0 for all j/m > π.
The absolute poverty gap profile (APGP) curve is the cumulated curve of the

absolute poverty gaps:

Definition 1 (APGP Curve)

PGF (p, z) =
Z p

0

γF (q, z)dq. (2)

This curve (in its relative formulation, taking into account relative poverty gaps)
has been introduced in poverty analysis by Spencer and Fisher (1992), Jenkins and
Lambert (1997) and Shorrocks (1995, 1998).
Note that PGF (t, z) = PGF (F (z), z) = H(F, z)I(F, z) for all t ≥ F (z), where

H(F, z) is the headcount ratio of distribution F and I(F, z) is its average absolute
income gap.
In order to compare our results to those existing in the literature we present here

the classical Sequential Poverty Dominance (SPD) conditions suggested in Atkinson
(1992), Jenkins and Lambert (1993) and Chambaz and Maurin (1998). Given the
ranking of needs between groups, we suppose that the vector z ∈ Rn

++ of poverty
lines is ranked in non-increasing order, i.e. zi ≥ zi+1. The set of all these vectors
of poverty lines is denoted with Zn. We will write F <SPD(j)[z] G to denote that
distribution F dominates G according to the (SPD) condition of order j = 1, 2.
These comparisons are made for a given vector of ordered poverty lines z ∈ Zn. The
definition for SPD is presented here for the general case where marginal distributions
of needs may differ.

Definition 2 (Sequential Poverty Dominance ) For z ∈ Zn and F,G ∈ F :
(1) F <SPD(1)[z] G ⇐⇒

Pk
i=1[q

F
i Fi(x) − qGi Gi(x)] ≤ 0 for all x ≤ zk, for all

k = 1, 2, ...n,
(2) F <SPD(2)[z] G ⇐⇒

Pk
i=1

R x
0
[qFi Fi(t) − qGi Gi(t)]dt ≤ 0 for all x ≤ zk, for all

k = 1, 2, ...n.
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These are sequential stochastic dominance conditions of the type suggested in
Atkinson and Bourguignon (1987) where comparisons at each stage k are restricted
to income levels below the poverty line zk. For example, take the case k = 2, poor
individuals in the neediest group with incomes within the range (z2, z1] are not con-
sidered. They are, of course, considered at the first stage of comparison. That is,
only individuals in group j with sufficiently low income are considered at the stage
k > j.
According to the new criterion we shall introduce, by contrast, at each stage k

of comparison all of the poor individuals in groups j ≤ k play a role. The following
example will illustrate a situation where SPD conditions lead to a counter-intuitive
result.

Example 1 Consider the income profiles x and y, each defined over the same pop-
ulation comprising two subgroups with different needs. Let the respective distribution
functions be F and G, and let the incomes be as follows (denoting subgroups by su-
perscripts 1 and 2):

x1 = (1, 3, 6), x2 = (0, 4, 4);

y1 = (0, 2, 4), y2 = (1, 4, 6).

Further suppose that the poverty lines are z1 = 7 and z2 = 5. Note in respect of
the first subgroup that (1, 3, 6) first order stochastically dominates (0, 2, 4). Note also
that, merging all the individuals in subgroups 1 and 2 with incomes at most 5 = z2,
(0, 1, 3, 4, 4) first order stochastically dominates (0, 1, 2, 4, 4). From these two obser-
vations it follows that F <SPD(1)[7,5] G. However 5/6 of the population in y is poor
while in x all individuals are poor.

From the example is clear that although x dominates y according to SPD(1) it
may include also a proportionally larger number of poor individuals. The head-count
ratio is the most common crude poverty indicator. It is surprising that the partial
order SPD(1) devised to accommodate a variety of views about poverty without
imposing any concern for “poverty-intensity” and “poverty-inequality” turns out not
to be consistent with the headcount ratio.3

The following example provides a similar result where SPD(2) conflicts with the
average poverty gap indicator evaluated over the entire population.

3The inconsistency between SPD(1) and the head-count ratio has been pointed out by Atkinson
(1992, p.8) (see also Duclos and Makdissi, 1999). According to Atkinson the head-count ratio is
ruled out from the set of poverty measures considered by the assumption of continuity of pi(x, zi) at
x = zi, and therefore it should not play a role in our dominance conditions. We will show that even
if pi(x, zi) is continuous at x = zi, the headcount ratio (or its version considering the proportion
of strictly poor individuals) will play a role in the dominance conditions. The result is due to the
change in perspective to comparisons made at poverty gap levels instead of income levels.
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Example 2 Following the same notation introduced in the previous example, con-
sider the income profiles x and y (with distribution functions respectively F, and G)
where:

x1 = (1, 2, 6), x2 = (0, 4, 4),

y1 = (0, 2, 4), y2 = (1, 4, 8),

Suppose that the subgroups poverty lines are z1 = 9 and z2 = 7. Then F <SPD(2)[9,7] G
but the average poverty gap in y is 5 = (21 + 9) /6 while in x it is 31/6 = (18+13)/6
which is larger.

3 The main results

As a starting point we assume that it is possible to specify a profile of poverty lines
z = (z1, z2, ..zi, ..zn) ∈ Zn ranked in non-increasing order such that poverty depriva-
tion is eliminated for all individuals with income levels not below the poverty line and
for higher level of needs not less income is required to achieve a minimum standard
of living.
For a given poverty line zi and income level x the individual deprivation function

pi(x, zi) can be expressed in terms of absolute poverty gaps zi−x∗, where x∗ denotes
income censored at level zi. That is

pi(x, zi) =

½
0 if zi < x
ui(zi − x) if zi ≥ x

(3)

where ui(.) is such that ui(0) = 0 for all i. For a poverty gap γ such that

γ =

½
0 if zi < x
zi − x if zi ≥ x

the function ui(γ) may depend also on zi. If ui(γ) is independent from zi, this gener-
ates the class of additively decomposable poverty indices expressed in terms of poverty
gaps. This is a subset of the class of poverty indices considered in Spencer and Fisher
(1992), and Chakravarty (1983, 1983a). Indices included in this group are those of
Foster et al. (1984), obtained for u(z−x) = (z−x)α when homogeneous populations
are considered and poverty is evaluated in absolute terms.4 The headcount ratio,
i.e. the proportion of poor individuals in the society, is not included in the class of
indices considered. We would require ui(0) = 1 for all i so that for this index pi(x, zi)
is discontinuous at x = zi.

4An heterogeneous populations class of poverty indices generalizing the FGT class can be obtained
letting ui(zi − x) = (zi − x)αi where the coefficients αi may depend on the groups.
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3.1 Characterization of Poverty Indices

Policy makers may have different opinions about z ∈ Zn (see points 1 and 2 in the
introduction) and/or the function ui(.) (see point 3). We will first consider a fixed
vector z and derive dominance conditions based on reasonable assumptions on ui(.).5

Then, we will extend the analysis in order to allow for possible changes in z, and
we will show that if the changes in poverty lines satisfy some restrictive assumptions
it is possible to implement simplified procedures that allow to extend the poverty
comparisons for a fixed poverty lines profile to the case where poverty lines may
change.
The following assumptions make clear the normative value judgements we apply

in order to allow partial comparisons of deprivation felt by individuals belonging to
different groups, making use of ordinal information on needs. We consider functions
ui(γ) that are continuous and twice differentiable.

Property A ui(γ) ≥ 0 for all γ > 0, and ui(0) = 0, for all i = 1, 2, ..n.

This property requires that perceiving a positive shortfall γ w.r.t. the poverty
line is not beneficial for an individual’s well-being, thereby inducing a positive level
of individual poverty. The ensuing properties introduce the assumptions imposed on
between-group comparisons of changes in poverty gaps.

Property A1 u0i(γ) ≥ u0i+1(γ) ≥ 0 for all γ > 0, and all i = 1, 2, ..n− 1.

Changes in income show a greater effect on the well-being of an individual with a
given poverty gap the higher is the level of needs. The needier is an individual, the
higher is the positive impact on his/her deprivation of a loss in income for a fixed
level of poverty gap.
We introduce two axioms here, in respect of a poverty measure P (.), defined as in

(1), which correspond to property A1. When between groups comparisons are taken
into account we impose the restriction of identical marginal distributions of needs in
order to separate the issue of group importance (in terms of needs) from the one of
group size.

Axiom 1 (WM Weak Monotonicity) For all distributions F,G ∈ F such that F
is obtained from G by reducing the income of a poor individual, P (F ) ≥ P (G).

5The standard assumption on ui(.) when poverty is evaluated over homogeneous populations is
that ui(.) is non-decreasing and convex in the poverty gap level, equivalently poverty satisfies re-
spectively the weak monotonicity property requiring that a decrease in income of a poor individual
should not reduce poverty, and the weak Principle of Transfers requiring that as a result of a pro-
gressive income transfer poverty should not increase. That is, for ui(γ) assumed twice differentiable,
u0i(γ) ≥ 0, and u00i (γ) ≥ 0 for all γ ≥ 0, all zi > 0, and all i = 1, 2, ..n.
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Axiom 2 (BGP Between Group Priority) For all γ > 0, δ > 0, j > i and
all distributions F,F 0, G ∈ F where qGi = qGj = q, such that F (respectively F 0) is
obtained from G through a reduction δ > 0 of the income of an individual at poverty
gap γ > 0 in group i (resp. j) P (F ) ≥ P (F 0).

P (.) satisfies Axioms WM and BGP if and only if ui(γ) satisfies property A1.
See the Appendix for the demonstration of this and all subsequent mathematical
assertions, which shall be suppressed from the main text for ease of presentation.
The next property allows to compare, between individuals in different groups, the

marginal effect of transfers at fixed poverty gap levels.

Property A2 u00i (γ) ≥ u00i+1(γ) ≥ 0 for all γ > 0, and all i = 1, 2, ..n− 1.

The differential impact of increases in poverty gaps between individuals with dif-
ferent needs increases as their shortfalls w.r.t. the poverty line increase. Consider
a progressive transfer of δ > 0 occurring between individuals in group i where the
donor experiences the poverty gap γ and the receiver has poverty gap γ + ε where
ε > 0, and a similar transfer involving individuals in group j > i. Requiring that both
transfers have a non increasing effect on the groups’ poverty and that the poverty
reduction effect cannot be lower for the transfer occurring in the needier group we
get A2. As for A1, we can couch these properties axiomatically.

Axiom 3 (WPT: Weak Principle of Transfers) For all distributions F,G ∈ F
such that F is obtained from G through a regressive transfer involving poor income
units, P (F ) ≥ P (G).

Axiom 4 (BGTP: Between Group Transfer Priority) For all γ > 0, ε > 0,
δ > 0, j > i and all distributions F,F 0, G ∈ F where qGi = qGj = q, such that F
(resp. F 0) is obtained from G through a regressive transfer δ > 0 from an individual
at poverty gap γ + ε > 0 to an individual at poverty gap γ > 0 both in group i (resp.
j) P (F ) ≥ P (F 0).

P (.) satisfies Axiom WPT and BGTP if and only if ui(γ) satisfies property A2.6

Note that properties A and A1 imply that ui(γ) ≥ ui+1(γ) for all γ ≥ 0.Moreover,
if we add to these properties the requirement of WPT, i.e. if u00i (γ) ≥ 0, then if
poverty lines are set such that zi ≥ zi+1 it will follow that for all i = 1, 2, ..n− 1 and
all x ∈ R, p0i(x, zi) ≤ p0i+1(x, zi+1) ≤ 0 where p0i(x, zi) denotes the partial derivative of
the individual poverty deprivation function pi(x, zi) w.r.t. x.
As a result dominance for all poverty indices satisfying A, A1 and WPT will

be implied by dominance for all indices satisfying pi(x, zi) ≥ 0 if x ≤ zi otherwise
pi(x, zi) = 0 and p0i(x, zi) ≤ p0i+1(x, zi+1) ≤ 0 for all x ∈ R. This class of indices is

6The class of indices obtained letting ui(zi − x) = (zi − x+1)αi − 1 where αi ≥ αi+1 ≥ 0 satisfy
A and A1. If in addition is required αi ≥ αi+1 ≥ 1 then also A2 is satisfied.

11



considered in Atkinson (1992). As will emerge, it is larger than the class of those
satisfying A, A1 andWPT in that it is possible when zi > zi+1 to construct individual
deprivation functions that satisfy the previous condition but not A1 (see Appendix).
As a result the dominance conditions SPD(1) derived in Atkinson (1992), Jenkins
and Lambert (1993) and Chambaz and Maurin (1998) will imply those obtained for
poverty indices satisfying A, A1 and WPT and therefore also those satisfying A, A1
and A2.

3.2 Aggregate Poverty Comparisons

The poverty deprivation content of distribution F is P (F ) where

P (F ) =
nX
i=1

qFi

Z zi

0

ui(zi − x)dFi(x) (4)

(compare (1)). This measure can be interpreted as the average well-being shortfall
from a minimum standard of living. The poverty deprivation differential between
income distributions F and G is given by ∆P :

∆P =
nX
i=1

qFi

Z zi

0

ui(zi − x)dFi(x)−
nX
i=1

qGi

Z zi

0

ui(zi − x)dGi(x).

=
nX
i=1

Z zi

0

ui(zi − x)
£
qFi dFi(x)− qGi dGi(x)

¤
. (5)

We can now set out the first proposition, specifying the conditions for first degree
sequential poverty deprivation dominance. This is a reference-based dominance con-
cept. We use this terminology throughout, whenever the conditions we derive re-
semble standard stochastic dominance criteria but instead of checking dominance at
each income level for all groups, they check for dominance at income levels associated
with the same poverty gap in each group. When comparisons are made over sub-
groups under the assumption of the same poverty line in each group, the conditions
are the same as for standard stochastic dominance, but when poverty lines differ the
conditions are modified: instead of comparing subgroup distributions at each income
level we compare distributions Fi (zi − γ) at each poverty gap level γ ≥ 0. If mar-
ginal distributions of needs differ between income distributions then the distribution
functions considered will be weighted according to the population share of the group.
Formally, let

φFi (γ, zi) :=

½
qFi · Fi(zi − γ)

0
if zi ≥ γ
if zi < γ

,

denote the proportion, over the entire population in F , of individuals belonging to
group i whose poverty gap is not-lower than γ, and similarly forG. Furthermore let γ∗

denote the highest poverty gap in any subgroup. Given that incomes are non-negative
and zi ≥ zi+1 > 0, it follows that γ∗ ∈ (0, z1].
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Definition 3 (RBD: Reference Based SPD) For z ∈ Zn, and F,G ∈ F:
(i) F <RBD(1)[z] G ⇐⇒

Pk
i=1

£
φFi (γ, zj)− φGi (γ, zj)

¤ ≤ 0 for all γ > 0, all k =
1, 2, ...n,

(ii) F <RBD(2)[z] G ⇐⇒
Pk

i=1

³R γ∗
γ

£
φFi (t, zi)− φGi (t, zi)

¤
dt
´
≤ 0 for all γ > 0,

all k = 1, 2, ...n.

The condition RBD(1) is a first-degree stochastic dominance condition where
comparisons are made at levels of poverty gaps. As long as we consider only the
first group (k = 1) the dominance condition corresponds to qF1 F1(x) ≤ qG1 G1(x) for
all x ∈ [0, z1). Therefore the first stage of the “reference-based” dominance coincides
with the standard first degree Sequential Poverty Dominance condition. Once we
consider multiple groups the equivalence with SPD(1) is lost. The reason is that
comparisons are made at the same level of poverty gap between different groups and
not at income levels. Only if zi = z for all i does the new reference-based criterion
correspond to the standard first degree sequential poverty dominance condition.
A practical way of implementing the set of dominance comparisons is to consider

as reference point the poverty line z1 which is the highest, then shift to the right
the distribution functions of each group i by θi = z1 − zi, such that all the poverty
lines now coincide, then apply the first order sequential dominance condition to the
new shifted distributions. In the Appendix, we provide an example to show a set
of comparisons where first degree reference-based poverty dominance is satisfied but
first degree standard sequential poverty dominance is not.
We now consider the second order of reference-based sequential poverty domi-

nance, which we shall link with dominance in terms of absolute poverty gap profile
(APGP) curves in the next sub-section.
Consider for simplicity of exposition the case of two groups. The dominance

condition becomes:
R γ∗
γ

£
φF1 (t, z1)− φG1 (t, z1)

¤
dt ≤ 0 for all γ > 0 at the first stage,

and
R γ∗
γ

£
φF1 (t, z1) + φF2 (t, z2)− φG1 (t, z1)− φG2 (t, z2)

¤
dt ≤ 0 for all γ > 0 for the whole

population. Note that φF1 (t, z1) +φF2 (t, z2) gives the proportion of individuals (in the
whole population) with income such that their poverty gap is at least t, irrespective
of their group.
In general

Pk
i=1 φ

F
i (γ, zi) provides the distribution of the poverty gaps in the first

k groups, and the condition
Pk

i=1

³R γ∗
γ

£
φFi (t, zi)− φGi (t, zi)

¤
dt
´
≤ 0 for all γ > 0 can

be considered as a second degree stochastic dominance condition over homogeneous
populations, obtained by shifting incomes in order that poverty lines for all groups
coincide and then making comparisons at all shifted income levels that by construction
will be associated with the same absolute poverty gap in each subgroup. For a
graphical illustration see Example 4 in the Appendix.
The following proposition will highlight the link between the RBD conditions and

the poverty dominance conditions associated with the poverty indices P (.).
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Proposition 1 For a fixed z ∈ Zn,
(i) P (F ) ≤ P (G) for all ui satisfying A and A1⇐⇒ F <RBD(1)[z] G.
(ii) P (F ) ≤ P (G) for all ui satisfying A, A1 and A2 ⇐⇒ F <RBD(2)[z] G.

It is important to point out a minor difference between RBD(1) and SPD(1).
The RBD(1) condition is required to hold only for γ > 0, that is individuals exactly
at the poverty line are not considered. Therefore comparisons of head-count ratios
are not required, instead for γ → 0 RBD(1) requires that

Pk
i=1 q

F
i · H−(Fi, zi) ≤Pk

i=1 q
G
i · H−(Gi, zi) where H− denotes the head-count ratio evaluated making use

of the “strict” definition of poverty, i.e. considering as “poor” only incomes strictly
below the poverty line. This modification is due to the fact that we consider only
discrete income distributions. It is possible to extend the results in Proposition 1
(part i) to comparisons between continuous distributions, in this case H− and H will
coincide.7

3.3 Sequential Poverty Gap Dominance Conditions

As shown in Foster and Shorrocks (1988a,b,c), Spencer and Fisher (1992), Jenkins
and Lambert (1997) and Shorrocks (1995, 1998) when poverty comparisons are made
over homogeneous populations first and second order stochastic dominance for cen-
sored income distributions are equivalent to respectively rank dominance of absolute
poverty gaps distributions and APGP curve dominance. An analogous relation exists
between the reference-based sequential poverty conditions in the previous proposi-
tions and appropriate sequential dominance conditions for heterogeneous populations
expressed in terms of poverty gaps. We introduce these Sequential Poverty Gap Dom-
inance (SPGD) conditions here and prove the equivalence with the reference-based
poverty dominance conditions characterized in Proposition 1.
Let zk = (z1, ...zi, .. zk) be the vector of poverty lines associated with the first k

groups, and let z∗ := max {z1, z2, ..., zi, .., zn} ; given that poverty lines are ranked in
decreasing order z∗ = z1. If we let

F (k)(t, zk) :=

Pk
i=1 q

F
i Fi(t− z∗ + zi)Pk

i=1 q
F
i

for all t ∈ [0, z∗]

where Fi(y) := 0 if y < 0, we obtain the distribution that, for any “poor” income
level t in the group with the highest poverty line, identifies the proportion of income
units in the first k subgroups that experience an income gap of at least z∗ − t.
The poverty gap of the individual ranked at the pth population quantile of the

income distribution F (k), when the poverty lines are set at zk, can be written as

γF
(k)

(p, zk) =

½
z∗ − F (k)−1(p, zk)

0
if F (k)−1(p, zk) ≤ z∗

otherwise

7If (3) is modified s.t. ui(0) = ai ≥ 0 if x = zi in order to quantify the “stigma effect” of being
poor, and furthermore it is assumed that ai ≥ ai+1 for all i = 1, 2, ..n − 1, then the dominance
condition in Proposition 1 (part 1) has to consider also γ = 0.

14



where F (k)−1(p, zk) is the left continuous inverse function of F (k)(t, zk). It follows
that PGkF (p, zk) =

R p
0
γF

(k)
(t, zk)dt where PGkF (p, zk) denotes the absolute poverty

gap curve of the first k groups of population F , where poverty gaps in each group i
are evaluated w.r.t. the group poverty line zi. Note that PGkF (1) =

Pk
i=1 q

F
i H(Fi, zi) ·

I(Fi, zi)/
Pk

i=1 q
F
i is the average absolute income gap [averaged w.r.t. the entire

population] where the first k groups are merged and individuals in each group are
considered poor if their income is not above the group poverty line.
We present new poverty dominance conditions for heterogeneous populations ex-

pressed in terms of the sequential absolute poverty-gap distributions γF
(k)
(p, zk).

These conditions correspond to rank-dominance of the poverty gap distributions
γF

(k)
(p, zk) [first order of dominance] and to sequential dominance in terms of the

poverty-gap curves PGkF (p, zk) [second order of dominance]. We will write F <SPGD(j)

G to denote that distribution F dominatesG according to the Sequential Poverty Gap
Dominance (SPGD) condition of order j = 1, 2. We first state the conditions under
the simplifying assumption of common marginal distributions of needs.

Definition 4 (SPGD: Sequential Poverty Gap Dominance ) For a fixed z ∈
Znand F,G ∈ F s.t. qFi = qGi for all i:
(i) F <SPGD(1)[z] G ⇐⇒ γF

(k)
(p, zk) ≤ γG

(k)
(p, zk) for all p ∈ [0, 1] , for all

k = 1, 2, ...n,
(ii) F <SPGD(2)[z] G⇐⇒ PGkF (p, zk) =

R p
0
γF

(k)
(p, zk) ≤ R p

0
γG

(k)
(p, zk) = PGkG(p, zk),

for all p ∈ [0, 1] , for all k = 1, 2, ...n.
In the next two propositions we show the equivalence between the reference-based

dominance conditions and the general version of the SPGD conditions. Let QF
k =Pk

i=1 q
F
i denote the population share of the first k groups.

Proposition 2 Let k = 1, 2, ..n. The following conditions are equivalent:
(i) F <RBD(1)[z] G

(ii) (a) γF
(k)
(p/QF

k , z
k) ≤ γG

(k)
(p/QG

k , z
k) for all p ∈ [0,min©QF

k , Q
G
k

ª
]

and (b)
Pk

i=1 q
F
i ·H(Fi, zi) ≤ QG

k .

Condition (iia) adjusts the procedure for poverty gaps rank dominance in order
to take into account that sequences of subgroups may cover different population
shares, ensuring that the relative ranks considered are those evaluated with respect
to the entire population. Condition (iib) simply requires that the proportion of poor
individuals in the k neediest groups of population F is lower than the proportion
of individuals i the same groups of population G. Note that when all groups are
considered condition (iia) implies (iib) and requires rank dominance of the whole
population distributions of poverty-gaps. Note also that when QF

k = QG
k conditions

(iia) and (iib) boil down into those for SPGD(1) evaluated at stage k.
The dominance condition in Proposition 1 (part ii) can be equivalently expressed

making use of the poverty gap curves PGk(p).
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Proposition 3 Let k = 1, 2, ..n. The following conditions are equivalent:
(i) F <RBD(2)[z] G
(ii) QF

k · PGkF (p/QF
k ) ≤ QG

k · PGkG(p/QG
k ) for all p ∈ [0,min

©
QF

k , Q
G
k

ª
]

and
Pk

i=1 q
F
i H(Fi, zi) · I(Fi, zi) ≤

Pk
i=1 q

G
i H(Gi, zi) · I(Gi, zi).

Note that when dominance is evaluated at the last stage, condition (ii) becomes
PGF (p) ≤ PGG(p) for all p ∈ [0, 1]. That is, we recover the standard poverty domi-
nance condition applied to homogeneous populations. This condition is not obtained
for poverty comparisons over heterogeneous distributions, either in the standard ap-
proach pioneered by Atkinson (1992) or in the dual approach to sequential poverty
dominance suggested in Zoli (2000). In the former case, at the final stage of compar-
isons, second degree poverty dominance coincides with generalized Lorenz dominance
for all incomes below the lowest poverty line (that is the poverty line zn of the least
needy group). This condition turns out to be equivalent to APGP curve dominance
for the unique poverty line zn. In the latter case the second degree poverty dominance
is obtained through weighted averages of the APGP curves of each group evaluated
w.r.t. the group poverty line.
Moreover, if the marginal distribution of needs is fixed, as in Atkinson and Bour-

guignon (1987) and Atkinson (1992), then the previous conditions require that at
each stage k the poverty gap curves of the neediest k groups are compared. That
is, if qFi = qGi for all i, so that QF

k = QG
k for all k, and noting that PGkF (1) =Pk

i=1 q
F
i H(Fi, zi) · I(Fi, zi), condition (ii) in Proposition 3 becomes equivalent to

PGkF (p) ≤ PGkG(p) for all p ∈ [0, 1].

Corollary 1 If qFi = qGi for all i, then RBD(j)⇐⇒ SPGD(j) for j = 1, 2.

Similar results can be found for relative poverty comparisons, just changing the
perspective from absolute to relative poverty gaps. In that case, the standard relative
poverty gap profile curves (where poverty gaps are normalized by the poverty line)
have to be applied in order to check dominance. If relative poverty comparisons
are applied, the appropriate reference level at which to make comparisons is the
normalized income x/zi. In this case since the upper bound of the range of x/zi is 1
in all groups, the standard approach and the one suggested here both provide the same
criteria. It should however be pointed out that in order to establish these criteria in
the relative case, the characterization of the individual’s deprivation functions must
involve comparisons of “normalized transfers” (of amounts δ/zi depending on the
group poverty line zi). As also pointed out in Atkinson (1992, p. 7) however, looking
at absolute poverty gap (and income) levels provides the most natural perspective to
approach the issue of poverty measurement in an heterogenous population framework.
Given the equivalence between RBD and SPGD even when marginal distribu-

tions of needs differ, we will interchangeably use their notations in the remaining part
of the paper.
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3.4 Variable poverty lines

Our previous results depend on the setting of an appropriate group reference level (i.e.
poverty line). Although our procedure is less demanding than identifying cardinal
equivalence scales to implement between groups poverty comparisons, the setting of
the poverty lines may turn out to be a source of disagreement between policy makers.
When agreement is not reached on the appropriate set of poverty lines, a possible
solution is to make comparisons considering vectors of ordered poverty lines, each one
of them defined within a range.
In general this type of comparison turns out to be problematic for the approach

we follow. This is hardly surprising. The logic of our approach is based on the
definition of a reference point, the poverty line, within each group, therefore once
uncertainty about the appropriate value of the reference point is introduced then
also the between-groups comparisons are affected. In particular, since individuals
are compared between groups for a given absolute poverty gap, if a poverty line
changes then the income levels that are pairwise comparable between groups change,
thereby affecting all the dominance conditions! However, if uncertainty about the
poverty lines takes a particular specification then it is possible to provide a clear-
cut result. If the poverty lines all change by the same amount, the between-groups
pairwise comparisons are still made at the same income levels, the only additional
implication being that potentially more individuals become poor as poverty lines
increase; therefore new portions of the income distributions have to be taken into
account in the evaluation.
Suppose that every poverty line zi can be decomposed into two components, a

fixed minimum level z̃i which is defined and is such that z̃i ≥ z̃i+1 and a positive
additive element β which is common to the evaluation of all poverty lines, that is
zi = z̃i + β. It follows that zi − zj = z̃i − z̃j, that is, there is no disagreement on the
gap between the various poverty lines of different groups but only on their absolute
values.
In order to analyze the implications that changes in β could have on the final

ranking, we first discuss the case of a homogeneous population. Consider the conditionR zi
γ
[φFi (t, zi)−φGi (t, zi)]dt ≤ 0 associated with RBD(1). In the case of a homogeneous

population qFi = 1, so that φFi (γ, zi) = Fi (zi − γ) . If the poverty line increases by
β > 0 then the previous condition could be shifted and we can check thatZ zi+β

γ

[φFi (t, zi + β)− φGi (t, zi + β)]dt =

Z zi

γ−β
[φFi (t, zi)− φGi (t, zi)]dt

for all γ ≥ β. It follows that checking for poverty dominance of Fi over Gi evaluated
for the poverty line zi+β carries with it dominance also for the poverty line zi. Once
we move to an heterogeneous population comparison, if all poverty lines are shifted
by the same amount the same line of reasoning can be extended. We then have thatR zi+β
γ

∆φi(t, zi + β) =
R zi
γ−β ∆φi(t, zi)dt for all i = 1, 2, 3, ..n and for all γ ≥ β, where
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∆φi(γ, zi) = φFi (γ, zi)−φGi (γ, zi). It follows that
Pk

i=1

R γ∗
γ

∆φi(t, zi+β)dt ≤ 0 for all
k = 1, 2, ..n and all γ ≥ 0 implies that Pk

i=1

R γ∗
γ

∆φi(t, zi)dt ≤ 0 for all k = 1, 2, ..n
and all γ ≥ 0. Thus it is sufficient to check for dominance for the extreme value of
the poverty line associated with the highest value of β in order to have unanimous
dominance for all the intermediate values of β, as formalized in the following remark.

Remark 1 P (F ) ≤ P (G) for all ui satisfying properties A, A1 and A2 and for all
zi = z̃i+β where β ∈ £0, β̄¤ and z̃i ≥ z̃i+1 if and only if

Pk
i=1

R γ∗
γ

∆φi(t, z̃i+ β̄)dt ≤ 0
for all k = 1, 2, ..n, and for all γ > 0.

If the same assumptions on the poverty lines hold, it is possible to obtain a
corresponding result for properties A and A1, i.e. under the conditions in Proposition
1. In this case the dominance condition will require:

Pk
i=1∆φi(γ, z̃i + β̄) ≤ 0 for all

k = 1, 2, ..n and for all γ > 0.
These results do not hold if the distances between the poverty lines are not main-

tained at fixed values.

3.4.1 Poverty lines changing within ranges

We show some further implications deriving from changing poverty lines when a
distribution partitioned into only two groups is considered and then extend the com-
parisons to the general n groups case.
Suppose that zi ∈

£
z−i , z

+
i

¤
and zi ≥ zi+1 ≥ 0, implying that z−i ≥ z−i+1 and

z+i ≥ z+i+1 for all i = 1, 2, ..n− 1. Let Zn(z−, z+) denote the set of all ordered poverty
lines z1 ≥ z2 ≥ .. ≥ zn ≥ 0 satisfying such conditions for n groups. If poverty
dominance is required to be consistent with all possible z ∈ Zn(z−, z+), then making
use of Remark 1 it is possible to restrict the set of comparisons required.
In particular, if we suppose that n = 2, at the first stage of the sequential compar-

ison, it is sufficient to check for poverty dominance of the needier group at the higher
poverty line z+1 ; while at the second stage it is sufficient to fix z1 = z+1 and check for
dominance for all z2 ∈

£
z−2 , z

+
2

¤
and also to fix z2 = z+2 and check for poverty domi-

nance when z1 ∈
£
z+2 , z

+
1

¤
. All the other comparisons associated with the remaining

vectors in Z2(z−, z+) will be implied by these. The conditions for robust poverty
comparisons valid for all z ∈ Z2(z−, z+) unfortunately become more complicated as
the number of groups increases.

Proposition 4 If n = 2, P (F ) ≤ P (G) for all ui satisfying properties A, A1 and
A2 and for all z ∈ Z2(z−, z+) if and only if:

(i)
R z+1
γ

∆φ1(t, z
+
1 )dt ≤ 0 for all γ > 0, and

(iia)
R z+1
γ

∆φ1(t, z
+
1 )dt +

R z+1
γ

∆φ2(t, z2)dt ≤ 0 for all γ > 0 and all z2 ∈
£
z−2 , z

+
2

¤
,

and
(iib)

R z1
γ

∆φ1(t, z1)dt+
R z1
γ

∆φ2(t, z
+
2 )dt ≤ 0 for all γ > 0 and all z1 ∈

£
min

©
z−1 , z

+
2

ª
, z+1

¤
.
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Even for the simplest n = 2 case we thus have an infinity of dominance con-
ditions to check associated with the values of z2 ∈

£
z−2 , z

+
2

¤
in (iia), and z1 ∈£

min
©
z−1 , z

+
2

ª
, z+1

¤
in (iib). It is however possible to derive an algorithm that will

allow to check all these conditions in a finite number of steps both for 1st and 2nd de-
gree sequential reference-based dominance (SPGD). We illustrate first the algorithm
for the n = 2 case, then we provide its formula for the generic case proved in the
Appendix. The algorithm suggested in Bourguignon (1989) for welfare dominance
can be obtained as a special case of ours.
Let ∆[1]

i (x) := qFi Fi(x)− qGi Gi(x), and ∆
[2]
i (x) :=

R x
0
∆
[1]
i (t)dt for groups i = 1, 2.

For the first group we consider the following transformation of ∆[j]
1 (x) for j = 1, 2 :

∆̂
[j]
1 (x; z

−, z+) := max
t∈[x+max{0;z−1 −z+2 }, z+1 +min{0;x−z−2 }], t6=z+1

{∆[j]
1 (t)}. (6)

At the second stage of the reference-based dominance of order j = 1, 2, the compar-
isons for a given poverty gap γ > 0 require adding ∆[j]

1 (z1−γ) to ∆[j]
2 (z2−γ). Letting

γ = z2−x for x ∈ [0, z+2 ), and rewriting the condition, we get∆[j]
1 (x+z1−z2)+∆[j]

2 (x).
Given that z1 ≥ z2, and z2 ∈

£
z−2 , z

+
2

¤
, and z1 ∈

£
z+2 , z

+
1

¤
the algorithm requires to

compare for any admissible x in the argument of ∆[j]
2 the set of values of ∆[j]

1 in the
interval [x +max

©
0; z−1 − z+2

ª
, z+1 +min

©
0;x− z−2

ª
] excluding the case of x = z+1

given that this corresponds to γ = 0. For a given value of x ∈ [0, z+2 ), the dominance
condition necessarily has to be satisfied for the maximum of ∆[j]

1 in the interval, and
therefore is also satisfied for all the values in the interval.

Proposition 5 Let n = 2, and j = 1, 2. F <SPGD(j)[z] G for all z ∈ Z2(z−, z+) iff:
(i) ∆[j]

1 (x) ≤ 0 for all x ∈ [0, z+1 );
(ii) ∆[j]

2 (x) + ∆̂
[j]
1 (x; z

−, z+) ≤ 0 for all x ∈ [0, z+2 ).

Note that if the ranges of poverty lines overlap, i.e. z−1 ≤ z+2 , then the value
of z−1 does not play any role in the dominance condition, while z

−
2 appears in the

definition of the interval for t in (6). The dominance conditions derived are valid
for any value z−1 of the lower bound of poverty lines of group 1 as long as z

−
1 ≥ z−2 .

A special case is when z−1 = z−2 = 0, for these comparisons the interval in (6) is
modified to [x, z+1 ). If ∆

[1]
1 (x) ≤ 0 for all x ∈ [0, z+1 ) but the proportion of individuals

strictly below the poverty line is the same within group 1 in both populations then
maxt∈[x,z+1 ){∆

[1]
1 (t)} = 0 for all x ∈ [0, z+2 ). It follows that at the second stage of

comparison ∆
[1]
2 (x) ≤ 0 is required to hold for all x ∈ [0, z+2 ). Similarly if j = 2

and the average poverty gap is the same within group 1 in both populations, i.e.
maxt∈[x,z+1 ){∆

[2]
1 (t)} = 0, the dominance condition at the second stage boils down to

∆
[2]
2 (x) ≤ 0 for all x ∈ [0, z+2 ). In both cases the sequential dominance conditions

cannot improve the power of the restrictive conditions requiring dominance in each
group.
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We illustrate here the algorithm for the generic case with n groups under the
assumption that z−i = 0 for all i. This assumption is sufficient to get an easily im-
plementable algorithm for checking dominance in the n groups. A more general
algorithm associated with the case where z−i = z− ≥ 0 for all i is also proved in the
Appendix.
Under the assumption z−i = 0 for all i the algorithm is obtained making use of

functions ∆̂[j]
i derived in (6) for n = 2. For i = 0, 1, 2, ..n− 1 let

∆̃
[j]
i+1(x; z

−, z+) := ∆
[j]
i+1(x) + ∆̂

[j]
i (x; z

−, z+) for all x ∈ [0, z+i+1], (7)

where ∆̂[j]
0 (x; z

−, z+) := 0 for all x, while for i = 1, 2, ..n we define

∆̂
[j]
i (x; z

−, z+) := max
t∈[x;z+i )

{∆̃[j]
i (t; z

−, z+)}. (8)

Proposition 6 Let j = 1, 2, and z−i = 0 for all i. The following statements are
equivalent:
(i) F <SPGD(j)[z] G for all z ∈ Zn(0, z+),

(ii) ∆̂[j]
i (0;0, z

+) ≤ 0 for all i = 1, 2, ...n.
Note that the condition ∆̂

[j]
i (0; z

−, z+) ≤ 0 for i = 1, 2 are equivalent to the two
conditions in Proposition 5 once z−i = 0 for all i. In the general case where the z

−
i ’s

are positive and may differ the conditions are less restrictive given that ∆̂[j]
1 (x; z

−, z+)
does not consider the maximum for values of t ∈ [x, x+ z−1 − z+2 ) if z

−
1 > z+2 and/or

for t ∈ (z+1 +x−z−2 , z+1 ) if x < z−2 . Both sets of values for ∆
[j]
1 (x) are not considered if

x < z−2 ≤ z+2 < z−1 ≤ z+1 , while if z
−
2 ≤ x ≤ z+2 < z−1 ≤ z+1 only the first set of values

is ruled out from the procedure at the second stage. If x < z−2 ≤ z−1 ≤ z+2 ≤ z+1 it is
the second set of values of ∆[j]

1 (x) that is ruled out. And if z
−
2 ≤ z−1 ≤ z+2 ≤ z+1 and

z−2 ≤ x the conditions for dominance at the second stage (for n = 2) coincide with
those derived for z−i = 0 for all i.
An interesting corollary can be derived from the previous proposition. Suppose

that (z−, z+) is such that zi ≥ zi+1, z
+
i = z̄ > 0 for all i (i.e. z+ = z̄1 where 1 denotes

the n-dimensional vector of ones), and z−i = 0 for all i, i.e. z
− = 0. It follows that

∆̂
[j]
i (x;0, z̄1) := max

t∈[x,z̄)
{∆̃[j]

i (t)}. (9)

Corollary 2 Let j = 1, 2, and z+i = z̄ > z−i = 0 for all i. The following statements
are equivalent:
(i) F <SPGD(j)[z] G for all z ∈ Zn(0, z̄1),

(ii) ∆̂
[j]
i (0;0, z̄1) ≤ 0 for all i = 1, 2, ...n, where ∆̃

[j]
i (x) is obtained as in (9)

making use of (7) .

This algorithm corresponds to SPGD of order j = 1, 2 for all ranked poverty lines
in [0, z̄]. If j = 2 and qi = qFi = qGi for all i it coincides with the algorithm suggested
in Bourguignon (1989) for welfare dominance.
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4 Relationship to existing welfare literature

Bourguignon (1989) suggested a general stochastic dominance criterion valid for mul-
tivariate welfare comparisons where the population is partitioned into groups ranked
according to family size (needs), as in this work. The criterion suggested is applied
to comparisons between distributions (bounded at x̄) with identical marginal distrib-
utions of needs, i.e. such that qi = qFi = qGi for all i. We first show that our criterion
can be considered as a special case of the one suggested by Bourguignon. Most im-
portantly we also show that when poverty lines are allowed to change without any
boundaries then SPGD(2) and Bourguignon Dominance (BD) are equivalent.
We will write F <BD G to denote that distribution F dominates G according to

the Bourguignon Dominance (BD) condition.

Definition 5 (Bourguignon-Dominance) For all F,G ∈ F s.t. qFi = qGi = qi

F <BD G⇐⇒
nX
i=1

qi

Z xi

0

[Fi(t)−Gi(t)]dt ≤ 0

for all x1, x2, ..xn s.t. x̄ ≥ x1 ≥ x2 ≥ ... ≥ xn ≥ 0.

In our context, if qi = qFi = qGi for all i then the dominance conditions obtained in
Propositions 1 (part ii) and shown to be equivalent to SPGD(2) in Proposition 3 are
also equivalent to a restricted form of Bourguignon-dominance which obtains when
considering only those values of x1, x2, .., xi, .., xn−1, xn such that, for a given vector
of ordered poverty lines z :

zi − xi = c ≥ 0, xj = 0 for all c ≥ 0, all i ≤ k, all j > k, and for all k = 1, 2, ..n.

The standard sequential poverty dominance [SPD(2)] criteria we have enumerated can
also be interpreted as special cases of Bourguignon (1989). For instance the version
of the SPD(2) criterion where qi = qFi = qGi can be obtained, for a given vector of
poverty lines z where zi ≥ zi+1, by restricting Bourguignon’s conditions to hold for
vectors of xi such that:

0 ≤ xi = xj ≤ zk, xt = 0 for all i, j ≤ k, all t > k and for all k = 1, 2, ..n.

This result holds even if we consider dominance for all poverty lines below those
considered and such that the ranking of the lines is preserved.
When SPGD(2) comparisons are extended in order to take into account any

ranked vector of positive poverty lines the connection with BD dominance becomes
clear.

Proposition 7 If qi = qFi = qGi , F <SPGD(2)[z] G for all z1, z2, .., zn s.t. z̄ ≥ z1 ≥
z2 ≥ ... ≥ zn > 0 if and only if F <BD G.
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Therefore, the numerical algorithm suggested by Bourguignon to test BD will test
also SPGD(2)[z] (when qi = qFi = qGi ) for all ranked poverty line vectors, as also
shown in Corollary 2.
It is worth pointing out that this is not the case if the SPD(2) conditions are

checked for all z1 ≥ z2 ≥ ... ≥ zn > 0. It can be shown that F <BD G =⇒ F <SPD(2)[z]

G for all z1 ≥ z2 ≥ ... ≥ zn > 0 but the implication cannot go in the opposite direction,
since as a corollary of the previous proposition F <SPGD(2)[z] G =⇒ F <SPD(2)[z] G
when dominance is evaluated for all z1 ≥ z2 ≥ ... ≥ zn > 0.
Fleurbaey et al. (2003) generalize the analysis in Bourguignon (1989) assuming

bounded (relative) equivalence scale relativities 1 ≤ αi ≤ βi. According to their
assumptions the social marginal value of income in group i for an income unit with
income x is higher [lower] than that of an income unit in group i+1 with income below
x/αi [above x/βi]. As pointed out in the paper their dominance criterion requires
to compare the average poverty gaps for the whole population, I(F, z) = PGnF (1) =Pn

i=1 q
F
i H(Fi, zi) · I(Fi, zi). More precisely F dominates G iff I(F, z) ≤ I(G, z) for

all ranked vectors of poverty lines such that αizi−1 ≤ zi ≤ βizi−1. Exploiting the
analogy with Fleurbaey et al. (2003), the idea of comparing the social marginal value
of income at different income levels of poor individuals exhibiting different needs by
looking at the poverty gaps is intimately connected with setting absolute equivalence
scales.8 We can identify a sequence of values θ̃i such that once the poverty line zn
of the least needy group is fixed we get zi = zn + θ̃i. Recalling that we have derived
θi := z1 − zi, we get θ̃i := θi − θn. The sequence of values θ̃i identifies the absolute
equivalence scales. Property A1 imposes that the social marginal value of income in
group i for a poor income unit with income x is higher than that of a poor income unit
in group i+ 1 with income below x+ θi − θi+1. These conditions are also consistent
with considering comparisons of distributions of equivalent incomes obtained making
use of absolute equivalence scales that are decreasing in nominal income for incomes
below the poverty line.9

We can also make an analogy with Bazen and Moyes’ (2003) modification of the
Atkinson and Bourguignon (1987) and Jenkins and Lambert (1993) results. This
requires in our setting to modify (3) and Property A s.t. ui(0) = ai ≥ 0 in or-
der to quantify the “stigma effect” of being poor, and furthermore to assume that
ai ≥ ai+1 for all i = 1, 2, ..n− 1. The dominance condition in Proposition 1 will con-
sequently have to include

Pk
i=1 q

F
i H(Fi, zi) ≤

Pk
i=1 q

G
i H(Gi, zi) for all k = 1, 2, ..n.

This additional requirement has been derived also in Duclos, et al. (2003) and used
to supplement the SPD conditions in order to account for dominance criteria that

8For a recent analysis of the normative implication of using equivalence scales in welfare (and
inequality) comparisons of heterogeneous populations see Ebert and Moyes (2003).

9We thank Krishna Pendakur for this remark. This class of equivalence scales is consistent with
the finding in Donaldson and Pendakur (2004) that relative equivalence scales are decreasing in
expenditure levels. However, it is an open question wether for low expenditure levels the decrease
in the value of the relative equivalence scales is so sharp as to imply that equivalence scales can be
decreasing also in absolute terms.
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are consistent with discontinuous poverty indices like the headcount ratio or those
introduced in Bourguignon and Fields (1997). Note that this condition is enough,
when required to hold for all ordered poverty lines in [0, z̄], to induce the analogue
of BD for comparisons based on first order dominance as obtained in Proposition 6
letting j = 1, which is equivalent to SPGD(1) (and therefore will imply SPGD(2))
checked for all poverty lines considered.
The results presented for SPGD can also be extended to consider higher orders of

dominance as done for welfare comparisons in Lambert and Ramos (2002).

4.1 Intermediate Dominance

Some intermediate dominance conditions, stronger than SPGD(1) and SPGD(2) re-
spectively, can also be devised. These will be related to conditions obtained analyzing
the problem comparing individuals at income levels as in Atkinson (1992) rather than
at poverty gap levels as in this paper. The approach is similar in spirit to the one
adopted by Bourguignon (1989) to weaken the sequential dominance conditions in
Atkinson and Bourguignon (1987).
In order to get the first result we need to introduce the following condition:

Property A0 ui(γ) ≥ ui+1(γ) ≥ 0 for all γ > 0, and all i = 1, 2, ..n− 1.

Note that this condition is implied by A and A1, but once the Weak Monotonicity
axiom WM is substituted for A1 then A, WM and A0 are independent. It is pre-
cisely the combination of these conditions that we will consider to obtain a stronger
dominance condition than SPGD(1). In order to strengthen SPGD(2) we will in-
stead consider the combination of conditions A, A1 and WPT. The latter property
is clearly weaker than the property A2 used in conjunction with A and A1 to char-
acterize SPGD(2).
To present the results we make use of the notation adopted in Proposition 6

and consider an ordered poverty vector z ∈ Zn. Recall that ∆[1]
i (xi) := qFi Fi(xi) −

qGi Gi(xi), and ∆
[2]
i (xi) :=

R xi
0

∆
[1]
i (t)dt.We consider j = 1, 2 and for i = 0, 1, 2, ..n− 1

we let
∆̃
[j]
i+1(x; z) := ∆

[j]
i+1(x) + ∆̂

[j]
i (x+ δi; z) for all x ∈ [0, zi+1), (10)

where ∆̂[j]
0 (x; z) := 0 for all x, z0 := z1 and δi := zi − zi+1 while for i = 1, 2, ..n we

define
∆̂
[j]
i (x; z) := max

t∈[x;zi)
{∆̃[j]

i (t; z)}. (11)

Note that the condition ∆̂
[j]
i (0; z) ≤ 0 for all i is equivalent to impose that

∆̃
[j]
i (xi; z) ≤ 0 for all i and for all xi ∈ [0; zi). These conditions require that be-

tween group stochastic dominance comparisons are made pairing an income level in
a less needy group with all income levels in needier groups that are associated with
the same or a lower poverty gap level.
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Proposition 8 For a fixed z ∈ Zn, P (F ) ≤ P (G) for all ui satisfying properties A,
A0, and WM if and only if ∆̂[1]

i (0; z) ≤ 0 for all i = 1, 2, ...n.

Proposition 9 For a fixed z ∈ Zn, P (F ) ≤ P (G) for all ui satisfying properties A,
A1 and WPT if and only if ∆̂[2]

i (0; z) ≤ 0 for all i = 1, 2, ...n.

As is clear from Proposition 6 the above dominance conditions are similar to
F <SPGD(j)[z] G for all poverty lines in Zn(0, z), for j = 1 and j = 2 respectively.
But we have a main difference, the results in Proposition 6 require to make stochastic
dominance comparisons between an income level in a less needy group and all higher
income levels in needier groups, while the results in Propositions 8 and 9 require that
these comparisons are made taking into account all income levels in needier groups
that are associated with non higher poverty gap levels. When poverty lines do not
coincide between groups then the results in Proposition 6 imply those in Propositions
8 and 9 but the reverse may not be true.

Corollary 3 Consider ui satisfying property A,
(i) P (F ) ≤ P (G) for all ui satisfying A1 and for all z ∈ Zn(0, z+) =⇒ P (F ) ≤

P (G) for all ui satisfying A0 and WM for a fixed set of poverty lines z+.
(ii) P (F ) ≤ P (G) for all ui satisfying A1 and A2 for all z ∈ Zn(0, z+) =⇒

P (F ) ≤ P (G) for all ui satisfying A1 and WPT for a fixed set of poverty lines z+.
If z+ = z̄1 then the implications in both statements become equivalences.

The results obtained in Propositions 8 and 9 are in spirit similar to the one in
Bourguignon (1989), in that the dominance conditions have to be checked for a range
of values for the poverty lines, and if we require them to hold for z = z̄1 then we get
an analogue of the result obtained in Corollary 2.
Note that A, WM and WPT can also be equivalently expressed in terms of the

poverty deprivation functions p(x, z). Indeed when poverty lines are higher for needier
groups then as shown in Claim 3 and Claim 4 in the Appendix properties A, A0, and
WM imply pi(x, zi) ≥ pi+1(x, zi+1) ≥ 0, while A, A1 and WPT imply p0i(x, zi) ≤
p0i+1(x, zi+1) ≤ 0 for all i = 1, 2, ..n− 1 and for all x.
Therefore if we move the perspective of the analysis back to comparisons made at

income levels, and denote with A0* and A1* the version of the above axioms specified
in the income based framework then the class of poverty deprivation functions pi(x, zi)
consistent with A, WM and A0* and with A, WPT and A1* are respectively larger
than those obtained in the poverty gap framework.
The results in Claims 3 and 4 in the Appendix clarify the crucial distinction

between the poverty gap and the income perspectives. According to claim 3 the
dominance conditions derived imposing A, WM and A0 applying the poverty gap
perspective are implied by those obtained imposing A, WM and A0* applying the
income perspective. The poverty gap perspective leads to a potentially more decisive
set of comparisons in that for a given income level in a lees needy group it rules
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out between groups comparability with levels of income in needier groups that are
not lower but associated with higher poverty gap levels. If we strengthen WM with
A1, then A0 is implied, but most importantly the two approaches give independent
rankings. If we add WPT, Claim 4 shows again that the poverty gap dominance is
implied by the one expressed at income levels. Finally if we strengthen the WPT
requiring property A2 then the two approaches will lead to independent rankings.
In order to show these results systematically we list the properties derived within

the poverty gap approach: A, A0, WM, BGP, WPT and BGTP and in addition to
A, WM, and WPT we will consider also corresponding properties A0*, BGP*, and
BGTP* defined using the income approach as in Atkinson (1992).
The following implications hold, if we take for granted A :

Remark 2 If A holds then:
(i) WM +BGP =⇒ A0,
(ii) WM +BGP ∗ =⇒ A0∗.

We consider all poverty indices satisfying A and compare the two approaches
(income vs. poverty gap), for a fixed set of poverty lines z ∈ Zn, we get the following
results :

For fixed z ∈ Zn

Poverty-Gap
__________________

Income
__________________

A0 +WM ⇐= A0∗ +WM
⇓ ⇓

WM +BGP
6⇐=
6=⇒ WM +BGP ∗

⇓ ⇓
WM +BGP
+WPT

⇐= WM +BGP ∗

+WPT
⇓ ⇓

WM +BGP
+WPT +BGTP

6⇐=
6=⇒

WM +BGP ∗

+WPT +BGTP ∗

Map A : “income approach” and “poverty gap approach” compared for

dominance conditions derived for fixed poverty lines.

Note that once the impact of transfers on poverty deprivation is supposed to de-
crease as income increases (in accordance with WPT) then requiring a larger poverty
reduction for a transfer taking place at the income level x1 in group 1 with respect to
a transfer taking place at x2 < x1 in group 2 where both incomes are associated with
the same poverty gap level, does imply that the same differential condition applies
also if transfers occur at any income below x1, therefore also for a level of income in
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group 1 identical to the level x2 in group 2. For this reason, as also highlighted in
Claim 4 in the Appendix, our perspective can be considered to give higher relevance
to needs than the standard one following Atkinson’s (1992) work. It should however
be noticed that the implication does not hold if WPT is not assumed.
The comparisons in Map A can be extended weakening the previous dominance

conditions requiring them to hold when evaluated over sets of alternative ranked
poverty lines. In order to make the results comparable to the one of Bourguignon
(1989) suppose to consider the set of ranked poverty lines Zn(0, z̄1). Then making
use of Corollary 3 and combining it with Corollary 2 it will be possible to show that
∆̂
[j]
i (0; z) ≤ 0 for all i and for all z ∈ Zn(0, z̄1) if and only if F <SPGD(j)[z] G for all

z ∈ Zn(0, z̄1). More generally the following proposition holds:

Proposition 10 Let j = 1, 2. ∆̂
[j]
i (0; z) ≤ 0 for all i = 1, 2, ...n and for all z ∈

Zn(0, z+) if and only if F <SPGD(j)[z] G for all z ∈ Zn(0, z+).

If we consider the set of z ∈ Zn(0, z+) and we move the perspective to comparisons
made at income levels then exploiting the analogies with the framework adopted in
Bourguignon (1989) it will be possible to show that A, A0∗ and WM lead to the
analogue of Bourguignon dominance for first order stochastic dominance comparisons
i.e. we get SPGD(1)[z] for all z ∈ Zn(0, z+), while A, WM, BGP∗ and WPT lead
to the dominance induced by SPGD(2)[z] for all z ∈ Zn(0, z+). Moreover, realizing
that A, WM and BGP∗ lead to SPD(1)[z], applying dominance for all z ∈ Zn(0, z+)
amounts, as shown by Atkinson (1992), to check SPD(1)[z+]. Similarly for A, WM,
BGP∗, WPT and BGTP∗ as shown in Jenkins and Lambert (1993) and Chambaz and
Maurin (1998), the dominance requires that SPD(2)[z+] is satisfied. These conditions
are clearly implied by SPGD(j)[z] for all z ∈ Zn(0, z+) respectively for j = 1, 2.
To summarize we have that:

For all z ∈ Zn(0, z+)

Poverty-Gap
__________________

Income
__________________

A0 +WM ⇐⇒ A0∗ +WM
m ⇓

WM +BGP =⇒ WM +BGP ∗

⇓ ⇓
WM +BGP
+WPT

⇐⇒ WM +BGP ∗

+WPT
m ⇓

WM +BGP
+WPT +BGTP

=⇒ WM +BGP ∗

+WPT +BGTP ∗

Map B : “income approach” and “poverty gap approach” compared for

dominance conditions robust to changes in poverty lines
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Figure 2: Comparability Sets for 3 Groups

For the special case of poverty lines defined in Zn(0, z+) the poverty gap perspec-
tive thus provides results that generalize the Bourguignon dominance condition and
turn out to be more robust than those obtained in the framework relying on poverty
comparability at income levels.

5 Expanding the framework

As discussed in the introduction, the approaches focusing on between groups poverty
comparisons implemented at fixed income levels or at fixed poverty gap levels are
extreme cases of more general type of poverty comparisons. For those comparisons,
given a starting income in a less needy group, a comparable income is identified for
the needier group adjacent in the ranking. This income is supposed not to be lower in
absolute level than the initial one and should be associated with a poverty gap that is
at least as large as the one in the initial group. This procedure can be expanded to the
multiple groups case taking as starting income the one obtained for the new group
and considering the associated income level in the next needier group, etc.. Since
incomes are supposed not to be negative, and poverty lines are decreasing according
to the group index, then it might well happen that for a needier group there exist
low incomes that are not comparable with those in the less needy groups. Figure 2
illustrates the derivation of a set of comparable incomes in the case n = 3 starting
from a given x3. The incomes x3 < xr2 < xr1 identified in the figure are all associated
with the same relative poverty gap.
Given the structure of the comparison, starting from x3 the comparable incomes

in group 2 should lie between x02 (= x3) and x2 which is associated with the same
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absolute poverty gap (γ3) as x3. Once xr2 has been selected then the comparable
income in group 1 should lie between x01 and x1 where x1 is associated with the same
absolute poverty gap (γ2) as x

r
2.

For a given set of poverty lines we obtain in general a set C of profiles of compa-
rable incomes x1 ≥ x2 ≥ ... ≥ xk ≥ .. ≥ xn∗ ≥ 0 in groups i = 1, 2, ..n∗ for n∗ ≤ n
where each xi is included in [0, zi) such that there exists a unique profile of compa-
rable incomes containing each xi ∈ [0, zi). Moreover, we suppose that if for groups i
and j the pair of values (xi, xj) are comparable and similarly the values (x0i, x

0
j) are

comparable where xi > x0i, then xj > x0j.
Clearly different value judgements can lead to different sets C. For instance the

Atkinson (1992) approach considers the set C of all x such that x1 = x2 = .. = xk =
.. = xn∗ = x where x ∈ [0, zn∗] , while for our approach the set C includes all x such
that x1 ≥ x2 ≥ ... ≥ xk ≥ .. ≥ xn∗ ≥ 0 where z1 − x1 = z2 − x2 = .. = zn∗ − xn∗.
For the general approach it is possible to identify dominance conditions that are

analogous to those previously derived for fixed poverty lines. Recall that ∆[1]
i (xi) :=

qFi Fi(xi)− qGi Gi(xi), and ∆
[2]
i (xi) :=

R xi
0

∆
[1]
i (t)dt.

Definition 6 ((C)SD: (C) Sequential Poverty Dominance) For z ∈ Zn, and
F,G ∈ F:

F <(C)SD(j)[z] G⇐⇒
Pk

i=1∆
[j](xi) ≤ 0 for all x ∈ C, all k = 1, 2, ...n.

A special case is obtained when relative poverty gaps are considered in order to
identify comparable incomes. In this case C includes all x s.t. xi/zi = xn/zn for all
xn ∈ [0, zn] where n∗ = n. This type of dominance coincides with sequential poverty
gap dominance where relative poverty gaps instead of absolute ones are used.
The normative implications of these conditions can be derived simply by general-

izing the approach considered in the previous sections considering evaluations based
on the measure P (.) in (1) but modifying the axioms BGP and BGTP in order to
consider between groups comparisons made at income levels identified in C. If we
denote these modified versions of the axioms as BGP(C) and BGTP(C), then the
next proposition follows by simple adjustment of the results in the first part of this
paper.

Proposition 11 For a fixed z ∈ Zn and a given C.
(i) P (F ) ≤ P (G) for all ui satisfying properties A, WM and BGP(C) if and only

if F <(C)SD(1)[z] G.
(ii) P (F ) ≤ P (G) for all ui satisfying properties A, WM, BGP(C), WPT and

BGTP(C) if and only if F <(C)SD(2)[z] G.

It will then be natural to investigate robust poverty dominance conditions that
apply, for a fixed z ∈ Zn, for all C’s within the set C of admissible profiles.
Let C denote the set of all ranked incomes x1 ≥ x2 ≥ ... ≥ xk ≥ .. ≥ xn∗ ≥ 0

in groups i = 1, 2, ..n∗ for n∗ ≤ n where xi ∈ [0, zi) such that xi+1 ≤ xi ≤ xi+1 +
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δi where δi := zi − zi+1. The next proposition identifies the algorithm associated
with the sequential stochastic dominance conditions ensuring robustness of poverty
comparisons for all C ∈ C given a fixed z ∈ Zn. The result is obtained readjusting the
algorithms presented in the previous propositions. We illustrate first its construction
for the case of two groups. For any income level x2 in Group 2 there exists an
income level x1 ∈ [x2, x2 + δ1] in Group 1 that is comparable to it according to a
criterion C ∈ C. Robustness of the poverty dominance condition requires to check
that (C)SD(j)[z] holds (at the 2nd stage of the sequential procedure) for any pair of
x2 and x1 ∈ [x2, x2+δ1] and for all x2 ∈ [0, z2). Therefore it is necessary and sufficient
to combine ∆[j]

2 (x2) with the maximum value obtained by ∆
[j]
1 (x1) within the range

x1 ∈ [x2, x2 + δ1] and check that their sum is not positive for all x2 ∈ [0, z2).
Once a third group is added to the list, then for any x3 ∈ [0, z3) there will be a

range of values for x2 that can be considered comparable to it, this will be the case
for x2 ∈ [x3, x3 + δ2]. Dominance should be checked to be robust not only for any
pair x3 and x2 but also, given a value for x2, for any set of x1 ∈ [x2, x2+ δ1] identified
at the earlier stage.
For the general case we can summarize the algorithm to check as follows: for

i = 0, 1, 2, ..n− 1 let
∆̃
∗[j]
i+1(x; z) := ∆

[j]
i+1(x) + ∆̂

∗[j]
i (x; z) for all x ∈ [0, zi+1), (12)

where ∆̂∗[j]0 (x; z) := 0 for all x, while for i = 1, 2, ..n we define

∆̂
∗[j]
i (x; z) := max

t∈[x;min{x+δi,zi}], t6=zi
{∆̃∗[j]i (t; z)}. (13)

Proposition 12 Let z ∈ Zn and j = 1, 2. The following statements are equivalent:
(i) F <(C)SD(j)[z] G for all C ∈ C.
(ii) ∆̃∗[j]i (x; z) ≤ 0 for all x ∈ [0, zi) and all i = 1, 2, ...n.
To complete the analysis we move to consider the case where the above dominance

condition is made robust also to changes in poverty lines. In order to compare the
results with those in Propositions 5 and 6 obtained for PGD we first analyze the case
where n = 2 and z ∈ Z2(z−, z+).We will then move to consider the case where n ≥ 2
and z ∈ Zn(0, z+) that is we will consider the set of all positive ranked poverty lines
with upper bound z+.
We illustrate dominance conditions first for the two groups case, deriving then

the general algorithm by induction. Fix z+i , z
−
i for i = 1, 2, then for any income level

x2 in Group 2 the comparability set for the associated income levels x1 in Group
1 is given by x1 ∈ [x2, x2 + z1 − z2]. The largest possible set is obtained taking
sup{z1 : z1 ∈ [z−1 , z+1 ]} = z+1 and inf{z2 : z2 ∈ [max{x2, z−2 }, z+2 ]} which equals z−2 if
x2 < z−2 and equals x2 if x2 ≥ z−2 . Thus, at the second stage of comparison necessarily
the dominance condition has to be satisfied for all x2 ∈ [0, z−2 ) and all associated
x1 ∈ [x2, x2 + z+1 − z−2 ] and for all x2 ∈ [z−2 , z+2 ) and all associated x1 ∈ [x2, z+1 ).
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In order to simplify the notation we suggest the extension to the n−groups case
of the algorithm illustrated for the first two groups obtained as follows: let δ∗i :=
z+i − z−i+1 ≥ 0, for i = 0, 1, 2, ..n− 1 and

∆̃
∗[j]
i+1(x; z

−, z+) := ∆
[j]
i+1(x) + ∆̂

∗[j]
i (x; z−, z+) for all x ∈ [0, z+i+1), (14)

where ∆̂∗[j]0 (x; z−, z+) := 0 for all x, while for i = 1, 2, ..n we define

∆̂
∗[j]
i (x; z−, z+) := max

t∈[x;min{x+δ∗i ,z+i }], t6=z+i
{∆̃∗[j]i (t; z−, z+)}. (15)

Proposition 13 Let j = 1, 2, and n = 2. The following statements are equivalent:
(i) F <(C)SD(j)[z] G for all C ∈ C and all z ∈ Z2(z−, z+).
(ii) ∆̃∗[j]i (x; z−, z+) ≤ 0 for all x ∈ [0, z+i ) and all i = 1, 2.
If we consider more than 2 groups the algorithm in (14) and (15) provides a

sufficient condition for dominance in the general case where z ∈ Zn(z−, z+). The
reason can be illustrated just considering the three groups case. Once a third group
is added then any x3 ∈ [0, z−3 ) is associated with a value of x2 such that x2 ∈
[x3, x3 + z+2 − z−3 ], which in turns according to the algorithm in (14) and (15) is
associated with values of x1 ∈ [x2;min{x2+ z+1 − z−2 , z

+
1 }], x1 6= z+1 . But the choice of

x2 as an admissible comparable value at the second stage will implicitly constrain the
values of the associated admissible poverty lines for the second group. In particular,
if z−2 − x2 < z−3 − x3 then the lowest possible value for the poverty line z2 that can
be consistent with x2 being an admissible value comparable to x3 is given by z∗2 =
x2 + z−3 − x3 > z−2 . This value is obtained requiring that the poverty gap associated
with x2 (i.e. z2−x2) is at least as large as the minimum poverty gap associated with x3
(i.e. z−3 −x3). The values of x1 that are comparable to this value of x2 > x3+z−2 −z−3
are therefore obtained substituting z∗2 for z

−
2 in [x2;min{x2 + z+1 − z−2 , z

+
1 }], that

is are all values x1 ∈ [x2;min{x3 + z+1 − z−3 , z
+
1 }], x1 6= z+1 . Given the constraint

x2 > x3 + z−2 − z−3 this range of values is narrower than the range identified by
x1 ∈ [x2;min{x2+ z+1 − z−2 , z

+
1 }], x1 6= z+1 as in (15), therefore the algorithm provides

more stringent conditions than those needed.
A general algorithm implementing necessary and sufficient conditions for domi-

nance that are valid for all z ∈ Zn(z−, z+) may turn out to be cumbersome. However
notice that when z− = 0 the previous issue does not arise. In that case x3 ∈ [z−3 , z+3 ),
as a result the set of comparable values for x2 will be given by all x2 ∈ [x3, z+2 ).
These values are obtained by the algorithm in (14) and (15) under the assumption
z− = 0 which implies that min{x + δ∗i , z

+
i } = z+i for all x ≥ 0 in (15). Thus the

above algorithm will provide necessary and sufficient conditions for dominance for all
ranked poverty line vectors in Zn(0, z+).

Proposition 14 Let j = 1, 2. The following statements are equivalent:
(i) F <(C)SD(j)[z] G for all C ∈ C and all z ∈ Zn(0, z+).
(ii) ∆̃∗[j]i (x;0, z+) ≤ 0 for all x ∈ [0, z+i ) and all i = 1, 2, ...n.
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Note that ∆̂∗[j]i (x;0, z+) is obtained asmaxt∈[x;,z+i ){∆̃
∗[j]
i (t;0, z+)}.Thus ∆̃∗[j]i (x;0, z+)

coincides with ∆̃[j]
i (x;0, z

+) in (7) and (8) leading to the same dominance condition as
in Proposition 6 with the obvious implication that the Bourguignon (1989) algorithm
follows as a special case once z+ = z̄1.
A comparison with the result in Proposition 6 makes evident that the dominance

conditions (C)SD(j)[z] that are satisfied for all C ∈ C and dominance conditions
SPGD(j)[z] are equivalent when are required to hold for all z ∈ Zn(0, z+). Note that
for a fixed z ∈ Zn the conditions SPGD(j)[z] and SPD(j)[z] are obtained as extreme
cases of (C)SD(j)[z] when C admits respectively between groups comparability at
fixed poverty gap levels or at fixed income levels. When dominance is checked for
all z ∈ Zn(0, z+) then SPGD(j)[z] is consistent with a larger class of dominance
conditions based on different comparability hypothesis including SPD(j)[z]. However
as pointed out in the previous sections SPD(j)[z] for all z ∈ Zn(0, z+) does not imply
SPGD(j)[z] for all z ∈ Zn(0, z+) as a result:

Corollary 4 Let j = 1, 2. F <SPGD(j)[z] G for all z ∈ Zn(0, z+)⇐⇒ F <(C)SD(j)[z] G
for all C ∈ C and all z ∈ Zn(0, z+) =⇒ F <SPD(j)[z] G for all z ∈ Zn(0, z+).

6 Conclusions

In what respects do our results differ from the standard sequential dominance condi-
tions derived following the approach suggested in Atkinson (1992)?
Poverty evaluations differ from inequality and welfare evaluations in one signif-

icant aspect, the existence of a threshold, the poverty line. While in general the
income distributions compared for welfare and inequality evaluations are unbounded,
or bounded at an arbitrary maximum, for poverty the distributions are censored at
the poverty line. This process creates a reference point, which is an alternative to the
origin or zero income point.
It is therefore possible to build up normative evaluation models in which com-

parisons are made taking distances from this reference point (see statement B in the
Introduction) and not only from the origin to be ethically relevant (see statement A
in the Introduction). This is the case in our model, which focuses upon poverty gaps
and not incomes. When we consider homogeneous populations, once the poverty line
is fixed the two perspectives coincide, but for the purpose of making between-group
poverty comparisons, when poverty lines could differ for the different groups, then, as
we have plainly demonstrated here, choosing incomes or poverty gaps as the relevant
indicator makes a difference.
Our results have shown that APGP curves (as well as poverty-gap distributions)

have a key role in making sequential poverty comparisons. In particular, the pro-
portion of poor individuals in the society or their average poverty gap play a role
in the comparisons that was neglected in the existing poverty dominance criteria for
heterogeneous populations.
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7 Appendix

Claim 1 P (.) satisfies WM and BGP if and only if ui(γ) satisfies A1.

Proof. P (.) satisfies WM iff it is non-decreasing w.r.t. γ that is iff u0i(γ) ≥ 0 for all
γ > 0, and all i = 1, 2, ..n. For F and F 0 obtained as in the definition of BGP the
change in poverty evaluated according to P (.) is

P (F )− P (G) = q [ui(γ + δ)− ui(γ)] , P (F
0)− P (G) = q [uj(γ + δ)− uj(γ)] .

Thus we get

P (F )− P (F 0) ≥ 0⇐⇒ ui(γ + δ)− ui(γ) ≥ uj(γ + δ)− uj(γ)

for all γ > 0, all δ > 0, all j > i. Dividing both sides by δ > 0 we obtain

ui(γ + δ)− ui(γ)

δ
≥ uj(γ + δ)− uj(γ)

δ
, (16)

letting δ → 0 we have u0i(γ) ≥ u0j(γ) for all γ > 0, all j > i, which implies that (16) is
satisfied for all δ > 0 and all γ > 0, i.e. BGP is satisfied. Combining with u0i(γ) ≥ 0
for all γ > 0 and all i = 1, 2, ..n, we get property A1.

Claim 2 P (.) satisfies WPT and BGTP if and only if ui(γ) satisfies A2.

Proof. We first note that for all γ > δ, ε > 0, δ > 0 and all j > i, the effect on P (.)
of a regressive transfer occurring in group i is

∆P = q [ui(γ − δ)− ui(γ)] + q [ui(γ + ε+ δ)− ui(γ + ε)] . (17)

Therefore we get

∆P ≥ 0⇐⇒ ui(γ + ε+ δ)− ui(γ + ε) ≥ ui(γ)− ui(γ − δ)

for all γ > δ, all δ > 0, ε > 0 and all i. Dividing both sides by δ > 0 and letting δ → 0
we obtain

u0i(γ + ε) ≥ u0i(γ)

for all γ > 0, ε > 0. That is u00i (γ) ≥ 0. This condition implies that (17) is satisfied
for all γ > 0 and all δ > 0, i.e. WPT is satisfied.
According to BGTP the comparison of the marginal impact of the regressive

transfers in groups i and j > i requires that

δu0i(γ)− δu0i(γ + ε) ≤ δu0j(γ)− δu0j(γ + ε) where j > i.

It follows that for all γ > 0, ε > 0,

u0i(γ + ε)− u0i(γ)
ε

≥ u0j(γ + ε)− u0j(γ)
ε

≥ 0 where j > i
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Taking the limit as ε→ 0, we get the first part of property A2.
Note that ui(γ+ε+δ)−ui(γ+ε)−[ui(γ)−ui(γ−δ)] =

R γ+δ
γ

³R τ+ε
τ

u00i (t)dt
´
dτ it fol-

lows that u00i (γ) ≥ u00j (γ) ≥ 0 implies that
R γ+δ
γ

³R τ+ε
τ

u00i (t)dt
´
dτ ≥ R γ+δ

γ

³R τ+ε
τ

u00j (t)dt
´
dτ ≥

0 as required by WPT and BGTP.

Claim 3 If P (.) satisfies A, A0 and WM then pi(x, zi) ≥ pi+1(x, zi+1) ≥ 0 for all
i = 1, 2, ..n− 1 and for all x and pi(x, zi) ≥ pi(x

0, zi) where x < x0 for all i = 1, 2, ..n.

Proof. Recall that ui(γ) := pi(zi− γ, zi). Note that A and WM are equivalent when
applied considering either ui(γ) or pi(x, zi). According to A0, ui(γ) ≥ ui+1(γ) ≥ 0 for
all γ > 0, and all i = 1, 2, ..n − 1, that is pi(zi − γ, zi) ≥ pi+1(zi+1 − γ, zi+1) ≥ 0 for
all γ > 0, and all i = 1, 2, ..n − 1. While according to WM u0i(γ) ≥ 0 for all γ > 0,
and all i = 1, 2, ..n. That is p0i(zi − γ, zi) ≤ 0 for all γ > 0, and all i = 1, 2, ..n,where
p0i(x, zi) denotes the partial derivative of pi(x, zi) w.r.t. x. This condition implies that
pi(zi − γ, zi) ≤ pi(zi − γ0, zi) for all γ0 ≥ γ, all zi and all i = 1, 2, ..n.
Letting x := zi−γ the previous conditions can be restated as pi(x, zi) ≥ pi+1(zi+1−

zi + x, zi+1) ≥ 0 for all x > 0, and pi(x
0, zi) ≥ pi(x, zi) for all x0 ≤ x, all zi and all

i = 1, 2, ..n. Given that zi ≥ zi+1 then we can substitute zi+1 − zi + x for x0 noting
that x0 ≤ x.
Putting together the two conditions, we have pi(x, zi) ≥ pi+1(x

0, zi+1) ≥ pi+1(x, zi+1) ≥
0 for all x,all zi ≥ zi+1 and all i = 1, 2, ..n− 1. This is the equivalent of A0 for com-
parisons made at income levels.
Note that the converse of the claim is not true. Consider two groups (i = 1, 2)

with z1 > z2. Let pi(x, zi) = (z2 − x) if x ≤ z2 and pi(x, zi) = 0 if x > z2 for
i = 1, 2. Note that p1(x, z1) = p2(x, z2) ≥ 0 but for all values of γ ∈ (0, z2] we have
u1(γ) < u2(γ) thereby violating A0.

Claim 4 If P (.) satisfies A, A1 and WPT then p0i(x, zi) ≤ p0i+1(x, zi+1) ≤ 0 for all
i = 1, 2, ..n− 1 and for all x.

Proof. Recall that ui(γ) := pi(zi − γ, zi). According to A1, u0i(γ) ≥ u0i+1(γ) ≥ 0 for
all γ > 0, and all i = 1, 2, ..n−1, that is p0i(zi−γ, zi) ≤ p0i+1(zi+1−γ, zi+1) ≤ 0 for all
γ > 0, and all i = 1, 2, ..n− 1 .While according to WPT u00i (γ) ≥ 0 for all γ > 0, and
all i = 1, 2, ..n. That is p00i (zi − γ, zi) ≥ 0 for all γ > 0, and all i = 1, 2, ..n, implying
that p0i(zi − γ, zi) ≥ p0i(zi − γ0, zi) for all γ0 ≥ γ, all zi and all i = 1, 2, ..n.
Letting x := zi−γ the previous conditions can be restated as p0i(x, zi) ≤ p0i+1(zi+1−

zi + x, zi+1) ≤ 0 for all x > 0, and p0i(x, zi) ≥ p0i(x
0, zi) for all x0 ≤ x, all zi and all

i = 1, 2, ..n. Given that zi ≥ zi+1 then we can substitute zi+1 − zi + x for x0 noting
that x0 ≤ x. Putting together the two conditions, we have p0i(x, zi) ≤ p0i+1(x

0, zi+1) ≤
p0i+1(x, zi+1) for all x, all zi ≥ zi+1 and all i = 1, 2, ..n− 1.
Note that the converse of the claim is not true. Let pj(x, zi) = (zj − x)2 if

zj ≥ x, otherwise pj(x, zi) = 0 for j = i, i + 1. Then p0i(x, zi) = −2 (zi − x) <
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−2 (zi+1 − x) = p0i+1(x, zi) if zi+1 ≥ x, otherwise p0i+1(x, zi) = 0 and the condition
p0i(x, zi) ≤ p0i+1(x, zi+1) is still satisfied. Note that A1 is satisfied with equality,
i.e. u0i(γ) = u0i+1(γ) = −2. It is possible to modify slightly pi(x, zi) for values of
x ∈ (zi+1, zi) such that u0i(γ) > u0i+1(γ) while the condition p0i(x, zi) ≤ p0i+1(x, zi+1) is
unaffected given that p0i+1(x, zi) = 0 for all x ∈ (zi+1, zi).
Claim 5 For a fixed z ∈ Zn, P (F ) ≤ P (G) for all ui satisfying A and A1 if and
only if F <RBD(1)[z] G.

Proof. We show only the sufficiency part. The necessity part can be found by
rearranging the proofs in Chambaz and Maurin (1998) or Zoli (2000).
Integrating by parts in (4), we have:

∆P =
nX
i=1

Z zi

0

u0i(zi − x)
£
qFi Fi(x)− qGi Gi(x)

¤
dx

+
nX
i=1

£
ui(zi − x)

£
qFi Fi(x)− qGi Gi(x)

¤¤zi
0
. (18)

where u0i denotes derivative w.r.t. zi − x. The second term sums to zero given that
ui(0) = 0 for all i, therefore

∆P =
nX
i=1

Z zi

0

u0i(zi − x)
£
qFi Fi(x)− qGi Gi(x)

¤
dx. (19)

Substituting x = zi − γ, we get

∆P =
nX
i=1

Z zi

0

u0i(γ)
£
φFi (γ, zi)− φGi (γ, zi)

¤
dγ. (20)

For all ui(γ) satisfying A1, u0i(γ) can be equivalently defined in terms of functions
ωj(γ) for j = i, ...n, as

u0i(γ) =
nX
j=i

ωj(γ) where ωj(γ) ≥ 0 for all γ ≥ 0.

Substituting, we have

∆P =
nX
i=1

Z zi

0

nX
j=i

ωj(γ)
£
φFi (γ, zi)− φGi (γ, zi)

¤
dγ. (21)

Let γ∗ be the highest poverty gap level in all subgroups. After rearranging we get

∆P =

Z γ∗

0

nX
k=1

ωk(γ)
kX

j=1

£
φFj (γ, zj)− φGj (γ, zj)

¤
dγ. (22)
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It follows that, since ωk(γ) ≥ 0 for all k = 1, 2, ..n and all γ > 0, the condition

kX
j=1

£
φFj (γ, zj)− φGj (γ, zj)

¤ ≤ 0
for all i = 1, 2, ..n, and for all γ > 0 is sufficient for poverty dominance.

Example 3 Consider two groups i = 1, 2, non-negative incomes, and distribution
functions defined as follows:10 F1(x) = 0 and F2(x) = x · 2α for all x < 1/ (2α) , and
F1(x) = F2(x) = 1 for all x ≥ 1/ (2α) ; G1(x) = G2(x) = x · β for all x < 1/β and
G1(x) = G2(x) = 1 for all x ≥ 1/β where 2α > β > 0 and 1/ (2α) > z1. Suppose
further that qFi = qGi = 1/2 and the poverty lines are z2 = z, z1 = c · z where c ≥ 1.

Fig. A1: Ex. α = β = 1/200, z2 = 40, z1 = 80.

In order to compute the reference-based dominance condition we evaluate φFi (γ, zi) =
1
2
·Fi(zi−γ) that is φF1 (γ, z1) = 0 for all γ ≥ 0, φF2 (γ, z2) = (z2 − γ)α for all γ ∈ [0, z2]
and φGi (γ, zi) =

1
2
(zi − γ)β for all γ ∈ [0, zi] , i = 1, 2.

The standard (SPD) and reference-based poverty dominance conditions coincide
at the first stage: F dominates G given either F1(x) ≤ G1(x) for all x ≤ z1 or
φF1 (γ, z1) ≤ φG1 (γ, z1) for all γ ≥ 0. But at the second stage, the conditions do not
coincide. We have 1

2
F1(x)+

1
2
F2(x) = αx and 1

2
G1(x)+

1
2
G2(x) = G(x) = x·β. Hence,

if β < α, the second stage of standard dominance (SPD) fails. For the reference-based

10For simplicity of exposition we consider both continuous and discrete sub-group distributions.
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comparison we have φF1 (γ, z1) + φF2 (γ, z2) = (z2 − γ)α = (z − γ)α, and φG1 (γ, z1) +
φG2 (γ, z2) =

1
2
β (z1 − γ) + 1

2
β (z2 − γ) = c+1

2
βz − βγ. Suppose that β = εα where

0 < ε < 2. Then

φF1 (γ, z1) + φF2 (γ, z2) ≤ φG1 (γ, z1) + φG2 (γ, z2)

⇔ (z − γ)α ≤ εα (c+ 1) z/2− εαγ.

That is, zα ≤ εα (c+ 1) z/2+(1− ε)αγ for all γ, which requires that zα ≤ εα (c+ 1) z/2.
Hence

1 ≤ ε
c+ 1

2
⇔ c ≥ 2− ε

ε

Therefore dominance is satisfied for the reference-based procedure if c ≥ 2−ε
ε

Fig A2: 1st order sequential reference-based dominance

In the above figure we show graphically the dominance comparisons for the same
example as in Fig. A1. In this case we get c = 2, and ε = 1. The second stage of the
reference-based procedure is checked comparing the dotted lines for both distributions.
The dotted line associated with F is below that of G, that is F dominates G.

Claim 6 For a fixed z ∈ Zn, P (F ) ≤ P (G) for all ui satisfying A, A1 and A2 if and
only if F <RBD(2)[z] G.
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Proof. Again we prove only the sufficiency part (see the proof of Claim 5). For all
ui(.) satisfying A1 and A2 we have

u00i (γ) =
nX
j=i

ω0j(γ) where ω
0
j(γ) ≥ 0 for all γ > 0.

Integrating by parts in (22) ,

∆P = −
Z γ∗

0

nX
k=1

ω0k(γ)
kX

j=1

µZ γ

0

£
φFj (t, zj)− φGj (t, zj)

¤
dt

¶
dγ

+
nX

k=1

ωk(γ
∗)

Ã
kX

j=1

Z γ∗

0

£
φFj (t, zj)− φGj (t, zj)

¤
dt

!
. (23)

Noticing that

ωk(γ
∗) =

Z γ∗

0

ω0k(t)dt+ ωk(0), (24)

and substituting, we get, after simplification,

∆P =
nX

k=1

Z γ∗

0

ω0k(γ)
kX

j=1

µZ γ∗

γ

£
φFj (t, zj)− φGj (t, zj)

¤
dt

¶
dγ

+ωk(0)

Ã
kX

j=1

Z γ∗

0

£
φFj (t, zj)− φGj (t, zj)

¤
dt

!
, (25)

from which it follows that, since both ω0k(γ) ≥ 0 for all γ > 0 and ωk(0) ≥ 0, a
sufficient condition for ∆P ≤ 0 is

kX
j=1

µZ γ∗

γ

£
φFj (t, zj)− φGj (t, zj)

¤
dt

¶
≤ 0

for all k = 1, 2, ..n, and for all γ > 0.

Example 4 The second degree of sequential reference-based poverty dominance is
checked in Fig. A2 comparing the areas under the lines φ1(γ, z1) and φ1(γ, z1) +
φ2(γ, z2) for F and G, for all γ ≥ 0 as in Fig. A3 for the second stage of dominance.
Given that by construction in the previous example we have first order dominance
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then the second degree dominance is implied.

Fig A3: 2nd order sequential reference-based dominance

Claim 7 The following conditions are equivalent:
(i)
Pk

i=1

£
φFi (γ, zi)− φGi (γ, zi)

¤ ≤ 0 for all γ > 0.

(ii) (a) γF
(k)
(p/QF

k , z
k) ≤ γG

(k)
(p/QG

k , z
k) for all p ∈ [0,min©QF

k , Q
G
k

ª
]

and (b)
Pk

i=1 q
F
i ·H(Fi, zi) ≤ QG

k , where Q
F
k =

Pk
i=1 q

F
i .

Proof. Consider the case of an homogeneous population, with income distribu-
tion F (x), inverse distribution F−1(p) and poverty line z. The absolute poverty-gap
γF (p, z) associated with the pth quantile of the income distribution is γF (p, z) :=
z − F ∗−1(p) where F ∗−1(p) is the inverse of the income distribution censored at the
poverty line, i.e. F ∗−1(p) = F−1(p) if p ≤ F (z), and F ∗−1(p) = z if p > F (z). Now
weight the distribution using a coefficient Q ∈ (0, 1) , constructing a distribution F̃ (x)
such that

F̃ (x) =

½
Q · F (x) if x < z
Q · F (x) + (1−Q) if x ≥ z

. (26)

The absolute poverty-gap for distribution F̃ becomes γF̃ (p, z) := z − F̃ ∗−1(p) where
F̃ ∗−1(p) = F ∗−1(p/Q) if p ≤ Q and F̃ ∗−1(p) = z if p ∈ (Q, 1]. It follows that
γF̃ (p, z) = z − F ∗−1(p/Q) = γF (p/Q, z) if p ≤ Q and γF̃ (p, z) = 0 if p ∈ (Q, 1].
Consider two distributions F,G ∈ F and the associated transformations F̃ , G̃

obtained from (26) making use of possibly different coefficients QF and QG. It is
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well known, that F̃ dominates G̃ according to first degree stochastic dominance iff
F̃ dominates G̃ in terms of rank-ordered poverty gaps i.e. γF̃ (p, z) ≤ γG̃(p, z) for all
p ∈ [0, 1] .11
Note that condition (i) is precisely first degree stochastic dominance between F̃

and G̃ obtained from (26) using QF
k and F (k)(t, zk) for F̃ and QG

k and G(k)(t, zk) for
G̃.
Combining the previous considerations, condition (i) is therefore equivalent to

γF̃
(k)
(p, zk) ≤ γG̃

(k)
(p, zk) for all p ∈ [0, 1] where

γF̃
(k)

(p, zk) =

½
γF

(k)
(p/QF

k , z
k) if p ∈ [0, QF

k ]
0 if p ∈ (QF

k , 1]

γG̃
(k)

(p, zk) =

½
γG

(k)
(p/QG

k , z
k) if p ∈ [0, QG

k ]
0 if p ∈ (QG

k , 1]
.

If QF
k = QG

k then we clearly get condition (iia).
If QF

k < QG
k then for p = QF

k the condition is γ
F (k)(1, zk) ≤ γG

(k)
(QF

k /Q
G
k , z

k).

Condition (iia) clearly is equivalent to γF̃
(k)
(p, zk) ≤ γG̃

(k)
(p, zk) for all p ∈ [0, 1] given

that γF̃
(k)
(p, zk) = 0 for all p > QF

k .

IfQF
k > QG

k then for p = QG
k the condition is γ

F (k)(QG
k /Q

F
k , z

k) ≤ γG
(k)
(1, zk), then

given that γG̃
(k)
(p, zk) = 0 for all p > QG

k , in addition of (iia) it has to be also that
γF

(k)
(p, zk) = 0 for all p > QG

k /Q
F
k in order to guarantee γ

F̃ (k)(p, zk) ≤ γG̃
(k)
(p, zk)

for all p ∈ [0, 1] .
That is the proportion of poor individuals in the first k groups should be at most

QG
k /Q

F
k . Formally

k
i=1 q

F
i H(Fi,zi)
k
i=1 q

F
i

≤ QG
k

QF
k
that is

Pk
i=1 q

F
i · H(Fi, zi) ≤ QG

k as in (iib).

Clearly if QF
k ≤ QG

k this condition is always satisfied.

Lemma 1
R x
0
[Fi(t) − Gi(t)]dt ≤ 0 for all x ∈ [0, zi] if and only if

R p
0
[γFi(t, zi) −

γGi(t, zi)]dt ≤ 0 for all p ∈ [0, 1] .

Proof. The condition
R x
0
[Fi(x) − Gi(x)]dx ≤ 0 for all x ∈ [0, zi] corresponds to

second degree stochastic dominance of Fi over Gi. Let F−1i (p) be the left continuous
inverse distribution function of Fi(x). Consider the distributions of incomes x∗ that
are censored at the poverty line zi (i.e. x∗ = x if x < zi and x∗ = zi if x ≥
zi). For the censored income distributions, generalized Lorenz dominance requiresR p
0
[F−1i (t)−G−1i (t)]dt =

R p
0
(
£
zi −G−1i (t)

¤−£zi − F−1i (t)
¤
)dt ≥ 0 for all p ∈ [0, 1] . This

is equivalent to
R p
0
[γFi(t, zi)−γGi(t, zi)]dt ≤ 0 for all p ∈ [0, 1] . The result is obtained

recalling that second degree stochastic dominance is equivalent to generalized Lorenz
dominance (see Atkinson, 1970, and Thistle, 1989).

11This is a trivial implication of the equivalence between first degree stochastic dominance and
first degree inverse stochastic dominance or rank-dominance (Saposnik, 1981).
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Claim 8 The following conditions are equivalent:
(i)
Pk

i=1

³R γ∗
γ

£
φFi (t, zi)− φGi (t, zi)

¤
dt
´
≤ 0 for all γ > 0.

(ii) QF
k · PGkF (p/QF

k ) ≤ QG
k · PGkG(p/QG

k ) for all p ∈ [0,min
©
QF

k , Q
G
k

ª
]

and
Pk

i=1 q
F
i H(Fi, zi)·I(Fi, zi) ≤

Pk
i=1 q

G
i H(Gi, zi)·I(Gi, zi), whereQF

k =
Pk

i=1 q
F
i .

Proof. The second condition requires a clarification. Consider the case of an homo-
geneous population, with income distribution F (x), inverse distribution F−1(p) and
poverty line z. The APGP curve is PGF (p) =

R p
0
[z − F ∗−1(t)]dt where F ∗−1(t) is the

inverse of the income distribution censored at the poverty line, i.e. F ∗−1(p) = F−1(p)
if p ≤ F (z), and F ∗−1(p) = z if p > F (z). Now weight the distribution using a
coefficient Q ∈ (0, 1) , constructing a distribution F̃ (x) as in (26)
The APGP curve for distribution F̃ becomes PGF̃ (p) =

R p
0
[z − F̃ ∗−1(t)]dt where

F̃ ∗−1(t) = F ∗−1(t/Q) if t ≤ Q and F̃ ∗−1(t) = z if t ∈ (Q, 1]. It follows that PGF̃ (p) =R p
0
[z − F ∗−1(t/Q)]dt if p ≤ Q and PGF̃ (p) =

R Q
0
[z − F ∗−1(t/Q)]dt if p ∈ (Q, 1].

Changing the variable to s = p/Q, we get PGF̃ (p) = Q
R p/Q
0
[z − F ∗−1(s)]ds = Q ·

PGF (p/Q) if p ≤ Q and PGF̃ (p) = Q
R 1
0
[z−F ∗−1(s)]ds = Q · PGF (1) = Q ·H(F, z) ·

I(F, z) if p ∈ (Q, 1].
From Lemma 1, we know that F̃ dominates G̃ according to second degree stochas-

tic dominance iff F̃ dominates G̃ in terms of APGP curves, where F̃ and G̃ could be
obtained using different coefficientsQF andQG.Once we consider the APGP curves in
our approach, we face distributions of incomes (possibly of differently ranked groups)
that are normalized by QF

k and QG
k at the generic stage k. The equivalence with

APGP dominance is retained. Given that the procedure in which stochastic domi-
nance is constructed does not affect the poverty gaps, we can compare PGF̃ (p) and
PGG̃(p) which turn out to be equivalent to the curves Q · PGF (p/Q) and similarly
for G. In order to check that PGF̃ (p) ≤ PGG̃(p) for all p ∈ [0, 1] it is then sufficient
to check that QF

k · PGkF (p/QF
k ) ≤ QG

k · PGkG(p/QG
k ) for all p ∈ [0,min

©
QF
k , Q

G
k

ª
] and

that PGF̃ (1) ≤ PGG̃(1).
Suppose that QF

k ≥ QG
k ; then p ∈ [0, QG

k ]. It follows with p = QG
k that QF

k ·
PGkF (QG

k /Q
F
k ) ≤ QG

k ·PGkG(1).While for distribution G we have considered the entire
APGP curve, the associated APGP curve for distribution G̃ is not yet completed:
we are left with a horizontal part since by construction the remaining poverty gaps
are zero. Thus for p > QG

k the curve PGkF (p/QF
k ) is increasing until the point where

p = QF
k . Since the curve for distribution G̃ reach its maximum at QG

k · PGkG(1) it
will be sufficient to check that QF

k · PGkF (1) ≤ QG
k · PGkG(1) in order to guarantee the

dominance for p ∈ (QG
k , Q

F
k ]. Note that Q

F
k · PGkF (1) =

Pk
i=1 q

F
i H(Fi, zi) · I(Fi, zi) as

in condition (ii).
When QF

k < QG
k , dominance for all p ∈ [0, QF

k ] will be sufficient for PGF̃ (p) ≤
PGG̃(p) for all p ∈ [0, 1]. In this case, the second condition in (ii) will also be implied:
for p = QF

k , we will have Q
F
k · PGkF (1) ≤ QG

k · PGkG(QF
k /Q

G
k ) ≤ QG

k · PGkG(1).
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Claim 9 Let n = 2. P (F ) ≤ P (G) for all ui satisfying A, A1 and A2 and for all
z ∈ Z2(z−, z+) if and only if:

(i)
R z+1
γ

∆φ1(t, z
+
1 )dt ≤ 0 for all γ > 0, and

(iia)
R z+1
γ

∆φ1(t, z
+
1 )dt +

R z+1
γ

∆φ2(t, z2)dt ≤ 0 for all γ > 0 and all z2 ∈
£
z−2 , z

+
2

¤
,

and
(iib)

R z1
γ

∆φ1(t, z1)dt+
R z1
γ

∆φ2(t, z
+
2 )dt ≤ 0 for all γ > 0 and all z1 ∈

£
min

©
z−1 , z

+
2

ª
, z+1

¤
.

Proof. Recall Remark 1 in the main text. For k = 1 we get condition (i). Let
d+1,2 := z+1 − z+2 ≥ 0 and d−1,2 := min

©
0, z−1 − z+2

ª ≥ 0, clearly d+1,2 ≥ d−1,2. For

k = 2, if condition (iia) is satisfied then
P2

i=1

R γ∗
γ

∆φi(t, zi)dt ≤ 0 for all z1 ≥ z2 such

that z1− z2 ≥ d+1,2 ≥ 0. If condition (iib) is satisfied,
P2

i=1

R γ∗
γ

∆φi(t, zi)dt ≤ 0 for all
z1 ≥ z2 such that d−1,2 ≤ z1−z2 ≤ d+1,2. Note that it is impossible to have poverty lines
such that z1 ≥ z2 and z1−z2 < d−1,2. This completes all possible vectors z ∈ Z2(z−, z+).
Therefore conditions (i), (iia) and (iib) are sufficient for poverty dominance. They are
also necessary, since they are associated with vectors of poverty lines in Z2(z−, z+).

Claim 10 Let n = 2, and j = 1, 2. F <SPGD(j) G for all z ∈ Zn(z−, z+) if and only
if:
(i) ∆[j]

1 (x) ≤ 0 for all x ∈ [0, z+1 );
(ii) ∆[j]

2 (x) + ∆̂
[j]
1 (x; z

−, z+) ≤ 0 for all x ∈ [0, z+2 ).
Proof. We follow the results in Propositions 1, that we have proved to be equivalent
to SPGD(1) and SPGD(2), and construct the algorithm starting from stage 1 of
the sequential comparisons. First note that letting γ = zi − x for x ∈ [0, zi) and
rearranging∆[1]

i (x) := qFi Fi(x)−qGi Gi(x) we get∆
[1]
i (x) = ∆φi(zi−x, zi) = φFi (γ, zi)−

φGi (γ, zi). Consequently ∆
[2]
i (x) :=

R x
0
∆
[1]
i (t)dt is ∆

[2]
i (x) =

R x
0
∆φi(zi − t, zi)dt =R zi

γ
∆φi(y, zi)dy.

(Stage 1) The condition ∆
[j]
1 (x) ≤ 0 for all x ∈ [0, z+1 ) is therefore equivalent to

the first stage of the conditions in Propositions 1. If dominance is satisfied for all
x ∈ [0, z+1 ) clearly it is also satisfied for all values of z1 ∈ [z−1 , z+1 ].
(Stage 2) Consider the second stage where group 2 is introduced. For a given

γ > 0 sequential dominance requires that ∆
[j]
2 (z2 − γ) + ∆

[j]
1 (z1 − γ) ≤ 0 where

z2 ≤ z1, z2 ∈
£
z−2 , z

+
2

¤
, and z1 ∈

£
z−1 , z

+
1

¤
. Since z2 ∈

£
z−2 , z

+
2

¤
we need to consider all

x2 ∈ [0, z+2 ) for the income units in group 2.
(2a) Suppose that x2 < z−2 .
The minimum γ consistent with the level of income x2 in group 2 is γ− = z−2 −x2

while the maximum γ is γ+ = z+2 − x2. Therefore for γ ∈ [γ−, γ+] we get that
the income level x1 in group 1 associated with x2 in group 2 is x1 = z1 − γ ∈£
z1 −

¡
z+2 − x2

¢
, z1 −

¡
z−2 − x2

¢¤
that is x1 ∈

£
x2 + z1 − z+2 , x2 + z1 − z−2

¤
. Given

that z1 ∈
£
z−1 , z

+
1

¤
and z1 ≥ z2 we get that x1 ∈

£
x2 +max{0; z−1 − z+2 }, x2 + z+1 − z−2

¤
.
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(2b) Suppose that x2 ∈ [z−2 , z+2 ).
The range of poverty gaps consistent with x2 is γ ∈ (0, z+2 −x2]. The income level

x1 in group 1 associated with x2 in group 2 is x1 = z1 − γ ∈ [z1 −
¡
z+2 − x2

¢
, z1).

Given that z1 ∈
£
z−1 , z

+
1

¤
and z1 ≥ z2 we get that x1 ∈ [x2 +max{0; z−1 − z+2 }, z+1 ).

To summarize: to each x2 ∈ [0, z+2 ) is associated the set of values for x1
x1 ∈ [x2 +max

©
0; z−1 − z+2

ª
; z+1 +min

©
0;x2 − z−2

ª
], x1 6= z+1 . (27)

It follows that at the stage 2 of the dominance conditions it should be ∆[j]
2 (x2) +

∆
[j]
1 (x1) ≤ 0 for all x2 ∈ [0, z+2 ), and for all x1 in (27) .For each x2 ∈ [0, z+2 ) we select

the maximum value of ∆[j]
1 (x1) for all x1 in (27) . That is

∆̂
[j]
1 (x; z

−, z+) := max
t∈[x+max{0;z−1 −z+2 };z+1 +min{0;x−z−2 }], t6=z+1

{∆[j]
1 (t)}.

Thus the dominance condition can be equivalently stated as

∆
[j]
2 (x) + ∆̂

[j]
1 (x; z

−, z+) ≤ 0 for all x ∈ [0, z+2 ).

Claim 11 Let j = 1, 2, and z−i = z− ≥ 0 for all i = 1, 2, ..n. The following statements
are equivalent:
(i) F <SPGD(j) G for all z ∈ Zn(z−1, z+),
(ii) ∆̃[j]

k,k(xk, xk) ≤ 0 for all xk ∈ [0, z+k ] and for all k = 1, 2, ..n.
Where ∆̃[j]

k,k(xk, xk) is derived recursively from (30) and (31) .

Proof. We follow the proof of the previous claim, and consider the third stage where
group 3 is merged with the first 2 groups. For any γ > 0 sequential dominance
requires that

P3
i=1∆

[j]
i (zi − γ) ≤ 0. We consider all x3 ∈ [0, z+3 ). Dominance for all

γ ≥ z+3 has been satisfied already in the previous 2 stages (see previous proof).
We follow the same procedure presented for the second stage in the previous

proof, and note that given z−i = z− for all i, then max
©
0; z− − z+3

ª
= 0. For any

x3 ∈ [0, z+3 ) we derive the associated values of x2 in group 2 and x1 in group 1. They
are, for i = 1, 2 :

xi ∈ [x3; z+i +min
©
0;x3 − z−

ª
], xi 6= z+i (28)

with associated functions

∆̂
[j]
i (x; z

−, z+) := max
t∈[x;z+i +min{0;x−z−}], t6=z+i

{∆[j]
i (t)}.

For any x3 ∈ [0, z+3 ) we identify the set of poverty gaps that are consistent with
it. Then, for any admissible value of x2 associated with x3, i.e. derived by the same
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poverty gap once applied to an appropriate poverty line z2, we identify the set of
associated values of x1.
Case 1: Let x3 < z−, then z3 − x3 = γ ∈ £z− − x3, z

+
3 − x3

¤
Fix x2 ∈ [x3;x3 + z+2 − z−] from (28) .
(1a)We illustrate the construction of the generic algorithm starting from x2 = x3.
If γ = z−−x3, then z2 = z−.While the minimum x1 associated with γ = z−− x3

is x1 = x3, and the maximum x1 is x1 = z+1 − (z− − x3) = x3 + z+1 − z−.
Therefore ∆[j]

3 (x3) is associated with ∆
[j]
2 (x3) and to these are associated all the

∆
[j]
1 (t) for t ∈

£
x3; z

+
1 − (z− − x3)

¤
.

Let z3 increase, while x3 and x2 are kept fixed. Then γ = z3 − x3, and z2 = z3
satisfying z2 ≥ z3. If z2 = z3 increase then the minimum x1 associated with γ = z3−x3
is x1 = x3, while the maximum is x1 = x3 + z+1 − z3 < x3 + z+1 − z−. Clearly the
interval for the values of ∆[j]

1 (x1) associated with x3 = x2 < z− is reduced. Therefore
we consider ∆[j]

1 (t) for t ∈
£
x; z+1 − (z− − x)

¤
for x = x3 = x2.

(1b) Suppose now that x2 ∈ (x3;x3 + z+2 − z−] for x3 < z−.
This implies that at least z2 = x2 + z− − x3 i.e. z2 ≥ z3 + x2 − x3 for z3 ∈£

z−; min{z+3 , z+2 − (x2 − x3)}
¤
.

The minimum poverty gap giving this value of x2 is given by γ = z− − x3 while
the maximum is given by min{z+2 −x2, z+3 −x3}. Thus z2 = x2+z−−x3 if γ = z−−x3
at one extreme and z2 = x2 +min{z+2 − x2, z

+
3 − x3} = min{z+2 , z+3 + x2 − x3} at the

other extreme.
In the first case we set z1 ≥ x2 + z− − x3 = z2 and identify x1 = z1 − γ =

z1− (z−−x3) for all z1 ∈
£
x2 + z− − x3, z

+
1

¤
.We get x1 ∈

£
x2, z

+
1 − (z− − x3)

¤
. This

is the largest set of values for x1 associated with x2 given that for values of γ larger
than z− − x3 the upper bound of the interval is reduced.
As a result for any x2 ∈ [x3;x3+ z+2 − z−] we have that x1 ∈

£
x2, z

+
1 − (z− − x3)

¤
if z− − x3 > 0.
Case 2: Let x3 ∈ [z−, z+3 ], then z3 − x3 = γ ∈ (0, z+3 − x3]
Fix x2 ∈ [x3; z+2 ) from (28) .
(2a)We start from x2 = x3. If γ = z3−x3, for z3 ∈ (x3, z+3 ] then z2 = z3.While the

minimum x1 associated with γ = z3 − x3 is x1 = x3 (obtained setting z1 = z2 = z3),
and the maximum x1 is x1 = z+1 −(z3 − x3) = x3+z+1 −z3 (obtained setting z1 = z+1 ).
Letting z3 → x3 we get x1 → z+1 .

Therefore for x = x3 = x2 we consider all ∆
[j]
1 (t) for t ∈ [x; z+1 ).

(2b) Suppose now that x2 ∈ (x3; z+2 ) for x3 ∈ [z−, z+3 ].
The poverty gap values γ that are consistent with x2 are given by γ ∈ (0,min{z+2 −

x2, z
+
3 −x3}].Thus the associated values of z2 are given by x2+γ = z2 ∈ (x2;min{z+2 , z+3 +

x2 − x3}].
We set z1 ≥ z2 and identify x1 = z1 − γ = z1 − z2 + x2 for all z1 ∈ (x2; z+1 ]. For

z1 = z2 we get x1 = x2, as z1 increases also x1 increases, reaching the upper bound
x1 = z+1 − z2 + x2. Letting z2 → x2 we get x1 ∈ [x2; z+1 ) as in part (2a).
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To summarize:
For any x3 ∈ [0, z+3 ] we get x2 ∈ [x3; z+2 +min {0;x3 − z−}], x2 6= z+2 , and for any

x2 in this interval, we have that

x1 ∈ [x2; z+1 +min
©
0;x3 − z−

ª
], x1 6= z+1 .

More generally, starting from xk ∈ [0, z+k ) we get for i < k a sequence of intervals for
xi given by

xi ∈ [xi+1; z+i +min
©
0;xk − z−

ª
], xi 6= z+i for i = 1, 2, ..k − 1. (29)

For k > i we construct the algorithm letting

∆̃
[j]
i+1,k(xi+1, xk; z

−, z+) := ∆
[j]
i+1(xi+1) + ∆̂

[j]
i,k(xi+1, xk; z

−, z+) (30)

for all xi+1 ∈ [0, z+i+1], where ∆̂[j]
0,k(x, xk; z

−, z+) = 0 for all x, while for i = 1, 2, ..k− 1

∆̂
[j]
i,k(x, xk; z

−, z+) := max
t∈[x;z+i +min{0;xk−z−}], t6=z+i

{∆̃[j]
i,k(t, xk; z

−, z+)}. (31)

At the stage k of the sequential dominance we need to compare for all xk ∈ [0, z+k ]
the sum of the values of ∆[j]

k (xk) and all possible combinations of ∆
[j]
i (xi) for all xi

consistent with xk derived in the first part of the proof.
We illustrate the procedure followed by the algorithm suppressing z−, z+ from

(30) and (31) for notational convenience. If i = 0, we get ∆̃[j]
1,k(x1, xk) := ∆

[j]
1 (x1),

then ∆̂
[j]
1,k(x, xk) := maxt∈[x;z+1 +min{0;xk−z−}], t6=z+1 {∆

[j]
1 (t)}. Making use of ∆̂[j]

1,k(x, xk)

we get ∆̃[j]
2,k(x2, xk) = ∆

[j]
2 (x2) + ∆̂

[j]
1,k(x2, xk). These are the maximum values that

∆
[j]
2 (x2) + ∆̂

[j]
1 (x1) can reach for all x2, x1 that are consistent with xk. Continuing

to the next step we get ∆̃[j]
3,k(x3, xk) = ∆

[j]
3 (x3) + ∆̂

[j]
2,k(x3, xk) giving the maximum

values of ∆[j]
3 (x3)+∆

[j]
2 (x2)+ ∆̂

[j]
1 (x1) for all x3, x2, x1 consistent with xk. At the last

stage we get ∆̃[j]
k,k(xk, xk). According to the sequential dominance conditions at stage

k it should be that ∆̃[j]
k,k(xk, xk) ≤ 0 for all xk ∈ [0, z+k ]. These conditions have to

be satisfied at all stages k = 1, 2, ..n. Note also that the functions in (30) and (31)
depend on xk given that it appears in (29) .

Claim 12 Let j = 1, 2, and z−i = 0 for all i. The following statements are equivalent:
(i) F <SPGD(j) G for all z ∈ Zn(0, z+),

(ii) ∆̂[j]
i (0;0, z

+) ≤ 0 for all i = 1, 2, ...n.

Proof. Let z−i = z− = 0 for all i. Note that min {0;xk − z−} = 0 and apply the
algorithm derived in the previous proof. From (29) we get

xi ∈ [xi+1; z+i ) for i = 1, 2, ..k − 1. (32)
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Note that xi depends only on xi+1 and not on xk if i < k − 1. The formula in (30)
and (31) can be therefore simplified ruling out the role of xk.
The new simplified algorithm is obtained letting for i = 0, 1, 2, ..n− 1

∆̃
[j]
i+1(x; z

−, z+) := ∆
[j]
i+1(x) + ∆̂

[j]
i (x; z

−, z+) (33)

for all x ∈ [0, z+i+1], where ∆̂[j]
0 (x; z

−, z+) = 0 for all x, while for i = 1, 2, ..n

∆̂
[j]
i (x; z

−, z+) := max
t∈[x;z+i )

{∆̃[j]
i (t; z

−, z+)}. (34)

The derived dominance conditions require that ∆̃[j]
i (x; z

−, z+) ≤ 0 for all x ∈
[0, z+i ) and for all i = 1, 2, ...n, that is ∆̂

[j]
i (0; z

−, z+) ≤ 0 for all i.
Claim 13 If qi = qFi = qGi , F <SPGD(2) G for all z1 ≥ z2 ≥ ... ≥ zn > 0 if and only
if F <BD G.

Proof. Part 1: F <BD G =⇒ F <SPGD(2) G for all z1 ≥ z2 ≥ ... ≥ zn > 0.
Let qi = qFi = qGi , for a fixed vector z and a fixed stage k of SPGD(2) we havePk

i=1

³R γ∗
γ

£
φFi (t, zi)− φGi (t, zi)

¤
dt
´
≤ 0 for all γ > 0. Substituting for γ∗ = z1 and

φFi (t, zi) := qiFi(zi − t) where Fi(x) = 0 for x < 0 we get

kX
i=1

qi

µZ z1

γ

[Fi(zi − t)− Fi(zi − t)] dt

¶
≤ 0

for all γ > 0. Letting xj = 0 for all j > k in BD condition, we get

kX
i=1

qi

Z xi

0

[Fi(t)−Gi(t)]dt ≤ 0.

For any γ and zi there exists a value of xi such that
R z1
γ

Fi(zi − t)dt =
R xi
0
Fi(t)dt

this is precisely the case for xi = zi − γ. As γ or the vector zk = (z1, ...zi, .. zk)
change there is always a vector with x1 ≥ x2 ≥ ... ≥ xn ≥ 0 such that the SPGD(2)
conditions at stage k can be obtained as special case of BD conditions. Given that
this consideration holds for any k = 1, 2, ..n then Part 1 is proved.
Part 2: F <BD G⇐= F <SPGD(2) G for all z1 ≥ z2 ≥ ... ≥ zn > 0.
Consider BD conditions evaluated for a specific vector x1, x2, ..xn s.t. x1 ≥ x2 ≥

... ≥ xn ≥ 0. For any xi ≥ 0 there exist a value of γ > 0 and at least a vector of
ranked poverty lines zn such that xi = max {0, zi − γ} for all i = 1, 2, ..n. It follows
that Z xi

0

Fi(t)dt =

Z z1

γ

Fi(zi − t)dt

and therefore the BD condition can be obtained as the last stage of an appropriate
SPGD(2) condition. Given that this consideration holds for all vectors x1 ≥ x2 ≥
... ≥ xn ≥ 0, we have proved Part 2.
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Results for construction of Map A In order to prove the next claims we will
make use of results by Müller (1997) and Castagnoli and Maccheroni (1998) valid
for stochastic dominance conditions obtained as unanimous dominance for additively
decomposable evaluation functionals. For expositional convenience we rephrase the
results in the following Lemma adapting them to our framework. Let U denote a
set of admissible deprivation functions ui, and consider the associated dominance
condition F <U G if and only if P (F ) ≤ P (G) for all ui ∈ U . Moreover we will say
that a deprivation function ûi preserves <U if F <U G implies that P (F ) ≤ P (G) for
ui = ûi.

Lemma 2 Suppose F <U G then the deprivation function ûi preserves <U if and
only if ûi belongs to the closure of the convex cone generated by U and all constant
functions.

Remark 3 Let V denote a set of deprivation functions whose closure is V∗ and denote
by C∗(U) the closure of the convex cone generated by U and all constant functions.
In order to derive dominance condition F <V G it is sufficient to identify a set of
deprivation functions U s.t. U ⊆ V∗ and V ⊆ C∗(U). Condition F <U G will be
sufficient to guarantee F <V G since V ⊆ C∗(U) moreover, it will be also necessary
since U ⊆ V∗.
Claim 14 For a fixed z ∈ Zn, P (F ) ≤ P (G) for all ui satisfying properties A, A0
and WM if and only if ∆̂[1]

i (0; z) ≤ 0 for all i = 1, 2, ...n.
Proof. Necessity: we consider a set of deprivation functions that can be obtained as
limits of functions ui satisfying properties A, A0 and WM, thus they belong to the
closure of the set of admissible functions considered. Let

ui(zi − x) : =

½
0

αi > 0
for all x ∈ (zi − γi, zi]
for all x ∈ [0, zi − γi]

(35)

where γi ≥ γi−1 and αi ≤ αi−1 for all i = 2, 3, ..n

with γi ≤ zi. Poverty dominance requires that ∆P =
Pn

i=1

R zi
0
ui(zi − x)d[∆

[1]
i (x)] ≤

0 where ∆
[1]
i (x) := qFi Fi(x) − qGi Gi(x). When the functions ui(zi − x) in (35) are

considered then poverty dominance is obtained if and only if:

∆P =
Xn

i=1
αi ·∆[1]

i (zi − γi) ≤ 0

for all αi ≤ αi−1, and all γi ≥ γi−1 where γi ∈ (0, zi].
Letting αi = β > 0 for all i = j+1, j+2, ..n and αi = α > β for all i = 1, 2, ..j we

get ∆P = α
Xj

i=1
∆
[1]
i (zi−γi)+β

Xn

i=j+1
∆
[1]
i (zi−γi). Letting β → 0 then ∆P ≤ 0

requires thatXj

i=1
∆
[1]
i (zi − γi) ≤ 0 for all γi ≥ γi−1 > 0 for all j = 1, 2, ..n. (36)
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Any income level in group i is compared with all (not-lower) incomes in the lower
index groups associated with the same or lower poverty gap levels. For a fixed vector
of ranked poverty lines z ∈ Zn we can summarize the condition in (36) making use
of the following algorithm: for i = 0, 1, 2, ..n− 1 let

∆̃
[1]
i+1(x; z) := ∆

[1]
i+1(x) + ∆̂

[1]
i (x+ δi; z) for all x ∈ [0, zi+1), (37)

where ∆̂[1]
0 (x; z) := 0 for all x, z0 := z1 and δi := zi − zi+1 while for i = 1, 2, ..n we

define
∆̂
[1]
i (x; z) := max

t∈[x;zi)
{∆̃[1]

i (t; z)}. (38)

Condition (36) requires that ∆̂[1]
i (0; z) ≤ 0 for all i = 1, 2, ..n.

Sufficiency: Making use of Lemma 2 it is sufficient to point out that the set of
all ui satisfying properties A, A0 and WM belongs to the closure of the convex cone
generated by the functions in (35). Recalling that any monotonic continuous function
can be derived as the limit of a series of step functions [See Chapter 1 in Asplund and
Bungart (1966)], those in (35) can lead to all poverty deprivation functions that are
non-decreasing in γ moreover by construction the deprivation functions of less needy
groups are not above those of needier groups at each poverty gap level.

Claim 15 For a fixed z ∈ Zn, P (F ) ≤ P (G) for all ui satisfying properties A, A1
and WPT if and only if ∆̂[2]

i (0; z) ≤ 0 for all i = 1, 2, ...n.

Proof. Considering ∆P obtained in (19) we have

∆P =
nX
i=1

Z zi

0

u0i(zi − x)d[∆
[2]
i (x)]. (39)

where ∆
[2]
i (x) :=

R x
0
∆
[1]
i (t)dt and u0i denotes derivative w.r.t. zi − x. Let vi(γ) :=

u0i(zi − x) where γ = zi − x. Then according to A1 we have vi(γ) ≥ vi+1(γ) ≥ 0 for
all γ > 0, and all i = 1, 2, ..n − 1, and property A is implied by A1 and ui(0) = 0,
while WPT requires that vi(γ) is non-decreasing in γ. The basis for the class of
admissible functions vi(zi−x) is defined in (35). Considering this set of functions we
can derive the necessary and sufficient conditions for unanimous dominance ∆P =Pn

i=1

R zi
0
vi(zi−x)·d[∆[2]

i (x)] ≤ 0 for all vi(γ) satisfying A1 andWPT just substituting
∆
[2]
i (x) for ∆

[1]
i (x) within the proof of Claim 14.

We generalize the algorithms applied in Propositions 8 and 9 introducing a vector
α of parameters αi ∈ [0, 1] for i = 1, 2, ....n− 1 that allow to shift at each stage i of
the between groups comparisons (involving groups i and i+1) the focus from poverty
gaps (for αi = 1) to incomes (for αi = 0).

50



For an ordered vector of poverty lines z ∈ Zn we consider j = 1, 2 and for
i = 0, 1, 2, ..n− 1 we let

∆̃
α[j]
i+1(α;x; z) := ∆

[j]
i+1(x) + ∆̂

α[j]
i (α;x+ αi · δi; z) for all x ∈ [0, zi+1), (40)

where ∆̂
[j]
0 (α;x; z) := 0 for all x, z0 := z1, α0 := α1 and δi := zi − zi+1 while for

i = 1, 2, ..n we define

∆̂
α[j]
i (α;x; z) := max

t∈[x;zi)
{∆̃α[j]

i (α; t; z)}. (41)

Note that dominance conditions ∆̂[j]
i (0; z) ≤ 0 presented in Claim 14 coincide

with ∆̂
α[j]
i (1; 0; z) ≤ 0 while ∆̂[j]

i (0;0, z
+) ≤ 0 derived in Proposition 6 coincide with

∆̂
α[j]
i (0; 0; z+) ≤ 0.
The dominance conditions based on ∆̂

α[j]
i (0;x; z) provide the counterpart within

the income approach of those derived in Propositions 8 and 9 following the poverty
gap approach. Direct modifications of the proofs of Propositions 8 and 9 where income
levels are substituted for poverty gap levels allow to derive the following results.

Claim 16 For a fixed z ∈ Zn, P (F ) ≤ P (G) for all ui satisfying properties A, A0*,
and WM if and only if ∆̂α[1]

i (0;x; z) ≤ 0 for all i = 1, 2, ...n.

Claim 17 For a fixed z ∈ Zn, P (F ) ≤ P (G) for all ui satisfying properties A, A1*
and WPT if and only if ∆̂α[2]

i (0;x; z) ≤ 0 for all i = 1, 2, ...n.

These results are essentially straightforward generalizations of the result of Bour-
guignon (1989).
The (horizontal) implications in Map A, can also be derived noticing that:

Remark 4 If αi ≥ α̂i for all i = 1, 2, ..n − 1 then ∆̃
α[j]
i (α;x; z) ≤ ∆̃

α[j]
i (α̂;x; z) for

all x ≥ 0, z ∈ Zn, i = 1, 2, ..n. As a special case: ∆̃α[j]
i (1;x; z) ≤ ∆̃

α[j]
i (0;x; z).

The reason is that if δi > 0 then according to (40) condition ∆̃
[j]
i+1(αi+1;x; z) ≤

∆̃
[j]
i+1(α̂i+1;x; z) coincides with

max
t∈[x+αi·δi;zi)

{∆̃α[j]
i (α; t; z)} ≤ max

t∈[x+α̂i·δi;zi)
{∆̃α[j]

i (α̂; t; z)}

which is always satisfied for all i = 1, 2, ..n if α ≥ α̂ given that x+ α̂i · δi ≤ x+αi · δi.
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Results for construction of Map B Wemove now to derive some results summa-
rized in Map B. We extend the results on intermediate dominance requiring conditions
that are robust to changes in poverty lines, both within the poverty gap framework
and within the income framework.
We consider vectors of ranked poverty lines belonging to Zn(0, z+). Next claim is

an equivalent version of Proposition 10:

Claim 18 Let j = 1, 2. ∆̂α[j]
i (1; 0; z) ≤ 0 for all i = 1, 2, ...n and for all z ∈ Zn(0, z+)

if and only if ∆̂α[j]
i (0; 0; z+) ≤ 0 for all i = 1, 2, ...n.

Proof. We derive the result by induction starting from comparisons involving in-
comes in the first two groups and then extending the analysis to the other groups.
Consider a vector z ∈ Zn(0, z+) such that z1 = z2 and select an income value

x2 in group 2 s.t. x2 < z2. Then, according to ∆̃
α[j]
2 (1;x; z) in (40) and (41) all

income levels x1 in group 1 that are comparable to x2 belong to the range [x2, z1).
Suppose z+1 > z2. If we let z1 increase till z+1 then the values for x1 in group 1 that
are comparable to x2 belong to the range [x2+z1−z2, z1). According to ∆̃α[j]

2 (1;x; z)

the value ∆[j]
2 (x2) should be added to the maximum of ∆[j]

1 (x1) for all the values of
x1 within the admissible ranges [x2 + z1 − z2, z1) for z2 ≤ z1 ≤ z+1 . Considering the
maximum over each one of these ranges will coincide with taking the maximum of
∆
[j]
1 (x1) for all values in [x2, z1). Thus for each x2 < z2 ≤ z+2 in order to derive a

dominance condition that is satisfied for all z2 ≤ z1 ≤ z+1 it is necessary to consider
∆̂

α[j]
1 (0;x2; z

+) leading to the condition ∆̂
α[j]
2 (0; 0; z+) ≤ 0.

Consider the dominance at the third stage. For each value x3 < z3 in group
3 and for a fixed z3 ≤ z+3 we need to add to ∆

[j]
3 (x3) the maximum of ∆[j]

2 (x2) +

∆̂
α[j]
1 (0;x2; z

+) for all x2 ∈ [x3 + z2 − z3, z2). Since the condition should hold for all
z3 ∈ [z2; z+3 ] then we will have a set of ranges for the values of x2 that are com-
parable to x3. The maximum of ∆[j]

2 (x2) + ∆̂
α[j]
1 (0;x2; z

+) over all these ranges will
coincide with the maximum evaluated over [x3, z2) thereby leading to the definition of
∆̂

α[j]
2 (0;x3; z

+) thus inducing the condition ∆̂
α[j]
3 (0; 0; z+) ≤ 0. Similar considerations

apply to comparisons involving all the remaining groups in sequence. The proof is
completed noticing that ∆̂α[j]

1 (0; 0; z+) = ∆̂
α[j]
1 (1; 0; z+).

Next results allow to prove the (horizontal) equivalence relations in Map B.

Remark 5 Let j = 1, 2. If zi ≤ ẑi for all i = 1, 2, ..n then ∆̃
α[j]
i (0;x; z) ≤ ∆̃

α[j]
i (0;x; ẑ)

for all x ∈ [0, zi), all i = 1, 2, ..n.

The remark is a direct implication of the fact that according to (40) condition
∆̃

α[j]
i+1(0;x; z) ≤ ∆̃

α[j]
i+1(0;x; ẑ) for all x ∈ [0, zi+1) coincides with

max
t∈[x;zi)

{∆̃α[j]
i (0; t; z)} ≤ max

t∈[x;ẑi)
{∆̃α[j]

i (0; t; ẑ)}
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which is always satisfied for all i = 1, 2, ..n− 1 if zi ≤ ẑi. Note that the statement in
the remark confines the admissible range of x for the comparison of functions ∆̃α[j]

i

to values below the lower poverty line associated with group i. But the construction
of functions ∆̃α[j]

i (0;x; z) and ∆̃
α[j]
i (0;x; ẑ) is derived according to (40) and (41) thus

the domain of ∆̃α[j]
i (0;x; ẑ) includes also values of x lying within the range (zi, ẑi).

An immediate corollary can be derived from the application of the remark.

Corollary 5 Let j = 1, 2. ∆̂
α[j]
i (0; 0; z) ≤ 0 for all i = 1, 2, ...n and for all z ∈

Zn(0, z+) if and only if ∆̂α[j]
i (0; 0; z+) ≤ 0 for all i = 1, 2, ...n.

Proof. ∆̂α[j]
i (0; 0; z+) ≤ 0 for all i = 1, 2, ...n is a necessary condition. If it holds then,

according to Remark 5 also for all zi ≤ z+i we have ∆̃
α[j]
i (0;x; z) ≤ ∆̃

α[j]
i (0;x; z+) ≤ 0

for all x ∈ [0, zi), all i = 1, 2, ..n. That is we obtain the sufficiency part of the
statement i.e. ∆̂α[j]

i (0; 0; z) ≤ 0 for all i, and for all z ∈ Zn(0, z+).
An implication of the result is:

Corollary 6 Let j = 1, 2. The following statements are equivalent:
(i) ∆̂α[j]

i (1; 0; z) ≤ 0 for all i = 1, 2, ...n and for all z ∈ Zn(0, z+).

(ii) ∆̂α[j]
i (0; 0; z) ≤ 0 for all i = 1, 2, ...n and for all z ∈ Zn(0, z+).

These are the (horizontal) equivalence relations in Map B.
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