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Abstract We characterize single-crossing preference profiles in terms of two
forbidden substructures, one of which contains three voters and six (not neces-
sarily distinct) alternatives, and one of which contains four voters and four (not
necessarily distinct) alternatives. We also provide an efficient way to decide
whether a preference profile is single-crossing.

JEL Classification: D71, C78.

1 Introduction

Single-peaked and single-crossing preferences have become standard domain
restrictions in many economic models. Preferences are single-peaked if there
exists a linear ordering of the alternatives such that any voter’s preference
relation along this ordering is either always strictly increasing, always strictly
decreasing, or first strictly increasing and then strictly decreasing. Preferences
are single-crossing if there exists a linear ordering of the voters such that for
any pair of alternatives along this ordering, there is a single spot where the
voters switch from preferring one alternative above the other one. In many
situations, these assumptions guarantee the existence of a strategy-proof col-
lective choice rule, or the existence of a Condorcet winner, or the existence of
an equilibrium.

R. Bredereck
Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany, E-mail:
robert.bredereck@tu-berlin.de

J. Chen
Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany, E-mail:
jiehua.chen@tu-berlin.de

G. J. Woeginger
Department of Mathematics and Computer Science, TU Eindhoven, the Netherlands, E-
mail: gwoegi@win.tue.nl



2 R. Bredereck, J. Chen, and G. J. Woeginger

Single-peaked preferences go back to the work of Black (1948) and have
been studied extensively over the years. Single-peakedness implies a number of
nice properties, as for instance non-manipulability (Moulin 1980) and transi-
tivity of the majority rule (Inada 1969). Single-crossing preferences go back to
the seminal paper of Roberts (1977) on income taxation. Grandmont (1978),
Rothstein (1990), and Gans and Smart (1996) analyze various aspects of the
majority rule under single-crossing preferences. Furthermore, single-crossing
preferences play a role in the areas of income redistribution (Meltzer and
Richard 1981), coalition formation (Demange 1994; Kung 2006), local public
goods and stratification (Westhoff 1977; Epple and Platt 1998), and in the
choice of constitutional voting rules (Barberà and Jackson 2004). Saporiti and
Tohmé (2006) study single-crossing preferences in the context of strategic vot-
ing and the median choice rule, and Saporiti (2009) investigates them in the
context of strategy proof social choice functions. Barberà and Moreno (2011)
develop the concept of top monotonicity as a common generalization of single-
peakedness and single-crossingness (and of several other domain restrictions).

Forbidden substructures. Sometimes mathematical structures allow character-
izations through forbidden substructures. For example, Kuratowski’s theo-
rem (Kuratowski 1930) characterizes planar graphs in terms of forbidden sub-
graphs: a graph is planar if and only if it does not contain a subdivision of K5

or K3,3. For another example, Hoffman, Kolen, and Sakarovitch (1985) charac-
terize totally-balanced 0-1-matrices in terms of certain forbidden submatrices.
In a similar spirit, Lekkerkerker and Boland (1962) characterize interval-graphs
through five (infinite) families of forbidden induced subgraphs.

In the area of social choice, a beautiful result by Ballester and Haeringer
(2011) characterizes single-peaked preference profiles in terms of two forbid-
den substructures. The first forbidden substructure concerns three voters and
three alternatives, where each of the voter ranks another one of the alterna-
tives worst. The second forbidden substructure concerns two voters and four
alternatives, where (sloppily speaking) both voters rank the first three alter-
natives in opposite ways with the second alternative in the middle, but prefer
the fourth alternative to the second one.

Contribution of this paper. Inspired by the approach and by the results
of Ballester and Haeringer (2011), we present a forbidden substructure charac-
terization of single-crossing preference profiles. One of our forbidden substruc-
tures consists of three voters and six alternatives (as described in Example 4)
and the other one consists of four voters and four alternatives (as described
in Example 5). We stress that the (six respectively four) alternatives in these
forbidden substructures are not necessarily distinct: the substructures only
partially specify the preferences of the involved voters; hence by identifying
and collapsing some of the involved alternatives we can easily generate a num-
ber of smaller forbidden substructures (which of course are just special cases of
our larger forbidden substructures). Finally, we will discuss the close relation
of single-crossing preference profiles to consecutive ones matrices. A 0-1-matrix
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has the consecutive ones property if its columns can be permuted such that
the 1-values in each row are consecutive. We hope that our results will turn
out useful for future research on single-crossing profiles.

In Section 2 we summarize the basic definitions and provide some examples.
In Section 3 we formulate and prove our main result (Theorem 6). In Section 4
we discuss the tightness of our characterization, and we argue that there does
not exist a characterization that works with smaller forbidden substructures.
Finally, in Section 5 we briefly discuss simple approaches to finding a single-
crossing ordering of the voters in polynomial time.

2 Definitions, notations, and examples

Let a1, . . . , am be m alternatives and let V1, . . . , Vn be n voters. A preference
profile specifies the preference orderings of the voters, where voter Vi ranks
the alternatives according to a strict linear order �i. For alternatives a and b,
the relation a �i b means that voter Vi strictly prefers a to b.

An unordered pair of two distinct alternatives is called a couple. A subset V
of the voters is mixed with respect to couple {a, b}, if V contains two voters
one of which ranks a above b, whereas the other one ranks a below b. If V is not
mixed with respect to {a, b}, then it is said to be pure with respect to {a, b}.
Hence, an empty set of voters is pure with respect to any pair of alternatives.
A couple {a, b} separates two sets V1 and V2 of voters from each other, if no
voter in V1 agrees with any voter in V2 on the relative ranking of a and b; in
other words, sets V1 and V2 must both be pure with respect to {a, b}, and if
both are non-empty then their union V1 ∪ V2 is mixed.

An ordering of the voters is single-crossing with respect to couple {a, b},
if the ordered list of voters can be split into an initial piece and a final piece
that are separated by {a, b}. An ordering of the voters is single-crossing, if it
is single-crossing with respect to every possible couple. Finally a preference
profile is single-crossing, if it allows a single-crossing ordering of the voters. It
is easy to see that single-crossing is a monotone property of preference profiles:

Lemma 1 Let P be a preference profile, and let P ′ result from P by removing
some alternatives and/or voters. If P is single-crossing, then also P ′ is single-
crossing. ut

In the remaining part of this section we present several instructive examples
of preference profiles that are single-crossing (Section 2.1) respectively that are
not single-crossing (Section 2.2).

2.1 Profiles from weak Bruhat orders

Let Sm denote the set of permutations of 1, . . . ,m. We specify permuta-
tions π ∈ Sm by listing the entries as π = 〈π(1), π(2), . . . , π(n)〉. The identity
permutation 〈1, 2, . . . ,m〉 arranges the integers in increasing order, and the
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

1 1 1 1 5 5 5 5 5 5 5
2 2 2 5 1 1 1 4 4 4 4
3 3 5 2 2 2 4 1 1 3 3
4 5 3 3 3 4 2 2 3 1 2
5 4 4 4 4 3 3 3 2 2 1

Fig. 1 A single-crossing preference profile with 11 voters and 5 alternatives.

order reversing permutation 〈m,m− 1, . . . , 2, 1〉 arranges them in decreas-
ing order. A descent in π is a pair (π(i), π(i + 1)) of consecutive entries
with π(i) > π(i + 1). We write π C ρ, if permutation π can be obtained
from permutation ρ by a series of swaps, each of which interchanges the two
elements of a descent.

The partially ordered set (Sm,C) is known as weak Bruhat order ; see for
instance Bóna (2004). The weak Bruhat order has the identity permutation as
minimum element and the order reversing permutation as maximum element.
Every maximal chain (that is: every maximal subset of pairwise comparable
permutations) in the weak Bruhat order has length 1

2m(m−1)+1 and contains
the identity permutation and the order reversing permutation.

The following example illustrates the well-known connection between weak
Bruhat orders and single-crossing preference profiles; we refer the reader
to Abello (1991) or Galambos and Reiner (2008) for more information.

Example 2 Let C = (π1 C π2 C · · · C πn) be a maximal chain with n =
1
2m(m − 1) + 1 permutations in the weak Bruhat order (Sm,C). We con-
struct a profile by using 1, . . . ,m as alternatives, and by interpreting every
permutation π as preference ordering π(1) � π(2) � . . . � π(n) over the alter-
natives. Voter Vi has preference ordering πi. See Figure 1 for an illustration
with m = 5 alternatives and n = 11 voters.

The resulting profile is single-crossing: any two alternatives a and b start off
in the right order in the identity permutation π1, eventually are swapped into
the wrong order, and then can never be swapped back again at later steps.
Furthermore, the profile contains n = 1

2m(m − 1) + 1 voters with pairwise
distinct preference orderings. ut

If one starts the construction in Example 2 from arbitrary (not necessarily
maximal!) chains in the weak Bruhat order, then one can generate this way
every possible single-crossing preference profile (up to isomorphism). This is
another well-known connection, which follows from the fact that π C ρ if and
only if every inversion of permutation π also is an inversion of permutation ρ.

2.2 Some profiles that are not single-crossing

We next present three examples of profiles that are not single-crossing. The
first example is due to Saporiti and Tohmé (2006) and shows a profile that is
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single-peaked but fails to be single-crossing. The other two examples introduce
two principal actors of this paper.

Example 3 Consider four alternatives 1, 2, 3, 4 and three voters V1, V2, V3 with
the following preference orders:

Voter V1: 2 �1 3 �1 4 �1 1

Voter V2: 4 �2 3 �2 2 �2 1

Voter V3: 3 �3 2 �3 1 �3 4

It can be verified that this profile is not single-crossing but single-peaked (with
respect to the ordering 1 < 2 < 3 < 4 of alternatives, for instance). ut

Example 4 (γ-Configuration)
A profile with three voters V1, V2, V3 and six (not necessarily distinct) alter-
natives a, b, c, d, e, f is a γ-configuration, if it satisfies the following:

Voter V1: b �1 a and c �1 d and e �1 f

Voter V2: a �2 b and d �2 c and e �2 f

Voter V3: a �3 b and c �3 d and f �3 e

This profile represents a situation where each voter disagrees with the other
two voters on exactly one couple. The profile is not single-crossing, as none of
the three voters can be put between the other two: the couple {a, b} prevents
us from putting V1 into the middle, the couple {c, d} forbids voter V2 in the
middle, and the couple {e, f} forbids V3 in the middle. ut

Example 4 provides an easy proof that the profile in Example 3 is not
single-crossing, as this profile contains a γ-configuration with a = 3, b = c = 2,
d = e = 4, and f = 1.

Example 5 (δ-Configuration)
A profile with four voters V1, V2, V3, V4 and four (not necessarily distinct)
alternatives a, b, c, d is a δ-configuration, if it satisfies the following:

Voter V1: a �1 b and c �1 d

Voter V2: a �2 b and d �2 c

Voter V3: b �3 a and c �3 d

Voter V4: b �4 a and d �4 c

This profile shows a different kind of voter behavior: two voters disagree
with the other two voters on one couple, but also disagree between each other
on another couple. As before, this profile is not single-crossing, as couple {a, b}
forces us to place V1 and V2 next to each other, and to put V3 and V4 next to
each other; couple {c, d} forces us to place V1 and V3 next to each other, and
to put V2 and V4 next to each other. This means that no voter can be put into
the first position. ut
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3 A characterization through forbidden configurations

Examples 4 and 5 demonstrate that preference profiles that contain a γ-
configuration or a δ-configuration cannot be single-crossing. It turns out that
these two configurations are the only obstructions for the single-crossing prop-
erty.

Theorem 6 A preference profile P is single-crossing, if and only if P contains
neither a γ-configuration nor a δ-configuration.

The rest of this section is dedicated to the proof of Theorem 6. The (only
if) part immediately follows from the monotonicity of the single-crossing prop-
erty (Lemma 1) and from the observations stated in Examples 4 and 5.

For the (if) part, we first introduce some additional definitions and nota-
tions. An ordered partition 〈X1, . . . , Xp〉 of the voters V1, . . . , Vn satisfies the
following properties: every part Xi is non-empty, distinct parts are disjoint, the
union of all parts is the set of all voters, and the arrangement of the parts Xis
is crucial. The trivial ordered partition has p = 1 and hence consists of a single
part {V1, . . . , Vn}. We let {ak, bk} with 1 ≤ k ≤ 1

2m(m−1) be an enumeration
of all the possible couples, and we define Ck as the set containing the first k
couples in this enumeration.

Now let us prove the (if) part of the theorem. We consider some arbi-
trary preference profile P that neither contains a γ-configuration nor a δ-
configuration. Our argument is algorithmic in nature. We start from the trivial
partition X (0) of the voters, and then step by step refine this partition while
working through 1

2m(m− 1) phases. The kth such phase generates an ordered
partition X (k) = 〈X(k)

1 , . . . , X(k)
p 〉 of the voters that satisfies the following two

properties.

(i) For 1 ≤ j ≤ p−1, the union of parts X(k)

1 , . . . , X(k)

j is separated from the

union of parts X(k)

j+1, . . . , X
(k)
p by one of the couples in Ck.

(ii) For every couple in Ck, there is a j with 1 ≤ j ≤ p−1 such that the couple
separates the union of X(k)

1 , . . . , X(k)

j from the union of X(k)

j+1, . . . , X
(k)
p .

Note that property (ii) implies that every part X(k)

j is pure with respect to
every couple in Ck. The following four lemmas summarize some useful com-
binatorial observations on the ordered partition X (k) and how it relates to
couple {ak+1, bk+1}.

Lemma 7 At most one part in the ordered partition X (k) is mixed with respect
to couple {ak+1, bk+1}.

Proof. Suppose for the sake of contradiction that the parts X(k)
s and X(k)

t

with 1 ≤ s < t ≤ p both are mixed with respect to couple {ak+1, bk+1}.
In other words, part X(k)

s contains a voter V ′1 with ak+1 � bk+1 and another
voter V ′2 with bk+1 � ak+1, and part X(k)

t contains a voter V ′3 with ak+1 � bk+1

and another voter V ′4 with bk+1 � ak+1.
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Property (i) yields the existence of a couple {x, y} ∈ Ck that separates the
union of parts X(k)

1 , . . . , X(k)
s from the union of the parts X(k)

s+1, . . . , X
(k)
p . In

particular, this couple separates X(k)
s from X(k)

t . This implies that voters V ′1
and V ′2 agree on couple {x, y} (say, with x � y), whereas voters V ′3 and V ′4
have the opposite ranking (say y � x). Then the four voters V ′1 , V ′2 , V ′3 , and V ′4
together with the four alternatives ak+1, bk+1, x, and y form a δ-configuration;
this yields the desired contradiction. ut

Lemma 8 Consider s and t with 2 ≤ s < t ≤ p. If some voter V ′1 in part X(k)

1

ranks ak+1 � bk+1 and if some voter V ′2 in part X(k)
s ranks bk+1 � ak+1, then

every voter V ′3 in part X(k)

t ranks bk+1 � ak+1.

Proof. Suppose for the sake of contradiction that the voter V ′3 ranks ak+1 �
bk+1. Then the couple {ak+1, bk+1} separates V ′2 from V ′1 and V ′3 . Property (i)
yields a couple {x, y} ∈ Ck that separates X(k)

1 from X(k)
s ∪ X

(k)

t ; this couple
separates V ′1 from V ′2 and V ′3 . Property (i) yields also a couple {u, v} ∈ Ck that
separates X(k)

t from X(k)

1 ∪X(k)
s ; this couple separates V ′3 from V ′1 and V ′2 .

Then the three voters V ′1 , V ′2 , and V ′3 together with the six alternatives
ak+1, bk+1, x, y, u, and v form a γ-configuration; a contradiction. ut

The statement of the following lemma is symmetric to the statement of
Lemma 8, and it can be proved by symmetric arguments.

Lemma 9 Consider s and t with 1 ≤ s < t ≤ p − 1. If some voter V ′2 in
part X(k)

t ranks ak+1 � bk+1 and some voter V ′3 in part X(k)
p ranks bk+1 � ak+1,

then every voter V ′1 in part X(k)
s ranks ak+1 � bk+1. ut

Lemma 10 There exists an index ` with 1 ≤ ` ≤ p such that the cou-
ple {ak+1, bk+1} separates the union of parts X(k)

1 , . . . , X(k)

`−1 from the union

of parts X(k)

`+1, . . . , X
(k)
p .

Proof. If p = 1 or if all voters in the profile agree on the relative ranking of ak+1

and bk+1, the choice ` = 1 works. Hence we assume that p ≥ 2 and that there
are two voters who disagree on the ranking of ak+1 and bk+1. By Lemma 7
the parts X(k)

1 and X(k)
p cannot both be mixed with respect to {ak+1, bk+1}.

If the first part X(k)

1 is pure with respect to {ak+1, bk+1}, we pick an ar-
bitrary voter V ′1 from X(k)

1 . We choose ` as the smallest index for which X(k)

`

contains some voter V ′2 who ranks ak+1 versus bk+1 differently from voter V ′1 .
Then Lemma 8 yields that every voter V ′3 in the parts X(k)

`+1, . . . , X
(k)
p must

rank ak+1 versus bk+1 differently from voter V ′1 . Hence the chosen index ` has
all the desired properties, and this case is closed. In the remaining case the
last part X(k)

p is pure with respect to {ak+1, bk+1}; this case can be settled in
a symmetric fashion while using Lemma 9. ut

Now let us finally describe how to construct the ordered partition X (k+1)

in the (k+1)th phase. Our starting point is the ordered partition X (k), and we
determine an index ` as defined in Lemma 10. If part X(k)

` is pure with respect
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to {ak+1, bk+1}, then we make the new partition X (k+1) coincide with the old
partition X (k); properties (i) and (ii) are satisfied in X (k+1). If part X(k)

` is
mixed with respect to {ak+1, bk+1}, then we subdivide it into two parts Y and
Z so that {ak+1, bk+1} separates the union of parts X(k)

1 , . . . , X(k)

`−1, Y from the

union of parts Z,X(k)

`+1, . . . , X
(k)
p . Then the resulting partition

X (k+1) = 〈X(k)

1 , . . . , X(k)

`−1, Y, Z, X
(k)

`+1, . . . , X
(k)

p 〉

satisfies properties (i) and (ii) by construction.
We keep working like this and complete phase after phase. After the

very last phase k = 1
2m(m − 1) we generate the final ordered parti-

tion X ∗ = 〈X∗1 , . . . , X∗q 〉. We construct an ordering π∗ of the voters that lists
the voters in every part X∗j before all the voters in part X∗j+1 (1 ≤ j ≤ q− 1).
Property (ii) guarantees that every couple separates an initial piece of partition
X ∗ from the complementary final piece, which implies that the ordering π∗ for
the voters in P is single-crossing. This completes the proof of Theorem 6.

We conclude this section with two comments on this proof. If P is a single-
crossing profile where all voters have distinct preference orderings, then there
are exactly two single-crossing orderings of the voters which are mirror images
of each other. This follows directly from the last part of the proof of Theorem 6.

By property (i), every two consecutive parts X∗j and X∗j+1 must be sep-

arated by one of the couples. Since there are 1
2m(m − 1) distinct couples,

there are at most 1
2m(m − 1) + 1 parts in the final partition. This implies

that a single-crossing preference profile contains at most 1
2m(m− 1) + 1 vot-

ers with distinct preference orderings. Of course, this bound is already known
from the connection between single-crossing profiles and weak Bruhat orders
as indicated in Section 2.1.

4 The size of forbidden configurations

Throughout this short section, we speak of preference profiles with m alter-
natives and n voters as m× n configurations. Theorem 6 characterizes single-
crossing preference profiles through certain forbidden 6 × 3 and 4 × 4 con-
figurations. Are there perhaps other characterizations that work with smaller
forbidden configurations? The following lemma shows that this is not the case,
and hence our characterization uses the smallest possible forbidden configura-
tions.

Lemma 11 Every characterization of single-crossing preference profiles
through forbidden configurations must forbid

(a) some m× n configuration with m ≥ 6 and n ≥ 3 and
(b) some m× n configuration with m ≥ 4 and n ≥ 4.

Proof. Consider an arbitrary characterization of single-crossing profiles with
forbidden configurations F1, . . . , Fk. Consider the following 6 × 3 configura-
tion C.
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Voter V1: b �1 a �1 c �1 d �1 e �1 f

Voter V2: a �2 b �2 d �2 c �2 e �2 f

Voter V3: a �3 b �3 c �3 d �3 f �3 e

This profile contains a γ-configuration and thus is not single-crossing. If we
remove any alternative from C, the resulting 5 × 3 configuration is single-
crossing and cannot be forbidden. And if we remove any voter from C, the
resulting 6× 2 configuration is again single-crossing and again cannot be for-
bidden. Hence the only possibility for correctly recognizing C as not single-
crossing is by either forbidding C itself or by forbidding appropriate larger
configurations that contain C. This proves (a). The proof of (b) is based on
the following 4× 4 configuration C ′ which contains a δ-configuration.

Voter V1: a �1 b �1 c �1 d

Voter V2: a �2 b �2 d �2 c

Voter V3: b �3 a �3 c �3 d

Voter V4: b �4 a �4 d �4 c

Since the argument is analogous to the one in (a), we omit the details. ut

5 Conclusions

In this final section, we briefly discuss the algorithmic problem of recognizing
single-crossing profiles with n voters and m alternatives. Elkind, Faliszewski
and Slinko (2012) showed that this problem is polynomial-time solvable. A
straightforward implementation of their algorithm works in O(n2m2) time.

The arguments in Section 3 implicitly give an O(nm2) algorithm which
decides whether a given voter profile is single-crossing and, if so, computes
a single-crossing ordering. To show an extremely simple connection between
single-crossing orderings and the so-called consecutive ones matrix property,
we sketch an alternative way of recognizing single-crossing profiles by utiliz-
ing the PQ-tree algorithm of Booth and Lueker (1976). The algorithm was
designed to recognize, inter alia, consecutive ones matrices. A 0-1-matrix has
the consecutive ones property, if its columns can be permuted such that the
ones in each row are consecutive (and hence form an interval).

Consider an arbitrary preference profile P and transform it into a cor-
responding 0-1-matrix M(P) in the following way. For each voter, the ma-
trix M(P) contains a corresponding column. For each ordered pair 〈a, b〉 of
alternatives, matrix M(P) has a corresponding row with value 1 at column j
if voter j prefers alternative a to alternative b, and value 0 otherwise. In to-
tal, M(P) has n columns and m(m − 1) rows. As one can easily verify, each
consecutive ones ordering of columns corresponds to a single-crossing ordering
of the voters in the original profile.

The PQ-algorithm by Booth and Lueker (1976) solves the consecutive ones
matrix problem in O(x+y+z) time, where x and y are the number of columns
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and rows, and z is the total number of 1s in the matrix. Hence, single-crossing
profiles can be recognized in O(m2 + n+ nm2) = O(nm2) time.
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