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1 Abstract We consider three mechanisms for the aggregation of information in het-

2 erogeneous committees voting by Unanimity rule: Private Voting and voting pre-

3 ceded by either Plenary or Subgroup Deliberation. While the first deliberation protocol
+ imposes public communication, the second restricts communication to homogeneous

s subgroups. We find that both protocols allow to Pareto improve on outcomes achieved
s under private voting. Furthermore, we find that when focusing on simple equilib-

7 ria under Plenary Deliberation, Subgroup Deliberation Pareto improves on outcomes

s achieved under Plenary Deliberation.

s JEL Classification C72:D71-D72-D74-D82- D83

10 1 Introduction

1n  Most committee decision making involves deliberation between heterogeneously
12 informed individuals endowed with diverging preferences. Yet the interaction between
13 the three aspects of information heterogeneity, preference heterogeneity and commu-

12 nication is non trivial. Heterogeneous information, in a common value setting, renders
15 communication useful. Heterogeneity of preferences, on the other hand, makes com-

16 munication difficult to achieve.

17 Committee communication, also called deliberation, always takes place according

18 to some protocol which specifies a set of potential receivers and senders at every

19 moment of time. Communication may be sequential or simultaneous. It may be entirely
2 public, if messages are observed by everyone, or it may instead be semi-public, if

21 communication is confined to Subgroups.
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2 We examine two intuitive communication protocols in heterogeneous committees

23 that vote under Unanimity: Plenary Deliberation and Subgroup Deliberation. Our

2« aim is to rank these communication protocols w.r.t. simple Private Voting as well as
s among each other. We proceed in two main steps, by first isolating a set of equilibrium
2 predictions for each protocol and then comparing these predictions as a means of

27 comparing protocols.

28 The first step of our analysis is as follows. For each communication protocol as

20 Well as for Private voting, we restrict ourselves to a class of simple equilibria and call

o these respectively Simple Subgroup Deliberation equilibria, Simple Plenary Deliber-

a1 ation equilibria and Simple No Deliberation Equilibria. The restrictions on strategies

2 embedded in the term simple are mild in the case of Private Voting and in contrast
33 significant in the case of Subgroup and Plenary Deliberation. Within the classes of

3 equilibria considered, we furthermore only consider so called reactive equilibria, i.e.
s equilibria in which the same decision is not always made.

3 The second step of our analysis unfolds as follows. Having isolated a (non empty)

a7 set of equilibrium predictions for each of our protocols, we ask two specific questions.
33 First, do there always exist reactive Simple Subgroup Deliberation and reactive Simple
s Plenary Deliberation equilibria that are Pareto improving w.r.t. any reactive Simple
« No Deliberation equilibrium? Secondly, does there always exist some reactive Simple
a1 Subgroup Deliberation equilibrium that is Pareto improving w.r.t any reactive Simple
22 Plenary Deliberation equilibrium? Our answer to both questions is positive. The first
a3 result reveals that the two communication protocols dominate No Deliberation in a

a4 robust sense, given the mild restrictions imposed on strategies under Private Voting.

s Our second result shows that Subgroup Deliberation dominates Plenary Deliberation

4 if one is willing to accept the significant restrictions that we impose on strategies under
a7 Plenary Deliberation. The latter form of dominance is thus admittedly significantly less
43 general than the first form of dominance established. Modulo this important caveat, we
49 thus obtain a complete ranking of the three voting mechanisms considered: Subgroup

s Deliberation dominates Plenary Deliberation which itself dominates Private Voting.

51 Among the plethora of potential communication protocols, we choose to focus

s2 0N Plenary Deliberation and Subgroup Deliberation because we deem them intuitive

s3 and empirically relevant for the very reason that they are uncomplicated. The Ple-

s nary Deliberation protocol is equivalent to the common practice of straw votes: Each
s committee member simultaneously sends a public message chosen from a binary mes-
s sage space. Subgroup Deliberation restricts deliberation to homogeneous Subgroups.

s7 Examples of the latter protocol abound. In parliaments or parliamentary committees,

ss  party fellows often separately consult and reach a common stance before voting. Prior
s to faculty meetings, professors with related research agendas may meet separately.

s The key distinction between Plenary and Subgroup Deliberation resides in the a priori

&1 restriction that they place on information pooling. While Plenary Deliberation theoret-
s ically allows for a larger amount of information pooling than Subgroup Deliberation,

s our result is that Subgroup Deliberation however generates superior information shar-
s+ INg in equilibrium than Plenary Deliberation, when committees are heterogeneous. In

s other words, our finding is that Subgroup Deliberation a posteriori generates more

e efficient information sharing than Plenary Deliberation for the very reason that it a

7 priori restricts information sharing.
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es 1.1 Literature review

s Early contributions in the literature on collective decision making and information
70 aggregation focus on Private Voting and compare different voting rules. Seminal con-
= tributions such as Feddersen and Pesendorfer (1998), Gerardi (2000) and Duggan and
22 Martinelli (2001) negatively single out Unanimity. Meirowitz (2002) adds a caveat
73 to the above. The author examines a model featuring a continuum signal space as

72 well as (at least nearly) perfectly informative signals and finds that full information

75 equivalence obtains in the limit also for Unanimity.

7 Newer contributions add a stage of cheap talk communication prior to the vote.

77 Gerardi and Yariv (2007) find that if one makes imposes no restriction on the com-

s munication protocol used, all non unanimous voting rules are equivalent in the sense

79 that they induce the same set of equilibrium outcomes. Gerardi and Yariv (2007)
s contrasts with most of the remaining literature on cheap talk deliberation, which has
e1 instead examined specific protocols as well as simple equilibria. Most contributions

s2 have focused on the simultaneous Plenary Deliberation protocol and the truthful delib-
g3 eration/sincere voting equilibrium (TS equilibrium). Coughlan (2000) shows that if
s preferences are known and substantially heterogeneous, the TS equilibrium does not

s exist. Austen-Smith and Feddersen (2006) show, within a generalized version of the
s classical Condorcet jury model, that uncertainty about preferences can render the TS

g7 equilibrium compatible with substantial heterogeneity, provided that the voting rule
s IS not Unanimity. Meirowitz (2007), Van Weelden (2008) and Le Quement (2012)
s add further caveats to the analysis of Austen-Smith and Feddersen (2006). Finally,
90 Deimen et al. (2014) show that if one considers a richer information structure featur-
o1 ing conditionally correlated signals, the TS equilibrium is compatible with a positive
o2 probability of ex post disagreement.

03 The question of the welfare properties of different protocols and equilibria has by
s and large been eluded. Clearly, in a homogeneous committee, the TS equilibrum imple-
ss ments the welfare maximizing decision rule, but little is known beyond this insight.
9 Doraszelski et al. (2006) study a two persons setting with heterogeneous players who

o7 communicate simultaneously before voting under Unanimity. In equilibrium, infor-
9 Mation transmission is noisy, but communication is advantageous. Hummel (2010)
90 identifies conditions under which Subgroup Deliberation ensures no errors in asymp-
100 totically large and homogeneous committees. Wolinsky (2002) analyzes an  expert
1 game and shows that a Principal can sometimes gain by strategically grouping experts
102 into optimally sized Subgroups that pool information before reporting to him.

103 This paper complements existing literature on four aspects. First, it examines a little
104 Studied communication protocol, Subgroup Deliberation, that constitutes an alterna-
105 tive to Plenary Deliberation in heterogeneous committees in which types are publicly
106 Known. Second, it proposes a simple equilibrium scenario under Plenary Deliberation,
w7 for heterogeneous committees in which the TS equilibrium does not exist (so called
108 Minimally diverse committees; see Coughlan 2000). Third, it provides a first attempt
100 at a general clarification of the relative (Pareto) welfare properties of Private Voting,
1o Subgroup and Plenary Deliberation. Finally, from a technical perspective, it introduces
w1 @ simple method for the Pareto comparison of equilibria arising under different proto-
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cols in heterogeneous committees, which simply invokes a hypothetical sequence of
best responses by different juror types.

The paper is organized as follows. Section 2 introduces the basic jury model as well
as the different communication protocols and equilibria that we consider. Section 3
provides a positive analysis of the equilibrium sets corresponding to the respective
protocols under the imposed restrictions on strategy profiles. Section 4 compares the
identified equilibria in terms of their Pareto welfare properties and thereby provides
a tentative ranking of protocols. Section 5 concludes. Proofs are mostly relegated to
Appendixes 1, 2 and 3.

2 The Model
2.1 Setup

Suppose a jury composed of n members. A defendant is being judged and is either
guilty (G) or innocent (I ) with equal prior probability. The jury must decide whether

to convict (C ) or acquit ( A) him. Each juror casts a vote in favour of either conviction

or acquittal. The voting rule is Unanimity: The defendant is convicted if and only if

all jurors vote for conviction.

Each juror receives a single private signal prior to the vote. Asignal s € {i, g}

indicates either guilt or innocence. A signal is “correct” with probability p & *, 1,

i.e.Ps=g|G)=P(s=i|l)=p,whileP(s=i|G)=P(s=gll)=1—- p.
Juror signals are i.i.d. Let |g| denote the total number of g-signals received by the jury.
The conditional probability P (G| |g| = k) that the defendant is guilty given |g| = k

in an n persons jury is given as follows:

B (p,k,n):= B(p. k1) where B(p, k,n):= D pk(L — p)"*
p! ] Ll B(p,k,n)+B(1—p,k,n)' p: ] - k p p .
@)

Forj e {1,..., n}, each jury member j ’s preferences, are determined by a com-

monly known parameter q! € (0, 1) . A juror’s payoff function is given as follows:

18 Define Uj (C | 1) = —q/ as the utility obtained by juror j when the defendant is con-

139

victed despite being innocent, and Uj ( A|G) = —(1 — qJ) as the utility obtained when

10 the defendant is acquitted but guilty. The utility related to remaining combinations of

141

state and action (acquittal of an innocent or conviction of a guilty) is normalized to

12 0. Suppose a mechanism M yielding a probability P(C | 1) of convicting an innocent
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defendant and a probability P( A|G) of acquitting a guilty defendant. The expected
utility of juror j under mechanism M is given as follows:

Uj (M):=—q P(CI1)P(I) — (1 — g’)P(AIG)P(G). )

Given this utility function, a juror j prefers conviction to acquittal whenever his
posterior probability that the defendant is guilty exceeds q!. The parameter q ! thus
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measures the juror’s degree of aversion to wrongful conviction. The higher g1, the
more evidence of guilt is required for juror j to prefer conviction.
Juror preferences are heterogeneous and fall into two homogeneous categories. The

151 jury contains n p doves (D) with preferences gp and n H hawks (H ) with preferences
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gH, Where gn < gp and np + nH = n. We assume that at least one of the two
preference types is present at least twice in the committee. We refer to the allocation of

committee seats among preference types as the jury composition. For each j € {H, D},

we use HaROLiRctioh thiddn e T h MeyePriRbbrHT st AR R IRIMIR: Of

signals i

B’p,T~—1,n-<qst’p,T”,n . (3)
n _

j j
We make the following assumptions about preferences. First,

ALT"—T":=m> 2.
D H

In other words, in a putative equilibrium in which all n signals would be publicly
revealed before the vote, at least two signal profiles would cause disagreement between
the different juror types. The restriction is mild. Assuming m = 1 typically imposes
closely aligned preferences within the context of reasonably large committees in which
many private signals are available. Second,

A2:T" e 1,....,n _,Vje{H, D}.

This means that if jurors of a given preference type j were to decide optimally on the
basis of their n jsignals, they would sometimes acquit and sometimes convict. Finally,

1

2

This implies that a dove favours conviction only if the probability that the defendant
is guilty exceeds 1§ This requirement matches the jury setting, where the “voir dire”
selection process eliminates jurors that are excessively prone to convict. The assump-
tion is used in proving our welfare results and we do not claim that it is necessary.
Throughout this paper, we examine games exhibiting the following timing. In stage
0, jurors receive private signals. In stage 1, jurors communicate according to an exoge-

A3:qp >

175 nously fixed communication protocol. In stage 2, jurors simultaneously cast a vote. In

176

177

178

179

stage 3, the defendant is convicted if and only if n conviction votes were cast.

2.2 Communication protocols and equilibria

We now introduce the three communication protocols that are the object of our analy-
sis. No Deliberation (ND) simply specifies that no message is sent. Plenary Deliber-

10 ation (PD) specifies that each juror simultaneously sends a message m € {i, g} that is
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11 observed by all jurors. Subgroup Deliberation (SD) specifies that each juror simultane-
12 ously sends a message m € {i, g} that is observed only by jurors of his preference type.
183 Protocols are orderable according to the physical restraints that they impose on
18« communication. The first, No Deliberation, fully prohibits information sharing among
15 jurors. The second, Plenary Deliberation, potentially allows for full pooling of infor-
1s mation among all jurors. The third, Subgroup Deliberation, prohibits communication

17 between jurors of different preference types and only allows information pooling to

188 take place within Subgroups of homogeneous jurors. Note that under Plenary as well

19 as Subgroup Deliberation, we assume that communication is simultaneous, i.e. can

10 be interpreted as simple straw votes preceding the actual vote. This is restrictive and
11 must be distinguished from the free form communication considered in Gerardi and

192 Yariv (2007).

193 Weintroduce aset of general definitions and restrictions on strategy profiles. Asym-

14 metric strategy profile specifies that jurors of the same preference type follow the same
165 Strategy. Monotonous strategies are s.t. information sets providing higher evidence of
196 QUIlt are associated with a higher probability of voting for conviction. Throughout

17 the analysis, we restrict ourselves to symmetric and monotonous strategies, in line
18 With previous work on information aggregation and voting. We furthermore apply the
199 follow heuristic principle. For a given protocol, we ignore the possibility of mixing
200 (in communication as well as in voting) as long as such a restriction does not leave us
201 ONnly with trivial equilibria in which the same decision (either C or A) is always made.
202 This is true of the PD and the SD cases. It is in contrast not true under ND and we thus
203 consider the possibility of mixed voting under the latter prococol. We now present in
204 detail the strategy profiles and equilibria that our analysis focuses on. Our focus is on

205 perfect bayesian equilibria, which we simply call equilibria in what follows.

©

206 2.3 No deliberation

207 Under ND, jurors condition their votes exclusively on their own signal. We use the term

208 NO deliberation strategy instead of the standard term private voting strategy to describe
200 the voting behavior of jurors under this protocol. A symmetric no deliberation strategy

20 profile is characterized by a vector of mixing probabilities oH,o", 0P, 0P  where
i 9 i g

a9 denotes the probability that a single juror of type j votes for conviction given a
22 signal s € {i, g}. Let pi v j denote the event in which a given juror of preference type j
213 18 pivotal in the sense that the final decision changes with the juror’s vote. Let y ‘Gand

24 denote the likelihood that a juror of preference type j votes for conviction given

215 respectively state G or | . We have

=

Yj i i
216 G = POg + (1_— p)Ui_,
] J J

217 Y, = (1 - p)og + po; .

218 Define furthermore the indicator function Y ( j, k) as follows. For j, k € {H, D},
o Y(j,k)=1ifj=kwhileY (], k) = 0 otherwise. Clearly, given the Unanimity rule,
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P(Gls, pivj)
- _-np-Y(j,D) - “-nH-Y(j,H)
_ P(IG) v® v
= Mo—Y({J,D)~ A=Y (], H) = Mo—Y(J,D)~ MA=Y(J,H) "
P(s|G) yP H +P(sll) D H
(s16) v, v s1) v, v,

We call symmetric and monotonous no deliberation strategy profiles simple ND
profiles (SND). If an SND profile is s.t. the defendant has a positive ex ante chance of
both being acquitted or convicted, we call it a reactive SND profile. If an SND profile
is s.t. the defendant is either always acquitted or always convicted, we call ita non
reactive SND profile.

Lemmal UndertheND protocol,areactive SND profile y.0H.0P,0P con-

ai g i g
stitutes an equilibrium iff, V j € {H, D}, Vs €{i, g}
P(G | s, pivj) = qj, when od € (0,1), (4)
P(G |s, pivj) < gj, when od =0, (5)
P(G |s, pivj) = gj, when od = 1. (6)

Proof The above conditions are standard (see for example Feddersen and Pesendorfer
1998) and their proof is therefore omitted.

Under the ND protocol, a reactive SND profile that constitutes an equilibrium is
called a reactive SNDE.

2.4 Plenary deliberation

Under the PD protocol, consider first the strategy profile in which all jurors first
truthfully reveal their signals while there is a threshold t € {1,..., n} s.t. all jurors vote
for conviction iff at least t g-signals have been announced. We know from Coughlan
(2000) that no such strategy profile constitutes an equilibrium of the game if m > 1.

We instead examine a strategy profile that is given as follows. In Stage 1, jurors of
type j truthfully reveal their signal while jurors of type — j simply always sends
. the message g and thus babble. In StaPe 2, the voting decision of both juror types
is conditioned on the number of g-signals announced by type j. That is, there is a
tj € 0,1,...,nj,nj + 1 such that: (1) all jurors vote for conviction if at least t;
g-signals have been announced by jurors of type j and (2) all jurors vote for acquittal
otherwise. We call this strategy profile a simple PD strategy profile (SPD), thereby
emphasizing the fact that one could envisage more complex strategy profiles under
the PD protocol, for example involving noisy communication or mixed voting. We
furthermore call an SPD profile a reactive SPD profile if tj € "1,...,nj , i.e. if

jurors have a positive ex ante chance of unilaterally voting for both acquittal and
conviction. If an SPD strategy profile is s.t. the defendant is either always acquitted
or always convicted, we call it a non reactive SPD strategy profile.
Our restriction to pure strategies leaves us exclusively with equilibria in which
doves truthtell while hawks babble. Truthtelling by doves appears natural given the
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256 allocation of power across types, which unambiguously favours doves. Given a profile
57 Of public information, if doves favour conviction, then hawks do so as well and will
28 thus not veto such an outcome. If doves instead favour acquittal, they can furthermore
20 always veto a conviction. In principle, doves can thus always get their way. The fact
20 that hawks babble in the equilibria that we examine also appears quite natural in the
261 light of this power allocation. As a matter of fact, we conjecture that there generally
262 eXists no symmetric and monotonic equilibrium in which an individual hawk is with
263 POSitive probability pivotal at the communication stage. The argument behind  this
2« Would be as follows. Given the preference misalignment assumed between doves and
26s hawks (m > 1), conditional on the event of being pivotal at the communication stage,
266 @ hawk favours conviction independently of his own signal. Consequently, if assumed
267 to communicate informatively, a hawk will always favour announcing a g-signal.

s Lemma 2 Under the PD protocol, a reactive SPD profile characterized byt; &
%0 1,..,Nj constitutes an equilibrium iff:

210 B p,tji—1,nj <qgj<B p,tj,nj (7)
an and
272 qusB'p,tfj,nfij 1 (8)

2z Proof The double inequality (7) is necessary and sufficient for a juror of type H not
272 10 have a strict incentive to deviate either at the communication or at the voting stage.
25 The inequality (8) is necessary and sufficient to ensure that preference type — j is
276 always willing to vote for conviction whenever at least t j guilty signals are announced

an by jurors of type j. O

278 Under the PD protocol, a reactive SPD profile that constitutes an equilibrium is

279 called a reactive SPDE. One may be uneasy with our ignoring the possibility of mixing
250 at the voting stage. Our justification is purely practical: Including equilibria featur-

s ing mixed voting following truthtelling would be a daunting task for reasons that we
22 explain in what follows. Recall that type j is the type that is truthelling in the commu-

s nication stage and consider an equilibrium featuring truthtelling followed by possibly

28« Mixed voting. Let m_j,eﬂj describethe (possibly mixed) voting strategy oftype

2

@

25 — J, where © 2 j is the probability of voting C given signal s € {i, g} . Symmetric mixed

258 voting by jurors of type j requires indifference between deC|S|ons A and C at a given

@

2¢7 information set. Th|s|mpI|esthatg|venavotmgstrategygl i Ej of type —j, the

s Mixed voting strategy of type j must be summarized by a vector (tj,0 j) specifying

2 the following voting behavior. When Subgroup j holds t j g-signals, each of its mem-

200 bers votes C with probability 6 j. When Subgroup j holds strictly more (less) than

2 tj g-signals, all j -types convict (acquit). Furthermore, the conditional probability of

22 Quilt, conditional on t j g-signals in Subgroup j and on the assumption that all jurors of
203 type — j convict, is equal to q j. In order to characterize the set of equilibria featuring

200 truthtelling followed by possibly mixed voting, one would thus have to identify an equi-

205 librium vector given by (tj,0 OLJ,OQJ) This task is substantially more complicated
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than identifying a unique threshold tj (equivalentto (tj, 1, 1, 1)) as we do. Further-
more, the increased complexity would carry over to the subsequent welfare exercise.

2.5 Subgroup deliberation

Under the SD protocol, we consider strategy profiles that are entirely characterized by
a vector of thresholds t = (tn, tp). In Stage 1, jurors simultaneously truthfully dis-
close their private signal to members of their Subgroup by sending a message identical
to their signal. In Stage 2, all members of Subgroup j vote for conviction if the total
number of guilty messages received among members of Subgroup j is weakly larger
than t j, and otherwise all vote for acquittal. We call this strategy profile a simple SD
profile (SSD), thereby emphasizing the fact that one could construct more complex
profiles under the SD protocol, for example involving noisy communication or mixing
at the voting stage. We focus on SSD profiles that are such that the defendant has a
positive ex ante chance of both being acquitted or convicted. We call such SSD profiles
reactive SSD profiles and these come in two subforms. A type 2 reactive SSD profile is

a SSD profile inwhichtj € "1,...,nj foreach j € {H, D}. A type 1 reactive SSD
profile is a reactive SSD profile in which one Subgroup j € {H, D} adoptstj = 0,
while Subgroup — j adopts athreshold t—j € "1,...,n—j .Ifan SSD strategy profile
is s.t. the defendant is either always acquitted or always convicted, we call ita non
reactive SSD strategy profile.

We comment on key restrictions here. Given perfectly identical Subgroup prefer-
ences, focusing on outcomes featuring truthtelling appears natural. In contrast, one
may be uneasy with our ignoring the possibility of mixing at the voting stage. Our jus-
tification is, as in the case of PD, purely practical: Including equilibria featuring mixed
voting following truthtelling would be a daunting task. Symmetric mixed voting by
jurors of type j requires indifference between decisions A and C at a given information
set. This implies that given a strategy of type — j featuring truthtelling followed by
(possibly mixed) voting, the mixed voting strategy of type j is summarized by a vector
(tj,0j), as in the case of mixed voting under PD described above. In order to char-

acterize the set of equilibria featuring truthtelling followed by possibly mixed voting,
one would thus have to identify an equilibrium vector given by (t4, 8H, tp, 8p). This
task is substantially more complicated than identifying a pair (tH, to) (equivalent to
(tn, 1, tp, 1)) as we do. Furthermore, the increased complexity would carry over to the
subsequent welfare exercise. More equilibria means more equilibria to compare, and

mixed voting equilibria might not easily compare with each other or with pure voting
equilibria. A final justification is the presumably limited impact of mixed voting on

the set of implementable decision rules. When a Subgroup j is not excessively small,
truthtelling in Subgroups implies a large array of revealed Subgroup signal profiles,
out of which no more than one could induce randomized voting, as explained. When
Subgroups are large, randomization in voting by a given preference type will thus only
occur rarely in any given equilibrium and is thus arguably unlikely to heavily affect
the type of implementable decision rules.

We now characterize conditions under which a given reactive SSD profile consti-

tutes an equilibrium. Let |g|  stand for the number of guilty signals held by Subgroup
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j.Let [glj =tj,[gl_j = t—j denote the event in which Subgroup j holds exactly
tj g -signals while Subgroup — j holds at least t- j g-signals.
Lemma 3 a) Under the SD protocol, a type 2 reactive SSD profile given by (tH, tp),
wheretj € '1,...,nj Vj € {H, D}, constitutes an equilibrium iff:
PGlglj=ti—1Llgl-j=tj <aqi<PGlglj=tjlglj=t;". (9

b) Under the SD protocol, a type 1 reactive SSD profile given by (tH, tp ), where

forsome j € {H, D},tj € '1,...,nj andt—j = 0, constitutes an equilibrium iff (9)
is true and

d-j <P G-gl_j=0,lglj=1t; . (10)
Proof See in Appendix 1.

Under the SD protocol, a type 1 or type 2 reactive SSD profile that constitutes an
equilibrium is called respectively a type 1 or type 2 reactive SSDE.
The idea behind reactive SSDEs is that each homogeneous Subgroup j votes as
one person endowed with n j signals. The SD protocol defines a sequential game in
which individuals first communicate in Subgroups and then vote. We start with a
discussion of Point (a). The key insight is that condition (9) simultaneously ensures
no strict deviation incentives both at the communication and at the voting stage. As
to Point (b), which characterizes type 1 reactive SSDEs, note that the behavior of
Subgroup j, as specified in (9), is the same as if it were deciding alone and voting
ex post optimally after fully pooling its information. Assuming that Subgroup — j
convicts indeed provides no indication regarding the signal profile of the latter, as it
always convicts. Subgroup — j, on the other hand, simply always convicts under the
assumption that Subgroup j is convicting.
Our analysis unfolds in two steps. Section 3 provides a descriptive analysis of
reactive SND, SPD and SSD equilibria. Section 4 analyzes the comparative welfare
properties of reactive SSDEs, SPDEs and SNDEs.

3 Positive analysis

Lemma 4 Under the ND Hrotocol aHunlque r%actlve SIBD profile constitutes an equi-
librium. It is given by (o =y),where y € (0, 1) |f

no QD i g i
p <npandy=0ifTp =np.

Proof See in Appendix 2.

The unique reactive SNDE, under our restrictions, is thus one in which hawks
always convict, while doves vote as if they were an independent committee voting
privately under Unanimity. The voting behavior of doves replicates the equilibrium
characterized in Feddersen and Pesendorfer (1998). The key property of the unique

reactive SNDE is that only the information of doves is aggregated, and typically
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a5 imperfectly so, due to the fact that voting is private. As a final comment, note that our
76 assumption that m > 1 is key to eliminating a large amount of potential equilibrium
377 scenarios under ND. When the doves are sufficiently biased towards acquittal (in
ars  relative terms), the assumption that all doves convict provides strong indication  of
are guilt and unambiguously outweighs an individual hawk’s information.

s Lemma 5 Under the PD protocol, a unique reactive SPD profile constitutes an equi-
o librium. Itis characterized by to = T BP.
s Proof See in Appendix 2.

383 As already mentioned, it is intuitive that there exists an equilibrium in which doves
ssa  publicly reveal their information, given that Unanimity voting effectively delegates
s decision power to them. This effective decision power of doves similarly explains why
ass  there is no reactive Simple Plenary Deliberation equilibrium in which hawks truthfully
ag7 reveal their information. While the common feature of the unique reactive SNDE and
ass SPDE is that hawks effectively delegate decision making to the doves, the difference
a0 between the two equilibria resides in the way doves aggregate their information. In the
a0 Unique reactive SNDE, doves do not pool their information and thus always aggregate
a1 their information imperfectly if TBD < np. Inthe unique reactive SPDE, doves

» always fully pool their information, coordinate votes and aggregate their information

s optimally.

3

©

ss  Lemma 6 Under the SD protocol:

ss (&) Atleastone reactive SSD profile constitutes an equilibrium. ]

w5 (D) Ifthere exist K > 1 reactive SSDEs, then there exists avector t!,t! s.t. the set
H D

ag7 of SSDEs is given by:

-tl 1 1 - - -
- bt L ty— Lt +1 e th—K+1Lth+K-1 - (1)

as  Proof See in Appendix 2.

400 Here again, there always exists an equilibrium satisfying our restrictions on strate-
a1 gies. In contrast to the sets of reactive SNDESs and reactive SPDEs, the set of reactive
102 SSDES may however contain more than one element. Point b) shows that if there exist
a3 Several reactive SSDEs, these are orderable in terms of their degree of polarization.
a4 Among two reactive SSDEs, we say that the equilibrium with lower ty and higher tp
105 IS more polarized, because each of the Subgroups acts more in accordance with its
06 OWN relative bias.

407 This concludes our descriptive equilibrium analysis, given our restrictions on strat-

s egy profiles. Having identified a set of equilibrium scenarios for each protocol, we may
a0 now proceed to a welfare comparison of the identified equilibria, aimed at producing
40 @ tentative ranking of the three considered protocols.

4

<}

a1 4 Normative analysis

a2 Wesay ofan equilibrium that itis strongly Pareto dominant w.r.t. another equilibrium if
a1z both preference types obtain a strictly higher expected welfare in the first equilibrium.
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This subsection proceeds in three parts. First, Proposition 1 provides a Pareto welfare
comparison of the unique reactive SPDE to the unique reactive SNDE. It establishes
that the first equilibrium either strongly Pareto dominates the latter or is outcome
equivalent to it. Second, Proposition 2 shows that when the set of reactive SSDEs is
not a singleton, its elements are ordered in the strong Pareto sense. Third, Proposition
3 Pareto compares reactive SSDEs to the unique reactive SPDE. When the set of
reactive SSDEs is not a singleton, the Pareto dominated equilibrium within this set
either strongly Pareto dominates the unique reactive SPDE or is outcome equivalent
to it. When the set of reactive SSDEs is a singleton, its unique element either strongly
Pareto dominates the unique reactive SPDE or is outcome equivalent to it.
We add a comment on the interpretation of our theoretical exercise. Our reference
to a jury setting may appear problematic because jury deliberations typically do not
allow for Subgroup Deliberation. We see our analysis as a contribution to a normative
debate aiming at potentially redesigning existing deliberation protocols in juries. In this
perspective, considering new designs that are not in use seems legitimate. To the extent
that one endorses our (admittedly restrictive) predictions for the different protocols, our
welfare results would imply that members of a heterogeneous jury would unanimously
agree to deliberate separately, if given the choice between Plenary Deliberation and
Subgroup Deliberation.
First, Jurors’ ethnic or social background does appear to be a partial predictor of
their preferences. Furthermore, the ethnic or social background of a person is at least
imperfectly inferable from observable attributes (physical, verbal, psychological, etc).

Proposition 7 Reactive SPDE vs reactive SNDE.

@) If TBD = n p, the unique reactive SPDE is outcome equivalent to the unique
reactive SNDE.

(b) If T'E)D < np, the unique reactive SPDE is strongly Pareto dominant w.r.t the
unique reactive NSDE.

Proof See in Appendix 3.

As already mentioned, the unique reactive SNDE allows to optimally aggregate

the information held by doves only if T = n p, while the unique reactive SPDE

always allows to achieve an optimal aggregation of the doves’ information. This fact
is reflected in the distinction between cases a) and b).

Our assumption that qp > L5is key to showing that the unlque reactive SPDE
strongly Pareto dominates the unhique reactive SNDE |f T"o<np.If qD> 1 akey

aspect is that, maintaining the assumption of a unilateral conV|ct|on vote by hawks,
transiting from private voting by doves (call this the private scenario) to an optimal

aggregation of pooled signals by doves (call this the pooled scenario) leads to an
increase in the ex ante probability of conviction and is thereby strictly beneficial to
hawks. In the unique reactive SNDE, hawks indeed suffer from the doves’ lack of will-
ingness to convict. An adjustment in the doves’ behavior that mitigates this reluctance

without dramatically overshooting is thus naturally advantageous for hawks.

We now expand on the reason behind the fact that our condition requires a high

enough gp . As gp increases, the probability of a unilateral conviction vote admittedly
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decreases under both scenarios (private and pooled) considered above, but the key
aspect is that this probability decreases faster under the first than under the second
scenario. In the private scenario, a unilateral conviction vote by doves requires that
every dove either receives a g-signal or, conditional on receiving an i -signal, votes
for conviction, the latter event happening with probability y(p, go, np) € (0, 1). For
very high values of qo, y( p, dp, n ) is however very low and furthermore tends to
0 very fastas gptendsto B (p, n o — 1, np). In contrast, as gp increases and tends
toB (p,np — 1, np), the likelihood of a coordinated conviction vote by doves in
the pooling scenario decreases slowly and without tending to 0. It is therefore quite
intuitive that for gp large enough, transiting from the private to the pooling scenario
increases the likelihood of a unilateral conviction vote by doves.
Before going on to the final step of our normative analysis, which provides a com-
parison of reactive SSDEs to the unique reactive SPDE, we establish the preliminary
result that the set of reactive SSDEs is fully orderable in the Pareto sense.

Proposition 8 Reactive SSDEs.
If (th,tp), (th — 1,tp + 1) are two reactive SSDEs, then (tH,tp) is strongly
Pareto improvingw.rt. (tH — 1,tp + 1) .

Proof Consider two reactive SSDEs (tH — 1, to + 1) and (tH, tp) . First, as proved in
Appendix 3, transiting from (t4 — 1, to + 1) to (th — 1, tp) is beneficial for the pref-
erence type H given our assumption that m > 1. Second, transiting from (tn — 1, tp)
to (tH, tp) is also by definition beneficial to preference type H , given thattq is
type H’s best response to tp . An equivalent argument shows that preference type
D benefits from a transition from (tH — 1, tp + 1) to (tH, tp ). First, transiting from
(th — 1, to+ 1) to (tH, to + 1) is beneficial for the preference type D given our

assumption that m > 1. Second, going from (tn, to + 1) to (tH, tp) is also by
definition beneficial to preference type D, given that tp is type D’s best response
totH. |

Proposition 2 shows that if there exist multiple reactive SSDEs, then the strongly

Pareto dominant equilibrium within this set is easily described: it is that in which

each preference type acts the least according to its own bias. In other words, it is
the equilibrium in which the doves act harshest (have the lowest threshold tp) and
the hawks act the most leniently (have the highest threshold tH ). Reciprocally, the
strongly Pareto dominated equilibrium within this set is the one in which preference
types act the most in line with their relative bias. Summarizing, as one jumps from the

one to the other adjacent equilibrium within the set of reactive SSDEs, the welfare of

each type increases, the less that type acts in accordance with its relative bias.

We now finally compare reactive SSDEs with the unique reactive SPDE.

Prs) &EIEHF? Ee?gt‘lve SBDFﬁ D reiiqiwe Sthe fype 1 reactive SSDE (tH= 0, tp =

np
D ) exists and is outcome equlval%t to the unique reactive SPDE. Any other

(b) HEGVESSEE]igistranaly|Bareto dpminaiy. b ABBVBISUB EERS ik RBREPareto

dominant w.rt. the unique reactive SPDE.
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so  Proof See in Appendix 3.

501 Proposition 3 builds on the following dynamic thought experiment: Start from the

sz Unique reactive SPDE, in which doves simply decide as if they were voting alone under
503 Unanimity, fully pooling their information and optimally coordinating their votes

s« according to the threshold T BD. Now, let hawks Subgroup Deliberate and optimally

sos coordinate their votes under the assumption that doves convict, while doves continue

sos t0 behave as in the unique reactive SPDE. There are now two possibilities, which are

s CapfHIeskb Yy egRRsHiviedy §ases p)’ @d@m =0, |glp = T"P., hawks adopt a thresh-

so0 Old tH = 0. It follows that the type 1 reactive SSD proﬁle ‘th =0, tp=T "D consti-
s BylegiodRagiivaRSDR aad g ayicome|egpivalat to theNgiRdieastigoit AEn ek

512 > 0. This adjustment is b definitjon Smﬂtqlé é r0V1 for doves as well, as haw

% eC@\?‘@%EWE‘?( 8%‘%&6 HHERtSA éVIWd el é?ac@"erﬁw

s15 Means that the hawks’ ir}formation is decision relevant in the sense that conditiorfdl on
ss |gly = 0,1g9/p = T"° ", hawks favour an acquittal. Clearly, conditional on the infor-

2 mation set |gly = 0,/glp > TR, the above condition implies that a dove would

sis agree that an acquittal is optimal. Consequently, letting doves Subgroup Deliberate and
s19  coordinate votes according to TDn P both types gain if hawks now Subgroup Deliberate
s20 and coordinate votes according to some optimal threshold t4 > 0 instead of always
sz convicting. Now, let us consider a next round of adjustment: Let the doves optimally

s readjust their threshold in the light of the threshold tq chosen by hawks in the pre-

53 vious round. It is clear that doves will choose to < T", so that this adjustment is

s at least weakly favourable to both preference types. This mutual adjustment process

s2s  may be continued until a fixed point is reached. Such a fixed point exists if there exists
sss  any reactive SSDE (and we know that there indeed exists one), and this fixed point

s27 - corresponds to the most polarized reactive SSDE. Furthermore given that each step of
s2s  the considered adjustment process is strongly Pareto improving, this reactive SSDE

s20 IS strongly Pareto improving w.r.t. the unique reactive SPDE.

530 As aremark that applies to both cases a) and b) mentioned above, recall that if there

sa exist several reactive SSDEs, we know from Proposition 2 that the most polarized

sz reactive SSDE is strongly Pareto dominated by all remaining reactive SSDEs. It follows
s33 that if there are K > 1 reactive SSDEs, then K — 1 of these are a priori guaranteed to
s Strongly Pareto dominate the unique reactive SPDE.

53 We now summarize our welfare comparison of the three protocols. Four cases can

@

s be distinguished. The first and least interesting case corresponds to TH° = n p and

sa7 gH<P G lgly=0lglp=T™ . (12)

D

s Here, the unique reactive SPDE is outcome equivalent to the unique reactive SNDE and
s We furthermore cannot guarantee the existence of a reactive SSDE that strongly Pareto
ss0 IMproves on the unique reactive SPDE. The only reactive SSDE that is guaranteed to

sa1 exist is outcome equivalent to the unique reactive SNDE and SPDE.
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542 The second case applies when T T)D < n p while (12) holds. Here, the unique
ses  reactive SPDE is strongly Pareto improving w.r.t. to the unique reactive SNDE and the
saa  ONly reactive SSDE of which we can guarantee the existence is outcome equivalent
s 10 the unique reactive SPDE. The third case applies when T = n p while (12) is
s reversed. Here, the unique reactive SPDE is outcome equivalent to the unique reactive
sz SNDE and we know that there exists a reactive SSDE that strongly Pareto improves
sss 0N the unique reactive SPDE.

549 Thefourthand mostinteresting caseapplieswhen 'B"D <npwhile(12)isreversed.
sso  In this case, the unique reactive SPDE is strongly Pareto improving w.r.t. the unique
ss1 - reactive SNDE and we know that there exists a reactive SSDE that strongly Pareto
sz improves on the unique reactive SPDE. We now summarize the intuition for this fourth
ss3 case. One can think of the stepwise transition from ND to PD and then to SD in terms
s« Of two successive improvements. First, as compared to the unique reactive  SNDE,
ss  the unique reactive SPDE allows an improvement in the aggregation of the doves’

sss  information that is beneficial to both preference types. Secondly, as compared to the
ss7  Unique reactive SPDE, reactive SSDEs also allow to use the information held by the
sss hawks, in a way that is advantageous to both preference types.

559 Given the above propositions, modulo our admittedly restrictive equilibrium selec-
seo tion under the PD and SD protocols, we have thus established a complete ranking of
se1  the three protocols considered: Subgroup Deliberation dominates Plenary Delibera-
se2 tion which itself dominates Private Voting. We wish to stress that the suboptimality of
sss  the ND protocol w.r.t. the remaining two protocols is a much more robust result than
se« the dominance of SD over PD. Recall indeed that we impose very heavy restrictions
ses  on strategy profiles under PD and SD. Our ranking of SD and PD thus remains very
s6  tentative.

567 We close our analysis with two remarks on how our results potentially extend
ses  to more general settings. Our first remark concerns the condition gp > 1iimposed

seo throughout. As mentioned already, the condition is key to showing that the  unique
so reactive SPDE strongly Pareto dominates the unique reactive SNDE if | P <np.

sn Now, assuming T"® <npandqu >P G |gly =0,1glp = T"® *, we conjecture
D - D

o}

sz that one can construct examples in which gp < %and the following holds true: The
s73 - Unique reactive SPDE is not Pareto improving w.r.t. the unique reactive SNDE, but
s Some reactive SSDE however is. The rationale would be as follows: While the unique
s reactive SPDE is relatively unattractive in welfare terms, each step of the hypothetical
576 adjustment process leading from the unique reactive SPDE to the most polarized
577 reactive SSDE is Pareto improving and the set of reactive SSDEs is furthermore
sis  ordered in the Pareto sense.

s 5 Conclusion

s \We set out to compare three communication protocols characterized by different phys-
se1 ical constraints on information pooling: PD, SD and ND. We identified simple condi-
ss2  tions on juror preferences such that the following holds. First, the SD and PD protocols
ses  robustly dominate ND in the Pareto sense. The dominance of PD and SD w.r.t ND
584 relies on the fact that the identified reactive SPDE and SSDE allow for a superior
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sss  aggregation of the information held by doves, in a way that is also beneficial to hawks.
sss  Second, to the extent that one focuses on a restricted class of equilibria under PD,
se7 SD furthermore dominates PD. This second result relies on the fact that the identified
sss  Class of reactive SSDEs allows to also aggregate the information held by hawks.

589 Our analysis features a number of restrictions that future research should address.
s A truly robust comparison of PD and SD would need to characterize the whole set
so1  Of reactive equilibria under each of the protocols, thus abandonning the restriction
se2 10 monotonous, symmetric and pure strategies. It may be that PD and SD cannot be
ses  ranked in the Pareto sense. One also ought to consider other voting rules than Una-
se NiMity. In the case of SD and non unanimous voting rules, we conjecture that welfare
ss dominant equilibria involve members of the same Subgroup voting asymmetrically.
ses  In such equilibria, the number of Subgroup members voting C would increase as a
so7  function of the number of g-signals held by the Subgroup. Another restriction of our
see analysis is the unrealistic assumption of only two preference types. Enlarging the set
seo OF preference types would however substantially complicate the analysis. One first
o direction to explore would be to assume that any juror’s preference type is located
o1 Within a neighbourhood of either of two reference values qu or qp . Finally, the binary
e02 iNformation structure that we assume is restrictive. Our comparison of simple proto-
e03 COIS ought to be repeated in a setting featuring continuous signals in order to evaluate
s Whether our results still hold in such a more natural and versatile environment.

es  Appendix 1
e0s Lemma 2

eor Step 1 In a reactive SSDE, two types of individual deviations must be prevented.
e The first type involves a deviation at the voting stage following a truthful announce-
s0 Ment at the communication stage. The second type of deviation involves lying at the
610 COmMmMmunication stage.

e11 Step 2 We here prove Point a), corresponding to the set of type 2 reactive SSDEs. We
e12 first show that the condition given in Point a) is sufficient to ensure that none of the
sz above mentioned two types of deviations is strictly advantageous to a juror of type
s14 ] . Assume thus that the condition of Point a) is satisfied. Regarding the first type of
e1s mentioned deviation, the threshold adopted by each Subgroup is ex post optimal at the
e16 VOting stage, conditional on the locally pooled information and assuming individual
ez pivotality, i.e. assuming that that the other Subgroup votes for conviction. We now
s1s €xamine the second type of deviation. Note that misreporting a g-signal as an i -signal
10 IS either inconsequential or adversely triggers an acquittal given a Subgroup signal
e20 profile where the deviating juror would have favoured a conviction. This can thus not
e1 be strictly advantageous to a juror. Instead, misreporting an i -signal as a g-signal
e22 15 always without consequence on the final decision, as a juror can alway block a
e23 conviction triggered by his lie if he realizes that he favours acquittal, given remaining
22 Subgroup members’ signals.

625 We now show that the condition stated in Point a) is necessary to ensure that none
es  Of the two types of deviations mentioned in step 1 is strictly advantageous to a juror

2
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s27 Of type j. Suppose that thus that the condition is not satisfied. Suppose that t; is larger
s2s than specified by the condition, given t— j. Then a juror of preference type j has a strict
e29 INCENtiVe to announce an i -signal as a g-signal and subsequently vote on the basis of
s30 the known signal profile of his Subgroup and the assumption that the other Subgroup
st CONVicts. Suppose now instead that tj is smaller than specified by the condition, given
sz t— j. Then a juror of preference type j has a strict incentive to announce a g-signal
633 @S an i -signal and subsequently vote on the basis of the known signal profile of his
s Subgroup and the assumption that the other Subgroup convicts.

e3s Step 3 We now prove Point b), corresponding to the set of type 1 reactive SSDEs. The
e3s analysis of condition (9) for type j follows the exact same steps as in Point a). We now
37 examine condition (10), which applies to the type that always convicts independently

e Of the its Subgroup signal profile. Note first that a juror of type — j must be willing to
e30 convict no matter what signal profile is revealed at the communication stage, which
e20 requires (10) to hold. This proves that (10) is necessary. We now show that condition

ea1  (10) is sufficient to ensure no strict incentive to deviate for type — j. An individual
ez Of type — j recognizes that his announced signal is inconsequential for the voting
e3  behavior of his Subgroup and thus has no incentive to deviate from truthtelling. As to
eaa the voting stage, conviction is always ex post optimal, assuming individual pivotality,
ess 1.6, assuming that that the other Subgroup votes for conviction. It follows that a type

ess — J has no strict incentive to deviate at the voting stage.

ea7 Step 4 In the next steps, we show that our characterization of the set of reactive
sas SSDES generalizes to a larger set of voting rules. Let R be the minimal number of

s CONViction votes required for a conviction decision and assume that R > {nH,np}.
eso  TWO key aspects deserve mention. First, assuming R > {n 1, n p } means that indi-
651 vidual pivotality, either in communicating or in voting, implies that the Subgroup
es2 t0 which one does not belong votes for conviction. This replicates the case of Una-
ez Nimity. A second key aspect is that abandoning Unanimity implies that an individ-
e« Ual can now not single handedly veto a conviction anymore. Accordingly, deviat-
ess INg to announcing a g-signal when holding an i -signal is now risky, in the sense
ess that one cannot simply veto an undesirable collective conviction vote triggered by
es7 such a deviation. We now show that the necessary and sufficient conditions given for
ese the case of Unanimity, whether in Point a) or Point b), extend to this more general
659  CaSe.

e0 Step 5 We first look at the set of type 2 reactive SSDEs. We first show that the con-
e1 dition of Point a) is sufficient to ensure that none of the two types of deviations
ez 1dentified in step 1 is strictly advantageous. Assume thus that condition of Point a) is
ess respected. Regarding the first type of mentioned deviation, the threshold adopted by
s« €ach Subgroup is ex post optimal at the voting stage, conditional on the locally pooled
ess information and assuming individual pivotality, i.e. assuming that that the other Sub-
s group votes for conviction. We now examine the second type of deviation. Note that
es7 Misreporting a g-signal as an i -signal is either inconsequential or adversely triggers
s an acquittal given a signal profile where the deviating juror would have favoured a
eso conviction. This can thus not be strictly advantageous to a juror. Instead, misreporting
e0 an i -signal as a g-signal is either inconsequential or adversely triggers a conviction

6
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given a signal profile where the deviating juror would have favoured an acquittal. This
can thus not be strictly advantageous to a juror.

We now show that the condition given in Point a) is necessary to ensure that none
of the two types of deviations mentioned in step 1 is strictly advantageous. Suppose
thus that the condition is not satisfied. Suppose that t j is larger than specified by
the condition, given t- j. Then a juror of preference type j has a strict incentive to
announce an i -signal as a g-signal and subsequently vote on the basis of the known
signal profile of his Subgroup and the assumption that the other Subgroup convicts.
Suppose that instead t j is smaller than specified by the condition, given t— j. Then a

eso juror of preference type j has a strict incentive to announce a g-signal as an i -signal

681
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and subsequently vote on the basis of the known signal profile of his Subgroup and
the assumption that the other Subgroup convicts.

es3 Step 6 We now examine the set of type 1 reactive SSDEs. The analysis of (9) for type
es4 ] Tollows the exact same steps as the analysis of type 2 reactive SSDEs. The analysis
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of (10), corresponding to type — j, is identical to that given in step 3 and thus not
repeated.

A further lemma on reactive SSDEs

The following lemma states in close form the existence conditions for a type 2 reactive
SSDE.

Lemma 10 SSDEs.
(tH, to) constitutes a type 2 reactive SSDE iff, V j € {H, D}, itholds thattj <

1,...,nj and

F(p,gj) +nj+Kptjn-j F(p,dj) +nj+Kp,t-j,n_j +2
<ti< i
2 J

2
(13)

where

T Tk BA-px.n) T

o In 1-94° I B
p.a)=—"—_ = - : (14)
n 2 and K(p, k, n) In 1E_p

Proof Note that (t4, tp) constitutes a type 2 reactive SSDE iff, V j € {H, D}, it
holds thattj € "1,...,nj and the following two inequalities simultaneously hold:
- N N
. B(p.tj —1nj)  Tret B(p,x,n-j). n <q,
B(ptj ~1,n)) “uory B(R.X.N-j) +B(L=pti—=1,nj) o B(L—p,x,n-j)
(15)
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701 and
NS N
) | B(p,t,,nj)- xot| B(p,x,n—j)
02 Q= 5 - A= g =.
(P05 o B(RN—)) + B - ptjnj) et B - px,n-j)
703 (16)
70a  Now, note that (15) can be rewritten as follows:
{n,,- 3
705 (1—qgj)pi~t@a—pm-t+rtl B B(p,x,n-j)J a7
X =>t—j
(. 3
<qi@—p)i-tpn-utt U B - p,x,n ).
X =t—j

7

Applying the In-transformation to both sides of (17), the above inequality can then
be rewritten as follows:

=]
<

7

o
=}

n,j =

T In ’int#B(lf p.X.n—j)
N 1-g; =t B(pX,-j) nj 18)
709 - -+ + < tj.
— - -
2In 1-p 2In 1’—Lp 2

710 One can perform a similar transformation for (16). One obtains an inequality stating

71 that t jis weakly smaller than the LHS expression in (18) plus one.

i
=

2 Appendix 2
ns  Lemma 4: reactive SNDEs

7a Step 1 We first analyze the set of reactive SNDEs in which both preference types
ns condition their play on their information. Note that a given preference type cannot mix
nsafter both i - and g-signals (see Condition 4). Within this subclass of equilibria, there
77 are altogether nine possible symmetric voting profiles which are listed and numbered

ns in Table 1 below. Letters x , y € (0, 1) are used to denote mixing probabilities.

Tablel .

og',off of, 0P og',of of.oP og',of" of, o
1 1,0 1,0 4 x,0 1,0 7 x,0 1Ly
2 1,0 X, 0 5 1,x 1,0 8 1, x

3 1,0 1,x 6 x,0 y, 0 9 1, x 1y
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We show that none of the above nine strategy profiles constitutes an equilibrium.
720 Equilibrium 1 trivially never exists whenm > 1. Equilibria 2,4 and 6 do notexistunder

721 the assumption that gp < 3 (p, n, n) given that they require eitherqo = B (p,n, n)
722 Or gy = B (p, n, n) (recall gn < gp). Recall in what follows that pi v j stands for the
723 event in which a juror of preference type j is pivotal, i.e. all remaining jurors vote for

conviction. Equilibria 3,7 and 9 imply (19) and (20), as given below.

gp = P(Gli, pivD)
-nD71~ “NH
(1-p po +(1—p) pog‘+(1—p)0:*
=4 N .

1

L(l—p) po +(1—p)' L |oc1“+(1—|0)01'*n J
- H

+p 1-Pp)oP + paP (1 - p)oH + poH

g i g i

(1-p)p po®+(1-p)oP p0“+(1—p)0!*
<[ ¢ ' o 1 o

(19)

np—1- “ny-—-1

P |

-np—-1-

(L-pp poP+(@-pol " poH+(@-poH
L B i iy "MH— 1*

+p-p) A% p)o® + pa® (19 p)oH + po
g i g i

_ PFs _.Br
SEFITaopFl P

P 1-p
qu = P(Gli, pivH)
o H H
(1-p) po_ +(1—p) po_ +(1-p)o’

- . o )

L(1— ) po®+(W=po® " polt+ (- pot T ‘4

+p 1—p)o +pcD' 1—%)0H+poH
g i g i

np—-1- “ny-—-1

(1- py? poD+(1—p)c_D' poH + (1 - p)o*
>( A g A

(1 - p)? po’ D+(@-po® " poH+ (- p)"
b-1- Ny -1
+p2 1—p) D+p0D1 1—%)0'*+p0Hr "
g i ( g i
(1-pF;
1-p

where i
ri=(1-r) oP+(L-r)o®
Fl ryg [ My i

“ny-—1

Now, using the fact that for any positive constants A, B, C, D, , AB <
c
g < p. note that there exists a positive integer T s.t.

>

D-1-°H+(1‘r)°H ,re{p (1-pk

C <

C+D



Subgroup deliberation and voting

737

B(p, T—1,n) pT —1(1 — p)n-T+1 B a- p)FQ1 3 pT(— p)nT
BL—p,T—1n) ~(@—pT-1p-T+1 ~ PR~ 1-pTp"T

B(p, T,n)
738 = (21)
B(L—p, T,n)
- . 2"
739 and multiplying all expressions Q(le)
—p)2
B(p,T,n) p'@-p"T pF? pT +1(1 — p)n-T-1
740 — < [) <
BL—pT,n) (@-p)Tp" T “(@A-pFLp @—pTHipn-T-1
B(p, T+ 1,n)

741 = : . (22)
B(L—p, T+1,n)

782 Summarizing, inequalities (19) and (20) thus imply that there exists a positive
s integer T s.t.:

7

N

724 B(p,T—1Ln)<Pi<qgu<gp <P1<B(p.T+1n). (23)

745 Theinequality relation (23) howevermeansthatm < 1ifequilibrium 3,7 or9exist.
726 BUt we have assumed m > 1. As to equilibria 5 and 8, note that they imply that the
7 following two conditions (24) and (25) hold:

748 qH = P(G||1 inH)

@-p)pI po’ +<1—p)|'”H_l

749 —

(
(L-p)[p]"® poH +(1-p)o
L+|o[1—|o]”D ( gp)o +p0 " 1*

g i
(1-pF?
750 = (1 _ p)F2+ pFQ =. E_, (24)
p 1-p
751 ao < P(G|91 pl VD-) “NH
[p]e ch +(1- p)cx_H
752 = £ )
C Drepots @ oo,
+[(L-p)™ ( —p)o + po"
g i

p[p]™ -poH +(1 - p)oH
753 <[ 9:-' |H N
p[pl"® poH + (1 - p)o! ‘
b ports pon
g i

pF3
~ pF2+ (L - p)F?
p 1-p

=: Py, (25)




M.T.-L. Quement, V. Yokeeswaran

755 where

no H H~nH71

2

756 Fr:=[r] rag +(1—r)o; ,re{p (1-pk

757 The inequalities (24) and (25) imply that there exists a positive integer T s.t.:

758 B(p,T—1,n)<Pr=qu<qp<Pr<B(p,T+1,n). (26)

759 Now, note that (26) means that m < 1 if equilibrium 5 or 8 exists. But we have
mwoassumed m > 1. To summarize Step 1, we have now shown that none of the nine
761 poSsible reactive SND voting profiles in which both types condition their play on their
762 information (as listed in Table 1) ever constitutes an equilibrium.

763 Step 2 The nextstepsexaminethe setof putative reactive SNDEsinwhichatleastone of

764 the two preference types plays (og = 1, 0 = 1) while the other type conditionsits play
765 ON its information. Here, altogether six profiles need to be considered, depending on
766 the nature of the strategy, (og = 1, oi = 0) or (0g = 1, Gi = x) or (g = Y, 0j = 0),
w7 0< X,y <1, played by the preference type that conditions its play on its signal
s as Well as on the identity of the concerned preference type. Step 3 deals with the set

o Of putative equilibrl'Ba in whiBh the hawks condition their play on their information
770 While doves play (0 © = 1,0 © = 1). We show that this set is empty. Step 4 examines

g i
m equilibria in which the doves condition play on their signals while the hawks play
m (O = 1,0'. = 1).
g i
773 Step 3 We here examine strategy r(Bclles in wl:klich the hawks condition their play on
72 their signal while the doves play (%g = 1,0 © = 1). Insuch an equilibrium 1t must
1

s be the case that:

776 P(Gli, pivh) < qn < P(G|g, pivH), (27)
m go < P(Gli, pivb)< P(Glg, pivp). (28)
78 Now, note however that:
779 P(G|I, inH) - “NH-1
(1-p) po"+ (@~ p)H
780 = - " L o1 . " L, -1
d=p) po" +{d-p)o" +p 1-p)jo™ +po™
g i 9 i
@-p? poH+@-por
781 > 5 " o L ohH—1 5 - : o L he—1
d-=p)y¢ poc” +{Id—-p)o" +p= 1-p)jo7 +po”
g i g i
(1-ppF3
702 b (29)

Ta-pFIepE EE
p 1-p
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- .y
(1-p) po: +(1-p)o*
1
784 P G ., i = = = = =
’ (Gl PIVe) = oo s @ =P ™+ p L~ plo T+ o
g [ - g [
(1-p)p po" + (1~ p)o"
785 < - " L, o=l . " -1
d=p)p po™ +({I—-p)o~ +pll—=p) 1-p)0"~ +po”
g i ( g i
F3
786 = pF 3¥ 8 _p p)Fd =. P3, (30)
p 1-p
w7 where
=m0 ot oot re(p -k
g i
789 Now, (29) and (30) imply that there exists a positive integer T s.t.:
- B(p,T—1,n)<P3<gnu<gp <P3<B(p,T+1n). (31)

701 This inturn means that m < 1. We have however assumed m > 1. Therefore this
» type of equilibria does not exist.

7

©

73 Step 4 We now examine (?_guilibria'_in which_the doves condition play on their signals
79 While the hawks play (0 ™ = 1,0 ™ = 1) . There are a priori three Such candidates.

w05 The first candidate is the equilibrium given by (o H = 1,07 =10P=x,0P=0),
g [ g i
796 for 0 < x < 1. However, itexists iffqp = B ( p, N b, n p), which is never true by
77 assumption. The second candidate is the putative equilibrium A given by (cHy =
798 l,GiH =108 =1,0P =0). The third candidate is the putative equilibrium B
ws givenby (o' =100 =100 =10P =y), for0 <y <1.We show that
soo  either equilibrium A or B (never both) exists forany gp € (1 — p), B (p,nh b, np)).
sor  Equilibrium A trivially exists iff B (p,np— 1,np)<gop<B(p,hb,np).Asto
sz equilibrium B, note that y satisfies:

(L-plp+(—py" (32)

803 aqp = _ 1’
A-p)p+@-pyl"™t+p[l-p+py]"ot

804 so that, recalling explicitly the dependence of y on p,qp and np,

1

L=9pIG=B) "0 p — (1 p)

p— (ﬂqllg_gl__ﬂl "Dfl(l_p)

805 y(p,qD,nD) = (33)
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806 Now, note that y (p,1 — p,np) =1, y(p,B (p,npo — 1,np),np) = 0 and

o 9Y(P.dp,nD)
dqp
808 = ! n 2
- . n =1 I m —1_
padbMp—1) P~ o (P—D@—-1)° +P a4 (p—1 (-1
w00 % 2p2-3p+1
1 'nﬁ{l(nD72)

qu( p— 1) (QD_ 1)
810 < 0.

su1 It follows that equilibrium B exists iff L — p<go<B(p,np— 1,np).
si2 Lemma 5: reactive SPDEs

s13 Step 1 Suppose a reactive SPDE in which hawks trutfully reveal their signals and
s1a doves babble. We know from Lemma 3 that such an equilibrium exists iff there
ss isatH € {1,...,nH}StB(p,tH— 1, NH)<QgH <B(p,tH,nNH)andgp <
sis B (P, tH, nH+ 1) . However, given our assumption that m > 1, there by definition
a7 existsnosuchty.

sis  Step 2 Suppose now a reactive SPDE in which doves truthfully reveal their signals and
s hawks babble. Given our assumption on qp , there exists a (unique) t * € {1,...,np}
s0 S.t.B P, t[j‘ —1,np <gp =B p, I'g* ,np . Furthermore, \We know that qn <

o1 B P, ty.np+ 1 given our assumption that m > 1. It follows from Lemma 3 that
s22 there exists a unique SPDE in which doves truthfully communicate while hawks bab-
sz Dble.

s2« Lemma 6: reactive SSDEs

e Point &) Note first that there exists a type 2 reactive SSDE if :

26 PGlgl =T"|gl =0 <q =B'p,n,n ,Vje{H D} (34)
i j i

827 Note that there exists a type 1 reactive SSDE givenbytj € 1,...,nj andt-j =0
s IfT:

- - . .- - < P-G.\gl nj --
829 B p,O,nj <qJSB p,nj,nj N q—J i JZTJ :|g|—J =0 .

830 (35)

8a1 Clearly, using together conditions (34) and (35), there always exists some reac-
sa2tive SSDE given our assumptions on gqn and gp . Indeed, if B (p, 0, nH) < gu <
g3 B (pP,NH,nH) and B(p,0,np) < gp < B (p,np,Nnp), then either (34) is true or
s (35) is true for some j € {H, D} . Note finally that conditions (34) and (35) do not
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prohibit the simultaneous existence of a type 1 reactive SSDE and a type 2 reactive
SSDE.
Note that there may exist multiple reactive SSDEs. We prove this by an example.

Suppose nH =6, np=8,g+ = 0.7, gp = 0.9 and p = 0.83. For these parameters,
it is readily checked that there exist two type 2 reactive SSDEs given by respectively

(th =3, tp=4)and (th = 2, tp = 5).
Point b) Using the conditions given in Lemma 7 in Appendix 1, call t BR (tj) the

unigue best response threshold of Subgroup i to threshold_t j of Subgro , as
defined 1n (15) Note thateithert_B%(t?Jr = IE‘n?e(t,-) e P SR EY - 1
1 1

sa SUppOSse that (K, 1) constitutes a reactive SSDE. Given the behavior of t BR (tw), only
ass the four following threshold profiles may also constitute reactive SSDEs: (k —1, 1 +1),

846

(k—1,1), (k+1, 1) orto (k +1, | —1). Furthermore, given the behavior of {7 (tp), only

sa7 the four following threshold profiles may also constitute reactive SSDEs: (k —1, | +1),

848

849

850
851

852

853

854

855

856

857
858

859
860

861

862

sss profile B is the unique reactive SNDE (i.e. if]

864

8

I}

5

866

867

868

869

8

2

0

871

872

873

874

875

(k, I+ 1), (k, I = 1) or (k + 1,1 — 1). Taking the intersection of the two sets, the only
neighbouring points to (k, I) that may constitute reactive SSDEs are (k — 1,1 + 1) or

(k + 1,1 — 1). Suppose finally that the two best response functions do not intersect in
any of these two neighbouring points. Then, this implies that they do not intersect in

any other point than (k, I).
Appendix 3

Proposition 1: reactive SPDE vs reactive SNDE

Step 1 Recall that the unique reactive SPDE involves doves truthfully revealing their
signal and voting accordingto T ”g while hawks babble and always convict.

Step 2 Recall that there always exists a ynique regctive SNDE, given by profile A or B.
Recgll also that profile A is gl}\]/en by (o HX 1,06'?' = 1,01\BD= 1g,0 Sl= }653 Suppose
g g i

|
thatB(p,np—1,np)<gp<B(p,nbp,Nnp), sothat equilibrium A is the unique
reactive SNDE. For these parameter values, the unique reactive SNDE and the unique
reactive SPDE are thus outcome equivalent.

Step 3 Steps 3 to 9 are dedicated to the examination or parameter values for which
active SND) fl—p<gp< np— 1 np)).
Recall that the latter equilibrium is given by (clH :pl,oq_JP = %8% = 1,04{’ = yg)
g i g i
withy € (0, 1). The unique reactive SPDE is here characterized by a dove threshold
T8> < np — 1. The transition from the unique reactive SNDE to the unique SPDE
is clearly strictly beneficial to the doves, as these are now optimally aggregating their
information. In contrast, it however remains unclear whether the transition from the
first to the second equilibrium is strictly beneficial to the hawks as well. If we can
prove that this is the case, then we know that the unique reactive SPDE is strongly
Pareto improving w.r.t to the unique reactive SNDE, for the concerned parameter
values.

Step 3 All we need is thus to show that, starting from the reactive SND profile B,
allowing doves to Subgroup Deliberate while keeping the hawks’ play fixed will be
strictly beneficial to the hawks. We do so in the next steps. Denote by M j (dp, SD, tp)
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ars the expected payoff of preference type j when the doves are allowed to Subgroup
s77 Deliberate and adopt a threshold tp , while hawks always all vote for conviction as in
s the reactive SND profile B. Let tp (qp) be the optimal threshold adopted by the doves

eo  in these circumstances, given gp , i.e. lettp (qp) = T "B. Denote by M i(gp,ND)

sso  the expected payoff of preference type j in the reactive SND equilibrium B. Denote

g1 by y(qp) the mixing probability of the doves after an i -signal in the reactive SND

sz equilibrium B. Note that:

@

883 W(gj,adp) := Mj(qp, §E) to(qp)) — Mj(dp, ND) (36)
=—P(G)  B(p,x,np)[y(ap)1"®*(1 —qj)
x =0
+P(1)  B(L— p,x,np)[y(qo)]"® *qj
x =0
886 +P(G) - B(p,X,nD)(l_QJ')
x=tp(gD)
057 —P(1) B - px,np)j. (37)
x=tp(qp)

It follows that:

8

@
©

no
889 0 Wj(q 'Dq )/?q =2 (B(p,x,np) + B(1 — p,x,np)) [y (qD)]nD—x (38)
=0
1 o
" 2 (B(p,x,np)+ B(1—p,x,np)).
x=tp(dD)

801 The sign of 9 W (g j, qp )/9q j is thus determined by the difference in the total
se2 probability of conviction implied by each of the two voting scenarios considered, i.e.
s No Deliberation by the doves according to the symmetric voting strategy (o § = 1,
ss 2 = Y (o)) or Subgroup Deliberation by the doves with an optimally chosen
sos conviction threshold tp (gp). As the hawks’ strategy is unchanged and the doves are
aos able to share their information when they Subgroup Deliberate, W (qp, gp) > 0. If
o7 We can show that for all values of gp and corresponding values tp (gp) and y(gqp),
sos the derivative d W (g j, gp )/0qj is negative, then it is also true that W (gH, qp) > 0,
a0 because qH, < 4o. Which in other words means that also the hawks benefit from,the

90 Change mThe oves’ strategy, if they continue to apply the strategy ZG =10"=1)

o1 that they follow in the reactive SND equilibrium B.

902 Step 4 Define the following two expressions:
np +1. .
"D 4 1ifn s even; = ° if n isuneven. (39)

903 | (nD) = —
2 D 2 D
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904 and forall z € {l (np),...,np}
TOW (g, t)agjforz =1
W= A, /e stors = 1no) and n puneven. (o)
W D j
e—0*

906 In order to show that dW (qj, gp)/dqj is negative for all gp € “51.B(p,np — 1,
w7 N D)), it is enough to verify that W (z) < 0, forallz € {I (np),..., np}. This
s 1S true for the two following reasons. First, stating that W (z) < O, forallz &
w {I ("D),..., np} is equivalent to stating that d W (q j, qp )/dqj < Oforqp = 7

a0 aswellasforqp = Iim(F( p,z—1l,np)+¢Vze{l(np)+1,...,np} Sec-
£— +

o1 ondly, given that y(qp ) is decreasing in o and given that tp (qp ) is constant for all

a2 o € (B(p,z—1,np),B (P, z, nD)], the derivative 9W (qj, gp )/2q j is a decreasing

a3 function of gqp forallgp € (B(p,z — 1,np),B (p,z, np)l.

a1a Step 5 The proof that W (z) < Oforallz € {I (np),..., np} is divided into five steps
as (6, 7, 8, 9 and 10). Step 6 shows that W (np) < 0. Step 7 shows that W (I (np)) < 0,
a16 for all n p even. Step 8 shows that W (I (np)) < 0and W (I (np) + 1) < 0, forall
917 N p uneven. Step 8 shows the following. If n pis even, then if W (z2) < W (z + 1) , it
s follows that W (z + 1) < W (z + 2) forall z € {I (np), ..., np — 1}. If, in contrast,
o9 N D iS Uneven, then if W (z) < W (z + 1), it follows that W (z + 1) < W (z + 2) for
w allze {l (np) + 1,..., np — 1}. Step 10, finally, shows that the four facts proven in
a1 Steps 6, 7, 8 and 9 imply together that W (z) < 0, forall z € {I (np),..., np}.

o2 Step 6 Note the following fact:

923 Fact1 :W (np) < 0whether np is even or uneven.

924 Settingz = np, Fact1 follows immediately fromthe factthaty (8 (p,no — 1,np))
s = Owhile limto(B(p,np—1,np) +€)=np.
e—0"

w6 Step 7 Note the following fact:

027 Fact2 :W (I (np)) <0 if np is even.

2  NoteherethatB (p, I (np) —1,np) = 4. Also,to(qp) = I(np)ifgp €

w2 3,8 (p,1(nD),nD)). For to (qp) = 1 (np), the total probability of conviction,
0 If doves Subgroup Deliberate and hawks always convict, is given by:

N

no 1_ -

1 - R }
2 (B(p,x,np) + B(1 - p,x,np)) = , 1 B p,7D,nD . (41)

x=1(np)

922 Onthe other hand, for gp = 3, the total probability of conviction in the equilibrium
s B is given by:

9

@
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no ~(1=p) -np1 -
934 1 (2 p 1) p 1
2 - - ‘71 -Nnp - (42)
p— (=P "o )

035 Now, note that (42) < (41), for any p > 3and n p > 4. Note that given that we
o6 impose qp > *, the equilibrium B does not exist if np = 2 so that we can ignore this

case. Indeed, B exists only if ,0p—1, . For the case of np = 2, this
o translates Fnto (s[5} <?3 (p, { ZgDzép\iN(tﬁcﬂ%ontraBR:%s the assumption tRat go > :

2
o0  Step 8 Note the following fact:

940 Fact3 :W (I1(np)) <0andW (I (np) + 1) <0 ifnp isuneven.

9a1 We first look at W (I (np)). Forgqp = 35 note thattp (gp) = I (np) . The total

a2 probability of conviction fortp (qp) = 1 (np) , if doves Subgroup Deliberate and
sz hawks always convictri is givenby:
D
1 1
et 2 (B(p,x,np) + B(L— p,x,np)) = 5 (43)
x=I(np)

o5 Onthe other hand, for gp = 3, the total probability of conviction in the equilibrium
s B isgivenby:

9.

B

-(1—p) -npR1 -
L@p-1" 1
947 5 - ] .71 -np (44)
p— G=B-T"o7(1 - p)
948 We now look at W (I (np) + 1). Note thattp (gp) = | (np) + 1 if
a9 do € (B (p, I (np),np),B (p, ! (np) + 1,nD)).
ss0 The total probability of conviction fortp (gp) = 1 (np) + 1, if doves Subgroup
ss1  Deliberate and hawks always convict, is given as follows:
1 no
92 2 - B(p,x,np)+B(1—-p,x,nD))
x=l(np)+1
- = (1= B(p, 1 (0),np) ~ B(L = p. 1 (nD) ,ND)). (45)

954 On the other hand, forqp = B (p, | (np),np), the total probability of conviction

o5 in the equilibrium B is given by:

a
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UV

@™ TRy

2’ _1 -Np - (46)
p— @R oty

n2

Now, note that (44) < (43) and (46) < (45) , forany p € (3, 1] andnp > 3. Note
that for n p = 1, the equilibrium B does not exist so that this case can be ignored.
Indeed,lB existsonly ifgp < B (p, 0,1) = 1 — pifnp = 1. But we have assumed

(¢]») > 5.

Step 9 Note the following fact:
Fact4 : IfW((@z+1)-W(z) >0thenW (z+2) - W (z + 1) >0,

forallz € {I (np),..., np — 1} if np even,
forallz € {I (np) +1,...,np — 1} if np uneven.

Using the Binomial Formula, forgp = B (p,z— 1,np), we may define and
rewrite the following new function, which we use to prove the statement:

- o -
8(p,z,np):=  (B(p,x,np)+B(1—p,x,np)) [y(B(p,z— 1,np))]">*
x =0 -
“B(1— pz—1.np)(1— p) NB -1 +i
@2p-1)'° B(p,z—1,nD) P
= — - — - 47
B(1— p,z—1,np)(1—p) nD
p- B(p,z—1,nD)p (f_ p)
Note that:
W(E+1)-W(2) =8(p,z+1,np)—8(p,z,np) (48)
+B(p,z—1,np) + B(1 - p,z—1,np).
Also,
B(p,z—1,np)+B(1—p,z—1,np)>0, Vze{l,...,np}. (49)

Note furthermore that

1 1
,8(p,z,np) + ,8(P.2+2,np) >8(p,z+1,np). (50)
Inequality (50) follows from the fact that the function 8 (p, z, np) is decreasing and

convex in z over the relevant domain. The latter fact follows from the fact that the
following two functions:
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B -pz- Ln ) =D)L
079 fi(p,np,2):= - B(p.z _‘1, rEE) +1 (51)
980 and
081 fa(p,Np,2):= - ! — P (52)
o— B(ls_([:)’,zz:i':?)(;l)_m nD—l(1 ~p)

982 are themselves decreasing and convex in z over the relevant domain. Note finally
os3 that:

1
* 58(p’z'nD)+;8(p,z+2,nD)>8(p,z+1,nD) (53)
985 < 8(p,z+1,np)—8(p,z,np)<8(p,z+2,np) —8(p,z+ 1,np).

6 Using (48),(49),(50),(53) yields our statement that W (z + 2) — W (z + 1) is also
o7 positive whenever W (z + 1) — W (z) is positive.

9

@

o8 Step 10 From Facts 1,2 and 3 we know that W (z) is negative at the boundaries. From
seo Fact 4, we know that if W(z) starts to increase it never decreases again. It follows that

w0 ithastobethatW (z) < 0,forallz € {I (np),..., np}, whether np is even or uneven.

o001 Step 11 GiventhatW (z) < 0,forallz € {l (np),..., np}, itfollows by theargument
%2 giveninstep 4 that oW (qj, qp)/dqj < Oforallgp €~ 3,B(p,np — 1,np) , which
oss impliesthat W(qH,qp)> Oforallgn € [0,gp)andgp € 3,8(p,np — 1,np) .

sa Proposition 2: reactive SSDEs

905 This complements the part of the proof of Proposition 2 that appears in the main

906 text. We prove in what follows that transiting from (t4 — 1,tp + 1) to (th — 1, tp)
907 18 beneficial for the preference type H given our assumption that m > 1. A similar

ses argument shows that transiting from (tn — 1, to + 1) to (tH, to + 1) is beneficial for
900 the preference type D given our assumption that m > 1. Assume that

B(p,tD,nD).-nH B(p,x,nH)-

000 -_:Zt”’l _<_OH (54)
B(1-p,to,np) M. B(L—p,X,nH) 1-qn

1001 and

B(p.tD+1,nD)-'nit B(p, X,NH)
1002 _ClD_< — X=tH-1 _. (55)
1-ago0 B(-p,tp+1,np) ~ "™ B(1 - p,x,nH)

X>tH-1
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By a standard argument already used in Appendix 2, we furthermore know that by
definition, there exists some integer T € {1,..., n} s.t.

B(p, T—1,n) _ B(p.to +1,n0) 71 B(P.X,nH)

BL-p, T=11n) B1-p,tpo+1np) thHfl B(1— p,X,NH)
B(p, T,n)

“Bl-p.T.0) (%)
and
B(p, T—2n) _ B(p’tD’“D)uZLHil B(p., X, NH)
BA=pT=2m B8(1-p,to,np) -:”th,lB(l— P, X, NH)
B(p, T—1,n) 57)

Now, the inequalities (54), (55), (56) and (57) imply that there is some integer
Te{l,..,n}st
B(p1T—2,n) < qH - qD < B(plT!n) ,
Bl-pT-2n) 1-gv 1-ao B(A-pT,n)

which contradicts our assumptionthatm > 1. It follows that (54 ) and (55) cannot
be true.

Proposition 3: reactive SSDEs vs reactive SPDE

Step 1 The uni{que rei\active SPDtI)E is characterized by a dove threshold, T "D Now, there
AT CERED 142 wes? ﬁ?PH ): o, lglp= T"® and there exists a reactive SSDE

) D
given by ty = O and tp = T pP. This latter reactive SSDE is outcome equivalent
to the unique reactive simple SPDE. If there exists any other reactive SSDE, then by

Proposition 2, it is strongly Pareto dominant w.r.t. the reactive SSDE in whichtq =0
ndto = TP, and thus alsastrongly Pareto dominant w.r.t. the unique reactive SPDE.
g'['EPQ In-E:%sé &% qH = 9’ 8 Pg)(H = b(?ng ZH%WB and tﬁere thus exists no

) D
reactive SSDE given by ty = O and tp = T3'®. We know however from Lemma 6 that
there exists some reactive SSDE. We now conduct an argument based on a hypothetical

adjustment process. Start from the reactive SSD profile inwhichty = Oandtp = T3P.
We know that this profile (although it is not an equilibrium profile) yields a payoff to
each preference type that is equivalent to that received in the unique reactive SPDE.
Now, let hawks choose their collective best response to 5P, i.e. tER (T'1P). We know
that the latter is strictly larger than 0 given that qu> P G -|gly= 0, |glp=pT "° .
This adjustment is strictly beneficial to hawks and also to doves, given that hawks
become more lenient. Inafurther step, let doves revise their threshold and choose their
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own best response t BR (t BR (T nDD ). gaip, the adjustment is by definition beneficial
to doves as well as to hawks, as doves become weakly harsher. Repeat the adjustment
of the hawks, etc.

This process of mutual adjustment converges to a reactive SSDE, and every step
of the adjustment process is strictly welfare improving for both preference types. It
follows that the reactive SSDE to which our adjustment process converges is strongly
Pareto dominant w.r.t. the unique reactive SPDE. Note furthermore than any other
reactive SSDE is less polarized than this first reactive SSDE and thus, by Proposition
2, strongly Pareto improving w.r.t. the latter. It follows that any reactive SSDE is
strongly Pareto dominant w.r.t. the unique reactive SPDE.
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