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Abstract

In his classic monograph, Social Choice and Individual Values, Arrow introduced
the notion of a decisive coalition of voters as part of his mathematical framework
for social choice theory. The subsequent literature on Arrow’s Impossibility Theorem
has shown the importance for social choice theory of reasoning about coalitions of
voters with different grades of decisiveness. The goal of this paper is a fine-grained
analysis of reasoning about decisive coalitions, formalizing how the concept of a decisive
coalition gives rise to a social choice theoretic language and logic all of its own. We
show that given Arrow’s axioms of the Independence of Irrelevant Alternatives and
Universal Domain, rationality postulates for social preference correspond to strong
axioms about decisive coalitions. We demonstrate this correspondence with results of
a kind familiar in economics—representation theorems—as well as results of a kind
coming from mathematical logic—completeness theorems. We present a complete logic
for reasoning about decisive coalitions, along with formal proofs of Arrow’s andWilson’s
theorems. In addition, we prove the correctness of an algorithm for calculating, given
any social rationality postulate of a certain form in the language of binary preference,
the corresponding axiom in the language of decisive coalitions. These results suggest
for social choice theory new perspectives and tools from logic.

1 Introduction

Kenneth Arrow’s monograph Social Choice and Individual Values [Arrow, 2012], originally
published in 1951, revolutionized the study of social decision making. The centerpiece of
the book is what is now called Arrow’s Impossibility Theorem, which shows that the only
group decision method satisfying several plausible principles is a dictatorship. This ground-
breaking theorem has been studied from a variety of perspectives,1 and many different proofs
∗We wish to thank the referees for Social Choice and Welfare, Mikayla Kelley, and Kotaro Suzumura for

helpful comments.
1For instance, see Saari 2008 for a geometric perspective, Baigent 2010 for a topological perspective,

Abramsky 2015 for a category theoretic perspective, Lauwers and Van Liedekerke 1995 and Herzberg and
Eckert 2012 for model-theoretic perspectives, Fishburn and Rubinstein 1986 and Shelah 2005 for algebraic
perspectives, and Bao and Halpern 2017 for a quantum perspective.
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can be found in the social choice literature (e.g., Fishburn 1970, Barberá 1980, Reny 2001,
Geanakoplos 2005, Yu 2012, Sen 2014). The ramifications of Arrow’s result are far-reaching:
the Impossibility Theorem and related results have influenced discussions in many areas of
economics [Buchanan, 1954, Hammond, 1976, Campbell, 1992, Fleurbaey and Mongin, 2005,
Le Breton and Weymark, 2010, Sen, 2017], political science [Riker, 1982, Dryzek and List,
2003, Mackie, 2003, Patty and Penn, 2014] and philosophy [Hurley, 1985, Okasha, 2011,
Kroedel and Huber, 2013, Stegenga, 2013, Morreau, 2015, MacAskill, 2016]. It is a testament
to Arrow’s insight that his theorem continues to inspire generations of researchers.

One lesson from Arrow’s own proof of his Impossibility Theorem, as well as the sub-
sequent literature, is the importance for social choice theory of reasoning about decisive
coalitions of voters.2 To prove impossibility theorems, social choice theorists often proceed
by laying down axioms about group decision methods and then deriving consequences about
decisive coalitions. One might have different views about the acceptability of such conse-
quences depending on the group decision problem being studied. For example, in a voting
context of “one person, one vote,” one might think that only majorities should be decisive.
In a welfare context, one might think that a group of the least well-off members of society
could be decisive, even though they do not constitute a majority. Or in a context of aggre-
gating expert opinions, one might think that some non-majority group of experts may be
authoritative on the question of whether policy x is better than policy y, although they are
not authoritative on whether x′ is better than y′. A powerful feature of Arrow’s framework
is that one can ask questions about decisiveness in all of these contexts.

The goal of this paper is a fine-grained analysis of reasoning about decisive coalitions,
formalizing how the concept of a decisive coalition gives rise to a social choice theoretic
language and logic all of its own. We show that given two of Arrow’s axioms about group
decision methods, namely the Independence of Irrelevant Alternatives (IIA) and Universal
Domain (UD), rationality postulates for group preference correspond to strong axioms about
decisive coalitions. We demonstrate this correspondence with two types of results. The first
type is familiar in economics: representation theorems. The second type of result, building
on the representation theorems, comes from mathematical logic: completeness theorems.
Our completeness theorems show that the axioms about decisive coalitions that we identify
capture every consequence of IIA, UD, and the rationality postulates that can be stated in
the language of decisive coalitions, in the sense that every such consequence is derivable from
our axioms, using some simple rules of inference. Without such a theorem, there would be
no guarantee that our set of axioms about decisive coalitions does not miss some important
principles about decisive coalitions that follow from Arrow’s axioms about group decision
methods. With the completeness theorem, we have a guarantee. What is important for
social choice theory is not having a completeness theorem per se, but rather having a set of
axioms about decisive coalitions that comes with such a guarantee.

This work continues a strong tradition of using ideas from mathematical logic in social
choice theory. A number of social choice theorists, including Arrow and Amartya Sen, have
noted the influence of mathematical logic on their thinking.3 An early use of results from

2Reasoning about decisive coalitions is also central in the theory of judgment aggregation (see, e.g., List
and Polak 2010).

3In a chapter entitled “Origins of the Impossibility Theorem” [Arrow, 2014], Arrow recalls: “As it happens,
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mathematical logic in social choice theory is Rubinstein’s [1984] proof of the equivalence
between multi-profile approaches and single-profile approaches to social choice.4 There is
now a rich literature developing logical systems that can formalize social choice results
[Wiedijk, 2007, Agotnes et al., 2009, Nipkow, 2009, Tang and Lin, 2009, Troquard et al.,
2011, Endriss, 2011, Grandi and Endriss, 2013, Ciná and Endriss, 2016, Pacuit and Yang,
2016, Salles, 2017]. We do not attempt here a comparison between our logical approach and
others found in this literature. In short, our goal is different: rather than adapting existing
logical systems to formalize social choice results, we aim to develop a new logical system that
captures the style of reasoning about decisive coalitions familiar to social choice theorists.

Indeed, we show that there is a simple logic of decisive coalitions that unifies many
impossibility results in the social choice literature. Using this logic, we give formal proofs
of Arrow’s theorem, Wilson’s [1972] theorem, and Gibbard’s [2014] Oligarchy Theorem.

Following Monjardet [1967, 1978, 1983], Kirman and Sondermann [1972], and Hansson
[1976], we can view Arrow’s theorem as resulting from two facts. The first is that Arrow’s
axioms imply that the collection of decisive coalitions is an ultrafilter. An ultrafilter on
a nonempty set V is a nonempty set U of subsets of V such that (i) ∅ 6∈ U , (ii) for
every A ⊆ V , either A ∈ U or Ac ∈ U , (iii) the set is closed under supersets (for all
A,B ⊆ V , if A ∈ U and A ⊆ B, then B ∈ U), and (iv) the set is closed under intersection
(for all A,B ⊆ V , if A ∈ U and B ∈ U , then A ∩ B ∈ U). The second fact is that
any ultrafilter on a finite set is principal, meaning that it contains a set with exactly one
element. Thus, if the set of voters is finite, then there is a decisive coalition with exactly
one member, which is the definition of a dictatorship. From this perspective, Arrow’s
theorem may be seen as resulting from the combination of a social choice theoretic fact
about decisive coalitions—under Arrow’s axioms, they form an ultrafilter—and a purely
combinatorial fact—any ultrafilter on a finite set is principal.5 In this paper, what we mean
by a proof of Arrow’s theorem is a proof that the decisive coalitions form an ultrafilter.
Before one even reaches the conclusion of dictatorship, the conclusion that the set of decisive
coalitions is closed under intersection seems highly undesirable (see Hansson 1976 for a
similar observation). While this holds trivially when the group decision method is unanimity,
in which case the only decisive coalition is the set of all voters, closure under intersection
makes little sense when decisiveness depends in part on a coalition being large enough—for
example, it is obviously violated by the method of majority rule.

The rest of the paper is organized as follows. Section 2 provides the familiar definitions
from the social choice framework, including the two main notions of decisiveness that we
will study. In Section 3, we prove our main representation theorems for decisive coalitions.
Building on this representation theory, Section 4 introduces a family of logics for reasoning
about decisive coalitions. We explain the key property of completeness of these logics, which
we prove in the Appendix. In Sections 5 and 6, we show how to use the logics from Section

during my college years, I was fascinated by mathematical logic, a subject I read on my own until, by a curious
set of chances, the great Polish logician, Alfred Tarski, taught one year at The City College (in New York),
where I was a senior. He chose to give a course on the calculus of relations, and I was introduced to such
topics as transitivity and orderings” (p. 154). Sen [2017, p. xvi] even reports having taught mathematical
logic at Delhi University. For his views on the relation between logic and economics, see Sen 2017, p. 108.

4Earlier Murakami [1968] applied results about three-valued logic to the analysis of voting rules.
5This separation of the social choice theoretic content and the combinatorial content of Arrow’s theorem

is also a theme in Makinson 1996.
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4 to prove Arrow’s theorem and variations thereof. In Section 7, we show how to extend
our framework to reason about the relations between the main notions of decisiveness,
as well as other notions of decisiveness in the social choice literature. Section 8 takes a
“meta”-perspective on the approach of this paper, by showing that there is an algorithm for
translating rationality postulates for social preferences into axioms about decisive coalitions.
We conclude in Section 9 with a discussion of future work.

2 Preliminaries

Recall that a binary relation P on a set X is a strict weak order if and only if P satisfies
the following conditions for all x, y, z ∈ X:

asymmetry: if xPy, then not yPx;

negative transitivity: if xPy, then xPz or zPy.

Negative transitivity is equivalent to the condition that if not xPz and not zPy, then not
xPy, which explains the name. Together negative transitivity and asymmetry imply that
P is transitive. In the social choice literature, ‘transitivity’ usually refers to the transitivity
of a weak preference relation R, while ‘quasi-transitivity’ refers to the transitivity of the
corresponding strict preference relation P . However, since we take P as primitive, we use
‘transitivity’ for the transitivity of P :

transitivity: if xPy and yPz, then xPz.

Let xNy if and only if neither xPy nor yPx. We callN the relation of P -noncomparability.
If P is a strict weak order, then N satisfies the following for all x, y, z ∈ X:

transitivity of P -noncomparability: if xNy and yNz, then xNz.

The relation P is a strict linear order if and only if it satisfies asymmetry, transitivity,
and weak completeness: for all x, y ∈ X, if x 6= y, then xPy or yPx.

We adopt the following notation for classes of binary relations on X:

P (X) is the set of all asymmetric binary relations on X;

O(X) is the set of all strict weak orders on X;

L(X) is the set of all strict linear orders on X.

For any nonempty set X, whose members we call alternatives, and any nonempty set
V , whose members we call voters, a profile P for 〈X,V 〉 is an element of O(X)V , i.e., a
function assigning to each i ∈ V a relation Pi ∈ O(X), which we call i’s strict preference
relation. For x, y ∈ X, let:

P(x, y) = {i ∈ V | xPiy};

P|{x,y} = the function assigning to each i ∈ V the relation Pi ∩ {x, y}2.
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Adapting the terminology of Sen [2017, Ch. 2∗], we say that a collective choice rule
(CCR) for 〈X,V 〉 is a function f from a subset of O(X)V to P (X).6 By xf(P)y, we
mean 〈x, y〉 ∈ f(P). We adopt the following terminology and abbreviations for standard
conditions on a CCR f :

Domain Conditions

• universal domain (UD): dom(f) = O(X)V .7

• linear domain (LD): dom(f) = L(X)V .

Codomain Conditions (“Rationality Postulates”)

• transitive rationality (TR): for all P ∈ dom(f), f(P) is transitive.

• full rationality (FR): for all P ∈ dom(f), f(P) is a strict weak order.

Interprofile Conditions

• independence of irrelevant alternatives (IIA): for all P,P′ ∈ dom(f) and x, y ∈ X, if
P|{x,y} = P′|{x,y}, then xf(P)y if and only if xf(P′)y.

• positive association of social and individual values (PA): for all P,P′ ∈ dom(f), if for
all x, y ∈ X \ {x?}, P|{x,y} = P′|{x,y}, P(x?, y) ⊆ P′(x?, y), and P(y, x?) ⊇ P′(y, x?),
then for all y ∈ X, x?f(P)y implies x?f(P′)y.

• semi-positive association of social and individual values (SPA): for all P,P′ ∈ dom(f),
if for all x, y ∈ X \ {x?}, P|{x,y} = P′|{x,y}, P(x?, y) = P′(x?, y), and P(y, x?) ⊇
P′(y, x?), then for all y ∈ X, x?f(P)y implies x?f(P′)y.8

Decisiveness Conditions

• Pareto (P): for all P ∈ dom(f) and x, y ∈ X, if P(x, y) = V , then xf(P)y.

• dictatorship: there is an i ∈ V such that for all P ∈ dom(f) and x, y ∈ X, if xPiy,
then xf(P)y.

Some implications between these conditions are immediate. For example, FR implies TR,
and LD implies SPA.9 The implication in Arrow’s theorem, of course, is far from obvious.

Theorem 2.1 (Arrow). Assume that |X| ≥ 3 and V is finite. Then any CCR for 〈X,V 〉
satisfying UD, IIA, FR, and P is a dictatorship.

Next we recall the key notions of decisiveness that are the focus of this paper.
6Strictly speaking, as Sen—like Arrow—takes the weak preference relation R as primitive, Sen’s CCRs

send a vector of reflexive, transitive, and complete relations on X to a binary relation on X.
7In this paper, we do not discuss domain restrictions, other than LD. However, we do note that our

results continue to hold on any “saturated” domain that is rich enough for Arrow’s theorem to hold [Kalai
et al., 1979, Le Breton and Weymark, 2010].

8SPA is not as standard as the other conditions, but it has a natural connection to our main topic of
decisive coalitions, explained at the end of this section.

9For the latter implication, if P,P′ ∈ L(X), then P(x?, y) = P′(x?, y) implies P(y, x?) = P′(y, x?)
and hence P|{x?,y} = P′|{x?,y}. So if dom(f) = L(X), then the assumption of SPA implies that for all
x, y ∈ X \ {x?}, P|{x,y} = P′|{x,y} and P|{x?,y} = P′|{x?,y}, which implies P = P′, so f(P) = f(P′).
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Definition 2.2. Let f be a CCR for 〈X,V 〉. For any x, y ∈ X and A ⊆ V :

1. A is almost decisive for x over y according to f if and only if for all P ∈ dom(f), if
A = P(x, y) and Ac = P(y, x), then xf(P)y;

2. A is almost decisive according to f if and only if for every x, y ∈ X, A is almost decisive
for x over y according to f ;

3. A is decisive for x over y according to f if and only if for allP ∈ dom(f), if A ⊆ P(x, y),
then xf(P)y;

4. A is decisive according to f if and only if for every distinct x, y ∈ X, A is decisive for
x over y according to f .

We can keep track of the decisiveness data for f using the two functions in Definition
2.3. For any set S, ℘(S) is the set of all subsets of S.

Definition 2.3. Let f be a CCR for 〈X,V 〉. We define functions D̂f : X2 → ℘(℘(V )) and
Df : X2 → ℘(℘(V )) as follows:

1. D̂f (x, y) is the set of all A ⊆ V that are almost decisive for x over y according to f ;

2. Df (x, y) is the set of all A ⊆ V that are decisive for x over y according to f .

Remark 2.4. In the literature, the letter D is often used for almost decisiveness, but we
wish to use D for either D̂ or D depending on the context.

Clearly Df (x, y) ⊆ D̂f (x, y). Also observe that PA together with UD implies Df (x, y) =

D̂f (x, y). Under SPA, there is still a distinction between D and D̂, but SPA together with
UD implies that D and D̂ are nicely related as follows for x 6= y:

A ∈ D(x, y) if and only if for all B ⊇ A, we have B ∈ D̂(x, y).

The left to right implication is obvious. From right to left, suppose A 6∈ D(x, y), so there is
some profile P in which A ⊆ P(x, y) but not xf(P)y. It follows by UD that there is a profile
P′ such that P(x, y) = P′(x, y) and P′(x, y)c = P′(y, x). Then by SPA, not xf(P)y implies
not xf(P′)y. Thus, P(x, y) 6∈ D̂(x, y), so we have found a B ⊇ A such that B 6∈ D̂(x, y).

3 Representation

One of the most important kinds of results in mathematics in general and in axiomatic
economics in particular is the representation theorem, showing that any abstract structure
satisfying certain axioms can be represented as arising from a more concrete structure.
Examples include: a binary preference relation � on lotteries can be represented by a linear
utility function, in the sense that for any lotteries L and M , L � M ⇔ the expected
utility of L is at least that of M , if and only if � satisfies the axioms in von Neumann
and Morgenstern 1947; a choice function c on a finite set S can be represented by a weak
ordering R on S, in the sense that for any A ⊆ S, c(A) = {x ∈ A | xRy for all y ∈ A}, if
and only if c satisfies the axioms in Arrow 1959; a binary relation > on the powerset of a
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finite set S can be represented by a probability function µ on ℘(S), in the sense that for any
A,B ⊆ S, A > B ⇔ µ(A) ≥ µ(B), if and only if > satisfies the axioms in Kraft et al. 1959.

For our purposes in this paper, the key notion of representation is the following.

Definition 3.1. Let K be a class of CCRs for 〈X,V 〉.

1. A function D : X2 → ℘(℘(V )) is almost-decisively representable in K if and only if
there is an f ∈ K such that D = D̂f , in which case we say that f almost-decisively
represents D.

2. A function D : X2 → ℘(℘(V )) is decisively representable in K if and only if there is
an f ∈ K such that D = Df , in which case we say that f decisively represents D.

In Sections 3.1–3.2, we prove representation theorems for both notions of representability.
We start with the proofs for almost-decisive representability, as they are somewhat simpler.

Remark 3.2. A simple game (as in, e.g., Taylor and Zwicker 1992) is a pair 〈N,W 〉 where
N is a finite set and W is a family of subsets of N , thought of as the “winning coalitions” of
voters.10 If we assume that our set V of voters is finite, then a function D : X2 → ℘(℘(V ))

as in Definition 3.1 yields, for each 〈x, y〉 ∈ X2, a simple game 〈V,D(x, y)〉.

3.1 Almost Decisive Coalitions

First, we will give necessary and sufficient conditions for almost-decisively representability
in the class of CCRs satisfying LD, IIA, and TR (resp. FR). Then we will show how the same
conditions are necessary and sufficient for almost-decisively representability in the class of
CCRs satisfying UD, IIA, and TR (resp. FR).

Theorem 3.3. Let X and V be nonempty sets with |X| ≥ 3. A function D : X2 → ℘(℘(V ))

is almost-decisively representable in the class of CCRs for 〈X,V 〉 satisfying LD, IIA, and TR
(resp. FR) if and only if for all A,B,C ⊆ V and x, y, z ∈ X with x 6= y, y 6= z, and x 6= z:

1. A ∈ D(x, x);

2. if A ∈ D(x, y), then Ac 6∈ D(y, x);

3. for TR: if A ∈ D(x, y), B ∈ D(y, z), and A ∩B ⊆ C ⊆ A ∪B, then C ∈ D(x, z);

4. for FR: if A ∈ D(x, y) and B ∩ C ⊆ A ⊆ B ∪ C, then B ∈ D(x, z) or C ∈ D(z, y).

Proof. Suppose D is almost-decisively represented by a CCR f for 〈X,V 〉 satisfying LD,
IIA, and TR (resp. FR).

For property 1, there is no profile P such that A = P(x, x) and Ac = P(x, x), so trivially
A ∈ D(x, x). Property 2 is also immediate from the definition of almost decisiveness.

For property 3 under TR, to show that C ∈ D(x, z), consider any profile P in which
C = P(x, z) and Cc = P(z, x). We must show xf(P)z. First, we claim that there is a
profile P′ ∈ L(X)V such that:

A = P′(x, y), Ac = P′(y, x) B = P′(y, z), Bc = P′(z, y) C = P′(x, z), Cc = P′(z, x).

10In Taylor and Zwicker 1999, the definition of a ‘simple game’ requires that W be closed under supersets,
while the term ‘hypergraph’ is used for the more general structures.
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To see that there is such a profile, define for each i ∈ V a binary relation P 0
i on {x, y, z}

according to the cell to which i belongs in the partition in Figure 1: e.g., if i ∈ A∩Bc ∩C,
define P 0

i as the strict linear order with xP 0
i zP

0
i y. Since A ∩ B ⊆ C ⊆ A ∪ B, we have

A ∩ B ∩ Cc = ∅ and Ac ∩ Bc ∩ C = ∅. If i ∈ V belongs to any of the nonempty cells of
the partition, then P 0

i is a strict linear order on {x, y, z}; hence it can be extended to a
strict linear order P ′i on all of X. The resulting profile P′ ∈ L(X)V can be seen to satisfy
the bulleted equations above by checking the table in Figure 1. Then since A ∈ D(x, y)

and B ∈ D(y, z), we have xf(P′)y and yf(P′)z, which together imply xf(P′)z by the
transitivity condition of TR. Then since P|{x,z} = P′|{x,z}, we have xf(P)z by IIA.

cell nonempty? strict linear order
A ∩B ∩ C maybe xP 0

i yP
0
i z

A ∩B ∩ Cc no
A ∩Bc ∩ C maybe xP 0

i zP
0
i y

A ∩Bc ∩ Cc maybe zP 0
i xP

0
i y

Ac ∩B ∩ C maybe yP 0
i xP

0
i z

Ac ∩B ∩ Cc maybe yP 0
i zP

0
i x

Ac ∩Bc ∩ C no
Ac ∩Bc ∩ Cc maybe zP 0

i yP
0
i x

Figure 1: cells and associated orders for the proof of property 3 in Theorem 3.3

For property 4 under FR, suppose B 6∈ D(x, z), so there is a profile P in which B =

P(x, z), Bc = P(z, x), and not xf(P)z. First, we claim that there is a profile P′ ∈ L(X)V

such that:

A = P′(x, y), Ac = P′(y, x) B = P′(x, z), Bc = P′(z, x) C = P′(z, y), Cc = P′(y, z).

The proof that there is such a profile follows the same partitioning strategy as that for
property 3 above, but now using the table in Figure 2 and the fact that from B ∩C ⊆ A ⊆
B∪C, we have Ac∩B∩C = ∅ and A∩Bc∩Cc = ∅. Then since P|{x,z} = P′|{x,z}, from not
xf(P)z we have not xf(P′)z by IIA, and since A ∈ D(x, y), we have xf(P′)y. Therefore,
zf(P′)y by the negative transitivity condition of FR. Now we claim that C ∈ D(z, y).
Consider any profile P′′ in which C = P′′(z, y) and Cc = P′′(y, z). Then P′|{y,z} = P′′|{y,z},
so by IIA, zf(P′)y implies zf(P′′)y. Thus, C ∈ D(z, y).

cell nonempty? strict linear order
A ∩B ∩ C maybe xP 0

i zP
0
i y

A ∩B ∩ Cc maybe xP 0
i yP

0
i z

A ∩Bc ∩ C maybe zP 0
i xP

0
i y

A ∩Bc ∩ Cc no
Ac ∩B ∩ C no
Ac ∩B ∩ Cc maybe yP 0

i xP
0
i z

Ac ∩Bc ∩ C maybe zP 0
i yP

0
i x

Ac ∩Bc ∩ Cc maybe yP 0
i zP

0
i x

Figure 2: cells and associated orders for the proof of property 4 in Theorem 3.3

Conversely, suppose properties 1, 2, and 3 (resp. 1, 2, and 4) hold. We define f as
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follows: for any P ∈ L(X)V , let xf(P)y if and only if x 6= y and P(x, y) ∈ D(x, y). First,
we claim that f satisfies TR (resp. FR):

• asymmetry: if xf(P)y, then not yf(P)x. Suppose xf(P)y, so P(x, y) ∈ D(x, y),
which implies P(x, y)c 6∈ D(y, x) by property 2. Since P ∈ L(X)V , we have P(x, y)c =

P(y, x), so P(x, y)c 6∈ D(y, x) implies P(y, x) 6∈ D(y, x) and hence not yf(P)x.

Given asymmetry, we may assume without loss of generality in the following proofs of
transitivity and negative transitivity that x, y, and z are pairwise distinct.

• transitivity: if xf(P)y and yf(P)z, then xf(P)z. Suppose xf(P)y and yf(P)z, so
P(x, y) ∈ D(x, y) and P(y, z) ∈ D(y, z). Then since P(x, y) ∩ P(y, z) ⊆ P(x, z) ⊆
P(x, y) ∪P(y, z), it follows by property 3 that P(x, z) ∈ D(x, z) and hence xf(P)z.

• negative transitivity (assuming property 4): if xf(P)y, then xf(P)z or zf(P)y.
Suppose xf(P)y, so P(x, y) ∈ D(x, y). Then since P(x, z) ∩ P(z, y) ⊆ P(x, y) ⊆
P(x, z) ∪P(z, y), it follows by property 4 that P(x, z) ∈ D(x, z) or P(z, y) ∈ D(z, y),
which implies xf(P)z or zf(P)y.

Next observe that f satisfies IIA. Suppose P|{x,y} = P′|{x,y}. Then P(x, y) = P′(x, y)

and P(y, x) = P′(y, x). It follows by the definition of f that f(P) and f(P′) agree with
respect to x and y.

Finally, we claim that D is almost-decisively represented by f . Suppose A ∈ D(x, y).
Then by definition of f , for any profile P ∈ L(X)V , if A = P(x, y) and Ac = P(y, x) (which
together imply x 6= y), then xf(P)y. Hence A ∈ D̂f (x, y). Conversely, suppose A 6∈ D(x, y),
so by property 1, x 6= y. Consider a profile P ∈ L(X)V in which A = P(x, y). Then A =

P(x, y) 6∈ D(x, y), so by definition of f we have not xf(P)y. Therefore, A 6∈ D̂f (x, y).

We will now show that representability in the class of CCRs satisfying LD, IIA, and TR
(resp. FR) is sufficient for representability in the class of CCRs satisfying UD, IIA, and TR
(resp. FR), using the following lemma.

Lemma 3.4. If f : L(X)V → P (X), then there is an f+ : O(X)V → P (X) such that:

1. for all P ∈ L(X)V , f(P) = f+(P);

2. ran(f) = ran(f+);

3. if f satisfies IIA, so does f+;

4. for all x, y ∈ X, D̂f (x, y) = D̂f+(x, y) and Df (x, y) = Df+(x, y).

Proof. Fix any strict linear order S on X. Given a profile P ∈ O(X)V , we define P+ ∈
L(X)V as follows. If not xNiy, then P+

i matches Pi on x, y. If xNiy, then P+
i matches S

on x, y. We claim that P+ is a strict linear order:

• For weak completeness, suppose x 6= y. If not xNiy, then P+
i matches Pi on x, y,

so not xN+
i y, which implies xP+

i y or yP+
i x. On the other hand, if xNiy, then P+

i

matches the strict linear order S on x, y, so again not xN+
i y given x 6= y.
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• For asymmetry, suppose xP+
i y. If not xNiy, then P+

i matches Pi on x, y, so the
asymmetry of Pi gives us not yP+

i x. On the other hand, if xNiy, then P+
i matches S

on x, y, so the asymmetry of S gives us not yP+
i x.

• For transitivity, suppose xP+
i y and yP+

i z. Case 1: suppose xNiy and yNiz. Then
by the transitivity of Pi-noncomparability, xNiz. In this case, P+

i matches S on x, y,
on y, z, and on x, z, so xP+

i y and yP+
i z together imply xP+

i z by the transitivity of
S. Case 2: suppose not xNiy and not yNiz. In this case, P+

i matches Pi on x, y

and on y, z, so xP+
i y and yP+

i z together imply xPiy and yPiz, which in turn imply
xPiz by the transitivity of Pi. Thus, we have not xNiz, so that P+

i matches Pi on
x, z. Therefore, from xPiz we have xP+

i z. Case 3: not xNiy, but yNiz. Then xP+
i y

implies xPiy. By the negative transitivity of Pi, we have xPiz or zPiy. But yNiz, so
we conclude that xPiz and hence xP+

i z. Case 4: xNiy, but not yNiz. Then yP+
i z

implies yPiz. By the negative transitivity of Pi, we have yPix or xPiz. But xNiy, so
we conclude that xPiz and hence xP+

i z.

Now given f : L(X)V → P (X), we define f+ : O(X)V → P (X) by f+(P) = f(P+).
This definition immediately implies properties 1 and 2 in the statement of the lemma.

The definition of P+, using the fixed S, ensures that for any P,P′ ∈ O(X)V , we have
P|{x,y} = P′|{x,y} if and only if P+

|{x,y} = P′+|{x,y}. Thus, IIA for f implies IIA for f+.
Next, we show that D̂f (x, y) = D̂f+(x, y). The inclusion D̂f+(x, y) ⊆ D̂f (x, y) is obvious.

For D̂f (x, y) ⊆ D̂f+(x, y), suppose A ∈ D̂f (x, y) and P ∈ O(X)V is such that A = P(x, y)

and Ac = P(y, x). It follows that A = P+(x, y) and Ac = P+(y, x), which with A ∈ D̂f (x, y)

implies xf(P+)y and hence xf+(P)y. Thus, A ∈ D̂f+(x, y).
The proof that Df (x, y) = Df+(x, y) is essentially the same. The inclusion Df+(x, y) ⊆

Df (x, y) is again obvious. For Df (x, y) ⊆ Df+(x, y), suppose A ∈ Df (x, y) and P ∈ O(X)V

is such that A ⊆ P(x, y). It follows that A ⊆ P+(x, y), which with A ∈ Df (x, y) implies
xf(P+)y and hence xf+(P)y. Thus, A ∈ Df+(x, y).

We can now prove our desired representation theorem for UD instead of LD.

Theorem 3.5. Let X and V be nonempty sets with |X| ≥ 3. A function D : X2 → ℘(℘(V ))

is almost-decisively representable in the class of CCRs for 〈X,V 〉 satisfying UD, IIA, and TR
(resp. FR) if and only if D satisfies properties 1, 2, and 3 (resp. 1, 2, and 4) of Theorem 3.3.

Proof. Inspection of the proof of Theorem 3.3 shows that the proof of the properties did
not use the assumption that the domain of f is L(X)V . The proofs work equally well under
the assumption that the domain of f is O(X)V .

Conversely, if f satisfies the properties, then its representability in the class of CCRs
satisfying UD, IIA, and TR (resp. FR) follows from Theorem 3.3 plus Lemma 3.4.

3.2 Decisive Coalitions

The representation theorem for decisive coalitions is almost the same—only the first two
properties slightly change, and we add one property—but now the verification of cases in
the proof is more involved and the proof for property 4 requires more care.
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Theorem 3.6. Let X and V be nonempty sets with |X| ≥ 3. A function D : X2 → ℘(℘(V ))

is decisively representable in the class of CCRs for 〈X,V 〉 satisfying UD, IIA, and TR
(resp. FR) if and only if for all A,B,C ⊆ V and x, y, z ∈ X with x 6= y, y 6= z, and x 6= z:

1. A ∈ D(x, x) if and only if A 6= ∅;

2. if A ∈ D(x, y) and A ∩B = ∅, then B 6∈ D(y, x);

3. for TR: if A ∈ D(x, y), B ∈ D(y, z), and A ∩B ⊆ C ⊆ A ∪B, then C ∈ D(x, z);

4. for FR: if A ∈ D(x, y) and B ∩ C ⊆ A ⊆ B ∪ C, then B ∈ D(x, z) or C ∈ D(z, y);

5. if A ∈ D(x, y) and A ⊆ B, then B ∈ D(x, y).

Proof. SupposeD is decisively represented by a CCR f satisfying UD, IIA, and TR (resp. FR).
For property 1, for any profile P, we have P(x, x) = ∅. So if A 6= ∅, then we trivially

have A ∈ D(x, x). On the other hand, if A = ∅, then since not xf(P)x, we have A 6∈ D(x, x).
For property 2, suppose A ∈ D(x, y) and A ∩ B = ∅. Then by UD, there is a profile P

in which P(x, y) = A and P(y, x) = B. Since A ∈ D(x, y), it follows that xf(P)y, which
with asymmetry implies not yf(P)x. Therefore, B 6∈ D(y, x).

cell nonempty? strict weak order
A ∩B ∩ C maybe linear: xP 0

i yP
0
i z

A ∩B ∩ Cc no
A ∩Bc ∩ C maybe linear: xP 0

i zP
0
i y

A ∩Bc ∩ Cc maybe xP 0
i y, zP 0

i y, and P 0
i relates x and z however Pi does

Ac ∩B ∩ C maybe linear: yP 0
i xP

0
i z

Ac ∩B ∩ Cc maybe yP 0
i x, yP 0

i z, and P 0
i relates x and z however Pi does

Ac ∩Bc ∩ C no

Ac ∩Bc ∩ Cc maybe


linear : xP 0

i yP
0
i z if xPiz

linear : zP 0
i yP

0
i x if zPix

x, y, z noncomparable in P 0
i if xNiz

Figure 3: cells and associated orders for the proof of property 3 in Theorem 3.6

For property 3 under TR, to show that C ∈ D(x, z), consider any profile P in which
C ⊆ P(x, z). We must show xf(P)z. First, we claim that there is a profile P′ such that:

A ⊆ P′(x, y) B ⊆ P′(y, z) P|{x,z} = P′|{x,z}.

As in the proof of Theorem 3.3, to see that there is such a profile, define for each i ∈ V a
binary relation P 0

i on {x, y, z} according to the cell to which i belongs in the partition in
Figure 3. Since A∩B ⊆ C ⊆ A∪B, we have A∩B∩Cc = ∅ and Ac∩Bc∩C = ∅. One can
then check by cases that if i ∈ V belongs to any of the nonempty cells of the partition, then
P 0
i is a strict weak order on {x, y, z}; hence it can be extended to a strict weak order P ′i

on all of X. The resulting profile P′ can be seen to satisfy the bulleted equations above by
checking the table in Figure 3. Then since A ∈ D(x, y) and B ∈ D(y, z), we have xf(P′)y

and yf(P′)z, which together imply xf(P′)z by the transitivity condition of TR. Then since
P|{x,z} = P′|{x,z}, we have xf(P)z by IIA.
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For property 4 under FR, suppose B 6∈ D(x, z), so there is a profile P in which B ⊆
P(x, z) and not xf(P)z. To show that C ∈ D(z, y), consider a profile P? such that C ⊆
P?(z, y). We claim that there is a profile P′ such that:

A ⊆ P′(x, y) P′|{y,z} = P?|{y,z} P′|{x,z} = P|{x,z}.

The proof that there is such a profile follows the same partitioning strategy as that for
property 3 above, only now using the table in Figure 4 and the fact that from B ∩C ⊆ A ⊆
B∪C, we have Ac∩B∩C = ∅ and A∩Bc∩Cc = ∅. Then since P|{x,z} = P′|{x,z}, from not
xf(P)z we have not xf(P′)z by IIA, and since A ∈ D(x, y), we have xf(P′)y. Therefore,
zf(P′)y by the negative transitivity condition of FR. Then since P′|{y,z} = P?|{y,z}, we have
zf(P?)y by IIA. Thus, C ∈ D(z, y).

cell nonempty? strict weak order
A ∩B ∩ C maybe linear: xP 0

i zP
0
i y

A ∩B ∩ Cc maybe xP 0
i y, xP 0

i z, and P 0
i relates y and z however P ?i does

A ∩Bc ∩ C maybe xP 0
i y, zP 0

i y, and P 0
i relates x and z however Pi does

A ∩Bc ∩ Cc no
Ac ∩B ∩ C no

Ac ∩B ∩ Cc maybe


linear : xP 0

i yP
0
i z if yP ?i z

linear : xP 0
i zP

0
i y if zP ?i y

xP 0
i y, xP

0
i z, yN

0
i z if yN?

i z

Ac ∩Bc ∩ C maybe xP 0
i y, zP 0

i y, and P 0
i relates x and z however Pi does

Ac ∩Bc ∩ Cc maybe



linear : xP 0
i zP

0
i y if xPiz, zP ?i y

linear : xP 0
i yP

0
i z if xPiz, yP ?i z

xP 0
i z, xP

0
i y, zN

0
i y if xPiz, zN?

i y

linear : zP 0
i xP

0
i y if zPix, zP ?i y

linear : yP 0
i zP

0
i x if zPix, yP ?i z

yP 0
i x, zP

0
i x, zN

0
i y if zPix, zN?

i y

xP 0
i y, zP

0
i y, xN

0
i z if xNiz, zP ?i y

yP 0
i x, yP

0
i z, xN

0
i z if xNiz, yP ?i z

x, y, z noncomparable in P 0
i if xNiz, zN?

i y

Figure 4: cells and associated orders for the proof of property 4 in Theorem 3.6

Finally, that property 5 holds is immediate from the definition of decisiveness.
Conversely, suppose properties 1–3 and 5 (resp. properties 1, 2, 4, and 5) hold. We define

f as follows: for any P ∈ O(X)V , let xf(P)y if and only if P(x, y) ∈ D(x, y). First, we
claim that f satisfies TR (resp. FR):

• asymmetry: if xf(P)y, then not yf(P)x. Suppose xf(P)y, so P(x, y) ∈ D(x, y). Since
P(x, y) ∩P(y, x) = ∅, property 2 implies P(y, x) 6∈ D(y, x) and hence not yf(P)x.

Given asymmetry, we may assume without loss of generality in the proofs of transitivity
and negative transitivity that x, y, and z are pairwise distinct.

• transitivity: same as in the proof of Theorem 3.3.
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• negative transitivity (assuming property 4): same as in the proof of Theorem 3.3.

The proof that f satisfies IIA is also the same as in the proof of Theorem 3.3.
Finally, we claim that D is decisively represented by f . Suppose A ∈ D(x, y) and

consider any profile P ∈ O(X)V in which A ⊆ P(x, y). Then by property 5, A ∈ D(x, y)

implies P(x, y) ∈ D(x, y), which implies xf(P)y by the definition of f . Hence A ∈ Df (x, y).
Conversely, suppose A 6∈ D(x, y), so by property 1, we have A = ∅ if x = y. Consider a
profile P ∈ O(X)V in which A = P(x, y). Then A = P(x, y) 6∈ D(x, y), so by definition of
f we have not xf(P)y. Therefore, A 6∈ Df (x, y).

4 Logics

In this section, we show how to parlay the representation results of Section 3 into logical
calculi in which we can give purely formal derivations of theorems about decisive coalitions.

For the rest of the paper, fix a finite set X with |X| ≥ 3.11

First, we must specify the formal language in which we will give our derivations.

Definition 4.1. Let Coal be a nonempty set, called the set of coalition labels. The set Term
of coalition terms is generated by the following grammar:

t ::= a | 0 | 1 | −t | (t u t) | (t t t)

where a ∈ Coal. This means that each a ∈ Coal is a term; that ‘0’ and ‘1’ are terms; that
the result of prefixing the symbol ‘−’ to any term is a term; that the result of putting the
symbol ‘u’ (resp. ‘t’) between any two terms and then adding parentheses is also a term;
and nothing is a term unless it can be constructed using these grammatical rules.

Let Alt be a set with |Alt| = |X|, called the set of alternative labels. The set Form of
formulas is generated by the following grammar12:

ϕ ::= t ≡ t | Dx>y(t) | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ)

where t ∈ Term and x, y ∈ Alt. This is to be interpreted in the same way as the grammar
for terms above. In addition, we define some key abbreviations13:

(s v t) := s u t ≡ s D(t) :=
∧

x,y∈Alt, x 6=y

Dx>y(t),

where the second stands for the formula constructed recursively by ϕ0 := Dx0>y0(t), ϕn+1 :=

(ϕn∧Dxn+1>yn+1
(t)), where 〈x0, y0〉, . . . , 〈xm, ym〉 are the pairs of distinct elements from Alt.

We may add parentheses for readability and drop parentheses when no ambiguity arises.

So far, the terms and formulas of Definition 4.1 are just meaningless strings of symbols.
We endow them with a precise mathematical meaning by defining a formal semantics.

First, we give a semantic interpretation of the coalition terms and alternative labels.
11The reason for this finiteness assumption is given in footnote 18.
12Note that ‘≡’ is a symbol in our formal language, which will be interpreted using the equality relation

(Definition 4.4), which we denote by ‘=’.
13We use ‘:=’ to mean “is by definition an abbreviation for.”
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Definition 4.2. Given a nonempty set V , a coalition labeling for V is a function α : Coal→
℘(V ). We extend α to a function α̇ : Term→ ℘(V ) as follows:

α̇(a) = α(a) for a ∈ Coal α̇(−t) = α(t)c

α̇(0) = ∅ α̇(s u t) = α̇(s) ∩ α̇(t)

α̇(1) = V α̇(s t t) = α̇(s) ∪ α̇(t).

Note that we allow distinct coalition labels to stand for the same coalition. By contrast,
we require distinct alternative labels to stand for distinct alternatives.14

Definition 4.3. An alternative labeling is a bijection β : Alt→ X.

We can now give the formulas of Definition 4.1 a precise mathematical “meaning” by
defining when they are true of a CCR f . There are two meanings we can assign: interpret D
as decisive or interpret D as almost decisive. We call the former the “decisiveness semantics”
for our language and the latter the “almost decisiveness semantics.”

Definition 4.4. Let V be any nonempty set, f a CCR for 〈X,V 〉, α a coalition labeling for
V , and β an alternative labeling. We inductively define the notion of a formula ϕ being true
of f relative to α, β according to decisiveness semantics (notation: f |=α,β ϕ) as follows:

1. f |=α,β s ≡ t if and only if α̇(s) = α̇(t);

2. f |=α,β Dx>y(t) if and only if α̇(t) ∈ Df (β(x), β(y));

3. f |=α,β ¬ϕ if and only if f 6|=α ϕ;

4. f |=α,β ϕ ∧ ψ if and only if f |=α,β ϕ and f |=α,β ψ;

5. f |=α,β ϕ ∨ ψ if and only if f |=α,β ϕ or f |=α,β ψ;

6. f |=α,β ϕ→ ψ if and only if f 6|=α,β ϕ or f |=α,β ψ.

A formula ϕ is simply true of f according to decisiveness semantics if and only if ϕ is true
of f relative to every coalition labeling and alternative labeling. If ϕ is not true of f , then
we say that f refutes ϕ.

We define truth according to almost decisiveness semantics in the same way, except with
a modified clause for D:

2.′ f |=α,β Dx>y(t) if and only if α̇(t) ∈ D̂f (β(x), β(y)).

According to Definition 4.4, the formula s ≡ t (resp. s v t) “says” that the coalition
denoted by s is the same as (resp. a subset of) the coalition denoted by t; the formula
Dx>y(t) “says” that the coalition denoted by t is (almost) decisive for the alternative denoted
by x over the alternative denoted by y; the formula ¬ϕ “says” that ϕ is not true; the formula
ϕ ∧ ψ “says” that both ϕ and ψ are true; and so on.

Since Definition 4.4 supplies a notion of a formula ϕ being true of a CCR f , for any class
K of CCRs we can ask the following key logical question:

14A different approach would allow distinct alternative labels to stand for the same alternative, but would
then add identity formulas x = y to our language, so that we could express a requirement of distinctness
when needed by a formula of the form ¬ x = y.
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Is there a finite formal calculus for deriving all and only the formulas that are true of
all CCRs in K?

We will show that the answer is yes where K is the class of CCRs satisfying UD, IIA,
and TR (resp. FR).15 Since one may wish to vary the class of CCRs at issue, we first define a
generic notion of a logic for our language—and then define several specific logics thereafter.
For this purpose, we say that a formula s ≡ t is a valid equation if and only if α̇(s) = α̇(t)

for any coalition labeling α. Examples of valid equations are −(s u t) ≡ (−s t −t) and
(su (tt u)) ≡ ((su t)t (su u)). It is a well-known fact of Boolean algebra that there is an
algorithm for deciding whether a given formula s ≡ t is a valid equation in this sense, and
one can give a finite list of valid equations from which all others are derivable.

Definition 4.5. A decisiveness logic is any set L of formulas—called the theorems of L—
that contains all instances of the following axioms 1–3 and is closed under rules 4 and 5:

1. all valid equations s ≡ t and ¬(0 ≡ 1);16

2. Leibniz’s law s ≡ t → (ϕ[s/u] ↔ ϕ[t/u]), where ψ[u′/u] is the result of replacing all
occurrences in ψ of the term u by the term u′;

3. all tautologies of propositional logic;

4. if ϕ and ϕ→ ψ are theorems of L, then ψ is a theorem of L;

5. if ϕ is a theorem of L, then so is any formula obtained from ϕ by substituting a coalition
term for all occurrences of a coalition label in ϕ or by substituting an alternative label
that does not occur in ϕ for all occurrences of an alternative label in ϕ.

We write `L ϕ to indicate that ϕ is a theorem of L.

First, we define the logics appropriate for almost decisiveness.

Definition 4.6. Let T̂ be the smallest decisiveness logic that contains the following axioms
for a, b, c ∈ Coal and x, y, z ∈ Alt such that x 6= y, x 6= z, and y 6= z:

1. Dx>x(a);

2. Dx>y(a)→ ¬Dy>x(−a);

3. transitivity axiom:
(
Dx>y(a) ∧Dy>z(b) ∧ (a u b v c) ∧ (c v a t b)

)
→ Dx>z(c).

Let Ŵ be the smallest decisiveness logic that contains the axioms of T̂ as well as the
following for a, b, c ∈ Coal and x, y, z ∈ Alt such that x 6= y, x 6= z, and y 6= z:

4. negative transitivity axiom:
(
Dx>y(a)∧(buc v a)∧(a v btc)

)
→
(
Dx>z(b)∨Dz>y(c)

)
.

Next, we define the logics appropriate for decisiveness.

Definition 4.7. Let T be the smallest decisiveness logic that contains the following axioms
for a, b, c ∈ Coal and x, y, z ∈ Alt such that x 6= y, x 6= z, and y 6= z:

15In fact, we also have all the resources to show that the answer is yes for the class of CCRs satisfying
LD, IIA, and TR (resp. FR), but we do not want to overload the reader with variations on our results.

16The axiom ¬(0 ≡ 1) reflects our assumption that the set V of all voters is nonempty.
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1. Dx>x(a)↔ ¬(a ≡ 0);

2. (Dx>y(a) ∧ ((a u b) ≡ 0))→ ¬Dy>x(b);

3. (Dx>y(a) ∧ (a v b))→ Dx>y(b);

4. the transitivity axiom as in Definition 4.6.

Let W be the smallest decisiveness logic that contains the axioms of T as well as the
following for a, b, c ∈ Coal and x, y, z ∈ Alt such that x 6= y, x 6= z, and y 6= z:

5. the negative transitivity axiom as in Definition 4.6.

We can now state the result that our logics can derive as theorems all and only the
formulas that are true of all CCRs in the classes we care about. Logicians call the ‘all’ part
completeness and the ‘only’ part soundness. In Theorem 4.8 below, note that for soundness
we allow V to be of arbitrary cardinality, which makes for a stronger result than restricting
to finite V (soundness with respect to a larger class of CCRs implies soundness with respect
to a smaller class of CCRs); yet for completeness we restrict to finite V , which makes for a
stronger result than allowing V to be of arbitrary cardinality (completeness with respect to
a smaller class of CCRs implies completeness with respect to a larger class of CCRs).

Theorem 4.8.

1. Soundness: if ϕ is a theorem of T̂ (resp. Ŵ), then for any nonempty set V , ϕ is true
of all CCRs for 〈X,V 〉 satisfying UD, IIA, and TR (resp. FR), according to the almost
decisiveness semantics.

2. Completeness: if for any finite nonempty set V , ϕ is true of all CCRs for 〈X,V 〉
satisfying UD, IIA, and TR (resp. FR), according to the almost decisiveness semantics,
then ϕ is a theorem of T̂ (resp. Ŵ).

3. Soundness: if ϕ is a theorem of T (resp. W), then for any nonempty set V , ϕ is
true of all CCRs satisfying UD, IIA, and TR (resp. FR), according to the decisiveness
semantics.

4. Completeness: if for any finite nonempty set V , ϕ is true of all CCRs satisfying UD,
IIA, and TR (resp. FR), according to the decisiveness semantics, then ϕ is a theorem
of T (resp. W).

Proof. Soundness is straightforward. First, simply check that each axiom of the logic is true
of all CCRs in the relevant class. Second, check our two rules: if ϕ and ϕ→ ψ are both true
of all CCRs in the class, then so is ψ; and if ϕ is true of all CCRs in the class, then so is
any formula obtained from ϕ by the substitution rule. Since the logic is defined inductively
as the smallest set of formulas that contains the axioms and is closed under the rules, it
follows that all theorems of the logic are true of all CCRs in the relevant class.

Completeness is more involved—we give a sketch of the proof in the Appendix.

The existence of a sound and complete formal logic for reasoning about (almost) decisive
coalitions raises the possibility that such reasoning might be carried out automatically by a
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computer. A set Σ of formulas in our formal language is decidable if and only if there is an
algorithm which, given any formula of the language, will decide in a finite amount of time
whether the formula belongs to the set Σ. The obvious question to ask is whether the set
of theorems of our sound and complete logic is decidable. The answer is affirmative.

Theorem 4.9. The set of theorems of T̂ (resp. Ŵ, T, W) is decidable.

Proof. Decidability follows from our completeness proof in the Appendix. Inspection of the
proof shows that for any formula ϕ, we can compute an integer n(ϕ) such that if ϕ is not a
theorem, then there is a finite nonempty set V with |V | ≤ n(ϕ) such that some CCR f for
〈X,V 〉 satisfying the relevant properties (e.g., UD, IIA, and TR) refutes ϕ. For every such
V , of which there are only finitely many up to isomorphism, we can check every such CCR
for 〈X,V 〉, of which there are only finitely many. Then since ϕ is a theorem if and only if it
is not refuted by any of these CCRs, we have an algorithm for deciding theoremhood.

A further question, which we leave for future work, is what is the computational com-
plexity of deciding whether a formula is a theorem of T̂ (resp. Ŵ, T, W).17

5 Derivations

Our reason for introducing the logics of the previous section is so that we may give simple
formal derivations of important social-choice theoretic facts about (almost) decisive coali-
tions. Such derivations allow us to easily see which axioms and further assumptions are used.
In this section, we give derivations of a series of lemmas that lead up to Arrow’s theorem.
In Section 6, we derive some variations: the Oligarchy Theorem and Wilson’s theorem.

A nice feature of the lemmas to follow is that they almost all go through in both the
logic of decisive coalitions and the logic of almost decisive coalitions, since the lemmas only
use axioms common to both logics. To make this clear, we will use the following notation:

‘ `T ϕ’ means that ϕ is a theorem of both T and T̂;

‘ `W ϕ’ means that ϕ is a theorem of both W and Ŵ.

In what follows, whenever we write ‘(almost) decisive’ in some statement, we intend that
the reader may read the statement with ‘decisive’ or with ‘almost decisive’.

5.1 Existential Assumptions

We will prove our series of lemmas conditional on certain assumptions about the existence
of (almost) decisive coalitions. The strongest of such assumptions is the Pareto principle
stating that the set of all voters is (almost) decisive, which we express as D(1). Yet we are
also interested in weaker assumptions (implied by Pareto, assuming UD).

17A lower bound is easy: since our logic includes propositional logic, deciding theoremhood is a co-NP-hard
problem. The question is: what is an upper bound?
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Let the existential assumption (EA) be the assumption that for every pair of alternatives
x, y, there is some coalition cx,y that is (almost) decisive for x over y:18

EA :=
∧

x,y∈Alt

Dx>y(cx,y).

Let the weak existential assumption (WEA) be the assumption that for every pair of
distinct alternatives x, y, there is some coalition cx,y that is not (almost) decisive for x
over y:

WEA :=
∧

x,y∈Alt, x 6=y

¬Dx>y(cx,y).

If we interpret D as decisiveness, then WEA is equivalent to the well-known condition of

non-imposition (NI): a CCR f satisfies non-imposition if and only if for every x, y ∈ X,
there exists a profile P ∈ dom(f) such that not xf(P)y.

Finally, let non-emptiness (NE) be the assumption that there is some pair of distinct
alternatives s, t and some coalition e such that e is (almost) decisive for s over t:

NE := Ds>t(e).

Note that EA implies WEA and NE, but not vice versa.
Where c is a tuple of cx,y’s, we may write EA(c) (resp. WEA(c)) to make clear that

we obtain a different formula for each different choice of the coalition labels cx,y. But by
proving that an implication EA → ϕ (resp. WEA → ϕ) holds for any choice of the labels
cx,y, including cx,y’s all of which do not occur in ϕ, we will thereby prove that the existence
of some coalitions or other satisfying EA (resp. WEA) is sufficient to imply ϕ. In this way,
we can capture existential assumptions without having explicit quantification over coalitions
in our formal language. Similarly, we may write NE(e) or NE(e; s, t) to make clear the
dependence on the choice of e, s, and t, but the same points apply.

To be precise, throughout we will take advantage of the following familiar mathematical
point, formalized in first-order logic: if we have proved an implication ψ → ϕ, where all of
the variables of ψ are among v1, . . . , vn, all of the variables of ϕ are among v′1, . . . , v′m, and
{v1, . . . , vn} ∩ {v′1, . . . , v′m} = ∅, then we may infer (∃v1 . . . ∃v1ψ) → (∀v′1 . . . ∀v′mϕ), where
∃ and ∀ are the existential (“there exists”) and universal (“for all”) quantifiers, respectively.

5.2 Contagion Lemma from EA

Our first set of formal derivations establish the “contagion” lemma that (almost) decisiveness
over one pair of alternatives spreads to (almost) decisiveness over all pairs of alternatives.
This is often proved using the Pareto principle, but the weaker principle EA suffices.

18Note that here we use the assumption that Alt is finite (which follows from our assumptions that X is
finite and that |Alt| = |X|), so that EA can be written as a finite conjunction in our language.
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Lemma 5.1. Assume x 6= y, x 6= v, w 6= y.19

1. `T Dy>v(c)→
(
Dx>y(a)→ Dx>v(a)

)
2. `T Dw>x(c)→

(
Dx>y(a)→ Dw>y(a)

)
.

Proof. For part 1, if y = v, the principle is a tautology of propositional logic. Otherwise,
we derive the principle as follows:

(1)
(
Dx>y(a) ∧Dy>v(c) ∧ (a u c v a) ∧ (a v a t c)

)
→ Dx>v(a), instance of transitivity

axiom

(2) (a u c v a) ∧ (a v a t c), valid Boolean inequalities

(3)
(
Dx>y(a) ∧Dy>v(c)

)
→ Dx>v(a) from (1) and (2) by propositional logic

(4) Dy>v(c)→
(
Dx>y(a)→ Dx>v(a)

)
from (3) by propositional logic.

The proof for part 2 is analogous, using:

(1′)
(
Dw>x(c) ∧Dx>y(a) ∧ (c u a v a) ∧ (a v c t a)

)
→ Dw>y(a), instance of transitivity

axiom.

Lemma 5.2. Assume x 6= y, x 6= z, w 6= z, w 6= v.

`T
(
Dy>z(c) ∧Dw>x(d) ∧Dz>v(e)

)
→
(
Dx>y(a)→ Dw>v(a)

)
.

Proof.

(1) Dy>z(c)→
(
Dx>y(a)→ Dx>z(a)

)
by Lemma 5.1.1

(2) Dw>x(d)→
(
Dx>z(a)→ Dw>z(a)

)
by Lemma 5.1.2

(3) Dz>v(e)→
(
Dw>z(a)→ Dw>v(a)

)
by Lemma 5.1.1

(4)
(
Dy>z(c) ∧ Dw>x(d) ∧ Dz>v(e)

)
→
(
Dx>y(a) → Dw>v(a)

)
from (1)–(3) by proposi-

tional logic.

Lemma 5.3. Assume x 6= y.

1. `T EA→ (Dx>y(a)→ D(a)) 2. `T D(1)→ (Dx>y(a)→ D(a)).

Proof. Part 1 is by repeated application of Lemma 5.2. Part 2 is immediate from part 1.

5.3 Contagion Lemma from WEA

We can also prove the contagion lemma from the weaker assumption of WEA, rather than
EA, if we strengthen the logic from T̂ (resp. T) to Ŵ (resp. W).

Lemma 5.4. Assume x 6= y, x 6= v, w 6= y.

1. `W ¬Dv>y(c)→
(
Dx>y(a)→ Dx>v(a)

)
2. `W ¬Dx>w(c)→

(
Dx>y(a)→ Dw>y(a)

)
.

19For T̂, we can drop the assumption that x 6= v for part 1 and the assumption that w 6= y for part 2;
and we can drop the same assumptions for T if we add the assumption ¬(a ≡ 0) to the conditionals.
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Proof. For part 1, if y = v, the principle is a tautology of propositional logic. Otherwise,
we derive the principle as follows:

(1)
(
Dx>y(a) ∧ (a u c v a) ∧ (a v a t c)

)
→
(
Dx>v(a) ∨ Dv>y(c)

)
, instance of negative

transitivity axiom

(2) (a u c v a) ∧ (a v a t c), valid Boolean inequalities

(3) Dx>y(a)→
(
Dx>v(a) ∨Dv>y(c)

)
from (1) and (2)

(4) ¬Dv>y(c)→ (Dx>y(a)→ Dx>v(a)) from (3) by propositional logic.

For part 2, the proof is analogous, using:

(1′)
(
Dx>y(a) ∧ (c u a v c) ∧ (c v c t a)

)
→
(
Dx>w(c) ∨Dw>y(a)

)
, instance of negative

transitivity axiom.

Lemma 5.5. Assume x 6= y, x 6= z, w 6= z, w 6= v.

`W
(
¬Dz>y(c) ∧ ¬Dx>w(d) ∧ ¬Dv>z(e)

)
→
(
Dx>y(a)→ Dw>v(a)

)
.

Proof.

(1) ¬Dz>y(c)→
(
Dx>y(a)→ Dx>z(a)

)
by Lemma 5.4.1

(2) ¬Dx>w(d)→
(
Dx>z(a)→ Dw>z(a)

)
by Lemma 5.4.2

(3) ¬Dv>z(e)→
(
Dw>z(a)→ Dw>v(a)

)
by Lemma 5.4.1

(4)
(
¬Dz>y(c)∧¬Dx>w(d)∧¬Dv>z(e)

)
→
(
Dx>y(a)→ Dw>v(a)

)
from (1)–(3) by propo-

sitional logic.

Lemma 5.6. Assume x 6= y.

`W WEA→ (Dx>y(a)→ D(a)).

Proof. By repeated application of Lemma 5.5.

5.4 Intersection Lemma

Our next set of derivations establishes what could be called Hansson’s lemma (see Hansson
1976, p. 92) for (almost) decisive coalitions: UD, IIA, and TR together imply that the set
of (almost) decisive coalitions is closed under intersections.

Lemma 5.7. Assume x 6= y, y 6= z, and x 6= z.

`T
(
Dx>z(a) ∧Dz>y(b)

)
→ Dx>y(a u b).

Proof.

(1)
(
Dx>z(a) ∧ Dz>y(b) ∧ (a u b v a u b) ∧ (a u b v a t b)

)
→ Dx>y(a u b), instance of

transitivity axiom

(2) (a u b v a u b) ∧ (a u b v a t b), valid Boolean inequalities
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(3)
(
Dx>z(a) ∧Dz>y(b)

)
→ Dx>y(a u b) from (1) and (2) by propositional logic.

Lemma 5.8. Assume x 6= y, y 6= z, and x 6= z.

`T (Dy>z(c) ∧Dz>x(d))→
(
(Dx>y(a) ∧Dx>y(b))→ Dx>y(a u b)

)
.

Proof.

(1)
(
Dx>z(a) ∧Dz>y(b)

)
→ Dx>y(a u b) by Lemma 5.7

(2) Dy>z(c)→
(
Dx>y(a)→ Dx>z(a)

)
by Lemma 5.1.1

(3) Dz>x(d)→
(
Dx>y(b)→ Dz>y(b)

)
by Lemma 5.1.2

(4) (Dy>z(c) ∧Dz>x(d))→
(
(Dx>y(a) ∧Dx>y(b))→ (Dx>z(a) ∧Dz>y(b))

)
from (2) and

(3) by propositional logic

(5) (Dy>z(c) ∧ Dz>x(d)) →
(
(Dx>y(a) ∧ Dx>y(b)) → Dx>y(a u b)

)
from (1) and (4) by

propositional logic.

Lemma 5.9. `T (D(a) ∧D(b))→ D(a u b)).

Proof. By Lemma 5.8, `T EA → ((D(a) ∧ D(b)) → D(a u b)) for any formulation of EA
with any tuple of coalition labels, i.e., any EA(c). Then since `T D(a) → EA(a), by
propositional logic we obtain `T (D(a) ∧D(b))→ D(a u b)).

In Section 6.1, we show how Lemma 5.9 can be combined with one other lemma to yield
a version of Gibbard’s [2014] Oligarchy Theorem.

5.5 Filter Lemmas

Our next set of lemmas shows that UD, IIA, TR, and P together imply that the set of
almost decisive sets is not only closed under intersection, but also closed under supersets.
Thus, the set of almost decisive sets is a filter. For decisive sets, closure under supersets is
immediate, as (Dx>y(a) ∧ (a v b))→ Dx>y(b) is an axiom of T.

Lemma 5.10. Assume x 6= y, y 6= z, and x 6= z.

`T̂ (Dy>z(c) ∧Dz>y(1))→
(
(Dx>y(a) ∧ (a v b))→ Dx>y(b)

)
.

Proof.

(1) Dy>z(c)→ (Dx>y(a)→ Dx>z(a)) by Lemma 5.1.1

(2)
(
Dx>z(a) ∧Dz>y(1) ∧ (a u 1 v b) ∧ (b v a t 1)

)
→ Dx>y(b), instance of transitivity

axiom

(3) (a v b)→ ((a u 1 v b) ∧ (b v a t 1)) by Boolean reasoning20

(4) (a v b)→
(
(Dx>z(a) ∧Dz>y(1))→ Dx>y(b)

)
from (2) and (3) by propositional logic

20By ‘Boolean reasoning’, we mean a combined use of valid Boolean equations, Leibniz’s law, and propo-
sitional logic.
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(5) (Dy>z(c)∧Dz>y(1))→
(
(Dx>y(a)∧ (a v b))→ Dx>y(b)

)
from (1) and (4) by propo-

sitional logic.

Lemma 5.11.

1. `T (D(a) ∧ a v b)→ D(b) 2. `T̂ D(1)→
(
(D(a) ∧ a v b)→ D(b)

)
.

Proof. Part 1 uses the axiom (Dx>y(a) ∧ (a v b)) → Dx>y(b) of T repeatedly and the
definition of D(t). Part 2 uses Lemma 5.10 repeatedly and the definition of D(t).

Lemma 5.12.

1. `T D(a u b)→ (D(a) ∧D(b)) 2. `T̂ D(1)→
(
D(a u b)→ (D(a) ∧D(b))

)
.

Proof. Immediate from Lemma 5.11 using the Boolean inequalities aub v a and aub v b.

In addition, the set of (almost) decisive sets is a proper filter (assuming P for almost
decisiveness), meaning that the empty set does not belong to the filter.

Lemma 5.13.
1. `T ¬D(0) 2. `T̂ D(1)→ ¬D(0).

Proof. Part 1 uses the axiom (Dx>y(0) ∧ ((0 u 0) ≡ 0)) → ¬Dy>x(0), the valid equation
(0 u 0) ≡ 0, the definition of D(0), and propositional logic. For part 2, by the axiom
Dw>v(1) → ¬Dv>w(−1) and Boolean reasoning, we have ` Dw>v(1) → ¬Dv>w(0), which
clearly implies ` D(1)→ ¬D(0) given the definitions of D(1) and D(0).

5.6 Ultrafilter Lemma

Our final lemma shows, as Kirman and Sondermann [1972] and Hansson [1976] observed,
that Arrow’s assumptions imply that the set of (almost) decisive coalitions is not only a
proper filter but in fact an ultrafilter. For this result, we use FR instead of TR.

Lemma 5.14. `W (WEA ∧NE)→ (D(a) ∨D(−a)).

Proof. By propositional logic, it suffices to prove ` (WEA ∧ NE) → (¬D(a) → D(−a)).
Since ¬D(a) is equivalent to

∨
x,y∈Alt, x 6=y

¬Dx>y(a), by propositional logic it suffices to show

that for each distinct u,w ∈ Alt, we have ` (WEA ∧NE)→ (¬Du>w(a)→ D(−a)):

(1) WEA→ (Ds>t(e)→ Du>v(e)) by Lemma 5.5

(2) (WEA ∧NE)→ Du>v(e) by (1), since NE := Ds>t(e)

(3)
(
Du>v(e) ∧ (a u −a v e) ∧ (e v a t −a)

)
→
(
Du>w(a) ∨ Dw>v(−a)

)
, instance of

negative transitivity axiom

(4) (a u −a v e) ∧ (e v a t −a), valid Boolean inequalities

(5) Du>v(e)→ (Du>w(a) ∨Dw>v(−a)) from (2) and (3) by propositional logic

(6) Du>v(e)→ (¬Du>w(a)→ Dw>v(−a)) from (4) by propositional logic
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(7) WEA→ (Dw>v(−a)→ D(−a)) by Lemma 5.6

(8) (WEA ∧NE)→ (¬Du>w(a)→ D(−a)) by (1), (5), and (6).

5.7 Arrow’s Theorem

We can now prove Arrow’s theorem for both decisive coalitions and almost decisive coali-
tions. Dictatorship is equivalent to there being a singleton coalition {i} that is decisive
for every pair of alternatives. Almost dictatorship is the weaker condition that there is a
singleton coalition {i} that is almost decisive for every pair of alternatives:

almost dictatorship: there is an i ∈ V such that for every P ∈ dom(f) and x, y ∈ X,
if xPiy and yPjx for all j ∈ V \ {i}, then xf(P)y.

Assuming LD or UD and PA, almost dictatorship is equivalent to dictatorship.
As in Section 1, to prove that there is an (almost) dictatorship in the case where V is

finite, it suffices to show that the set of (almost) decisive coalitions is an ultrafilter. Thus,
in our formalism, Arrow’s theorem for (almost) decisive sets is the following.

Theorem 5.15 (Arrow’s Theorem). In the logic W, we have:

1. `W D(1)→ ¬D(0);

2. `W D(1)→ (D(a) ∨D(−a));

3. `W D(1)→
(
(D(a) ∧D(b))↔ D(a u b)

)
.

Combining the lemmas of Section 5.6, we obtain the following stronger result.

Theorem 5.16 (Stronger Arrow’s Theorem). In the logics T and W, we have:

1. `T ¬D(0) and `T̂ D(1)→ ¬D(0);

2. `W (WEA ∧NE)→ (D(a) ∨D(−a));

3. `T ((D(a) ∧D(b))→ D(a u b);

4. `T D(a u b)→ (D(a) ∧D(b)) and `T̂ D(1)→
(
D(a u b)→ (D(a) ∧D(b))

)
.

6 Variations

In this section, we briefly show how some of the lemmas of Section 5 can be combined with
additional lemmas to give formal derivations of variations on the Arrovian theme.

6.1 Almost Oligarchy Theorem

Our first example is a version of Gibbard’s [2014] Oligarchy Theorem (cf. Guha 1972, Mas-
Colell and Sonnenschein 1972, and Weymark 1984). For its statement, we adopt the term
‘semi-decisive’ from Sen [2017, p. 125]. Others instead say that a coalition is “blocking”
[Suzumura, 1983, p. 71] or has “veto power” [Campbell and Kelly, 2002, p. 59].
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Definition 6.1. Let f be a CCR for 〈X,V 〉. For any x, y ∈ X and A ⊆ V :

1. A is almost semi-decisive for x over y according to f if and only if for all P ∈ dom(f),
if A = P(x, y) and Ac = P(y, x), then not yf(P)x;

2. A is almost semi-decisive according to f if for all x, y ∈ X, A is almost semi-decisive
for x over y according to f .

Clearly A is almost semi-decisive for x over y if and only if Ac is not almost decisive for
y over x. Thus, we can define almost semi-decisiveness predicates in the language of Section
4, assuming the almost decisiveness semantics for D (recall Definition 4.4):

Sx>y(a) := ¬Dy>x(−a) S(a) :=
∧

x,y∈Alt

Sx>y(a).

Definition 6.2. Let f be a CCR and A ⊆ V .

1. A is an almost oligarchy according to f if and only if A is almost decisive according to
f and for each i ∈ A, {i} is almost semi-decisive according to f .

2. A is a strong almost oligarchy according to f if and only if A is almost decisive according
to f and for each nonempty B ⊆ A, B is almost semi-decisive according to f .

We now obtain what could be called the “almost oligarchy theorem.”

Theorem 6.3. Assume that |X| ≥ 3 and V is finite. If a CCR f satisfies UD, IIA, EA,
and TR, then there exists a strong almost oligarchy according to f .

The two key lemmas for the proof of Theorem 6.3 are (i) that the set of almost decisive
coalitions is non-empty and closed under intersection, and (ii) that if a coalition A is not
almost semi-decisive, then Ac is almost decisive. For by (i) and the finiteness of V , the
intersection B of all almost decisive coalitions is itself almost decisive, and then by (ii), any
nonempty subset A ⊆ B is almost semi-decisive; for if not, then Ac is almost decisive, which
implies B ⊆ Ac and hence A ⊆ B ⊆ Ac, so A = ∅, a contradiction. We already proved a
formal version of (i) (non-emptiness follows from Lemma 5.3 and closure under intersection
from Lemma 5.9), so it only remains to prove the following formal version of (ii).

Lemma 6.4. `T EA→ (¬S(a)→ D(−a)).

Proof. By propositional logic, ¬S(a) is equivalent to
∨

x,y∈Alt
¬Sx>y(a), which by definition

is
∨

x,y∈Alt
Dx>y(−a). Thus, it suffices to show that for any distinct x, y, we have `T EA →

(Dx>y(−a)→ D(−a)), which we already established in Lemma 5.3.

We cannot define the notion of semi-decisiveness21 in terms of either almost decisiveness
or decisiveness, so if we want to prove the original oligarchy theorem, rather than the
“almost oligarchy theorem,” we must extend our language. For example, one could add a
new primitive predicate Sx>y for semi-decisiveness to our language. One could then study
the joint logic of all these decisiveness notions, which we leave for future work.

21A is semi-decisive for x over y according to f if and only if for any P ∈ dom(f), if A ⊆ P(x, y), then
not yf(P)x.
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6.2 Almost Wilson’s Theorem

Our second example is an “almost” version of Wilson’s [1972] theorem, which depends on
the following key notions.

Definition 6.5. Let f be a CCR for 〈X,V 〉. For any x, y ∈ X and A ⊆ V :

1. A is almost inversely decisive for x over y according to f if and only if for all P ∈
dom(f), if A = P(x, y) and Ac = P(y, x), then yf(P)x;

2. A is almost inversely decisive according to f if and only if for every x, y ∈ X, A is
almost inversely decisive for x over y according to f ;

3. A is inversely decisive for x over y according to f if and only if for all P ∈ dom(f), if
A ⊆ P(x, y), then yf(P)x;

4. A is inversely decisive according to f if and only if for every distinct x, y ∈ X, A is
inversely decisive for x over y according to f .

We can define almost inverse decisiveness predicates in the language of Section 4, as-
suming the almost decisiveness semantics for D (recall Definition 4.4):

Ix>y(a) := Dy>x(−a) I(a) := D(−a).

Just as the Pareto assumption D(1) gave us that the set of almost decisive coalitions is
closed under supersets, the inverse Pareto assumption D(0) gives us that the set of almost
decisive coalitions is closed under subsets.

Lemma 6.6. Assume x 6= y, y 6= z, and x 6= z.

`T (Dy>z(c) ∧Dz>y(0))→
(
(Dx>y(a) ∧ (b v a))→ Dx>y(b)

)
.

Proof. The proof is the same as that of Lemma 5.10, with two exceptions: all occurrences
of 1 in the proof Lemma 5.10 are replaced by 0, and all occurrences of (a v b) in the proof
of Lemma 5.10 are replaced by (b v a). The key point is that

(
Dx>z(a) ∧Dz>y(0) ∧ (a u 0 v b) ∧ (b v a t 0)

)
→ Dx>y(b)

is an instance of the transitivity axiom, and (b v a)→ ((au 0 v b)∧ (b v at 0)) is provable
by Boolean reasoning.

Lemma 6.7. `T D(0)→
(
(D(a) ∧ (b v a))→ D(b)

)
.

Proof. By repeated application of Lemma 6.6.

Next, just as the almost decisive coalitions are closed under intersection, the almost
inversely decisive coalitions are closed under union.

Lemma 6.8. `T EA→ ((D(a) ∧D(b))→ D(a t b)).

Proof. The proof is the same as that of Lemma 5.9, which uses the proof of Lemma 5.8,
which in turn uses the proof of Lemma 5.7, with two exceptions. First, the first two lines
of the proof of Lemma 5.7 change to:
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(1′)
(
Dx>z(a) ∧ Dz>y(b) ∧ (a u b v a t b) ∧ (a t b v a t b)

)
→ Dx>y(a t b), instance of

transitivity axiom

(2′) (a u b v a t b) ∧ (a t b v a t b), valid Boolean inequalities.

Second, in the later lines of the proofs, all instances of a u b are replaced by a t b.

We can now state and prove the version of Wilson’s theorem for almost decisive and
almost inversely decisive sets.

Theorem 6.9 (Almost Wilson’s Theorem). In the logics T and W, we have:

1. `W (WEA ∧NE)→ (D(1) ∨ I(1))

2. `W D(1)→ (D(a) ∨D(−a)) 4. `W I(1)→ (I(a) ∨ I(−a))

3. `T D(1)→
(
D(a u b)↔ (D(a) ∧D(b))

)
5. `T I(1)→

(
I(a u b)↔ (I(a) ∧ I(b))

)
.

Proof. Part 1 follows from Theorem 5.16.2 with a := 1 and the definition I(1) := D(−1).
Parts 2–3 follow from Theorem 5.15.2-3.
For part 4, I(1)→ (I(a) ∨ I(−a)) is an abbreviation for D(−1)→ (D(−1) ∨D(−−1)).

Given the axiom Dx>y(−1)→ ¬Dy>x(1), we have ` D(−1)→WEA(1).22 Clearly we also
have ` D(−1)→ NE(−1). Then by Lemma 5.14, we have ` D(−1)→ (D(a)∨D(−a)) and
hence ` D(−1)→ (D(−1) ∨D(−−1)).

For part 5, we must show `T D(−1)→ (D(−(a u b))↔ (D(−a) ∧D(−b)). By Boolean
reasoning, it suffices to show that `T D(0) → (D(−a t −b) ↔ (D(−a) ∧ D(−b)), which
clearly follows from Lemmas 6.7 and 6.8.

We cannot define the notion of inverse decisiveness in terms of either almost decisiveness
or decisiveness, so if we want to prove the original version of Wilson’s theorem, rather
than the “almost” version, we must extend our language to one with predicates for both
decisiveness and inverse decisiveness, as in Section 7.4.

7 Relating Kinds of Decisiveness

In Section 4, we presented logical calculi for reasoning about decisive coalitions or about
almost decisive coalitions—but not for reasoning about the relations between decisive and
almost decisive coalitions at the same time. In this brief section, we explain how to apply
our methodology to obtain combined logics for decisive and almost decisive coalition, as well
as inversely decisive and almost inversely decisive coalitions.

7.1 Decisiveness Regimes

Our first step is to extend the representation theory of Section 3 to cover almost decisive
coalitions and decisive coalitions at the same time.

Definition 7.1. A decisiveness regime for 〈X,V 〉 is a pair 〈D̂,D〉 where D̂ : X2 → ℘(℘(V ))

and D : X2 → ℘(℘(V )).
22By WEA(1), we mean the WEA formula of Section 5.1 in which each cx,y is 1.
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Definition 7.2. Let K be a class of CCRs for 〈X,V 〉. A decisiveness regime 〈D̂,D〉 for
〈X,V 〉 is representable in K if and only if there is an f ∈ K such that D̂ = D̂f and D = Df ,
in which case we say that f represents 〈D̂,D〉.

We extend Theorem 3.3 to decisiveness regimes as follows.

Theorem 7.3. Let X and V be nonempty sets with |X| ≥ 3. A decisiveness regime 〈D̂,D〉
for 〈X,V 〉 is representable in the class of CCRs for 〈X,V 〉 satisfying LD, IIA, and TR
(resp. FR) if and only if for all A,B,C ⊆ V and x, y, z ∈ X with x 6= y, y 6= z, and x 6= z:

1. A ∈ D̂(x, x);

2. if A ∈ D̂(x, y), then Ac 6∈ D̂(y, x);

3. for TR: if A ∈ D̂(x, y), B ∈ D̂(y, z), and A ∩B ⊆ C ⊆ A ∪B, then C ∈ D̂(x, z);

4. for FR: if A ∈ D̂(x, y) and B ∩ C ⊆ A ⊆ B ∪ C, then B ∈ D̂(x, z) or C ∈ D̂(z, y);

5. A ∈ D(x, x) if and only if A 6= ∅;

6. A ∈ D(x, y) if and only if for all B ⊇ A, we have B ∈ D̂(x, y).

Proof. Suppose 〈D̂,D〉 is represented by a CCR f satisfying LD, IIA, and TR (resp. FR).
The proof that D̂ satisfies the properties was already given in the proof of Theorem 3.3.
The proof that D satisfies property 5 is the same as in the proof of Theorem 3.6. The proof
that 〈D̂,D〉 satisfies property 6 is essentially the same as at the end of Section 2, only using
LD instead of UD and SPA.

For the converse, we define the CCR f exactly as in the proof of Theorem 3.3. There we
already showed that D̂ = D̂f , so it only remains to show D = Df . Suppose A ∈ D(x, y).
To show that A ∈ Df (x, y), consider a profile P in which A ⊆ P(x, y). By the left-to-right
direction of property 6, since A ∈ D(x, y) and A ⊆ P(x, y), we have P(x, y) ∈ D̂(x, y), so
xf(P)y. Hence A ∈ Df (P). Conversely, suppose A ∈ Df (P). Let B ⊇ A and consider any
profile P in which B = P(x, y) and Bc = P(y, x). Then since A ∈ Df (P) and A ⊆ P(x, y),
we have xf(P)y. This shows that B ∈ D̂(x, y). Since B was arbitrary, it follows that
B ∈ D̂(x, y) for allB ⊇ A. Hence A ∈ D(x, y) by the right-to-left direction of property 6.

We leave for future work the problem of obtaining a version of Theorem 7.3 with LD
replaced by the conjunction of UD and SPA. It follows from the observations at the end
of Section 2 that if 〈D̂,D〉 is representable in the class of CCRs satisfying UD, SPA, and
any other properties, then 〈D̂,D〉 satisfies property 6 of Theorem 7.3. The open question is
how to show that if a decisiveness regime satisfies properties 1–6 of Theorem 7.3, then it is
representable in the class of CCRs satisfying UD, SPA, IIA, and TR (resp. FR).

7.2 Combined Logics

Our next step is to combine and extend the logics of Section 4 to logics for reasoning about
decisive coalitions and almost decisive coalition in the same system.

We define a formal language as in Definition 4.1 but with formulas D̂x>y(t) and Dx>y(t)

for every t ∈ Term and x, y ∈ Alt, instead of Dx>y(t). We then modify the semantics of
Definition 4.4 in the obvious way with the following clauses:
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• f |=α,β D̂x>y(t) if and only if α̇(t) ∈ D̂f (β(x), β(y));

• f |=α,β Dx>y(t) if and only if α̇(t) ∈ Df (β(x), β(y)).

Finally, we define the logic T̂ (resp. Ŵ) as follows:

• all axioms and rules from Definition 4.5;

• the axioms and rules of T̂ (resp. Ŵ) from Definition 4.6, but for D̂ instead of D;

• Dx>x(a)↔ ¬(a ≡ 0);

• (Dx>y(a) ∧ (a v b))→ D̂x>y(b);

• D-generalization rule: if ϕ→ ((t v b)→ D̂x>y(b)) is a theorem and b ∈ Coal does not
occur in ϕ or t, then ϕ→ Dx>y(t) is a theorem.

The axioms Dx>x(a) ↔ ¬(a ≡ 0) and (Dx>y(a) ∧ (a v b)) → D̂x>y(b) match prop-
erty 5 and the left-to-right direction of property 6 of Theorem 7.3, respectively. The D-
generalization rule is designed to match the right-to-left direction of property 6 of Theorem
7.3. Roughly, the effect of the assumption that b does not occur in ϕ or t is that b denotes
an arbitrary superset of the coalition that t denotes; then the fact that ϕ implies D̂x>y(b)

means that ϕ implies that every superset of the coalition that t denotes is almost decisive;
that in turn implies—assuming LD (or UD and SPA)—that the coalition that t denotes is
decisive. For a more precise explanation, see the proof of Theorem 7.4.

Theorem 7.4. Let ϕ be any formula of the expanded language with D̂ and D.

1. Soundness: if ϕ is a theorem of T̂ (resp. Ŵ), then for any nonempty set V , ϕ is true
of all CCRs for 〈X,V 〉 satisfying LD (or UD and SPA), IIA, and TR (resp. FR).

2. Completeness: if for any nonempty finite set V , ϕ is true of all CCRs for 〈X,V 〉
satisfying LD, IIA, and TR (resp. FR), then ϕ is a theorem of T̂ (resp. Ŵ).

Proof. For part 1, the only somewhat nontrivial part is to prove that the D-generalization
rule preserves truth over all CCRs in the relevant class.

For the D-generalization rule, let K be any class of CCRs satisfying LD (or UD and
SPA). Assume (?): every CCR in K makes ϕ → ((t v b) → D̂x>y(b)) true, where b ∈ Coal

does not occur in ϕ or t. Then we claim that every CCR in K makes ϕ→ Dx>y(t) true as
well. To show that f ∈ K makes ϕ→ Dx>y(t) true, we must show that for every coalition
assignment α and alternative assignment β, f makes ϕ → Dx>y(t) true relative to α, β.
Suppose α and β are arbitrary coalition and alternative assignments, respectively. To show
that f makes ϕ → Dx>y(t) true relative to α, β, we assume f makes ϕ true relative to
α, β and prove that f makes Dx>y(t) true relative to α, β. To show that f makes Dx>y(t)

true relative to α, β, we must show that α̇(t) ∈ Df (β(x), β(y)). As observed in the proof of
Theorem 7.3, to show that α̇(t) ∈ Df (β(x), β(y)), it suffices to show that for every B ⊇ α̇(t),
we have B ∈ D̂f (β(x), β(y)). Given any B ⊇ α̇(t), let αB be a coalition assignment that
differs from α at most in that αB(b) = B. Since b does not occur in t, we have α̇(t) = α̇B(t).
Since b does not occur in ϕ, and ϕ is true relative to α, β, it follows that ϕ is true relative
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to αB , β. Then by (?), it follows that (t v b) → D̂x>y(b) is true relative to αB , β. By
the truth definition, this implies that if α̇B(t) ⊆ α̇B(b), then α̇B(b) ∈ D̂(β(x), β(y)). Then
given the facts that B ⊇ α̇(t) = α̇B(t) and αB(b) = B, we have α̇B(t) ⊆ α̇B(b) and hence
B = α̇B(b) ∈ D̂(β(x), β(y)), which completes the argument.

For part 2, we sketch the proof in the Appendix.

As in Section 4, here too we have a decidability result showing that reasoning about
decisive and almost decisive coalitions together can be carried out algorithmically.

Theorem 7.5. The set of theorems of T̂ (resp. Ŵ) is decidable.

Proof. The proof is exactly the same as that of Theorem 4.9.

7.3 Collapse Lemma

Perhaps the most important fact about the relationship between almost decisiveness and
decisiveness is that under the Pareto assumption, the two notions collapse.

Lemma 7.6. Assume x 6= y.

`
T̂
D̂(1)→ (D̂x>y(a)↔ Dx>y(a)).

Proof. Given the easy theorem Dx>y(a) → D̂x>y(a), we have ` D̂(1) → (Dx>y(a) →
D̂x>y(a)) by propositional logic. For the other direction, pick b ∈ Coal with b 6= a, b 6= 1.

(1) (D̂y>z(1)∧D̂z>y(1))→ ((D̂x>y(a)∧(a v b))→ D̂x>y(b)) by Lemma 5.10, substituting
D̂ for D

(2) (D̂(1) ∧ D̂x>y(a))→ ((a v b)→ D̂x>y(b)) from (1) by propositional logic

(3) (D̂(1) ∧ D̂x>y(a))→ Dx>y(a) from (2) by the D-generalization rule, since b does not
occur in D̂(1) ∧ D̂x>y(a) or a

(4) D̂(1)→ (D̂x>y(a)→ Dx>y(a)) from (3) by propositional logic.

7.4 Inverse Decisiveness

The above method for combining reasoning about almost decisive coalitions and decisive
coalitions in a single system can be used to add reasoning about inversely decisive coalition
as well. The first step, as before, is to extend the representation theory.

Definition 7.7. Let f be a CCR for 〈X,V 〉. We define functions Îf : X2 → ℘(℘(V )) and
If : X2 → ℘(℘(V )) as follows:

1. Îf (x, y) is the set of all A ⊆ V that are almost inversely decisive for x over y according
to f ;

2. If (x, y) is the set of all A ⊆ V that are inversely decisive for x over y according to f .

Definition 7.8. A dual decisiveness regime for 〈X,V 〉 is a quadruple 〈D̂,D, Î, I〉 where
each component is a function from X2 to ℘(℘(V )).
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Definition 7.9. LetK be a class of CCRs for 〈X,V 〉. A dual decisiveness regime 〈D̂,D, Î, I〉
for 〈X,V 〉 is representable in K if and only if there is an f ∈ K such that D̂ = D̂f , D = Df ,
Î = Îf , and I = If .

All of the ideas required for the proof of the following theorem may be found in the proof
of Theorem 7.3.

Theorem 7.10. Let X and V be nonempty sets with |X| ≥ 3. A dual decisiveness regime
〈D̂,D, Î, I〉 for 〈X,V 〉 is representable in the class of CCRs for 〈X,V 〉 satisfying LD, IIA,
and TR (resp. FR) if and only if the following conditions hold:

1. 〈D̂,D〉 satisfies the properties in Theorem 7.3 (for TR, resp. FR);

2. for all x, y ∈ X and A ⊆ V : A ∈ Î(x, y) if and only if Ac ∈ D̂(y, x);

3. for all distinct x, y ∈ X and A ⊆ V : A ∈ I(x, y) if and only if for all B ⊇ A, we have
B ∈ Î(x, y).

A useful consequence of properties 2 and 3 is the following:

4. for all distinct x, y ∈ X and A ⊆ V : if for all B ⊆ Ac, B ∈ D̂(y, x), then A ∈ I(x, y).

By now we assume it is clear how to extend the language, semantics, and logics to handle
inversely decisive coalitions. A key rule of the extended logic is the following, matching
property 4 above:

D̂-to-I-generalization: if ϕ → ((b v −t) → D̂y>x(b)) is a theorem and b ∈ Coal does
not occur in ϕ or t, then ϕ→ Ix>y(t) is a theorem.

Using this rule, we can prove the collapse lemma for almost inverse decisiveness and
inverse decisiveness.

Lemma 7.11. Assume x 6= y.

` Î(1)→ (Îx>y(a)↔ Ix>y(a)).

Proof. Given the easy theorem Ix>y(a)→ Îx>y(a), we have ` Î(1)→ (Ix>y(a)→ Îx>y(a))

by propositional logic. For the other direction, pick b ∈ Coal such that b 6= a and b 6= 0.

(1) (D̂z>y(0)∧D̂y>z(0))→ ((D̂y>x(−a)∧b v −a)→ D̂y>x(b)) by Lemma 6.6, substituting
D̂ for D

(2) (D̂(0) ∧ D̂y>x(−a))→ ((b v −a)→ D̂y>x(b)) from (1) by propositional logic

(3) (D̂(0)∧D̂y>x(−a))→ Ix>y(a) from (2) by the D̂-to-I-generalization rule, since b does
not occur in D̂(0) ∧ D̂y>x(−a) or −a

(4) D̂(0)→ (D̂y>x(−a)→ Ix>y(a)) from (3) by propositional logic

(5) Î(1)→ (Îx>y(a)→ Ix>y(a)) from (4) using Îx>y(a)↔ D̂y>x(−a).
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In section 6.2, we proved a version of Wilson’s theorem for almost decisive and almost
inversely decisive sets. Using the collapse lemma above, we can now prove a version of
Wilson’s theorem for decisive and inversely decisive sets.23

Theorem 7.12 (Wilson’s Theorem).

1. ` (WEA ∧NE)→ (D(1) ∨ I(1))

2. ` D(1)→ (D(a) ∨D(−a)) 4. ` I(1)→ (I(a) ∨ I(−a))

3. ` D(1)→
(
D(a u b)↔ (D(a) ∧D(b))

)
5. ` I(1)→

(
I(a u b)↔ (I(a) ∧ I(b))

)
.

Proof. Immediate from Theorem 6.9 and Lemmas 7.6 and 7.11, using the easy theorems
Dx>y(a)→ D̂x>y(a) and Ix>y(a)→ Îx>y(a).

8 From Rationality Postulates to Decisiveness Axioms

Having given ample illustration of our methodology of representation and derivation involv-
ing concepts of decisive coalitions, let us now take a “meta”-perspective on this methodology.
How do we find the right axioms for reasoning about decisiveness?

It turns out there is an algorithm for doing so, at least given certain rationality postulates
for social preference as inputs. For simplicity, we will focus on almost decisive coalitions,
though the arguments can be adapted for decisive coalitions as well.

For example, suppose we are given a social rationality postulate R in the language of
preference of one of the following forms, where for all i ≤ n, xi 6= yi:24

(i) if for all i ≤ n, xiPyi, then xn+1Pyn+1;

(ii) if for all i ≤ n, xiPyi, then xn+1Pyn+1 or xn+2Pyn+2.

Given R, we construct a list ΣR of Boolean equations of the form

±1A1 ∩ · · · ∩ ±n+2An+2 = ∅,

where each ±i denotes either the complement function or the identity function. We add
such an equation to ΣR if and only if for every profile P ∈ L(X)V such that for all i ≤ n+2,
Ai = P(xi, yi), we have ±1A1 ∩ · · · ∩ ±n+2An+2 = ∅. Clearly it can be checked in a
finite time whether an equation belongs to ΣR. Having thereby constructed our list ΣR

of equations, we translate the postulate R into a principle R? in the language of (almost)
decisive sets as follows, depending on which case we were in above:

(i′) if for all i ≤ n, Ai ∈ D(xi, yi), and the equations in ΣR hold, thenAn+1 ∈ D(xn+1, yn+1);

(ii′) if for all i ≤ n, Ai ∈ D(xi, yi), and the equations in ΣR hold, thenAn+1 ∈ D(xn+1, yn+1)

or An+2 ∈ D(xn+2, yn+2).
23In Theorem 7.12, by WEA and NE, we do not mean exactly the formulas defined in Section 5.1, but

rather the result of replacing D by D̂ (or D) in those formulas.
24To make the following argument fully rigorous, we need to define the formal syntax of the language in

which these postulates are given, as well as the formal syntax of the language into which we are translating
them below. The former can be the language of predicate logic with a single binary predicate symbols P ,
and the latter can be the language of (almost) decisiveness in Section 4.
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Given this translation, we will prove a generic representation theorem that implies our
earlier Theorem 3.5, as well as others. Given rationality postulates R1, . . . , Rm as above,
let N be the highest number of alternative variables in any of the Ri’s.

Theorem 8.1. Let X and V be nonempty sets with |X| ≥ N . A function D : X2 →
℘(℘(V )) is almost-decisively representable in the class of CCRs for 〈X,V 〉 satisfying UD,
IIA, and the rationality postulates R1, . . . , Rm if and only if D satisfies properties 1 and 2
of Theorem 3.3 and R?1, . . . , R?m.

Proof. Suppose D is represented by a CCR f satisfying UD, IIA, and rationality postulates
R1, . . . , Rm. We must show that D satisfies R?1, . . . , R?m. We will give the proof for a
rationality postulate R of type (ii) above. The proof for type (i) is even easier.

Suppose An+1 6∈ D(xn+1, yn+1), so there is a profile P in which An+1 = P(xn+1, yn+1),
Acn+1 = P(yn+1, xn+1), and not xn+1f(P)yn+1. Further suppose that the equations in ΣR

hold for A1, . . . , An+2. First, we claim that there is a profile P′ ∈ L(X)V such that:

for all i ≤ n+ 2, Ai = P′(xi, yi) and hence Aci = P′(yi, xi).

The proof that there is such a profile follows the same partitioning strategy as in the proof
of Theorem 3.3. If an equation ±1A1 ∩ · · · ∩±n+2An+2 = ∅ belongs to ΣR, then we do not
need to specify a strict linear order for voters in ±1A1 ∩ · · · ∩ ±n+2An+2, because there are
no such voters, by the assumption that the equations in ΣR hold. On the other hand, if an
equation ±1A1 ∩ · · · ∩ ±n+2An+2 = ∅ does not belong to ΣR, then by the definition of ΣR

there exists a profile P∗ ∈ L(X)V such that ±1P
∗(x1, y1) ∩ · · · ∩ ±n+2P

∗(xn+2, yn+2) 6= ∅.
Let P ∗ be the strict linear order belonging to one of the voters in ±1P

∗(x1, y1) ∩ · · · ∩
±n+2P

∗(xn+2, yn+2). Then for each j ∈ ±1A1 ∩ · · · ∩ ±n+2An+2, define P ′j to be P ∗. In
this way, we assign to each voter a strict linear order on X, depending on the cell of the
partition to which the voter belongs, that results in a profile P′ ∈ L(X)V satisfying the
bulleted requirement above. Then since P|{xn+1,yn+1} = P′|{xn+1,yn+1} by construction, from
not xn+1f(P)yn+1 we have not xn+1f(P′)yn+1 by IIA, and for all i ≤ n, from Ai ∈ D(xi, yi)

we have xif(P′)yi. Therefore, xn+2f(P′)yn+2 by the rationality postulate R. Now we claim
that An+2 ∈ D(xn+2, yn+2). Consider any profile P′′ in which An+2 = P′′(xn+1, yn+2) and
Acn+2 = P′′(yn+2, xn+2). Then P′|{xn+2,yn+2} = P′′|{xn+2,yn+2}, so by IIA, xn+2f(P′)yn+2

implies xn+2f(P′′)yn+2. Thus, An+2 ∈ D(xn+2, yn+2). This completes the proof of R?.
Conversely, by Lemma 3.4, it suffices to establish representability in the class of CCRs

satisfying LD, IIA, and R1, . . . , Rm. For P ∈ L(X)V , we define f exactly as in the
proof of Theorem 3.3: xf(P)y if and only if x 6= y and P(x, y) ∈ D(x, y). We claim
that f(P) satisfies R1, . . . , Rm. Again consider an R of type (ii) above, as the proof for
type (i) is similar. We must show that if for all i ≤ n, xif(P)yi, then xn+1f(P)yn+1

or xn+2f(P)yn+2. From xif(P)yi, we have P(xi, yi) ∈ D(xi, yi). In addition, by the
construction of ΣR, all of the equations in ΣR hold when we set Ai = P(xi, yi). Thus, by R?

we have P(xn+1, yn+1) ∈ D(xn+1, yn+1) or P(xn+2, yn+2) ∈ D(xn+2, yn+2), which implies
(given xi 6= yi) that xn+1f(P)yn+1 or xn+2f(P)yn+2.

Let us now show how Theorem 8.1 can be applied to concrete rationality postulates
other than those we have seen so far. For example, Blair and Pollak [1979] and Blau
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[1979] strengthened Arrow’s theorem by showing that the assumption that the social strict
preference relation P is negatively transitive can be replaced by the weaker assumption that
P is a semi-order, which means that it satisfies both of the following conditions:

semi-transitivity: if xPy and yPz, then xPw or wPz.

interval order property: if xPy and zPw, then xPw or zPy.

Observe that semi-transitivity together with asymmetry implies transitivity, but not nega-
tive transitivity. From semi-transitivity, we have that if xPy and yPz, then xPz or zPz,
which with asymmetry implies transitivity. Sen [1979, p. 543, fn. 1] observed that just
replacing negative transitivity with semi-transitivity is enough to derive dictatorship from
Arrow’s other conditions—the interval order property is not needed.

The strengthening of Arrow’s theorem with semi-transitivity can be analyzed using The-
orem 8.1. First, let us give a name to the weaker rationality condition:

semi-transitive rationality (SR): for any P ∈ dom(f), f(P) is semi-transitive.

By calculating the set ΣR of Boolean equations enforced by the semi-transitivity pos-
tulate, and then re-writing them as equivalent subset statements, we obtain the following
representation theorem from Theorem 8.1.

Theorem 8.2. Let X and V be nonempty sets with |X| ≥ 4. A function D : X2 → ℘(℘(V ))

is almost-decisively representable in the class of CCRs for 〈X,V 〉 satisfying UD, IIA, and
SR if and only if D satisfies properties 1 and 2 of Theorem 3.3, and for all A,B,C ⊆ V and
distinct x, y, z, w ∈ X:

• if A ∈ D(x, y), B ∈ D(y, z), A∩B ⊆ C1∪C2, and C1∩C2 ⊆ A∪B, then C1 ∈ D(x,w)

or C2 ∈ D(w, z).

Let Ŝ (resp. S) be the decisiveness logic that replaces the negative transitivity axiom
of Ŵ (resp. W) with the semi-transitivity axiom formalizing the condition in Theorem 8.2
(see (2) in the proof of Lemma 8.3 below). Since the negative transitivity axiom was only
needed in the proof that the filter of (almost) decisive sets is complete (Lemma 5.14), we
need only show how to modify that proof to use the semi-transitivity axiom instead.

Lemma 8.3. `S EA→ (D(a) ∨D(−a)).

Proof. We use the same strategy as in the proof of Lemma 5.14, only now we use the semi-
transitivity axiom instead of the negative transitivity axiom and EA instead ofWEA∧NE:

(1) EA→ (Du>u′(e) ∧Du′>v(e)) by Lemma 5.2

(2)
(
Du>u′(e)∧Du′>v(e)∧ (eue v at−a)∧ (au−a v ete)

)
→
(
Du>w(a)∨Dw>v(−a)

)
,

instance of semi-transitivity axiom

(3) (e u e v a t −a) ∧ (a u −a v e t e), valid Boolean inequalities

(4) (Du>u′(e)∧Du′>v(e))→ (Du>w(a)∨Dw>v(−a)) from (2) and (3) by propositional logic

(5) (Du>u′(e) ∧Du′>v(e))→ (¬Du>w(a)→ Dw>v(−a)) from (4) by propositional logic

(6) EA→ (Dw>v(−a)→ D(−a)) by Lemma 5.3

(7) EA→ (¬Du>w(a)→ D(−a)) from (1), (5), and (6) by propositional logic.
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9 Conclusion

The theme of this paper has been that Arrow’s concept of a decisive coalition gives rise to
a social choice theoretic language and logic all of its own. We have investigated key aspects
of this language and logic, but there remains a variety of questions for further study. An
immediate question is whether our approach can be extended to a setting without the
axiom of IIA. Indeed, in work in progress we analyze, via a new representation theorem and
matching logic, an impossibility result that does not depend on IIA: Sen’s theorem on the
impossibility of the Paretian liberal [Sen, 1970]. Below we will mention more open-ended
questions that are inspired by logic but also seem of interest for social choice theory. We
will give three examples of avenues for investigation within the framework of the current
paper and then one example of an avenue for extending the framework.

First, we can ask about the complete logic for reasoning about decisive coalitions with
respect to some specific CCR, including CCRs that do not satisfy the axioms of IIA and
TR that have been our focus. For example, dropping TR, we may consider the Condorcet
CCR f : O(X)V → P (X) that sets xf(P)y if and only if a majority of voters prefer x to
y in the profile P. Key axioms of the Condorcet logic are the Pareto principle D(1), the
axiom (Dx>y(a)∧ (a v b))→ Dx>y(b) for closure under supersets, and (for an odd number
of voters) the axiom Dx>y(a) ∨Dx>y(−a). The first two axioms, but not the third,25 are
also valid for the Borda count CCR, which violates IIA. This also suggests the possibility
of starting with a set of axioms about decisive coalitions, instead of social choice theoretic
axioms of a more traditional form as in Section 2, and then investigating all of those CCRs
that validate the desired decisiveness axioms (and none stronger).

Second, logicians often study the structure of whole classes of related logics (see, e.g.,
Chagrov and Zakharyaschev 1997). In that spirit, there are questions about the structure
of the whole class of decisiveness logics. For example, let Arrow’s logic be the smallest
decisiveness logic that contains the ultrafilter axioms:

D(1)→ ¬D(0) D(1)→ (D(a) ∨D(−a)) D(1)→ (D(a u b)↔ (D(a) ∧D(b))).

We showed that the logic Ŵ (resp. W) is as strong as Arrow’s logic, as it derives the axioms
of Arrow’s logic as theorems. In fact, the logic Ŵ (resp.W) is stronger : it has theorems that
Arrow’s logic does not, namely the negative transitivity axiom. The reason we know that
the negative transitivity axiom is not a theorem of Arrow’s logic is that the semi-transitivity
logic Ŝ (resp. S) also derives the axioms of Arrow’s logic, but as semi-transitivity does not
imply negative transitivity (relative to UD and IIA), the logic Ŝ (resp. S) is weaker than Ŵ

(resp. W). Let us say that a decisiveness logic L is minimally super-Arrovian if and only if
L is stronger than Arrow’s logic and there is no decisiveness logic intermediate in strength
between Arrow’s logic and L. What is the cardinality of the set of minimally super-Arrovian
logics? In intuitive terms, how many different minimal sets of assumptions about decisive
coalitions are there for proving Arrow’s theorem?

Third, a central question about any logical framework concerns the expressivity of the
25Thanks to Mikayla Kelley for this way of distinguishing the logic of decisive coalitions for Condorcet

and Borda.
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chosen formal language, given its formal semantics. For example, the language of (almost)
decisive coalitions can express certain assumptions, such as the Pareto principle with the
formula D(1), but it cannot express other assumptions, such as the very weak non-null
assumption that for some distinct x, y ∈ X and some profile P, we have xf(P)y.26 Which
classes of CCRs are definable by a formula in the language of decisive coalitions? In other
areas of logic, there are characterizations of the definable classes of structures in terms of
operations on structures that preserve truth in the formal language. We might hope for a
similar characterization of definable classes of CCRs that illuminates the expressive power
and limits of the language of decisive coalitions. Of course a language with quantification
over profiles, alternatives, and voters is more expressive than our language, but such in-
creased expressivity may come with a price of unwieldiness. The attractive decidability
property of our logics will be lost with too much increase in expressivity.

A fourth avenue for investigation concerns extending our framework to reasoning about
decisive coalitions in the context of functional collective choice rules (FCCRs), as in Sen
1969, 1993 (also see Blair et al. 1976, Suzumura 1983), which assign to each profile P ∈
O(X)V a choice function C = f(P) : ℘(X) → ℘(X) such that C(S) ⊆ S. Here we can
allow choice functions that are not rationalizable by a binary preference relation, in the
sense of Arrow 1959, so we can drop even the transitivity axiom that leads, together with
IIA, to the Oligarchy Theorem of Section 6.1. For a menu S ⊆ X of feasible alternatives,
x, y ∈ S, and A ⊆ V , we may follow Sen [1993] and say that A is (rejection) decisive for
x over y relative to S if and only if for all P ∈ dom(f), if A ⊆ P(x, y), then y 6∈ f(P)(S).
To reason about this kind of decisiveness, we can replace our formulas Dx>y(a) by formulas
D
S

x>y(a), where S is now a menu term (which may be built up from menu labels in the
same way that coalition terms are built up from coalition labels), and add formulas S v T

where S and T are menu terms. For example, in this language we may write axioms such
as (D

S

x>y(a) ∧ S v T ) → D
T

x>y(a), expressing that a coalition that is decisive for x over y
relative to one menu is also decisive for x over y relative to any larger menu include the first,
which is valid for some FCCRs (e.g., the Condorcet method, allowing C(S) = ∅ when there
is no Condorcet winner) but not for others (e.g., local Borda count as in Kelly 1988, p. 74).
The same questions about obtaining representation theorems and complete logics that we
have answered for our language make perfect sense for this extended language as well.

Our aim in this paper has been to stay close to the style of reasoning done by social
choice theorists, while formalizing it in the style of symbolic logic. We would like to think
that such a project would be congenial to Arrow, given the role that logic played in his
creation of the mathematical theory of social choice.

26This is because there can be CCRs f and f ′ such that: f and f ′ have the same (almost) decisive
coalitions, i.e., for all x, y ∈ X, D̂f (x, y) = D̂f ′ (x, y) and Df (x, y) = Df ′ (x, y); f does not satisfy non-null;
and f ′ does satisfy non-null. For example, let f be the CCR such that for all profiles P and x, y ∈ X,
not xf(P)y. Given x, y ∈ X, we will define a CCR fx,y that differs from f only on the profile P? such
that for all x, y ∈ X and i ∈ V , not xPiy; for this P?, let zfx,y(P?)w if and only if either z = x and
w 6= x, or z 6= y and w = y, so fx,y(P?) is a strict weak order. Then for all z, w ∈ X, if z 6= w, then
D̂f (z, w) = D̂fx,y (z, w) = Df (z, w) = Dfx,y (z, w) = ∅, while if z = w, then D̂f (z, w) = D̂fx,y (z, w) = ℘(V )

and Df (z, w) = Dfx,y (z, w) = ℘(V ) \ {∅}; f does not satisfy non-null; and fx,y does satisfy non-null.
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A Appendix

In this Appendix, we sketch the proofs of the completeness theorems stated in Theorems
4.8.2, 4.8.4, and 7.4.2. A similar approach can be used to prove completeness theorems for
logics that include inverse decisiveness as in Section 7.4.

For a logic L, a set Σ of formulas is L-inconsistent if and only if there are σ1, . . . , σn ∈ Σ

such that `L (σ1 ∧ · · · ∧ σn)→ ⊥, where ⊥ is any formula of the form ϕ∧¬ϕ. Otherwise Σ

is L-consistent. We say that a formula ϕ is L-consistent if and only if {ϕ} is L-consistent.
Finally, a set Σ of formulas is maximally L-consistent if and only if for every set ∆ of
formulas, Σ ( ∆ implies that ∆ is L-inconsistent.

To say that a logic L is complete with respect to a class K of CCRs is to say that for
any formula ψ, if ψ is true of all CCRs from K, then ψ is a theorem of L. Equivalently,
if ψ is not a theorem of L, then there is a CCR from K of which ψ is not true. Since by
propositional logic, we have 6`L ψ if and only if 6`L ¬ψ → ⊥, the formula ψ not being a
theorem of L is equivalent to ¬ψ being L-consistent. Moreover, there being a CCR from K

of which ψ is not true is equivalent to there being a CCR from K of which ¬ψ is true. Thus,
to prove that L is complete with respect to K, it suffices to show that for any formula ϕ, if
ϕ is L-consistent, then there is a CCR from K of which ϕ is true.

We will give a fairly detailed proof of Theorem 7.4.2, where L is T̂ (resp. Ŵ) and K

is the class of CCRs satisfying LD, IIA, and TR (resp. FR). The proof where L is T̂ or T
(resp. Ŵ or W) and K is the class of CCRs satisfying UD, IIA, and TR (resp. FR) is quite
a bit simpler, as we will explain at the end.

In what follows by ‘consistent’ we mean ‘T̂-consistent’ or ‘Ŵ-consistent’, and by ‘`’ we
mean ‘`

T̂
’ or ‘`

Ŵ
’, depending on which case the reader has in mind. The proof is the same

except at one point that we will flag. Indeed, the proof would be essentially the same for
still other logics based on other rationality postulates (recall Section 8).

Suppose ϕ is consistent. Let T1 be the set of all terms generated by the coalition labels
in Coal(ϕ) = {a ∈ Coal | a appears in ϕ} using −, u, and t as in Definition 4.1. Define
an equivalence relation E on T1 by: sEt if and only if s ≡ t is a valid equation of Boolean
algebra. Let T1/E be the quotient of T1 by E. It follows that T1/E is a Boolean algebra in
which the complement of [t] is [−t], and the meet of [s] and [t] is [s u t]. Since T1 is the set
of terms generated by Coal(ϕ), it follows that the Boolean algebra T1/E is generated by the
set of equivalence classes of elements of Coal(ϕ). Since the set of such equivalence classes
is finite, T1/E is finite by the well-known fact that any finitely generated Boolean algebra
is finite (see, e.g., Givant and Halmos 2009, p. 82). For each x, y ∈ Alt and [t] ∈ T1/E,
pick a coalition label cx,y,[t] ∈ Coal \ Coal(ϕ) such that if 〈x, y, [t]〉 6= 〈x′, y′, [t′]〉, then
cx,y,[t] 6= cx′,y′,[t′]. Since Alt and T1/E are finite, only finitely many coalitions labels cx,y,[t]
are needed. Crucially, cx,y,[t] does not appear in ϕ or t. Now define

Θ = {(t v cx,y,[t]) ∧ (¬Dx>y(t)→ ¬D̂x>y(cx,y,[t])) | t ∈ T1, x, y ∈ Alt}.

We claim that the set {ϕ} ∪Θ is consistent. If not, then there are θ1, . . . , θn+1 ∈ Θ (n ≥ 0)
such that {ϕ, θ1, . . . , θn+1} is inconsistent, but no proper subset is inconsistent. Thus,
` (ϕ∧ θ1 ∧ · · · ∧ θn+1)→ ⊥ and hence ` (ϕ∧ θ1 ∧ · · · ∧ θn)→ ¬θn+1 by propositional logic.
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The formula θn+1 is (t v cx,y,[t])∧ (¬Dx>y(t)→ ¬D̂x>y(cx,y,[t])) for some t ∈ T1, x, y ∈ Alt.
Thus, by propositional logic we have:

` (ϕ ∧ θ1 ∧ · · · ∧ θn)→ ¬((t v cx,y,[t]) ∧ (¬Dx>y(t)→ ¬D̂x>y(cx,y,[t]))

⇒ ` (ϕ ∧ θ1 ∧ · · · ∧ θn)→ ((t v cx,y,[t])→ ¬(¬Dx>y(t)→ ¬D̂x>y(cx,y,[t]))

⇒ ` (ϕ ∧ θ1 ∧ · · · ∧ θn)→ ((t v cx,y,[t])→ (¬Dx>y(t) ∧ D̂x>y(cx,y,[t])).

Not only does cx,y,[t] not appear in ϕ or t, but also cx,y,[t] does not appear in θ1, . . . , θn.
Toward a contradiction, suppose that cx,y,[t] does appear in some θi, so θi is the formula
(s v cx,y,[t]) ∧ (¬Dx>y(s) → ¬D̂x>y(cx,y,[t])) for some term s ∈ [t]. As an axiom of our
logic, we have s ≡ t → (θi[s/s] ↔ θi[t/s]), which is the same as s ≡ t → (θi ↔ θn+1).
Since s ∈ [t], s ≡ t is also an axiom of our logic, which with the previous step implies that
θi ↔ θn+1 is a theorem of our logic. But then from the inconsistency of {θ1, . . . , θn+1}, its
proper subset {θ1, . . . , θn+1}\{θi} is also inconsistent, contradicting our assumption that no
proper subset is inconsistent. Thus, we conclude that cx,y,[t] does not appear in θ1, . . . , θn.

On the one hand, since ` (ϕ∧θ1∧· · ·∧θn)→ ((t v cx,y,[t])→ D̂x>y(cx,y,[t])), and cx,y,[t]
does not appear in ϕ∧ θ1 ∧ · · · ∧ θn or t, it follows by the D-generalization rule (Section 7.2)
that

` (ϕ ∧ θ1 ∧ · · · ∧ θn)→ Dx>y(t). (1)

On the other hand, since

` (ϕ ∧ θ1 ∧ · · · ∧ θn)→ ((t v cx,y,[t])→ ¬Dx>y(t))

⇒ ` (ϕ ∧ θ1 ∧ · · · ∧ θn ∧Dx>y(t))→ ¬(t v cx,y,[t]), (2)

and cx,y,[t] does not appear in ϕ∧θ1∧· · ·∧θn∧Dx>y(t), we can apply the substitution rule to
replace cx,y,[t] in (2) by 1 to obtain ` (ϕ∧θ1∧· · ·∧θn∧Dx>y(t))→ ¬(t v 1). But then since
t v 1 is a theorem of our logic, by propositional logic we obtain ` ¬(ϕ∧θ1∧· · ·∧θn∧Dx>y(t))

and then ` (ϕ ∧ θ1 ∧ · · · ∧ θn) → ¬Dx>y(t). It follows, given (1), that {ϕ, θ1, . . . , θn} is
inconsistent, contradicting the fact that no proper subset of {ϕ, θ1, . . . , θn+1} is inconsistent.
Thus, we conclude that {ϕ} ∪Θ is consistent.

We extend the consistent set {ϕ} ∪Θ to a maximally consistent set Γ using a standard
construction. Fixing an enumeration ϕ0, ϕ1, . . . of the formulas of our language, we define:

Γ0 = {ϕ} ∪Θ Γn+1 =

Γn ∪ {ϕn} if this is consistent

Γn ∪ {¬ϕn} otherwise
Γ =

⋃
n∈N

Γn.

It is then a standard exercise to verify that Γ is a maximally consistent set.
For the next step of the proof, let T2 be the set of all terms (including 0 and 1) generated

by the coalition labels from the finite set Coal(ϕ) ∪ {cx,y,[t] | x, y ∈ Alt, [t] ∈ T1/E}. Define
an equivalence relation EΓ on T2 by: sEΓt if and only if s ≡ t ∈ Γ. Then since Γ, as a
maximally consistent set, contains all valid equations of Boolean algebra, it follows that the
quotient T2/EΓ is a Boolean algebra in which the complement of [t] is [−t], and the meet of
[s] and [t] is [s u t]. Let ≤ be the order of this Boolean algebra, so [s] ≤ [t] iff [s] u [t] = [s].
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By the same argument used above to show that T1/E is finite, we have that T2/EΓ is finite.
Since T2/EΓ is a finite Boolean algebra (with at least two elements, since ¬(0 ≡ 1) is an

axiom), it is isomorphic to the powerset of a (nonempty) set V . Let f be the isomorphism
sending elements of T2/EΓ to subsets of V . We take the set X of alternatives to be the set
Alt of alternative labels. We then define D̂ : X2 → ℘(℘(V )) by:

f([t]) ∈ D̂(x, y) if and only if D̂x>y(t) ∈ Γ. (3)

This is well defined, i.e., the choice of representative from [t] does not matter, because if
D̂x>y(s) ∈ Γ and s ≡ t ∈ Γ, then it is easy to see using the maximal consistency of Γ and
the principles of our logic that D̂x>y(s)↔ D̂x>y(t) ∈ Γ and hence D̂x>y(s) ∈ Γ if and only
if D̂x>y(t) ∈ Γ. With this definition of D, the fact that Γ contains the axioms of T̂ implies
that D satisfies the properties of Theorem 7.3 for TR (resp. the fact that Γ contains the
axioms of Ŵ implies that D satisfies the properties of Theorem 7.3 for FR).

Next we define D : X2 → ℘(℘(V )) by f([t]) ∈ D(x, y) if and only if Dx>y(t) ∈ Γ. Again
this is well-defined, for the same reasons as before. The fact that Γ contains the axiom
(Dx>y(a) ∧ (a v b)) → D̂x>y(b) implies that 〈D̂,D〉 satisfies the left-to-right direction of
property 6 of Theorem 7.3: if A ∈ D(x, y), then for all B ⊇ A, we have B ∈ D̂(x, y). Proving
the converse implication was the reason for our introduction of the set Θ of formulas. Sup-
pose f([t]) 6∈ D(x, y), so Dx>y(t) 6∈ Γ and hence ¬Dx>y(t) ∈ Γ by the maximal consistency
of Γ. Then given that (t v cx,y,[t])∧ (¬Dx>y(t)→ ¬D̂x>y(cx,y,[t])) ∈ Γ, from ¬Dx>y(t) ∈ Γ

we have ¬D̂x>y(cx,y,[t]) ∈ Γ by the maximal consistency of Γ, whence D̂x>y(cx,y,[t]) 6∈ Γ

by the consistency of Γ. Thus, f([cx,y,[t]]) 6∈ D̂(x, y). Since t v cx,y,[t] ∈ Γ, we also have
[t] ≤ [cx,y,[t]] and hence f([t]) ⊆ f([cx,y,[t]]), which completes the proof of property 6.

Since 〈D̂,D〉 satisfies the properties of Theorem 7.3 for TR (resp. FR), it is representable
by a CCR satisfying LD, IIA, and TR (resp. FR). Let α be the coalition labeling that sends
each coalition label a to the image f([a]) ⊆ V of the equivalence class of [a] in T2/EΓ.
Since the set of terms was defined inductively, one can prove by induction that the extended
labeling α̇ from Definition 4.2 satisfies

α̇(t) = f([t]). (4)

Let β be the alternative labeling that sends each alternative label x to itself, recalling from
above that we take the set X of alternatives to be Alt.

We claim that for any formula ψ, we have:

f |=α,β ψ if and only if ψ ∈ Γ. (5)

The set of formulas was defined inductively, so we prove the claim by induction. For formulas
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of the form t ≡ s, we have the following equivalences:

f |=α,β t ≡ s ⇔ α̇(t) = α̇(s)

⇔ f([t]) = f([s]) by (4)

⇔ [t] = [s] since f is injective

⇔ t ≡ s ∈ Γ by definition of the equivalence relation EΓ.

For formulas of the form D̂x>y(t), we have:

f |=α,β D̂x>y(t) ⇔ α̇(t) ∈ D̂f (β(x), β(y))

⇔ f([t]) ∈ D̂f (β(x), β(y)) by (4)

⇔ f([t]) ∈ D̂f (x, y) since β is the identity map

⇔ f([t]) ∈ D̂(x, y) since D̂ is represented by f

⇔ D̂x>y(t) ∈ Γ by (3).

The proof for formulas of the form Dx>y(t) is analogous. For formulas of the form ¬ϕ:

f |=α,β ¬ϕ ⇔ f 6|=α,β ϕ by Definition 4.4

⇔ ϕ 6∈ Γ by the inductive hypothesis

⇔ ¬ϕ ∈ Γ since Γ is maximally consistent.

The proofs for formulas of the form ψ ∧ χ, ψ ∨ χ, etc., also use the maximal consistency of
Γ, which ensures that ψ ∧ χ ∈ Γ if and only if ψ, χ ∈ Γ; ψ ∨ χ ∈ Γ if and only if ψ ∈ Γ or
χ ∈ Γ; etc. Thus, (5) holds. Then since our initial consistent formula ϕ belongs to Γ, we
have f |=α,β ϕ. This completes the proof that every T̂-consistent (resp. every Ŵ-consistent)
formula is true of some CCR satisfying LD, IIA, and TR (resp. FR).

The proof of Theorem or 4.8.2 or 4.8.4 is even simpler. In this case, without the inter-
action between D̂ and D to worry about, we can skip the step involving the new coalition
labels cx,y,[t] and the set Θ of new formulas. Simply extend ϕ to a maximally consistent set
Γ and continue with the rest of the proof as above. At the point where the representation
result from Theorem 7.3 (for decisiveness regimes) was used, use the representation result
from Theorem 3.5 (for almost decisiveness) or Theorem 3.6 (for decisiveness) instead.
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