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Abstract

We model conflict as a multi-prize contest which takes place if a minimum number
of players (which we interpret as social classes) reject the status-quo prize distri-
bution. In the event of conflict, the status-quo prizes are reshuffled across players
depending on their efforts. We first show that, for a broad family of contest models,
equilibrium rent dissipation takes the form of a Generalized Gini coefficient of the
prize distribution (also tackling the well-known issue of existence of an equilibrium).
Secondly, we show that conflict occurs when inequality is low and deprivation (a
concept that we define) is high, where these measures are computed with respect to
the prize distribution. Thirdly, we find empirical evidence that supports our pre-
dictions using an unbalanced panel of 41 high and middle income countries, taking
the number of labor strikes per capita as a proxy for the occurrence of conflict and
measuring inequality and deprivation with respect to the income distribution.
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1 Introduction

What is the relation between the endowment and distribution of scarce resources and
the welfare of the population that controls them? And more specifically, what is the
relation between the inequality of this distribution and the degree of conflictual activities
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within this population? This is a fundamental question in economics and other social
sciences which can be tackled from many different perspectives given the complexity of
the problem.1 In this paper we study the relation between conflict and the inequality of
the contested resources in a multi-prize contest model, identifying a link between con-
flict intensity and the Gini coefficient of the prize distribution. Although it may seem
obvious that a significant increase in the inequality of contested resources should lead
to higher conflict intensity to obtain them, it is not at all clear what constitutes a ‘sig-
nificant inequality increase’ in this context. The employment of inequality majorization
criteria (e.g., the Pigou-Dalton transfer principle) is hardly questionable, but it leaves the
analysis incomplete as many resource distributions remain non-comparable.2 Moreover,
the relation between inequality and conflict outbreak is largely unexplored, an issue that
we address both theoretically and empirically. Roughly speaking, in this paper we argue
that conflict is less likely to occur when the inequality of the contested resources is high,
because players expect the corresponding conflict to be very intense and costly (as they
have a lot to win and to lose) and therefore refrain from initiating it.

We start by analyzing the incentives to exert costly effort in an ongoing conflict (we
consider the incentives to initiate such conflict later on) which we model as a contest for
multiple commonly valued prizes. These prizes can be interpreted as quantifiable rents
attached to the structural roles of a society, where by structural roles we mean the key
figures which are intrinsic to the organization of the society as defined by, e.g., the means
of production.3 Then, one could think of contestants (or players) as economic classes
while abstracting from the collective action problem within each class.4 For simplicity we
assume that players are risk neutral, that their effort costs are sunk and linear, and that
their payoffs are symmetric in the ongoing conflict.5 For a broad class of contest models,
we identify a linear relation between equilibrium rent dissipation (i.e., the fraction of the
total value of prizes that is wasted in aggregate equilibrium efforts, which is a well-known
proxy for the intensity of conflict) and the inequality of the prize distribution as measured
by the class of Generalized Gini coefficients put forward in Donaldson and Weymark (1980)
and Weymark (1981). Roughly speaking, the intensity of conflict is proportional to this
particular class of inequality indices because, being linear in each prize’s share of the total
value, we can think of them as weighted averages of distances between pairs of prizes that

1See, e.g., Benabou (1996); Acemoglu and Robinson (2000); Sachs and Warner (2001); Esteban and
Ray (2008a).

2To see an example, consider three ways of distributing a unit of resources among three individuals:
a = (1, 0, 0), b = (.7, .3, 0), c = (.8, .1, .1). While distribution a is unquestionably more unequal than b
and c (i.e., both b and c can be derived from a by a sequence of Pigou-Dalton transfers, that is, transfers
from rich to poor that do not change the ranking of resources), it is not immediately clear whether b is
more or less unequal than c.

3The underlying assumption is that, due to indivisibilities, (a substantial part of) these rents cannot
be shared but only ‘conquered’. This is in line with the idea that the hierarchical structures of a society
are highly resilient to social change. Roughly speaking, revolutions do not change the fact that a restricted
elite exercises coercion and privilege by controlling the means of production, but only the identity of such
elite. In sociology, related views are put forward in Elite Theory.

4We show in an extension that, roughly speaking, the different sizes of such classes do not affect their
incentives in conflict if the chosen effort of each class is supported by a majority of class members.

5The symmetry restriction is relaxed in an extension where we allow for heterogeneous head-starts.
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capture the incentives to climb the social ladder.

To sharpen our predictions on conflict intensity we focus on the pair-swap contest model
introduced in Vesperoni (2016), which defines a convenient functional form for the map-
ping from efforts to the probabilities of rankings of players. Our crucial results are that,
in a symmetric equilibrium of the pair-swap model, rent dissipation is a linear function of
the standard Gini coefficient of the prize distribution, and that this equilibrium exists for
any possible prize distribution under a basic parameter restriction on the conflict tech-
nology. Note that previous approaches in the literature required restrictions on the prize
distribution to obtain existence, while achieving a result free of such restrictions is crucial
to properly assess the effects of inequality on conflict.6 Clark and Riis (1998) and Fu
et al. (2014) analyze similar frameworks for the ongoing conflict but they employ different
functional forms for the probabilities of allocations, respectively known as the best-shot
and the worst-shot models.7 While none of these contributions explicitly focuses on the
relation between conflict and inequality, we show that equilibrium rent dissipation takes
the form of a Generalized Gini coefficient also for the best-shot and worst-shot models,
although not among the widely known in the literature.

Having established equilibrium behavior in an ongoing conflict, understanding conflict
outbreak is straightforward. We assume that, by an exogenous rule, the status-quo is
challenged if and only if at least k players strictly prefer conflict to peace. Depending
on this, a conflict consisting in the aforementioned contest to reshuffle the status-quo
prizes may or may not take place in the second stage.8 In this basic setup, we find
that in a subgame perfect equilibrium peace is sustained if and only if the inequality of
the prize distribution (which coincides with the expected equilibrium rent dissipation) is
sufficiently larger than what we call the deprivation of the kth-poorest player (a measure
of the deviation of the kth-lowest prize from the mean).9 Intuitively, high inequality
indicates that a large fraction of the total value is wasted in case of conflict outbreak,
as players fight hard having much to win and to lose. On the other hand, a player with
high deprivation is inclined to initiate conflict as her status-quo prize is much lower than
the expected prize from conflict (which is equal to the mean prize), where the focus on
the kth-poorest player is due to deprivation being monotonic in the status-quo prize. So,
high inequality decreases the chances of conflict, high deprivation increases them, and the
interaction of these two terms determines conflict outbreak.

Before moving to the empirics, we consider a few robustness checks on the theory. So
far we have assumed that players’ payoffs are perfectly symmetric in the occurrence of
conflict. In a basic extension of our model we consider asymmetries between players

6See, e.g., Clark and Riis (1998); Schweinzer and Segev (2012); Akerlof and Holden (2012); Fu et al.
(2014). One relevant exception is the recent working paper by Drugov and Ryvkin (2017).

7The best-shot model is originally introduced in Clark and Riis (1996), while the worst-shot model
in Fu et al. (2014). Both the best-shot and the worst-shot models belong to the general class of contests
with multiple prizes introduced in Nalebuff and Stiglitz (1983) and Green and Stokey (1983).

8In an extension we allow the status-quo prizes to be partially destroyed in the occurrence of conflict.
9For related approaches to deprivation, see Paul (1991), Bossert and D’Ambrosio (2006) and references

therein.
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in terms of heterogeneous head-starts, i.e., fixed amounts of pre-committed efforts that
are added to players’ efforts without affecting (current) costs. In this setting, it seems
natural to assume that a player’s head-start is proportional to her status-quo prize, since
it can be interpreted as a player’s investment in self-protection in a pre-game stage. We
show that our previous analysis directly extends if this proportionality is governed by a
linear function. In addition, we prove that our core results persist if we let a fraction
of each status-quo prize to be destroyed in the occurrence of conflict (thus allowing for
inefficiencies of conflict outbreak that go beyond effort exertion), as long as this fraction
is a linear function of the value of each status-quo prize. Note that these linear functions
can be either increasing or decreasing, thus capturing a wide range of effects. Finally, we
provide an explicit representation of players as social classes of heterogeneous size where
each class takes a collective decision on its level of effort in conflict. In this setting, we
show that all our results persist if, roughly speaking, within each class the benefits are
symmetrically distributed around the mean while the costs are equally shared, and each
class implements the effort level that is preferred by a majority of class members to any
alternative (i.e., that is a Condorcet winner). We wish to remark that these are far from
general treatments of these topics, but rather examples to show that our results are robust
to these extensions under certain conditions.

In our empirical section, we evaluate the predictions of our model using a panel dataset
of 41 high and middle income countries between 1980 and 2015. The data we assemble
contains observations for inequality and deprivation characteristics of the income distri-
bution in each country and year, which we take as proxies for their counterparts in the
prize distribution, and the number of labor strikes per capita in each country and year,
which we take as a proxy for conflict outbreak, along with control variables per-capita
income, population size, unemployment rate and manufacturing share in GDP. We follow
two estimation procedures: ordinary and instrumental variable fixed-effects models. The
purpose of the latter is to allow for a possible endogeneity between income inequality
and the number of labor strikes per capita due to reverse causality (i.e., labor strikes
leading to redistribution of income). For the instrumental variable estimation, we take
the current and lagged yearly oil or coal prices as instruments for income inequality, re-
lying on the role of these prices in changing the relative costs of labor and capital and
therefore the relative retribution of these factors of production. Intuitively, as these are
internationally traded commodities their prices should be independent of the occurrence
of labor strikes within each country, and therefore immune to reverse causality. All our
estimation results support our hypotheses. In particular, we find that income inequality
has a statistically significant and negative effect on the occurrence of labor strikes. The
estimated coefficients for deprivation are systematically positive, thus in accord with our
hypothesis, although their statistical significance is weaker.

The paper proceeds as follows. In Section 2 we review the literature, in Section 3 we
present our model, in Section 3.1 we derive the equilibrium results on the determinants
of conflict outbreak, in Section 3.2 we study the three theoretical extensions, in Section
4 we provide the empirical evidence for our theoretical predictions, and we conclude with
Section 5. All proofs are in Appendix.
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2 Related literature

We start this section by reviewing the narrow body of literature that links models of
conflict, and more specifically contests, to the measurement of inequality and related
concepts. We refer to Konrad (2009) and Chakravarty (2015) for a broader take on these
topics. We then review a number of empirical contributions on the determinants of conflict
outbreak. As this literature is vast, we focus primarily on the determinants of labor strikes
and we refer to Garfinkel and Skaperdas (2012) for a more comprehensive discussion on
different forms of conflict such as civil war and terrorism. To locate our contribution within
this literature, it is useful to acknowledge that it is loosely inspired by Esteban and Ray
(1999, 2011), which develop a contest model where equilibrium efforts are a function of
the polarization index introduced and axiomatically characterized in Esteban and Ray
(1994). In their contest model there is always a unique winner and the payoff of a losing
player depends on the identity of the winner.10 Their single-winner framework is designed
to represent an ongoing conflict between ethnic groups in a society where the winning
group decides on the nature of a public good, indirectly favoring groups with similar
preferences. In their model, an aggregation of the distances between the preferences of
winners and losers determines the degree of polarization. Compared to them, we take a
more materialistic approach as in our common-value multi-prize framework we interpret
prizes as material resources attached to structural roles in a society.

There are other papers that explore the relation between conflict and inequality from a
materialistic view point. Cubel and Sanchez-Pages (2014) analyze equilibrium behavior
in a contest between coalitions (or groups) of players, identifying a link between the in-
equality of the distribution of resources within groups and their relative win probabilities
via a free-riding effect. The functional form they employ to represent win probabilities
belongs to the class axiomatically characterized in Münster (2009), and the measure of
inequality that links to their model is the well-known Atkinson index. As their focus is
on how the inequality of resources within groups affects the relative strength of groups
in a single-winner conflict across them, they look at the effects of inequality on conflict
from a completely different perspective than ours. Hopkins and Kornienko (2010) de-
velop a conflict model where players allocate their endowments between consumption and
effort, where the latter increases the chances of winning a better prize and has also in-
trinsic value.11 They analyze the effects of inequality in the opportunity cost of effort
(which is inversely proportional to endowment) and inequality in prize values, finding
that inequality of prizes tends to affect equilibrium efforts positively while the opposite
holds for inequality of opportunity costs. Conversely, in this paper we abstract from in-
equality of opportunity costs assuming they are symmetric.12 On the other hand, while

10Klose and Kovenock (2015a,b) analyze an all-pay auction with identity-dependent externalities along
the lines of Esteban and Ray (1999, 2011).

11Closely related frameworks are analyzed in Hopkins and Kornienko (2004, 2006, 2009). Other related
papers on contests for status are Moldovanu et al. (2007), Besley and Ghatak (2008) and Auriol and
Renault (2008).

12It is well-known that in single-prize contests inequality of opportunity (or marginal) costs lowers
equilibrium efforts. We expect an analogous effect in our setup, although a general analysis with arbitrary
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they approach inequality in terms of majorization criteria (e.g., stochastic dominance),
in this paper we focus on the microfoundation of inequality measures that provide com-
plete orderings of distributions of resources based on the intensity of conflict they induce.
Another related paper that takes a materialistic approach is Andonie et al. (2014), which
provides a microfoundation for inequality measures of the Generalized Entropy family via
a conflict model. They consider a conflict game where each player can claim a prize from
a set of commonly valued prizes of different value and prizes are allocated only if there are
no conflictual claims. They focus on symmetric mixed strategy equilibria showing that
the probability of conflictual claims increases with the inequality of prize values. Hence,
like in our setup, the higher the inequality of the prize distribution the higher the conflict
loss. In an extension, they also analyze a contest model closer to our setup and discuss
equilibrium effort in relation to inequality of prizes, focusing on identifying conditions
such that equilibrium effort satisfies the Pigou-Dalton transfer principle. They also show
that a particular contest model from this class leads to equilibrium efforts proportional
to the standard Gini coefficient, where one key difference from our approach is that they
assume the marginal cost of effort to depend on the sum of prizes.13

Until now we focused on the literature on the intensity of ongoing conflicts. We now
briefly address the literature on conflict outbreak. Esteban and Ray (2008b) extend the
aforementioned model in Esteban and Ray (1999) to study determinants of conflict out-
break within their polarization framework. As we do, they identify a negative relation
between conflict intensity and conflict outbreak, and they relate these variables to polar-
ization and the institutions governing peace. More generally, the theoretical literature on
conflict outbreak has focused on winner-take-all contests looking at the effects of dynamic
incentives (e.g., Garfinkel and Skaperdas, 2000), transfers (e.g., Beviá and Corchón, 2010)
and asymmetric information (e.g., Bester and Wärneryd, 2006; Corchón and Yıldızparlak,
2013). To the best of our knowledge, our paper is first in studying conflict outbreak in
a multi-prize contest and in linking the analysis to inequality measurement. From an
empirical perspective, a lot has been said on the relation between the distribution of re-
sources and the presence of conflict. Stewart (2008) provides a comprehensive discussion
on the effects on the occurrence and intensity of civil wars of unbalanced distributions of
resources within and across ethnic groups. On this topic, recent empirical contributions
are Gubler and Selway (2012), Huber and Mayoral (2016) and Guariso and Rogall (2017).
Another relevant form of conflict that can be linked to the distribution of resources is
terrorism. Recent empirical studies on the socio-economic determinants of terrorism are
Caruso and Schneider (2011) and Freytag et al. (2011). More specifically on industrial con-
flict (i.e., labor strikes), which is the focus of our empirical contribution, there are strands
of literature in economics and political science that emphasize different determinants for
the outbreak and the intensity of strike activity. Empirically recognized determinants of
strike activity are economic prosperity and the long-term business cycles (e.g., Rees, 1952;

prize structure is technically challenging and beyond the scope of this contribution.
13Also, to the best of our knowledge the contest model studied in Andonie et al. (2014) lacks stochastic

and axiomatic foundations and it can be justified only in terms of a sequence of contests that progressively
allocates the top prizes to the best performing players and excludes them from the following rounds, where
the discriminative power of these contests decreases at each round according to a particular formula.
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Ashenfelter and Johnson, 1969; McConnell, 1990), union concentration (e.g., Korpi and
Shalev, 1979; Lindvall, 2013), and political composition of the parliament (e.g., Hibbs,
1978; Humphries, 1990). On the other hand, the theoretical literature on bargaining has
explained labor strikes in terms of irrational behavior (e.g., Bishop, 1964) or asymmet-
ric information (e.g., Hayes, 1984; Gary-Bobo and Jaaidane, 2014; Brunnschweiler et al.,
2014). To our knowledge, our paper is first in establishing a theoretically and empirically
consistent link between income inequality and industrial conflict. Finally, we contribute
to this literature by providing a rationale for the declining trend in industrial conflicts
observed in developed countries since the 1970s (see, e.g., Hamann et al., 2013), linking
this phenomenon to the growing trend in income inequality in the same time period.

3 Theoretical model

There are n ≥ 3 players in the population set N := {1, . . . , n}.14 Each player i ∈ N is
initially endowed with a prize that is commonly valued vi ≥ 0 by all players. Without
loss of generality, we assume vi ≥ vi+1 for all i ∈ N\{n}, so that player 1 is endowed with
(a prize that is commonly considered) the best prize, player 2 with the second-best prize
and so on. We interchangeably use the notation vl where l ∈ N indicates the level (first,
second, etc.) of the corresponding prize in this ranking of valuations. For simplicity we
rule out the trivial case where all prizes have equal value, assuming vi 6= vi+1 for some
i ∈ N\{n}.

A prize distribution v := (v1, . . . , vn) is a vector of common valuations of these n prizes.
Denoting by V ⊂ Rn

+ the set of all prize distributions that satisfy the aforementioned
conditions, for each v ∈ V we define its total value by T (v) :=

∑
l∈N vl and its level of in-

equality by any index from the class of generalized Gini coefficient in relative form,15

I(v) :=

∑
l∈N alvl

T (v)/n
, (1)

where the parameters a1, . . . , an constitute any non-increasing series that satisfies
∑n

l=1 al =
0 and al 6= al′ for some l, l′ ∈ N . Within this class of inequality indices, the standard Gini
coefficient

G(v) :=
2

nT (v)

∑
l∈N

(
n+ 1

2
− l
)
vl (2)

corresponds to the series with al = (n+ 1− 2l) /n2 for each l ∈ N .

In case of conflict outbreak, we model the ongoing conflict as a contest whose outcome
is a ranking that determines the reshuffling of these prizes across players. We define a
ranking as a mapping r : N → N which assigns a level to each player, where r(i) = l
means that player i ∈ N is ranked at level l ∈ N in ranking r. We assume that this

14While all our core results equally apply to the two-player case, we feel that the study of inequality
requires at least three players to be meaningful.

15This class of indices has been introduced by Donaldson and Weymark (1980) and Weymark (1981).
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mapping is bijective, so that each player is assigned to a different level, and we denote by
R the set of all rankings that satisfy these conditions. This set comprehends all possible
outcomes of the contest, and the realization of outcome r ∈ R indicates that each player
i ∈ N receives the prize vr(i) that corresponds to her level r(i). In the event of conflict
each player i ∈ N exerts an effort xi ≥ 0 to increase her chances to obtain a highly valued
prize, where x := (x1, . . . , xn) ∈ X := Rn

+ denotes a profile of such efforts. We define
the degree of rent dissipation associated with the prize distribution v ∈ V and the effort
profile x ∈ X by

R(v, x) :=

∑
i∈N xi

T (v)
, (3)

which represents the share of total value that is wasted in the aggregate efforts. Following
a well-established tradition in the rent seeking literature, we take rent dissipation as a
proxy of the intensity of conflict.

In our stylized representation of conflict outbreak, we assume that the status-quo (which
leaves the allocation of prizes unchanged) is maintained if and only if more than n − k
players prefer so, where we refer to k as the tipping point. To avoid trivial cases, we
assume that conflict initiation does not require the approval of individuals who would
never gain from conflict. As it will be clear later on (see Proposition 2), this is guaranteed
by any tipping point k ∈ N that satisfies vn+1−k ≤ T (v) /n, that is, the kth-lowest prize
takes value weakly below the mean.16 In relation to this, we define the deprivation felt
by the kth-poorest player by

D(v, k) := 1− vn+1−k

T (v)/n
, (4)

which is a measure of the gap between the kth-lowest prize and the mean of the prize
distribution, which (as we will see) represents the expected value of each player’s prize in
the event of conflict outbreak.17 Note that the deprivation coefficient decreases in vn+1−k
and, given our restrictions, it takes value in the unit interval.

We now define the conflict technology (i.e., the success function) and players’ payoffs. We
assume a success function p : R×X → [0, 1] assigns a probability to each ranking for each
effort profile, where p(r, x) denotes the probability that ranking r ∈ R is the outcome of
the contest given the effort profile x ∈ X. We assume that p is twice-differentiable and
satisfies the axioms of exhaustivity and anonymity, which are standard in the literature
and, roughly speaking, require that the probabilities of rankings sum up to 1 and are
independent of players’ identities, respectively.18 Finally, we assume that the expected
payoff of player i ∈ N in the event of conflict is

πi(v, x) :=
∑
r∈R

p(r, x)vr(i) − xi, (5)

16We ignore the tie-breaking rule in this calculation (see below).
17We refer to Paul (1991), Bossert and D’Ambrosio (2006) and references therein for related approaches

to the measurement of deprivation of an individual with respect to reference groups.
18For a formal definition and discussion of these axioms, see Vesperoni (2016).
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while i’s status-quo payoff is vi. Thus, players are risk neutral and have symmetric linear
effort costs. These restrictions are imposed for tractability and are common simplifications
in the contest literature. As already mentioned, conflict takes place if and only if at least
k players prefer so (i.e., the tipping point is reached). As a tie-breaking rule we assume
that, if a player’s status-quo payoff is equal to her expected payoff from conflict, she
prefers the status-quo.19 For simplicity we formalize the process of conflict initiation as
voting, where each player can vote for conflict or for the status-quo, and the tipping point
k functions as a qualified majority rule. We assume that players vote simultaneously in
the first stage, and they simultaneously exert effort in the second stage (only) in the event
of conflict.

3.1 Equilibrium analysis

In this section we solve for subgame perfect equilibrium in pure strategies using backward
induction. Note that we have a subgame if and only if a set of k or more players vote for
conflict. We exclusively focus on equilibria where players vote sincerely in the first stage,
and in each subgame of the second stage, they exert symmetric positive efforts. For short,
in what follows we refer to this solution concept as equilibrium, and we denote by x∗ ∈ X
the profile of equilibrium efforts in each conflict subgame.

To start our analysis, suppose that there is a non-increasing series of real-valued coeffi-
cients a1, . . . , an with

∑n
l=1 al = 0 and al 6= al′ for some l, l′ ∈ N such that, for each player

i ∈ N and level l ∈ N , ∑
r:r(i)=l

∂p (r, (xi, x
∗
¬i)) /∂xi

∣∣
xi=x∗i

= al/x
∗
i , (6)

where x∗¬i is any vector of symmetric positive real numbers representing the equilibrium
efforts of all players other than i, and x∗i is equal to such efforts so that x∗ = (x∗i , x

∗
¬i).

The core restriction here is that the series a1, . . . , an is non-increasing, which means that
a marginal increase in a player’s effort always increases her chances to be ranked higher.
Although somewhat convoluted, this condition is in fact a very natural property shared by
many contest models. For instance, any success function defined by a ranking of perturbed
log-transformed efforts ln(xi) + εi where εi is iid noise with increasing failure rate leads to
(6). To see this, let p(r, x) = Pr

(
ln(xr−1(1)) + εr−1(1) > . . . > ln(xr−1(n)) + εr−1(n)

)
, which

leads to (6) with

al =

(
n− 1

l − 1

)∫
R
F ′(e)2F (e)n−l−1(1− F (e))l−2 [n− l − (n− 1)F (e)] de,

where F : R → [0, 1] is the cumulative distribution function of each noise term.20 In
the literature there are three families of success functions in closed-form that satisfy (6):

19This restriction is purely to simplify exposition. All our crucial results extend under the opposite
tie-breaking rule (i.e., conflict is preferred to status-quo) or no tie-breaking rule.

20See Lemma 1 in Akerlof and Holden (2012) for a closely related derivation, and Drugov and Ryvkin
(2017) on the monotonicity of al in l due to the increasing failure rate of εi. An alternative approach that
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the pair-swap, best-shot and worst-shot success functions21 with a homogeneous impact
function.22 We prove this in Appendix A.2, also arguing that (6) holds for all success
functions defined by weighted averages of success functions from these three families.
Assuming that (6) holds, our first proposition shows that, in any subgame, equilibrium
rent dissipation is a measure of inequality that belongs to the family of Generalized Gini
coefficients in relative form.

Proposition 1 Let p satisfy (6). In any subgame, equilibrium rent dissipation is a Gen-
eralized Gini coefficient in relative form, i.e., R(v, x∗) = I(v) for some series a1, . . . , an
that satisfies the aforementioned restrictions.

The intuition of Proposition 1 is straightforward. Risk neutrality implies the additive
separability of a player’s payoff by different prizes, which together with (6) guarantees
that aggregate equilibrium effort can be written as a weighted average of such prizes.
Then, equilibrium rent dissipation is proportional to this particular class of inequality
measures because, being linear in each prize’s share of the total value, we can think of
these measures as weighted distances between pairs of prizes which capture the incent-
ives to be ranked above/below others and climb the social ladder. More generally, the
equivalence of equilibrium rent dissipation to this class of inequality measures implies
that the former: satisfies the Pigou-Dalton transfer principle; is scale invariant; decreases
with positive translations of the prize distribution. These are well-known concepts in in-
equality measurement. Roughly speaking, the Pigou-Dalton transfer principle requires an
inequality measure to be non-increasing in transfers from a higher prize to a lower prize,
scale invariance demands an inequality measure to be constant in the multiplication of all
prizes by the same positive constant, and a positive translation of the prize distribution
adds the same positive constant to all prizes.23

Next, we solve for the first stage of our game: the conflict outbreak. Our next proposition
identifies a simple condition that determines whether there is peace or conflict depending
on the prize distribution.

Proposition 2 Let p satisfy (6). In equilibrium, peace is sustained if and only if I(v) ≥
D(v, k).

leads to (6) is to allow for ranking-specific iid noise (instead of player-specific) and ranking-specific score
functions that depend on efforts. See Remark 1 in Vesperoni (2016) for a derivation of the pair-swap
model in this fashion.

21To the best of our knowledge, these are the success functions for multi-prize contests with axiomatic
and stochastic foundations. For the best-shot and worst-shot models see Fu and Lu (2012), Fu et al.
(2014) and Lu and Wang (2015, 2016). For the pair-swap model see Vesperoni (2016).

22Roughly speaking, the impact function defines the way the effort of each player enters the success
function. An impact function f : R+ → R+ is said to be homogeneous if f(xi) = xαi for some α > 0. See
Skaperdas (1996) for a motivation of the impact function f(xi) = xαi based on the homogeneity of degree
zero of the success function.

23We wish to remark that, for a broader class of contests than the ones that satisfy (6), an analogous
(but not necessarily linear) relation can be found between equilibrium efforts and the Generalized Gini
coefficients in absolute form. For example, one could consider best-shot, worst-shot or pair-swap success
functions with a non-homogeneous impact function. We opt for a homogeneous impact function as it
simplifies exposition by delivering a closed-form solution for equilibrium rent dissipation.
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Proposition 2 states that conflict initiates when inequality is lower than deprivation. This
may seem counter-intuitive at first, as inequality is generally considered to be a precursor
of social conflict. However, by Proposition 1, the cost of conflict is an increasing function
of inequality. Therefore, high inequality can dissuade players from initiating conflict. On
the other hand, if inequality is lower than deprivation, the status-quo is very unfavorable
to the kth-poorest player and the prospect of achieving a higher prize dominates. To
see the intuition behind this result, let i be the kth-poorest player and consider a Pigou-
Dalton transfer that leaves i’s prize unchanged. As the mean prize is unaffected by
such transfer, i’s deprivation is also unaffected, while as inequality decreases player i
becomes unambiguously more likely to reject the status-quo. On the other hand, consider
now a Pigou-Dalton transfer that increases i’s prize. Here, inequality decreases but i’s
deprivation also decreases. So, it is not immediately clear whether player i should become
more or less likely to reject the status-quo as this depends on the exact levels of inequality
and deprivation.

For precision of the discussion (in particular, to clarify the issue of existence of an equi-
librium) we now analyze our game using the pair-swap success function introduced in
Vesperoni (2016). To our knowledge this model has not been analyzed before in terms
of equilibrium behavior, while the best-shot and worst-shot models have already been
analyzed in (among others) Clark and Riis (1998) and Fu et al. (2014).24 Denoting by
Ax ⊆ N the set of active players (i ∈ Ax if and only if xi > 0) and by Sx ⊆ R the set
of rankings where no active player is ranked below an inactive player (r ∈ Sx if and only
if r(i) < r(j) for any i, j ∈ N with xi > xj = 0), the pair-swap success function with
homogeneous impact function is

p̃(r, x) :=


∏
i∈Ax (xi)

−αr(i)∑
r′∈Sx

∏
i∈Ax (xi)−αr

′(i) if r ∈ Sx and Ax 6= ∅,
1/|R| if Ax = ∅,

0 otherwise,

(7)

for some α > 0 (i.e., the exponent of the impact function, or the impact factor for short).
Our next proposition shows that, under a restriction on the impact factor α, there exists
an equilibrium where rent dissipation is a linear function of the standard Gini coefficient
of the prize distribution, G(v).

Proposition 3 Let p = p̃. If α ∈ (0, 1/[2(n− 1)]] there exists an equilibrium where, in
each subgame, the equilibrium effort profile x̃∗ ∈ X is such that R(v, x̃∗) = αnG(v)/2.

Proposition 3 identifies a sufficient condition for the existence of an equilibrium based
on a restriction on the impact factor that guarantees the global concavity of the payoff
function of a player when other players exert equilibrium efforts.25 Note that, in contrast
to previous approaches in the literature, this condition is free of restrictions on the prize
distribution, which is crucial to assess the effects of inequality on conflict.26 Combining
Propositions 2 and 3, we obtain the following.

24We provide a comparison with the best-shot and the worst-shot models in Appendix A.2.
25More generally, as Vesperoni (2016) argues via a three-player example, the restriction on α is stronger

than necessary, and an equilibrium exists for α > 1/2(n− 1) but not ‘too large’.
26For example, Akerlof and Holden (2012) require consecutive top prizes to be more distant than
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Corollary 1 Let p = p̃ with α ∈ (0, 1/[2(n− 1)]]. There exists an equilibrium where
peace is sustained if and only if

αnG (v) /2 ≥ D (v, k) . (8)

Condition (8) states that peace is sustained if and only if the Gini coefficient is sufficiently
larger than the deprivation coefficient, where the necessary gap decreases in n and α. Let
us briefly elaborate on the role of these two parameters. Firstly, the impact factor (α)
measures how discriminative the conflict technology is, in the sense that the higher α is
the lower is the role played by luck in determining the outcome of the conflict. Clearly,
a more discriminative conflict leads to higher effort costs and renders conflict outbreak
less attractive. On the other hand, the role played by the number of players (n) is best
understood by considering a population replication, i.e., the cloning of each player and
each prize by a given number of times adjusting k so that k/n remains constant.27 One
can show that both G (v) and D (v, k) are invariant to population replication. So, the
left hand-side of (8) is linear in n while the right hand-side is constant, and a sufficiently
large population replication can reverse a situation of conflict into peace.28

Figure 1 illustrates the interaction between the Gini coefficient and the deprivation coef-
ficient in determining conflict outbreak with a five-player example. Note that, while
T (v) = T (v′) = 35, the prize distribution v is more unequal than the prize distribution
v′ (G (v) = .32 > G (v′) = .30). On the other hand, the deprivation coefficients of v
and v′ are identical for k = 1 (D (v, 1) = D (v′, 1) = 1) and inversely ordered for k = 2
(D (v, 2) = 0 < D (v′, 2) = .14). Letting α = 1/[2(n− 1)] = 1/8 (i.e., the upper bound of
the impact factor according to Proposition 3), we obtain αn/2 = .31. Then, by Corollary
1, given any α ∈ (0, 1/[2(n− 1)]], one can show that for k = 1 we have conflict under
both v and v′, while for k = 2 we have peace under v and we have conflict under v′.

consecutive bottom prizes (see Lemma 2, p. 295). Similarly, Clark and Riis (1998) and Fu et al. (2014)
require a certain number of bottom prizes to be zero (see Section 2.1 and Theorem 6, p. 132, respectively).
In our setting, having prizes of zero value at the bottom of the distribution implies D(v, k) = 1 (unless
k is very large), so that by Proposition 2 there is always conflict.

27To see an example, consider n = 3, k = 1 and v1 = 3, v2 = 2, v3 = 1. A population replication by a
factor of 2 leads to n = 6, k = 2 and v1 = v2 = 3, v3 = v4 = 2, v5 = v6 = 1.

28We argue in Appendix A.2 that, also for the best-shot and the worst-shot models, equilibrium rent
dissipation always increases in population replication, although the linearity in n is lost.
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Figure 1: The solid line and the dashed line respectively represent the Lorenz curves for the two prize
distributions v = (14, 7, 7, 7, 0) and v′ = (11, 10, 8, 6, 0).

3.2 Extensions

Until now we have assumed that players’ payoffs are perfectly symmetric in the occurrence
of conflict, that the status-quo prizes are unaffected by conflict outbreak, and that we can
think of social classes as unitary players. We now relax these assumptions to show that
our core results persist under certain conditions.

First, we let a fraction of each status-quo prize to be destroyed in the occurrence of
conflict. Intuitively, this should capture inefficiencies of conflict outbreak that go beyond
the exertion of efforts. We assume that such fraction is a function γ : R+ → R+ of the
value of the corresponding prize, so that γ(vl) is the destroyed part and vl − γ(vl) is
the surviving part of vl. We sometimes refer to the surviving part as the transformed
prize, which we assume to be non-negative (i.e., vl − γ(vl) ≥ 0). Second, we introduce
heterogeneous head-starts that we model as non-negative constants added to players’
efforts, representing pre-committed minimal effort levels not effecting the (current) effort
costs.29 As we interpret head-starts as previous investments in self-protection, it seems
natural that they are proportional to the status-quo prizes according to some function
φ : R+ → R+ with vl − φ(vl) ≥ 0, where φ(vi) denotes player i ∈ N ’s head-start and
yi = φ(vi)+xi is her effective effort. Third, we think of each player i ∈ N as a social class
constituted by a continuum of individuals of mass mi > 0 taking a collective decision
on the level of their collective effort xi. In this setting, it seems reasonable that if an
effort level is a Condorcet winner within a class (i.e., it is preferred by a majority of class
members to any alternative effort level) it should be the chosen one by the class.30 For

29We consider this particular type of asymmetry as the analysis of the ongoing conflict remains tract-
able while interesting dynamics are introduced in the determination of conflict outbreak. Other types of
asymmetry such as heterogeneous marginal costs of effort render the analysis of equilibrium efforts under
general prize structures a nearly impossible task. The analysis of equilibrium efforts under restricted
prize structures suggests that these other types of asymmetry tend to reduce the aggregate effort exerted,
thus lowering equilibrium rent dissipation. However, it is not immediately clear how these asymmetries
should affect the likelihood of conflict outbreak.

30We discuss the plausibility of this and other assumptions at the end of this section.
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each i ∈ N , we assume that the members of class i share their collective costs equally (so
that each member carries the cost xi/mi) while they may share unevenly their collective
benefits (i.e., the status-quo prize vi and the transformed prize achieved through conflict).
Assuming that the distribution of benefits within each class is symmetric around the mean
(so that it can be interpreted as ‘white noise’), the median voter is the individual with
average benefits within such class, and by the median voter theorem her preferred effort
level is the Condorcet winner. It follows that the expected payoff of the median voter of
class i ∈ N in the event of conflict is

πi(v, y) =

(∑
r∈R

p(r, y)(vr(i) − γ(vr(i)))− yi + φ(vi)

)/
mi,

where y := (y1, . . . , yn) denotes an arbitrary vector of classes’ effective efforts while her
status-quo payoff is vi/mi. Then, class i ∈ N chooses peace over conflict if and only if
vi ≥ πi(v, y

∗), where y∗ denotes the vector of effective efforts in the symmetric interior
equilibrium of the conflict subgame across social classes (where each class implements
the effort level that is a Condorcet winner). On the properties of such equilibrium, the
corresponding version of condition (6) is∑

r:r(i)=l

∂p (r, (yi, y
∗
¬i)) /∂yi

∣∣
yi=y∗i

= al/y
∗
i , (9)

where the series a1, . . . , an satisfies the same restrictions as before, y∗¬i is any vector
of symmetric positive real numbers representing the equilibrium effective efforts of all
classes other than i, and y∗i is equal to such effective efforts so that y∗ = (y∗i , y

∗
¬i). It

is straightforward that, in an interior equilibrium that is symmetric in effective efforts
(y∗i = y∗j for all i, j ∈ N), the equilibrium effort x∗i = y∗i − φ(vi) is heterogeneous across
classes whenever φ is non-constant.31 To guarantee the existence of such equilibrium, in
what follows we restrict our attention to functions φ such that all head-starts are lower
than the equilibrium effective effort y∗i and we assume that there is some heterogeneity
across the transformed prizes, i.e., vl − γ(vl) 6= vl′ − γ(vl′) for some l, l′ ∈ N .

Generalizing the statement in Proposition 2, one can show that peace is sustained in a
subgame perfect equilibrium with symmetric effective efforts if and only if the following
condition holds for more than n− k classes,

I(ṽ) ≥ 1−
(
vi − φ(vi)

T (ṽ)/n

)
, (10)

where ṽ := (v1 − γ(v1), . . . , vn − γ(vn)) denotes the vector of transformed prizes and
the inequality index I(ṽ) is computed employing the series a1, . . . , an identified in (9).
For simplicity, suppose that the functions γ and φ are linear, γ(vl) = b1 + b2vl and
φ(vl) = c1 + c2vl, where the intercept parameters b1, c1 are non-negative and the slope
parameters b2, c2 take value in (−1, 1), also guaranteeing that the necessary restrictions

31Note that both x∗i and y∗i are independent of mi for each i ∈ N since this parameter only rescales
the conflict payoff πi without affecting the incentives to exert effort.
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for the existence of the symmetric equilibrium are met and that both the values γ(vl)
and φ(vl) and the differences vl − γ(vl) and vl − φ(vl) are non-negative for each l ∈ N ,
in line with the intuition. Note that this allows γ and φ to be either increasing or
decreasing. Roughly speaking, the function φ may be decreasing (increasing) if there is
a trade-off (complementarity) between income, represented by the status-quo prize, and
the pre-committed investment in self-protection represented by the head-start. Similarly,
the function γ may be increasing or decreasing depending on the specific features of
conflict outbreak, i.e., whether high or low incomes are destroyed the most in the event
of conflict.

It is straightforward that, by the linearity of φ, the right hand-side of (10) increases in vi
and peace is sustained if and only if the kth-poorest class prefers so, i.e.,

I(ṽ) ≥ 1−
(
vn+1−k − φ(vn+1−k)

T (ṽ)/n

)
. (11)

Moreover, by (1) and the linearity of γ the left hand-side can be written as

I(ṽ) = I(v)/

[
1− nb1

(1− b2)T (v)

]
,

so that by our linearity assumptions peace is sustained if and only if

I(v) ≥
[
1− nb1

(1− b2)T (v)

] [
1− (1− c2)vn+1−k − c1

(1− b2)T (v)/n− b1

]
.

Note that, for any given T (v), the right hand-side of this condition is proportional to
the deprivation coefficient D(v, k) = 1 − vn+1−k/[T (v)/n].32 Then, since the condition
for peace is qualitatively the same as the one in Proposition 2, we can conclude that our
previous analysis extends if γ and φ are linear.

While these results are far from a general analysis, they suggest that our theoretical
predictions are robust to these extensions under certain conditions. Before concluding
this section, we briefly discuss alternative assumptions that may or may not work against
our results. Note that, by (1), the linearity of γ is essential for the proportionality between
I(ṽ) and I(v) and any alternative restriction on γ would blur the results. On the other
hand, we now argue that the linearity of φ is not so crucial. For brevity, in what follows
we exclusively focus on φ being increasing/decreasing and convex/concave. First, if φ is
decreasing the right hand-side of (10) increases in vi and peace is sustained if and only
if the kth-poorest class prefers so, leading to (11). Second, assuming that φ is increasing
and strictly concave (convex), it is easy to verify that the right hand-side of (10) can
be non-monotonic in vi. Roughly speaking, we should expect the right hand-side of (10)
to be minimized (maximized) when vi takes ‘intermediate values’ under strict concavity
(convexity) of φ, which implies that Pigou-Dalton transfers that reduce inequality may

32Letting b1 = c1 = 0, this proportionality is evident as the condition reduces to I(v) ≥ 1 −(
1−c2
1−b2

)
vn+1−k

T (v)/n , where the right hand-side is a linear transformation of D(v, k).
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also reduce (increase) the right hand-side of (10) if they concentrate the prize distribution
around these intermediate values. All in all, we can conclude that the core prediction of
our model (that higher inequality leads to peace) is likely to extend if φ is decreasing or if
φ is increasing and strictly convex, while it may be blurred if φ is increasing and strictly
concave.

Finally, we wish to point out that the extension to players as social classes strongly relies
on ruling out collective action problems such as free-riding (see, e.g., Olson, 1965) in
the determination of the collective effort of each social class. While this seems plausible
for social classes of limited size (such as the ruling elite), it may be unrealistic for the
working class as a whole unless strong coordination is achieved via trade unions and the
like.33 Another crucial restriction is that the distribution of benefits within each class is
symmetric around the mean. Intuitively, this seems plausible if we think of social classes
as groups of individuals defined by their homogeneous roles in the production process,
which in turn determine their economic rent up to ‘white noise’.34

4 Empirical evidence

In this section we present empirical evidence for our theoretical predictions concerning
the relation between conflict outbreak, inequality, and deprivation. We use an unbalanced
yearly panel data of 41 high and middle income countries between years 1980 and 2015,
considering the income distribution and the number of labor strikes per capita in each
country and year as proxies for the prize distribution and conflict outbreak, respectively.
Accordingly, in this section we use the words conflict and strike, and income and prize
interchangeably. In this context, Proposition 2 suggests that the Gini coefficient should
be negatively correlated and the deprivation coefficient should be positively correlated
with the number of labor strikes per capita in the same country and year. The empirical
evaluation of these two core hypotheses is what we pursue in this section.

Our empirical strategy is based on a an ordinary fixed-effects model as a benchmark, and
a set of alternative specifications to control for reverse causality based on an instrumental
variable approach using the international prices of oil or coal as proxies of shocks to the
income distribution that are exogenous to the occurrence of labor strikes within each
country. Our selection of countries roughly coincides with the OECD members and a
few Latin American and Asian countries, and it is purely led by maximizing (reliable)
data availability. For each country and year, our data is directly obtained or calculated

33From a technical viewpoint, our restriction is functional to the neutrality of equilibrium effort in
class size, which is crucial for the tractability of our model as pointed out in Footnote 29. Note that this
neutrality is partially justified by the arguments in Esteban and Ray (2011), whose model is based on
the assumption that classes of larger size should be better at mobilizing for conflict due to economies of
scale in effort exertion. Intuitively, these scale effects may counterbalance the aforementioned free-riding
problem, leaving the overall effect theoretically ambiguous.

34This assumption may be unrealistic for societies where certain racial/cultural traits are salient in
determining the distribution of income across individuals with comparable roles in the production process.
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from a combination of datasets including International Labor Organization’s data for the
occurrence of strikes, various sources within the World Income Inequality Database on the
Gini coefficients and the deprivation coefficients, and World Bank’s data for all control
variables and instrumental variables. Exact data sources, definitions, notes, and summary
statistics are presented in Tables 2-5 in Appendix A.3.

To motivate our analysis, we start with some stylized facts about trends in income in-
equality and labor strikes in the second part of the 20th century. It is well-known that
income inequality in developed countries progressively decreased in the first part of the
20th century, reaching minimum levels in the 1970s. Since then, income inequality has
been steadily growing and, lately, has reached levels (still lower but) comparable to the
late 19th century when roughly 80% of economic resources were in the hands of 20% of
the population (see, e.g., Piketty, 2015). As an interpretation of this U-shaped trend in
inequality, it is generally acknowledged that from the 1970s onwards the industrial organ-
ization of developed countries has been reshaped by a complex system of economic and
political forces collectively referred to as ‘globalization’ (e.g., independence of colonies,
rise of developing economies, relocation of low-tech production overseas, specialization in
high-tech production) which caused a structural increase in income inequality (see, e.g.,
Autor et al., 2003 on the USA; Goos and Manning, 2007 on the UK; Goos et al., 2014 on
16 Western-European countries). On the other hand, through the second half of the 20th
century, the occurrence of labor strikes in developed countries roughly followed an inverse
U-shaped trend with a maximum in the 1970s, and since then labor strikes have become
much less frequent reaching minimum levels in the previous decade (see, e.g., Brandl and
Traxler, 2010; Hamann et al., 2013). These opposite trends in income inequality and
strike activity are partially visualized in Figure 2, which plots yearly averages from 1980
to 2015 across our sample of high and middle income countries excluding Latin American
ones. The equivalent trends for Latin America are presented in Figure 3, as they are
reversed with respect to the rest of the sample for the last two decades (see also, e.g.,
Lustig et al., 2016). Note that, in both subsamples, income inequality and strike activity
tend to move in opposite directions, thus in line with our theoretical predictions.
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Figure 2: Trends in the Gini coefficient and number of strikes per capita for the countries
that are not Latin American within our sample. The observations are averaged across all
relevant countries for each year.
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Figure 3: Trends in the Gini coefficient and number of strikes per capita for Latin Amer-
ican countries within our sample. The observations are averaged across all relevant coun-
tries for each year.

4.1 Methodology

We use Latin letters for raw variables and Greek letters for the logarithmized values of
these variables. Our dependent variable is the logarithm of the number of labor strikes
per capita, Σ := log(S), and the independent variables of main interest are logarithms of
the Gini coefficient, Γ := log(G), and the deprivation coefficient, ∆(v, k) := log (D(v, k)).
We calculate D(v, k) using the quintiles of the corresponding income distribution, letting
n = 5 and for each k ∈ N computing D(v, k) as the income share attached to the
kth-poorest 20% of the population. We focus on the values k ∈ {1, 2, 3}, which lead
to the three deprivation coefficients D (1), D (2), and D (3).35 As control variables, we
use the logarithms of per-capita national income (Υ := log(Y )), population size (Π :=
log(P )), the (overall) unemployment rate (Ψ := log(U)), the (value-added) share of the
manufacturing sector in GDP (µ := log(M)), and year dummies (or a yearly time trend
depending on the estimation method, see below).36

As a benchmark, we estimate an ordinary fixed-effects model given in the following equa-
tion,

Σit = αi + ΓitαΓ + ∆it (k)α∆ + χ′itαχ + T′αT + uit, (12)

denoting the country and the year of an observation by the subscripts i and t, respectively,
the country-specific time-invariant effects by αi, and the error term by uit, which is allowed
to be correlated with αi. All control variables are represented in the 4× 1 vector χit and
all year dummies are represented in the 36 × 1 vector T. While we should expect these
empirical estimations to confirm our theoretical predictions, this is clearly not enough
to prove a causal effect from income inequality to strike activity. Intuitively, the causal
relationship could entirely go in the opposite direction, from strikes to income inequality,
as strikes are typically meant to redistribute income from the owners of the means of

35We suppress v in D(v, k) and ∆(v, k) for brevity.
36For brevity we only display the significant year dummies in our estimation tables.
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production to the workers, if successful. For robustness of our results, we now consider a
set of alternative specifications that should be immune to this problem.

Taking (12) as a benchmark, we employ an instrumental variable (IV) approach to control
for the aforementioned reverse causality (and other potential endogeneity problems) using
the global prices of oil or coal as instruments for the Gini coefficient. As these commodities
are crucial inputs in the production of electricity and other forms of energy, our empirical
strategy relies on the role of their prices in changing the relative costs of labor and capital
and therefore the relative retribution of these factors of production. Crucially, as long
as strike activities are uncoordinated across countries, the prices of these internationally
traded commodities should be independent of the occurrence of labor strikes within each
country, thus justifying their use as theoretically plausible instruments (the validity of
this argument is tested by Sargan-Hansen J statistic37 in our empirical models).

Let us describe our IV approach in detail. As we consider coal and oil in separate specific-
ations, in what follows we refer to either of them as ‘the commodity’. In each specification
we employ as instruments for Γ the logarithm of the commodity’s price at year t (νt) and
its one-year, two-year, and three-year lagged values (νt−1, νt−2, and νt−3, respectively).
Representing our instrumental variables in a 4× 1 vector νt and denoting the error terms
for the main regression and the first-stage regression as vit and wit, respectively, we specify
the instrumental variable model via the two equations

Σit = βi + Γ̂itβΓ̂ + ∆it (k) β∆ + χ′itβχ + tβtrend + vit, (13)

Γit = γi + ∆it (k) γ∆ + ν ′tγν + χ′itγχ + tγtrend + wit, (14)

where Γ̂it in equation (13) denotes the fitted value of the Gini coefficient from the first-
stage regression (14). Note that we do not use year dummies in the instrumental variable
estimations as our instruments are country-invariant variables. To compensate for this
we simply include a (yearly) time trend, t. We compute alternative estimations of the
parameters of interest employing the ordinary two-stage least squares method (2SLS) and
the generalized method of moments (GMM).

4.2 Results

Table 1 presents our estimation results. As we consider three alternative deprivation
coefficients, we run three different estimations of the ordinary fixed-effects model (12).
Similarly, for three different deprivation coefficients, two different instruments, and two
different estimation methods, we run twelve different estimations for the IV model (13)-
(14), leading to the fifteen estimations in Table 1.

Our results show that, first, the estimated coefficient of the (logarithmized) Gini coefficient
is significant and has the expected (negative) sign in all specifications, both with the
ordinary fixed-effects and the IV estimators. Roughly speaking, 1% increase in the Gini

37For more information see Baum et al. (2007).
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coefficient leads to 3.5% decrease in the number of strikes according to the ordinary fixed-
effects model, and 8%−15% decrease according to the IV models. Similarly, the estimated
coefficients for the (logarithmized) deprivation coefficients all have the expected (positive)
sign, except for the ordinary fixed-effects regression using ∆(1). However, the significance
of the deprivation coefficient is confined to (all) IV regressions using GMM (except for the
regression using ∆(2) and logarithm of oil price as an instrument for the Gini coefficient
together). One possible reason for the weak significance of the deprivation coefficient is the
possible reverse causality between Gini coefficient and strikes in the ordinary fixed-effects
models (note that this significance turns stronger when reverse causality is controlled for
in the IV models). Secondly, 2SLS is a less efficient estimator than the GMM regarding
our IV models (see the differences between standard errors of the coefficients estimated
by the two estimators in Table 1). All in all, these results provide empirical evidence
in support of our two core hypotheses: that inequality is negatively and deprivation is
positively related to conflict outbreak.

Regarding the first-stage IV regressions,38 the estimated coefficients for our instruments
(the logarithms of coal and oil prices) are statistically insignificant in their current values,
but all negative and generally significant in their lagged values. More specifically, all
lagged values of coal prices are significant for the regressions using ∆(1), while the two-
year lagged coal price loses significance for the regressions using ∆(2) and ∆(3). Similarly,
the one-year and three-year lagged oil prices are significant for the regressions using ∆(1)
while the one-year lagged oil price loses significance for the regressions using ∆(2) and
∆(3). These results imply that the international prices of oil and coal have a delayed
and smoothing effect on the income distribution, which is expected as the substitution
between capital and labor is delayed by short-run technological constraints. Note that the
Sargan-Hansen J tests for orthogonality of our instruments to the error term in equation
(13) confirms that our instruments are empirically valid in all estimations.

Finally, there are two control variables that occasionally attain significant coefficients
in our estimations. The first one is the logarithm of population, Π, whose estimated
coefficient is negative and significant for all specifications. Recall that, by Corollary 1,
a sufficiently large population replication may reverse a situation of conflict into peace.
Thus, we theoretically expect highly populated countries to have less labor strikes per
capita, all else equal, which is confirmed in our estimations. The second one is the logar-
ithm of unemployment rate, Ψ, whose coefficient is negative for all empirical specifications
and it is statistically significant for the ordinary fixed-effects model. This result may re-
flect the increase in the opportunity cost of strike activity when the unemployment rate
increases within a country.

To summarize, the theoretical results we obtain from our model are generally validated
in the data: income inequality reduces, and deprivation increases the number of conflict
outbreaks in the form of labor strikes per capita. Moreover, the negative coefficient of
population size can also be interpreted in line with our theoretical predictions.

38First-stage regressions with 2SLS and GMM are presented in Table 6 in Appendix A.3.
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5 Conclusion

In this paper we study the relation between inequality and conflict both from theoretical
and empirical perspectives. From a theoretical viewpoint, we model conflict as a multi-
prize contest and establish a link between equilibrium rent dissipation and the inequality
of the contested resources in the form of a generalized Gini coefficient of the prize distri-
bution. In this setting, we find that higher inequality leads to higher intensity of conflict,
provided that such conflict has been initiated. Importantly, we identify a sufficient condi-
tion for the existence of an equilibrium that is valid for all prize distributions, which we
feel is crucial to assess the effects of inequality on conflict in full generality.

Given this, we extend this contest model to predict conflict outbreak. We assume that
there is a status-quo prize distribution, and that a conflict to reshuffle these prizes is
initiated if and only if at least k players prefer so. Within this framework, we show that
conflict can occur when inequality across prizes is relatively low, as players expect low
intensity of conflict and therefore moderate effort costs. On the other hand, conflict can
also occur when deprivation is relatively high, because the poorest players are highly
dissatisfied with the status-quo. The occurrence of conflict is fully determined by the
interaction of these two variables, where the former must be lower than the latter to
achieve conflict outbreak.

We conclude our theoretical analysis by considering three robustness checks. First, we
consider asymmetries across players in terms of heterogeneous head-starts proportional
to their status-quo prizes, showing that our results directly extend if this proportionality
is governed by a linear function. Second, we show that our analysis extends also if we let
a fraction of each status-quo prize to be destroyed in the occurrence of conflict, as long
as this fraction is a linear function of the value of each status-quo prize. Note that these
linear functions can be either increasing or decreasing, thus capturing a wide range of
possibilities. Third, we explicitly model each player’s behavior as the collective decision
of a social class whose members share the benefits heterogeneously and the costs equally,
and take decisions by majority rule. In this setting, we show that our results persist if
the distribution of benefits is symmetric around the mean within each class, no matter
how differently sized the classes are. While these findings confirm the solidity of our
theoretical predictions, we wish to remark that there are many alternative ways to model
these effects and a thorough analysis is left to future research.

Our empirical analysis consists in a test of our theoretical predictions with a panel data
of 41 high and middle income countries between 1980 and 2015. For each country and
each year, we approximate the prize distribution by the income distribution and conflict
outbreak by the number of labor strikes per capita in the same country and year. Using
ordinary fixed-effects and instrumental variable estimators (taking current and lagged
oil or coal prices as instruments for the Gini coefficient), we provide robust evidence
that income inequality affects conflict outbreak negatively, as expected. In line with
our predictions, we also find a positive effect of deprivation on labor strikes in all our
estimations, although the evidence is not always statistically conclusive.
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A Appendix

A.1 Proofs

Proof of Proposition 1

In any subgame (i.e., whenever conflict occurs), the equilibrium effort x∗i > 0 of each
player i ∈ N is determined by the first order condition∑

r∈R

∂p(r, (xi, x
∗
¬i))/∂xi|xi=x∗i vr(i) = 1. (15)

Then, assuming (6) holds, each player i ∈ N exerts equilibrium effort x∗i =
∑

l∈N alvl,
and using (3), equilibrium rent dissipation is

R(v, x∗) = n
∑
l∈N

alvl/T (v) = I(v). �

Proof of Proposition 2

In each subgame, the equilibrium payoff of player i ∈ N is

πi(v, x
∗) = T (v)/n− x∗i = (1−R(v, x∗))T (v)/n. (16)

This follows directly from (1) and (5) given the symmetry of the equilibrium effort profile
x∗ and our restrictions on the the success function (i.e., the exhaustivity and anonymity
axioms), which imply p(r, x∗) = 1/n! for all r ∈ R and x∗i = R(v, x∗)T (v)/n for all
i ∈ N . By assumption, conflict initiates if and only if at least k players prefer so. As the
equilibrium payoff from conflict given in (16) is symmetric across players, a necessary and
sufficient condition for peace is that the kth-poorest player (i.e., player n + 1 − k, given
that the status-quo prizes are ordered decreasingly) does not want conflict. This is the
case if and only if

πi(v, x
∗) = (1−R(v, x∗))T (v)/n ≤ vn+1−k,

which by Proposition 1 we can rewrite as

I(v) = R(v, x∗) ≥ 1− vn+1−k

T (v)/n
= D(v, k). � (17)

Proof of Proposition 3

Letting p = p̃, we start by deriving equilibrium rent dissipation. Suppose that x̃∗ ∈ X
is a symmetric interior equilibrium. Then, for each i ∈ N , it must satisfy the first-order
condition (15), which by straightforward algebra can be rewritten as39

xi = α
∑
r∈R

p(r, x) [ρ(i, x)− r(i)] vr(i),

39This calculation directly follows from equation (20) in Vesperoni (2016).
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where ρ(i, x) :=
∑

r∈R p(r, x)r(i) is the expected level of player i in the outcome.40 Since
x̃∗ is symmetric, we obtain p(r, x̃∗) = 1/n! and ρ(i, x̃∗) =

∑
l∈N l/n = (n+ 1)/2, and by

the first-order condition the equilibrium effort of each player i ∈ N is

x̃∗i =
α

n

∑
l∈N

(
n+ 1

2
− l
)
vl, (18)

which is positive for all prize distributions. Then, by (2), equation (18) can be rewritten
as x̃∗i = αG(v)T (v)/2 and equilibrium rent dissipation is R(v, x̃∗) = αnG(v)/2, which is
the desired result.

We now show that the restriction α ≤ 1/[2(n− 1)] guarantees the existence of the sym-
metric equilibrium defined by (18). First, take any player i ∈ N and let xj = x̃∗j for all
other players j 6= i, where the effort level x̃∗j is defined by (18). We want to show that,
given α ≤ 1/[2(n− 1)], it is optimal for player i to exert effort xi = x̃∗i in response to
these efforts of the opponents, so that x̃∗ is an equilibrium. Note that xi = 0 is never
optimal as xi = x̃∗i leads to a higher payoff. Then, x̃∗ is an equilibrium if∑

r∈R

∂2p(r, x)

∂x2
i

vr(i) < 0 for any xi > 0 given xj = x̃∗j for all j 6= i, (19)

that is, if πi(v, x) is a strictly concave function of xi given the efforts of the opponents
take the value specified in (18). Let r, r′ ∈ R be any pair of rankings with r(i) = r′(i) = l
for some l ∈ N . As xj = x̃∗j for all j 6= i, it is easy to show that p(r, x) = p(r′, x) by
(7).41 Thus, p(r, x) depends only on l and x. Let Q(l, x) :=

∑
r:r(i)=l p(r, x) be the total

probability of player i being ranked at level l. By (7), we can rewrite (19) as42

∑
l∈N

Q(l, x)φα(l, x)vl −

[∑
l∈N

Q(l, x)φα(l, x)

][∑
l∈N

Q(l, x)vl

]
< 0, (20)

where φα(l, x) := l + α
(
l −
∑

m∈N Q(m,x)m
)2

. Note that the left hand-side of (20) is
the covariance between φα(l, x) and vl across all levels l ∈ N . Recall that vl ≥ vl+1 for all
l ∈ N\ {n}. Then, since vl > vl+1 for some l ∈ N\{n}, (20) always holds if φα(l, x) is an
increasing function of l. The first derivative of φα(l, x) with respect to l is positive if and
only if

2αl + 1 ≥ 2α
∑
m∈N

Q(m,x)m. (21)

For any l ∈ N and x ∈ X, the left hand-side of (21) is larger than 2α+ 1 while the right
hand-side is smaller than 2αn. Then, if α ≤ 1/[2(n− 1)] the first derivative of φα(l, x) is
always positive and (20) must hold. �

40See Proposition 4 in Vesperoni (2016) for more on the expected level ρ(i, x) and the monotonicity
properties of the pair-swap success function.

41This directly follows from the anonymity axiom which is fulfilled by the pair-swap success function.
42Equation (21) in Vesperoni (2016) provides an intermediate step in this calculation.
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A.2 Comparison with the best-shot and worst-shot models

We now consider the best-shot and the worst-shot success functions with homogeneous
impact functions, two well-known alternatives to the pair-swap model. Let r−1(l) denote
the candidate that occupies level l ∈ N in ranking r ∈ R, and for each level l ∈ N define
the sets M l := {h ∈ N : h ≥ l} and M l := {h ∈ N : h ≤ l}, which respectively denote the
sets of players ranked weakly below and weakly above level l in ranking r. The best-shot
success function can be written as

p̂(r, x) :=

|Ax|∏
l=1

(xr−1(l))
α∑

h∈M l
(xr−1(h))α

 n−2∏
l=|Ax|

1

n− l

 ,

while the worst-shot success function is

p̌(r, x) :=


∏n

l=2

∏
h∈Ax∩Ml\{l}

(xr−1(h))
α∑

j∈Ml

∏
h∈Ax∩Ml\{j}

(xr−1(h))
α if r ∈ Sx and Ax 6= ∅,

1/|R| if Ax = ∅,
0 otherwise.

Denote by x̂ ∈ X and x̌ ∈ X an equilibrium effort profile with the best-shot and worst-
shot success function respectively. Depending on the success function, in a symmetric
equilibrium the effort of player i ∈ N must take value

x̂∗i =
α

n

∑
l∈N

(
1−

l−1∑
h=0

1

n− h

)
vl,

x̌∗i =
α

n

∑
l∈N

(
n−l∑
h=0

1

n− h
− 1

)
vl,

which can be compared to the expression of the equilibrium effort x̃∗i induced by the
pair-swap model defined in (18). Sufficient conditions for the existence of a symmetric
equilibrium are discussed in Clark and Riis (1998) for the best-shot model and in Fu et al.
(2014) for the worst-shot model.43 For each of the three models (i.e., best-shot, worst-
shot, pair-swap models), equilibrium rent dissipation takes the form (1), where depending
on the model the coefficients are respectively, for each l ∈ N ,

âl :=
α

n

(
1−

l−1∑
h=0

1

n− h

)
,

ǎl :=
α

n

(
n−l∑
h=0

1

n− h
− 1

)
,

ãl :=
α

n

(
n+ 1

2
− l
)
.

43For the best-shot model, see also Clark and Riis (1996), Fu and Lu (2009) and Schweinzer and Segev
(2012).
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Note that
∑n

l=1 âl =
∑n

l=1 ǎl =
∑n

l=1 ãl = 0 and âl ≥ âl+1, ǎl ≥ ǎl+1, ãl ≥ ãl+1. See
Figure (4) for a graphical representation.

1 2 3 4 5
−2

−1

0

1

2

l

a
l

Figure 4: The solid, dashed and dotted lines respectively connect the values of the coefficients of the
pair-swap model (ãl), best-shot model (âl) and worst-shot model (ǎl) given n = α = 5. Different values
of α simply rescale all coefficients homogeneously.

It is straightforward that condition (6) holds for any success function defined via a
weighted average of any number of success functions from these three families. To see this,
take any ω1, ω2, ω3 ∈ [0, 1] such that ω1 + ω2 + ω3 = 1 and consider the success function
p(r, x) = ω1p̃(r, x) + ω2p̂(r, x) + ω3p̌(r, x). It is straightforward that, since (6) is linear in
al, the coefficients must take value al = ω1ãl + ω2âl + ω3ǎl and satisfy

∑n
l=1 al = 0 and

al ≥ al+1. The argument directly extends to weighted averages of more than three success
functions. Given this, for all these success functions equilibrium rent dissipation can be
interpreted as an inequality measure of the family of Generalized Gini coefficients in re-
lative form. So, for each of them, equilibrium rent dissipation satisfies the Pigou-Dalton
transfer principle, it is scale invariant and it decreases with positive translations of the
prize distribution.

We end this section by discussing the population replication principle, a well-known prop-
erty in the inequality literature. We say that equilibrium rent dissipation satisfies the
population replication principle if it is invariant to replicating the population, in the
sense of cloning each individual and each prize a given number of times.44 Firstly, con-
sider the equilibrium rent dissipation of the pair-swap model, R(v, x̃∗) = (nα/2)G(v). It
is well-known that the Gini coefficient G(v) satisfies the population replication principle
(see, e.g., Donaldson and Weymark, 1980). Then, equilibrium rent dissipation of the
pair-swap model R(v, x̃∗) = αnG(v)/2 increases linearly with population replication and
proportionally to the degree of inequality of the prize distribution. On the other hand,
equilibrium rent dissipation of the best-shot and worst-shot models can be respectively

44Given any population size n and parameter α, for each model we exclusively consider population
replications for which the previously defined symmetric equilibrium exists.
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written as

R(v, x̂∗) = α
∑
l∈N

(
1−

l−1∑
h=0

1

n− h

)
vl/T (v) = −α(Hn − 1) + α

∑
l∈N

Hn−lvl/T (v),

R(v, x̌∗) = α
∑
l∈N

(
n−l∑
h=0

1

n− h
− 1

)
vl/T (v) = α(Hn − 1)− α

∑
l∈N

Hl−1vl/T (v),

where Hz denotes the harmonic number

Hz :=

{ ∑z
k=1 1/k if z ≥ 1,

0 otherwise.

Theorem 1 in Fu and Lu (2009) and Proposition 1 in Lu et al. (2016) respectively imply
that R(v, x̂∗) and R(v, x̌∗) increase with population replication. Our expressions above
show that in these models the effect of population replication is non-linear and, generally
speaking, not straightforward to analyze as it depends on a weighted average of harmonic
numbers.

A.3 Supplementary material to the empirical analysis

This section is supplementary to the empirical models presented in Section 4. The data
sources and definitions are in Table 2, the summary statistics are in Tables 3-5, and the
first-stage regressions for the IV model are in Table 6.
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Table 2: Data sources and definitions

Vari-
able

Source Definition

S International Labor
Organization, ILO
(2017)

Number of strikes and lockouts across all economic activ-
ities.

G Standardized World
Income Inequality
Database (SWIID)

The standardized Gini coefficient as developed by Solt
(2016).

D (k) World Income In-
equality Database
3.4, UNU-WIDER
(2017)

Deprivation coefficient. Calculated as in (4) using the
quintiles of the income distribution.

Y The World Bank
national accounts
data, The World
Bank (2017)

Gross national product per-capita (in current US$).

P The World Bank
national accounts
data, The World
Bank (2017)

Population level of countries.

U The World Bank
national accounts
data, The World
Bank (2017)

Overall unemployment rate of countries (% of total labor
force).

M The World Bank
national accounts
data, The World
Bank (2017)

Manufacturing, value added (% of GDP). Industries be-
longing to ISIC divisions 15-37. Value added is the net
output of a sector after adding up all outputs and sub-
tracting intermediate inputs.

Crude
oil and
coal
prices

The World Bank
Data Catalog, The
World Bank (2018)

Nominal prices of crude oil ($/bbl) and Australian coal
($/mt).
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Table 3: Panel summary statistics of variables by country

Country Statistic S G D (1) D (2) D (3) Y P U M
(×106) (%) (%) (%) (%) (level) (÷103) (%) (%)

Argentina Mean 22.37 42.31 77.82 55.81 31.03 6,191 35,900 8.81 21.14
St. Dev. 6.75 2.44 4.34 4.62 4.64 3,109 4,575 2.20 5.80

Observations 13 36 34 33 33 36 36 10 36

Australia Mean 64.01 31.2 61.13 34.93 11.14 25,843 18,700 7.02 10.62
St. Dev. 49.87 1.52 1.51 2.44 2.23 15,781 2,531 1.82 2.28

Observations 29 35 18 18 18 35 35 35 25

Austria Mean 0.48 26.46 54.05 27.93 8.35 31,105 8,043 4.54 17.97
St. Dev. 0.44 1.71 3.52 2.26 2.65 13,704 341 0.85 1.19

Observations 27 34 23 23 23 34 34 34 34

Belgium Mean 8.62 24.97 54.34 30.21 9.49 28,266 10,300 8.54 15.29
St. Dev. 11.12 1.38 2.88 2.73 2.89 13,171 473 1.55 2.25

Observations 15 37 23 23 23 37 37 34 22

Brazil Mean 5.13 50.36 85.44 68.04 46.25 5,112 167,000 8.36 18.82
St. Dev. 5.71 2.82 1.94 3.66 4.54 3,388 2,590 1.30 7.66

Observations 33 36 31 31 31 32 36 19 36

Canada Mean 13.57 29.88 64.28 34.83 10.78 27,453 30,200 8.38 10.54
St. Dev. 10.04 1.36 3.00 3.49 3.00 13,234 3,458 1.66 0.77

Observations 36 37 17 17 17 37 37 37 8

Chile Mean 9.13 47.26 80.22 63.27 44.44 5,823 14,700 8.15 15.70
St. Dev. 4.02 1.36 2.49 3.26 3.07 4,260 2,006 2.61 3.15

Observations 30 36 18 18 18 36 36 31 36

Colombia Mean 4.49 50.91 84.41 65.21 43.43 3,081 39,100 11.05 16.20
St. Dev. 4.32 1.60 2.17 2.82 3.11 2,170 6,512 2.18 3.92

Observations 22 38 27 27 27 38 38 22 38

Cyprus Mean 29.59 30.09 57.22 34.93 15.22 18,255 939 7.28 9.11
St. Dev. 16.94 0.31 1.51 2.80 2.93 8,616 150 4.63 4.01

Observations 31 31 12 12 12 31 31 16 31

Czech R. Mean 0.20 24.27 46.99 26.65 10.33 11,546 10,350 6.23 22.66
St. Dev. 0.11 1.86 3.42 2.10 1.92 6,256 114 1.61 1.07

Observations 12 29 27 27 27 25 29 24 24

Denmark Mean 87.57 23.65 54.35 25.53 6.64 36,347 5,326 6.52 13.77
St. Dev. 69.38 1.21 3.67 1.74 2.11 17,793 192 1.83 1.57

Observations 36 37 16 16 16 37 37 34 37

Estonia Mean 1.03 32.68 64.23 38.06 17.53 12,422 1,401 8.69 14.76
St. Dev. 0.53 2.13 3.98 3.31 4.17 5,372 85.6 3.75 1.24

Observations 19 29 22 22 22 17 29 27 22

Finland Mean 96.56 23.26 47.90 25.88 8.47 29,497 5,140 8.85 20.26
St. Dev. 126.2 2.20 3.58 3.26 2.33 13,693 206 3.84 2.99

Observations 36 37 33 33 33 37 37 36 37

France Mean 28.48 29.53 56.62 32.62 13.56 26,884 60,700 9.84 14.17
St. Dev. 11.59 1.61 2.80 1.94 1.92 11,487 3,433 1.47 2.61

Observations 25 36 25 25 25 36 36 33 36

Germany Mean 8.38 26.88 58.15 32.91 12.78 28,187 80,600 7.49 20.68
St. Dev. 7.27 1.36 2.89 2.80 1.44 12,439 1,754 1.81 1.26

Observations 7 36 37 34 34 36 36 33 25

Greece Mean 39.04 33.98 67.44 37.65 14.68 14,811 10,600 11.34 8.83
St. Dev. 26.63 1.12 2.22 1.66 1.83 7,629 469 6.15 0.88

Observations 19 37 22 22 22 37 37 36 22

Hungary Mean 0.75 26.89 51.17 27.42 9.80 8,818 10,300 8.41 18.94
St. Dev. 0.46 2.01 4.44 3.20 2.37 4,058 278 2.12 0.78

Observations 24 37 33 32 32 24 37 25 22

Iceland Mean 25.32 23.41 50.13 26.54 10.71 41,500 295 4.18 11.19
St. Dev. 24.62 2.32 1.82 2.81 2.78 9,624 23.3 1.67 1.57

Observations 13 24 12 12 12 24 24 24 19

Notes: Summary statistics from the unbalanced panel of 41 countries over 1980-2015.
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Table 4: Panel summary statistics of variables by country (continued)

Country Statistic S G D (1) D (2) D (3) Y P U M
(×106) (%) (%) (%) (%) (level) (÷103) (%) (%)

Ireland Mean 13.75 31.56 59.44 36.38 14.02 25,716 3,925 11.32 22.30
St. Dev. 13.84 1.27 2.00 2.57 2.82 16,848 457 4.98 4.22

Observations 36 37 21 21 21 37 37 34 22

Israel Mean 14.83 33.88 67.75 42.99 16.30 18,629 5,995 9.89 14.13
St. Dev. 11.20 2.30 4.43 3.36 1.16 9,387 1,467 2.69 1.28

Observations 36 37 12 12 12 37 37 27 22

Italy Mean 19.19 32.36 63.37 36.28 12.68 22,870 57,600 9.80 16.53
St. Dev. 8.53 1.15 2.59 1.95 2.75 10,148 1,300 1.76 1.95

Observations 30 36 29 29 29 36 36 35 26

Japan Mean 2.50 28.91 63.84 36.6 14.1 31,329 125,000 3.53 21.60
St. Dev. 2.61 2.01 4.51 2.90 1.65 12,251 3,400 1.10 1.39

Observations 34 34 6 6 6 34 34 34 20

R. of Korea Mean 8.37 28.90 67.04 38.45 14.70 12,741 45,600 3.55 25.18
St. Dev. 16.63 1.52 5.07 5.46 5.65 8,458 3,876 1.03 1.80

Observations 36 37 12 12 12 37 37 37 37

Mexico Mean 2.65 46.41 80.15 59.41 37.67 5,653 98,200 4.04 18.44
St. Dev. 5.70 0.98 2.69 3.40 3.69 2,916 17,300 1.13 2.27

Observations 36 37 15 15 15 37 37 27 37

Netherlands Mean 1.45 25.91 52.30 27.21 10.68 30,884 15,700 5.88 13.96
St. Dev. 0.57 0.71 1.58 1.58 2.06 15,084 899 2.47 2.47

Observations 34 37 28 28 28 37 37 32 37

New Zealand Mean 30.75 31.34 69.71 41.4 16.38 19,848 3,845 6.19 16.31
St. Dev. 35.58 2.38 4.54 3.60 3.57 10,729 465.2 1.87 4.41

Observations 31 35 13 13 13 35 35 32 34

Norway Mean 3.34 24.03 57.56 29.21 8.29 47,786 4,508 3.90 9.53
St. Dev. 1.98 1.26 6.78 5.71 2.19 29,975 341 1.13 1.93

Observations 31 37 33 33 33 37 37 35 37

Peru Mean 13.54 51.74 80.59 59.13 34.51 2,522 24,900 7.59 15.40
St. Dev. 15.60 3.38 4.35 5.32 5.55 1,754 4,270 1.19 0.85

Observations 36 37 22 22 22 37 37 15 26

Poland Mean 40.98 29.86 59.20 34.08 13.57 7,824 38,074 12.5 16.59
St. Dev. 87.91 2.13 6.07 4.09 2.57 4,311 468.9 4.09 1.18

Observations 20 34 33 33 33 25 34 25 22

Portugal Mean 28.73 34.07 65.74 41.26 18.14 12,474 10,200 7.72 13.33
St. Dev. 13.61 0.18 2.89 3.06 3.69 7,043 252 3.48 1.88

Observations 28 37 22 22 22 37 37 31 22

Romania Mean 0.96 29.59 60.88 34.34 12.35 4,791 21,571 6.80 22.69
St. Dev. 0.93 3.60 7.63 5.05 2.41 3,516 1,198 0.70 3.34

Observations 17 28 27 27 27 25 28 22 26

Singapore Mean 0.31 38.46 79.49 47.22 21.68 25,682 3,920 3.92 22.63
St. Dev. 0.10 0.87 4.81 1.77 5.52 16,564 1,020 1.13 2.90

Observations 29 38 18 7 7 38 38 33 38

Slovakia Mean 0.62 24.09 49.27 26.29 9.51 11,326 5,653 14.29 20.20
St. Dev. 0.86 3.17 4.78 2.39 2.34 5,653 43.4 2.86 1.56

Observations 22 28 26 23 23 21 28 22 21

S. Africa Mean 10.27 57.31 86.55 73.88 56.43 4,003 43,100 24.52 17.72
St. Dev. 9.97 1.18 2.29 3.00 3.98 1,615 7,669 1.46 3.44

Observations 36 36 10 10 10 36 36 15 36

Spain Mean 25.72 32.59 63.2 34.88 12.62 17,757 41,600 17.49 14.23
St. Dev. 11.31 0.98 5.03 3.22 3.18 9,439 3,320 5.05 1.70

Observations 36 37 29 29 29 37 37 37 22

Sweden Mean 5.79 23.28 54.99 28.97 9.64 36,274 8,864 6.19 18.39
St. Dev. 7.29 1.95 6.00 5.89 3.98 15,273 427 2.62 2.14

Observations 34 36 30 30 30 36 36 33 36

Notes: Summary statistics from the unbalanced panel of 41 countries over 1980-2015.
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Table 5: Panel summary statistics of variables by country (continued)

Country Statistic S G D (1) D (2) D (3) Y P U M
(×106) (%) (%) (%) (%) (level) (÷103) (%) (%)

Switzerland Mean 0.76 29.98 57.60 32.42 12.88 48,891 7,140 3.78 19.09
St. Dev. 0.43 1.31 2.17 1.67 1.89 21,217 568.0 0.80 0.65

Observations 36 36 13 13 13 34 36 25 26

Turkey Mean 1.75 42.69 71.53 47.88 24.18 6,013 64,713 8.97 18.92
St. Dev. 2.37 1.45 1.09 2.02 2.63 3,875 8,389 1.46 2.74

Observations 23 30 14 14 14 30 30 29 30

UK Mean 7.88 32.74 59.79 36.58 15.26 27,811 59,600 7.40 11.84
St. Dev. 8.12 2.05 4.19 3.23 2.44 13,260 3,000 2.27 3.06

Observations 36 38 36 36 36 38 38 35 28

USA Mean 0.17 35.70 81.41 53.63 22.48 34,387 275,000 6.41 13.09
St. Dev. 0.17 1.73 1.52 2.84 3.99 13,939 30,400 1.59 1.38

Observations 36 37 27 27 27 37 37 37 20

Uruguay Mean 3.37 38.92 74.62 52.43 27.84 6,716 4,420 9.62 18.22
St. Dev. 0.67 1.81 2.48 3.40 3.31 4,516 779 2.88 6.45

Observations 3 37 30 30 30 37 37 25 35

Notes: Summary statistics from the unbalanced panel of 41 countries over 1980-2015.

Table 6: IV estimation results: first-stage

Γ (1) (2) (3) (4) (5) (6)

log(Oil) 0.011 0.007 0.007

(0.009) (0.008) (0.008)

log(Oil)−1 -0.052** -0.041 -0.038

(0.025) (0.027) (0.027)

log(Oil)−2 -0.023 -0.011 -0.001

(0.025) (0.028) (0.028)

log(Oil)−3 -0.089*** -0.083*** -0.079***

(0.017) (0.018) (0.018)

log(Coal) 0.006 0.005 0.007

(0.007) (0.007) (0.007)

log(Coal)−1 -0.016*** -0.012** -0.010*

(0.005) (0.005) (0.005)

log(Coal)−2 -0.009* -0.008 -0.007

(0.005) (0.005) (0.005)

log(Coal)−3 -0.020*** -0.020*** -0.020***

(0.006) (0.006) (0.006)

Sargan-Hansen J 3.40 3.02 2.32 6.90* 5.96 4.32

F-test 8.08*** 6.45*** 5.21*** 7.29*** 5.90*** 5.21***

(of excluded instruments)

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

(1)-(3): IV estimators (first-stage) using D(1)-D(3), respectively, and oil prices as an instrument.

(4)-(6): IV estimators (first-stage) using D(1)-D(3), respectively, and coal prices as an instrument.

Standard errors are in parenthesis, clustered by country, and heteroscedasticity robust in all regressions. The
estimated coefficients of the exogenous variables are excluded but available on demand.

Note that first-stage regressions of 2SLS and GMM estimators are identical by construction.
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