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Abstract
In many real world situations, the design of social rankings over agents or items 
from a given raking over groups or coalitions, to which these agents or items belong 
to, is of big interest. With this aim, we revise the lexicographic excellence solution 
and introduce two novel solutions which, moreover, take into account the size of 
the groups. We present some desirable axioms which are interpreted in this context. 
Next, a comparable axiomatization of these three solutions is established, revealing 
the main differences among the two new social rankings and the lexicographic excel-
lence solution. Finally, we apply the three social rankings under study to a real sce-
nario. Specifically, the performance of some football players of Paris Saint-Germain 
during the UEFA Champions League according to these three rules is analyzed.

1  Introduction

One of the main issues in situations where people work in teams is to evaluate the 
marginal productivity of teams members. Nevertheless, any practical attempt to 
measure the individual contribution of teams members clashes against the complex 
and multi-attribute nature of the problem to compare groups. As a relevant example, 
consider ranking of sportsmen (Vilain and Kolkovsky 2016). While the problem of 
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how to rank players or teams in tournament situations is of primary importance for 
sport competitions, and it has received a lot of attention in the game theoretic lit-
erature – for instance, focusing on the strategic behavior of competitors who want 
to manipulate the outcome of a tournament (Csató 2019c, 2020a, b, 2021; Dagaev 
and Sonin 2018; Pauly 2014; Vong 2017), or providing some impossibility results 
for rankings in generalized tournaments (Csató 2019a, b) – there have been only 
few attempts to compare each player’s contributions to the success of their own 
team (Vilain and Kolkovsky 2016). Recently, some approaches using coalitional 
games and power indices have been applied to assess the performance of sports-
men based on outcomes of their team (Hernández-Lamoneda and Sánchez-Sánchez 
2010; Hiller 2015). Classical power indices, like the Shapley value/index (Shapley 
1953), are computed from such coalitional games to convert the performance of coa-
litions into an individual attribution representing each player’s role in the team dur-
ing the championship. Unfortunately, the high number of coalitions compared to the 
number of squads in a team actually playing matches, as well as the relatively low 
number of points (or goals) scored and conceded in each match, make the results 
obtained by the application of the Shapley value (Shapley 1953) very sensible to 
small fluctuations of team’s outcome and very limited to the quantitative informa-
tion provided by points and goals (Vilain and Kolkovsky 2016). We argue that an 
ordinal approach based on rankings over coalitions is more effective in order to take 
hardly quantifiable attributes of performance (e.g., the ability to make a difference 
against strong teams, the leadership attitude during a match, or several other produc-
tivity dimensions related to the number of supporters, attraction of sponsors, etc.) 
into account and, at the same time, make the results about each player’s contribu-
tions more robust to small fluctuations in the data.Of course, this kind of considera-
tions about the robustness of the results hold in general for other sports and extend 
the discussion to other arguments in favor of more appropriate score-rates in relation 
to outcome uncertainty in sport competitions (Scarf et al. 2019).

As far as we know, a notion of social ranking solution, defined as a mapping 
assigning to each ranking over subsets or coalitions of a set N a ranking over the 
single elements of N, has been introduced only recently in Moretti (2015) using 
a classical solution concept for cooperative games: the Banzhaf index (Banzhaf 
1965). However, in order to preserve the same ranking over N for all the charac-
teristic functions representing the same ranking over the coalitions, the solution 
based on the Banzhaf index in Moretti (2015) must be applied to a very restricted 
domain. Differently, in Moretti and Öztürk (2017), the authors analyze the indi-
vidual ranking problem given a ranking over coalitions using a property-driven 
approach, showing that no social ranking solution satisfies a given set of attrac-
tive axioms. Following this approach, some social ranking solutions have been 
recently introduced in the literature. In Haret et al. (2018), a social ranking solu-
tion has been proposed where two individuals are compared using information 
from subsets under a ceteris paribus principle (i.e., comparing coalitions which 
only differ for one single member). Another social ranking solution based on 
the idea of ordinal marginal contributions has been recently introduced and axi-
omatically characterized in Khani et al. (2019). For a recent application of social 
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ranking solutions as a qualitative approach to formalize the process to infer a 
norm system from the agents’ preferences, see Serramia et al. (2020).

A very relevant social ranking solution for our analysis is the lexicographic 
excellence (lex-cel) solution introduced in Bernardi et al. (2019) which is based 
on a lexicographic comparison of vectors representing the “positions” of single 
elements over a ranking of non-empty coalitions, and taking care to reward single 
elements that appear more frequently in the highest positions in the coalitional 
ranking.

In Bernardi et al. (2019) the authors show that the lex-cel solution is the unique 
social ranking solution that satisfies four appealing properties. The first one is Neu-
trality (N), a classical anonymity condition affirming that a social ranking solution 
should not depend on the individuals’ identities. A second property, called Coali-
tional Anonymity (CA), requires that the relative ranking of two agents i and j should 
only depend on the relative positions of groups containing either i or j but not both. 
The third property is a tie-breaking condition based on a Monotonicity (M) principle 
saying that increasing the ranking of a coalition should break ties in favour of the 
members of the coalition. Finally, the fourth property, called Independence from the 
Worst Class (IWC), states that the relative position of elements of coalitions not in 
the lowest positions is more crucial.

In this paper we study new properties based on the idea of Coalitional Anonymity 
and Monotonicity that, in combination with Neutrality and Independence from the 
Worst Set axiom, axiomatically characterize new social ranking solutions more suit-
able for specific applications.

More precisely, on the one hand we provide a weaker version of the CA axiom 
with the objective to define a new axiom, called Weak Coalitional Anonymity 
(WCA), that restricts the invariance of the relative ranking of two agents i and j to 
coalitional rankings where the two agents appear in the same positions indepen-
dently on whether they appear together or not. We argue that such a weaker property 
allows to focus on specific pieces of information about groups interaction that are 
more relevant in practice. We also weaken the WCA axiom focusing on the invari-
ance with respect to permutations of coalitions containing the two agents that main-
tain the same position and the same size too. This axiom is called Super Weak Coa-
litional Anonymity (SWCA).

On the other hand, we strengthen the Monotonicity axiom with the objective to 
focus on more pertinent improvements of coalitions that should be considered to 
break ties. In one case, captured in the Improving Path Monotonicity (IPM) axiom, 
ties between two agents i and j are broken in favour of i when the number of coali-
tions containing i but not j improving their position is larger than the corresponding 
number of coalitions deteriorating their position. We argue that the IPM condition is 
useful to break ties when a history of improving and deteriorating contributions of 
individuals to coalitions is available. Alternatively, we strengthen the Monotonicity 
axiom adopting a tie-breaking criterion based on the size of the smallest improving 
coalition, a principle that leads to the axiom of Path Monotonicity with Priority to 
the Smallest Coalition (PMPSC) (or to it’s weaker version also considering the num-
ber of improving and deteriorating coalitions, called Weak Path Monotonicity with 
Priority to the Smallest Coalition (WPMPSC)).
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As main theoretical contributions, we first provide two alternative axiomatic 
characterizations of the lex-cel solution. The first one uses N, IWC, WCA and M. 
The second one consists of keeping N and WCA, removing M and IWC and adding 
IPM. Therefore, in the presence of N and WCA, IPM implies M and IWC. Then, 
we introduce and characterize two novel social ranking solutions, both incorporat-
ing the effect of the size of coalitions within the notion of lex-cel comparisons. The 
first solution (namely, L(1) ; see Definition 3) is uniquely identified by the combina-
tion of axioms N, IWC, SWCA and PMPSC, whereas the second one (namely, L(2) ; 
see Definition 4) is characterized by the combination of axioms N, IWC, SWCA, 
IPM and WPMPSC. Both solutions, L(1) and L(2) , embody the lexicographic princi-
ple of the lex-cel solution aimed at rewarding the excellence of coalitions, but they 
also consider their size, promoting smaller coalitions. More precisely, both solutions 
are based on a double lexicographic comparison of single elements’ positions over 
the equivalence classes of a coalitional ranking: first, considering the frequency of 
single elements from the best equivalence class to the worst one; second, within an 
equivalence class, counting the number of coalitions of each size and taking care 
to reward the smaller ones. So, to determine the ranking of two single elements, 
the L(1) solution applies the lexicographic comparison with respect to the coalitional 
size in the best equivalence class presenting a difference in the number of coalitions 
of equal size containing one or the other element. Differently, the L(2) solution deter-
mines the ranking of two single elements based on either their respective frequency 
in the best equivalence class presenting a difference in the total number of coalitions 
containing one or the other element, or, their lexicographic comparison with respect 
to the coalitional size in the best equivalence class presenting the same number of 
coalitions containing one or the other element.

The roadmap of the paper is as follows. We start in the next section with some 
preliminary notation and notions. Then, in Sect. 3, we introduce the main proper-
ties used in this study and we discuss their possible interpretation and some logical 
dependencies. In Sect. 4, we derive some preliminary results about the combination 
of some of the axioms that will be useful for the following property-driven analysis 
of social ranking solutions. Section  5 is devoted to the main results of the paper 
in terms of axiomatic characterizations of the social ranking solutions. Section  6 
is dedicated to the logical independence of the axioms used in the characterization 
results. Section 7 provides an illustration of the solutions applied to the comparison 
of football players in a real scenario. Section 8 concludes.

2 � Notation and preliminaries

Let A be a finite set. The notation |A| stands for the cardinality of A. Let R ⊆ A × A 
be a binary relation on A (iRj meaning that i is in relation R with j, for i, j ∈ A such 
that (i, j) ∈ R ). A binary relation R on A is said to be: reflexive, if for each i ∈ A , iRi; 
transitive, if for each i, j, z ∈ A , [ iRj ∧ jRz ] ⇒ [iRz]; total, if for each i, j ∈ A , i ≠ j , 
it holds that iRj or jRi; symmetric, if for each i, j ∈ A , [iRj] ⇒ [jRi] ; asymmetric, 
if for each i, j ∈ A , [iRj] ⇒ [¬(jRi)] . A preorder on A is a reflexive and transitive 
binary relation on A. A preorder that is also total is a total preorder.
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Let N be a fixed and finite set of n agents. A coalition of agents is any subset of N. 
Denote by �N the collection of the 2n − 1 nonempty coalitions of N. A coalitional 
ranking on N is a total preorder ≿ on �N . For any pair of coalitions S and T of �N , 
S ≿ T  means that S is at least as highly ranked as coalition T. We denote by ≻ the 
asymmetric part of ≿ and by ∼ its symmetric part.

The quotient set is the set of all equivalence classes E
≿

1
,… ,E

≿

k
 , 

k ∈ {1,… , 2n − 1} , of ≿ . It is denoted by �N∕ ∼ and is totally ordered by the 
induced quotient relation ≻∗ . Without loss of generality, assume that:

Let R�N
 be the set of coalitional rankings that one can construct from the set of non-

empty coalitions �N , and let RN be the set of total preorders or rankings on N.
A social ranking solution on R�N

 is a function f ∶ R�N
⟶ RN which assigns 

to each coalitional ranking ≿∈ R𝛺N
 a unique ranking/total preorder f (≿) ∈ RN . We 

denote by ≻f (≿) the asymmetric part of f (≿) and by ∼f (≿) its symmetric part.

3 � Axioms for social ranking solutions

In this section, we introduce a set of properties that a solution should satisfy, and we 
discuss their interpretation along the lines of their possible application to the prob-
lem of ranking football players.

Bernardi et  al. (2019) introduce an axiom of coalitional anonymity. Let 
� ∶ �N ⟶ �N be a permutation on the elements of �N ; �−1 stands for its inverse, 
and ��N

 denotes the set of such permutations. For each pair {i, j} of distinct agents 
in N, Bernardi et al. (2019) consider permutations � on the subsets of coalitions con-
taining neither i nor j. Denote by ��N⧵{i,j}

 this set of permutations.
Coalitional Anonymity (CA) A social ranking solution f on R�N

 satisfies Coali-
tional Anonymity if for each pair {i, j} of distinct agents in N, each ≿∈ R𝛺N

 , each 
permutation � ∈ ��N⧵{i,j}

 and each alternative coalitional ranking ≿�∈ R𝛺N
 such that

it holds that

The CA axiom says that the ranking between two agents i and j should be independ-
ent of the position in the ranking of coalitions containing both i and j, or neither i 
nor j, and invariant under a rearrangement preserving the relative comparisons of 
coalitions containing only one element between i and j. For the sake of the example 
of ranking football players, the CA property says that the relative ranking between 
two players i and j should be computed looking exclusively to the performance of 
coalitions containing either i or j (but not both), i.e. those coalitions where the piv-
otal role of the two players is evident from the score of the teams, and only the aver-
age team performance counts, no matter with whom the outcome is reached. For 

E
≿

1
≻∗ E

≿

2
≻∗

⋯ ≻∗ E
≿

k
.

∀S, T ⊆ N ⧵ {i, j},
[
S ∪ {i} ≿ T ∪ {j}

]
⟺

[
𝜋(S) ∪ {i} ≿� T ∪ {j}

]
,

∀i, j ∈ N,
[
if (≿)j

]
⟺

[
if (≿�)j

]
.
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instance, if we want to compare i and j within two distinct championships where, 
once extracted the ranking of such relevant coalitions containing only i or j, we 
observe that the two players appear in the same position but in different coalitions, 
then the ranking of the two players should be preserved over the two championships. 
For more examples and interpretations related to this property see Bernardi et  al. 
(2019).

One can argue that demanding the independence from the position of coalitions 
containing both i and j, or neither i nor j, is too strong. In this direction, one can 
weaken this condition imposing that the ranking between two players i and j is the 
same over two coalitional rankings if all positions of i and j are maintained over the 
two coalitional rankings.

Therefore, we introduce two new axioms of coalitional anonymity which are 
weaker than the CA one. To this end, we need some definitions.

Given a permutation � ∈ ��N
 and a coalitional ranking ≿∈ R𝛺N

 , we define the 
coalitional ranking ≿𝜋∈ R𝛺N

 as follows:

Pick any agent i ∈ N . A permutation � ∈ ��N
 is agent i  invariant if:

A permutation � ∈ ��N
 is size invariant if the following holds:

Denote by �∗
�N

 the subset of size invariant permutations in ��N
.

Weak Coalitional Anonymity (WCA) A social ranking solution f on R�N
 satis-

fies Weak Coalitional Anonymity if for each pair {i, j} of distinct agents in N, each 
≿∈ R𝛺N

 and each permutation � ∈ ��N
 which is agent i and agent j invariant, it 

holds that:

To contextualize the WCA axiom, suppose we want to compare two football attack-
ers 1 and 2 based on their performance together and with a third attacker 3 under 
two alternative attacking game-patterns. Based on the outcome of matches when 
the team adopts a defensive tactic aimed at not conceding goals, a plausible coali-
tional ranking should consider low-size combinations of attackers more important, 
e.g.1, 1 ≻ 2 ≻ 12 ≻ 23 ≻ 13 ≻ 123 ≻ 3 , whereas a more offensive pattern could 
end-up in a coalitional ranking where larger combinations of attackers should be 
rewarded, e.g., 13 ≻′ 23 ≻′ 123 ≻′ 2 ≻′ 1 ≻′ 12 ≻′ 3 (note that ≻�=≻𝜋 where 
�(1) = 13,�(2) = 23,�(12) = 123,�(13) = 1,�(23) = 2,�(3) = 3 , so that ≻𝜋 is 
agent 1 and agent 2 invariant). Nevertheless, the two players 1 and 2 cover the same 

∀S, T ∈ 𝛺N ,
[
S ≿𝜋 T

]
⟺

[
𝜋−1(S) ≿ 𝜋−1(T)

]
.

∀S ∈ �N , [i ∈ S] ⟹ [i ∈ �(S)].

∀S ∈ �N , |�(S)| = |S|.

∀i, j ∈ N,
[
if (≿)j

]
⟺

[
if (≿𝜋)j

]
.

1  To avoid cumbersome notations, commas and brackets are omitted for sets; so, for instance, 12 means 
{1, 2}.
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positions over two coalitional rankings, the only change being the team-mates (so, 
over both coalitional rankings, player 1 results to be in the top-coalition, 2 is in the 
second-best one, both 1 and 2 in the third one and so on). As a consequence, there 
is no significant reason to expect a different ranking of 1 and 2 under two game-
patterns, and the WCA axiom states that 1 and 2 should be ranked in the same way 
over the two coalitional rankings corresponding to the two tactics.

Next, we further weaken the WCA property by imposing that the invariance of 
the ranking of two players only occurs when the size of coalitions remain the same, 
other than the position of the two players in the coalitional ranking as for the WCA 
property.

Super Weak Coalitional Anonymity (SWCA) A social ranking solution f on 
R�N

 satisfies Super Weak Coalitional Anonymity if for each pair {i, j} of distinct 
agents in N, each ≿∈ R𝛺N

 and each size invariant permutation � ∈ �∗
�N

 which is 
also agent i and agent j invariant, it holds that:

So, following the contextualizing example used for the WCA axiom, the SWCA 
axiom says that the invariance requested by WCA actually should be required only 
over permutations of coalitions that are also size invariant: this is particularly mean-
ingful to compare football players when we are assuming that an equivalence of per-
formance of individuals i and j may occur, under the same game-pattern tactic, when 
also the size of coalitions in the ranking is preserved, other than their positions with 
respect to i and j.

It must be clear that:

But the implication in the other direction does not hold true, as shown by the follow-
ing example.

Example 1  Consider the social ranking solution f defined as: 

1.	 ∀i ≥ 3, 1 ≻f (≿) i and 2 ≻f (≿) i;
2.	 ∀i, j > 3, i ∼f (≿) j;

3.	 (a)	 if N ≻ N ⧵ {1, 2} , then 1 ≻f (≿) 2;
(b)	 if N ⧵ {1, 2} ≻ N , then 2 ≻f (≿) 1;
(c)	 if N ⧵ {1, 2} ∼ N , then 2 ∼f (≿) 1.

On the one hand, for each permutation � ∈ ��N
 which is size invariant, 

agent 1 invariant and agent 2 invariant, we necessarily have �(N) = N and 
�(N ⧵ {1, 2}) = N ⧵ {1, 2} . From this observation, we easily conclude that f satisfies 
Super Weak Coalitional Anonymity. On the other hand, if we consider a coalitional 
ranking ≿ such that

∀i, j ∈ N,
[
if (≿)j

]
⟺

[
if (≿𝜋)j

]
.

[
Weak Coalitional Anonymity

]
⟹

[
Super Weak Coalitional Anonymity

]
.
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and the permutation � ∈ ��N
 such that �(N ⧵ {1, 2}) = {3} , �({3}) = N ⧵ {1, 2} 

and �(S) = S otherwise. Then, by 3.(a),

and, by 3.(b),

Because � is agent 1 invariant and agent 2 invariant, we conclude that f violates 
Weak Coalitional Anonymity.

It may be less immediate to see that Weak Coalitional Anonymity is a weaker 
axiom than Coalitional Anonymity, that is:

To show the above implication, it is convenient to reformulate the axiom of Coali-
tional Anonymity.

Lemma 1  A social ranking solution f on R�N
 satisfies Coalitional Anonymity if and 

only if, for each pair {i, j} of distinct agents in N, each ≿∈ R𝛺N
 , each pair of permu-

tations {𝜋(1),𝜋(2)} ⊆ 𝛱𝛺N⧵{i,j}
 and each alternative coalitional ranking ≿�∈ R𝛺N

 such 
that

it holds that

Proof  Assume first that f satisfies the statement of Lemma 1. To see that f satis-
fies Coalitional Anonymity, it suffices to define �(2) as the identity permutation. 
Reciprocally, assume that f satisfies Coalitional Anonymity. Consider any pair {i, j} 
of distinct agents in N, any coalitional ranking ≿∈ R𝛺N

 , any pair of permutations 
{𝜋(1),𝜋(2)} ⊆ 𝛱2N⧵{i,j} and any alternative coalitional ranking ≿�∈ R𝛺N

 such that:

Next, consider another coalitional ranking ≿′′ satisfying the condition of Coalitional 
Anonymity with respect to �(1) , that is2:

{3} ≻ N ≻ N ⧵ {i, j},

1 ≻f (≿) 2,

2 ≻f (≿𝜋 )
1.

[ Coalitional Anonymity] ⟹ [Weak Coalitional Anonymity].

∀S, T ⊆ N ⧵ {i, j},
[
S ∪ {i} ≿ T ∪ {j}

]
⟺

[
𝜋(1)(S) ∪ {i} ≿� 𝜋(2)(T) ∪ {j}

]
,

∀i, j ∈ N,
[
if (≿)j

]
⟺

[
if (≿�)j

]
.

(1)
∀S, T ⊆ N ⧵ {i, j},

[
S ∪ {i} ≿ T ∪ {j}

]
⟺

[
𝜋(1)(S) ∪ {i} ≿� 𝜋(2)(T) ∪ {j}

]

2  Such a coalitional ranking ≿′′ exists. To see this, consider the permutation � ∈ ��N
 such that, for each 

S ∩ {i, j} = {i} , �(S) = �(1)(S ⧵ {i}) ∪ {i} , and �(S) = S otherwise. Then, take ≿��=≿𝜋 and we are done.
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By Coalitional Anonymity,

On the other hand, (2) is rewritten as:

By (1), we have: ∀S, T ⊆ N ⧵ {i, j},

By (4) and (5) and the fact that �(1)
(
(�(1))−1(S)

)
= S , we obtain:

Thus, by Coalitional Anonymity,

Combining the above equivalence with (3), we obtain:

showing that Coalitional Anonymity implies the statement of Lemma 1. This com-
pletes the proof of Lemma 1.

We are now prepared to prove that Weak Coalitional Anonymity is a weaker 
axiom than Coalitional Anonymity.

Proposition 1  Coalitional Anonymity implies Weak Coalitional Anonymity.

Proof  Consider any social ranking solution f on R�N
 satisfying Coalitional Ano-

nymity. Consider any social ranking ≿∈ R𝛺N
 , any pair of distinct agents {i, j} ⊆ N 

and any permutation � ∈ ��N
 which is agent i and agent j invariant. To show:

From � , construct two permutations �(1) and �(2) in ��N⧵{i,j}
 as follows:

By definition of ≿𝜋 , we have:

Because

(2)∀S, T ⊆ N ⧵ {i, j},
[
S ∪ {i} ≿ T ∪ {j}

]
⟺

[
𝜋(1)(S) ∪ {i} ≿�� T ∪ {j}

]

(3)[if (≿)j] ⟺ [if (≿��)j]

(4)∀S, T ⊆ N ⧵ {i, j},
[
S ∪ {i} ≿�� T ∪ {j}

]
⟺

[
(𝜋(1))−1(S) ∪ {i} ≿ T ∪ {j}

]

(5)
[
(𝜋(1))−1(S) ∪ {i} ≿ T ∪ {j}

]
⟺

[
𝜋(1)

(
(𝜋(1))−1(S)

)
∪ {i} ≿� 𝜋(2)(T) ∪ {j}

]

∀S, T ⊆ N ⧵ {i, j},
[
S ∪ {i} ≿�� T ∪ {j}

]
⟺

[
S ∪ {i} ≿� 𝜋(2)(T) ∪ {j}

]
.

[if (≿��)j] ⟺ [if (≿�)j].

[if (≿)j] ⟺ [if (≿�)j],

[
if (≿)j

]
⟺

[
if (≿𝜋)j

]
.

∀S ∈ N ⧵ {i, j}, �(1)(S) = �(S ∪ {i}) ⧵ {i} and �(2)(S) = �(S ∪ {j}) ⧵ {j}.

∀S, T ⊆ N ⧵ {i, j},
[
S ∪ {i} ≿ T ∪ {j}

]
⟺

[
𝜋(S ∪ {i}) ≿𝜋 𝜋(T ∪ {j})

]
.
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we obtain:

Because f satisfies Coalitional Anonymity, by Lemma 1 we conclude that:

which completes the proof of Proposition 1.

Instead, it is possible to find a social ranking solution that satisfies WCA but 
not CA, as shown in the following example.

Example 2  Consider the social ranking solution f defined as: 

1.	 ∀i ≥ 3, 1 ≻f (≿) i and 2 ≻f (≿) i;
2.	 ∀i, j > 3, i ∼f (≿) j;

3.	 (a)	 if, for each S ⊇ {1, 2} , S ≠ {1, 2} , and each T such that 
T ∩ {1, 2} = � , we have S ≻ T  , then 1 ≻f (≿) 2;

(b)	 if, for each S ⊇ {1, 2} , S ≠ {1, 2} , and each T such that T ∩ {1, 2} = � , we 
have T ≻ S , then 2 ≻f (≿) 1;

(c)	 otherwise, 1 ∼f (≿) 2;

On the one hand, for each permutation � ∈ ��N
 which is agent 1 invariant and 

agent 2 invariant, we have:

From this and from the definition of f, we conclude that the latter satisfies Weak 
Coalitional Anonymity. On the other hand, take the permutation � ∈ ��N

 such that:

–	 �(S) = S whenever S ∩ {1, 2} is a singleton;
–	 �({1, 2}) = {1, 2};
–	 �(S) = S ⧵ {1, 2} whenever S ⊇ {1, 2} and S ≠ {1, 2}.
–	 �(S) = S ∪ {1, 2} whenever S ∩ {1, 2} = �.

Pick any coalitional ranking ≿ satisfying 3(a). By definition, we have

By 3(a), for each S ⊇ {1, 2} , S ≠ {1, 2} , and each T such that T ∩ {1, 2} = � , we 
have S ≻ T  . And, by definition of � , we have:

�(S ∪ {i}) = �(1)(S) ∪ {i} and �(S ∪ {j}) = �(2)(S) ∪ {j},

∀S, T ⊆ N ⧵ {i, j},
[
S ∪ {i} ≿ T ∪ {j}

]
⟺

[
𝜋(1)(S) ∪ {i} ≿𝜋 𝜋(2)(S) ∪ {j}

]
.

[if (≿)j] ⟺ [if (≿𝜋)j],

[
S ⊇ {1, 2}

]
⟺

[
𝜋(S) ⊇ {1, 2}

]
and

[
T ∩ {1, 2} = �

]
⟺

[
𝜋(T) ∩ {1, 2} = �

]
.

1 ≻f (≿) 2.

[
S ≻ T

]
⟺

[
𝜋(S) ≻𝜋 𝜋(T)

]
⟺

[
S ⧵ {1, 2} ≻𝜋 T ∪ {1, 2}

]
.
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If we set T � = S ⧵ {1, 2} and S� = T ∪ {1, 2} , we easily conclude that ≿𝜋 satisfies 
3(b). By definition of f we get:

By definition of � , �(S) = S whenever S ∩ {1, 2} is a singleton, so that

If we take the identity permutation id ∈ �2N⧵{1,2} , the above equivalence can be 
rewritten as:

It follows that id and ≿𝜋 satisfy the conditions of Coalitional Anonymity. By Coali-
tional Anonymity, we obtain:

which contradicts (6).

Let � ∶ N ⟶ N be a permutation of the elements of N , �−1 stands for its 
inverse, and �N denotes the set of such permutations. For each S ∈ �N , �(S) 
denotes the subset of agents {�(i) ∶ i ∈ S}.

Given a permutation � ∈ �N and a coalitional ranking ≿∈ R𝛺N
 , we define the 

coalitional ranking ≿𝜎∈ R𝛺N
 in the following way:

Neutrality (N) A social ranking solution f on R�N
 satisfies Neutrality if for each 

≿∈ R𝛺N
 and each � ∈ �N , it holds that:

The interpretation of the Neutrality axiom is trivial: any assessment of individual 
contributions should not depend on the name of football players (or on other per-
sonal attributes like the squad number, or the bank account).

Remark 1 

1.	 A permutation � can be viewed as a particular size invariant permutation in �∗
�N

 
by considering the sets �(S) , S ∈ �N . With this convention, we have ≿𝜎=≿

𝜎.
2.	 As a consequence of the previous point, if we consider the composition �◦� , this 

means that � is viewed as a permutation in �∗
�N

.
3.	 For two permutations � and �� ∈ ��N

 , it holds that (≿𝜋� )𝜋 =≿𝜋◦𝜋� . Indeed, 

 On the other hand, 

(6)2 ≻f (≿𝜋 )
1

∀S, T ⊆ N ⧵ {1, 2}, S ∪ {i} ≿ T ∪ {i} ⟺ S ∪ {i} ≿𝜋 T ∪ {i}.

∀S, T ⊆ N ⧵ {1, 2}, S ∪ {i} ≿ T ∪ {i} ⟺ id(S) ∪ {i} ≿𝜋 T ∪ {i}.

1f (≿𝜋)2,

∀S, T ∈ 𝛺N ,
[
S ≿𝜎 T

]
⟺

[
𝜎−1(S) ≿ 𝜎−1(T)

]
.

∀i, j ∈ N,
[
if (≿)j

]
⟺

[
𝜎(i)f (≿𝜎)𝜎(j)

]
.

S(≿𝜋� )𝜋T ⟺ 𝜋−1(S)(≿𝜋� )𝜋−1(T) ⟺ 𝜋�−1(𝜋−1(S)) ≿ 𝜋�−1(𝜋−1(T)).
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 Thus, 

 as asserted.
4.	 Assume that 

 and pick any � ∈ ��N
 . We have: 

 where, for q ∈ {1, 2,… , k} , E≿𝜋

q = 𝜋(E≿
q
).

For the next axiom, already introduced in Bernardi et al. (2019), we need a defini-
tion. Consider any coalitional ranking ≿∈ R𝛺N

 . We say that the coalitional ranking 
≿�∈ R𝛺N

 is a refinement of ≿ if ≿′ is a subrelation of ≿ , that is, if ≿′⊆≿ . Because ≿ 
is a total preorder this is equivalent to say that:

Recall that the induced quotient relation ≻∗ of coalitional ranking ≿∈ R𝛺N
 is such 

that:

A refinement ≿k∈ R𝛺N
 of ≿ is obtained from the last equivalence class E≿

k
 of ≿ if:

Independence from the Worst Class (IWC) A social ranking solution f on R�N
 

satisfies Independence from the Worst Class if for each ≿∈ R𝛺N
 and each refine-

ment ≿k∈ R𝛺N
 of ≿ obtained from the last equivalence class E≿

k
 of ≿ , it holds that:

The IWC axiom states that the performance of agents in coalitions placed in the 
highest positions is more important. So, if a decision about the (strict) ranking 
between two agents is taken, changing the relative ranking of coalitions in the lowest 
equivalence class should not affect the decision.

This axiom is very interesting in the context of football players where, in general, 
the performance of a consistent number of coalitions of a squad cannot be really 
evaluated due to a lack of information (players of certain groups rarely play together 
or for very small fractions of time, or simply because the game-patterns imple-
mented by the team management does not allow for such combinations of players; 
see Example 7 in this respect). In these cases, one possibility is to place coalitions 

��−1(�−1(⋅)) = (��−1
◦�−1)(⋅) = (�◦��)−1(⋅).

S(≿𝜋� )𝜋T ⟺ (𝜋◦𝜋�)−1(S) ≿ (𝜋◦𝜋�)−1(T) ⟺ S ≿𝜋◦𝜋� T ,

E
≿

1
≻∗ E

≿

2
≻∗

⋯ ≻∗ E
≿

k
,

E
≿𝜋

1
≻∗
𝜋
E
≿𝜋

2
≻∗
𝜋
⋯ ≻∗

𝜋
E
≿𝜋

k
,

∀S, T ∈ 𝛺N ,
[
S ≻ T

]
⟹

[
S ≻� T

]
.

E
≿

1
≻∗ E

≿

2
≻∗

⋯ ≻∗ E
≿

k
.

∀S, T ∈ 𝛺N ,
[
S ∼ T ∧ S ≻k T

]
⟹

[
S, T ∈ E

≿

k

]
.

∀i, j ∈ N,
[
i ≻f (≿) j

]
⟹

[
i ≻f (≿k) j

]
.
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missing an evaluation in the last equivalence class of the coalitional ranking. Then, 
the IWC property states that such coalitions do not count if a decision concerning 
the comparison between two players has been already taken based on the perfor-
mance of coalitions in higher positions.

Ranking solutions should apply to different coalitional rankings in a coher-
ent way. In this respect, moving from a coalitional ranking to a slightly different 
one, next axioms impose a restriction on how the individual ranking should change 
according to alternative notions of monotonicity. The next notation is central to con-
struct a monotonicity principle.

Let ≿ and ≿′ be two coalitional rankings in R�N
 and a coalition S0 ∈ �N . We say 

that ≿′ is obtained from ≿ through  S0 , if:

If, moreover,

we say that ≿′ is S0 improving with respect to ≿ . Reciprocally, we say that ≿′ is S0 
deteriorating if:

The next notion of monotonicity is a standard assumption that can be resumed in the 
very general principle that improving the performance of a coalition of individuals 
S ⊆ N should advocate in favour of the individuals in S to break ties among indi-
viduals (see Bernardi et al. (2019) for more details).

Monotonicity (M) A social ranking solution f on R�N
 satisfies Monotonicity if 

for each pair {i, j} ⊆ N of distinct agents, each coalition S0 containing i but not j, 
each pair {≿,≿�} of coalitional rankings such that ≿′ is S0 improving with respect to 
≿ , it holds that:

However, in more dynamic frameworks where the interactions and the performance 
of coalitions evolve rapidly in time, it could be meaningful to look at a sequence of 
modifications of the position of coalitions applying in favour or to the detriment of a 
single individual i and without affecting another individual j.

Consider two coalitional rankings ≿ and ≿′ in R�N
 and two distinct agents i and j. 

An ij -path between ≿ and ≿′ is a sequence (≿�)t
�=−r

 of coalitional rankings in R�N
 

such that: 

1.	 ≿−r=≿ and ≿t=≿�;
2.	 there is an associated sequence (S�)t−1

�=−r
 of coalitions in �N such that, for each 

� ∈ {−r,… , t − 1} , S� ∩ {i, j} = {i};
3.	 for each � ∈ {−r,… ,−1} , ≿�+1 is S� improving with respect to ≿�;
4.	 for each � ∈ {0,… , t − 1} , ≿�+1 is S� deteriorating with respect to ≿�;

∀S, T ∈ 𝛺N ⧵ S0,
[
S ≿� T

]
⟺

[
S ≿ T

]
.

∀T ∈ 𝛺N ⧵ S0, [S0 ≿ T] ⟹ [S0 ≻
� T],

∀T ∈ 𝛺N ⧵ S0,
[
T ≿ S0

]
⟹

[
T ≻� S0

]
.

[if (≿)j] ⟹ [i ≻f (≿�) j].
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5.	 each coalition S� , � ∈ {−r,… , t − 1} , belongs to the same equivalence class of 
≿0;

Example 3  Consider the coalition ranking ≿ on N = {1, 2, 3} such that:

We construct the 23-path (≿−1,≿0,≿1,≿2) , where ≿−1=≿ , S−1 = {2} , S0 = {1, 2} , 
S1 = {2} , and

Therefore, the coalitional ranking ≿0 is S−1 improving with respect to ≿−1=≿ , the 
coalitional ranking ≿1 is S0 deteriorating with respect to ≿0 , and the coalitional rank-
ing ≿2 is S1 deteriorating with respect to ≿1 . Finally, note that the coalitions involved 
in the 23-path belong to the same equivalence class of ≿0 , namely E≿0

1
.

The next three axioms are based on the notion of ij-paths. The first axiom, 
called Improving path monotonicity, reflects the following principle. Suppose 
that an ij-path exists between two coalitional rankings ≿ and ≿′ such that there 
are more improving moves than deteriorating ones. So, the number of improving 
moves prevails over the number of deteriorating moves. The principle says that if 
agent i is at least highly ranked than agent j in f (≿) , then i should be strictly bet-
ter ranked than j in f (≿�).

Improving Path Monotonicity (IPM) A social ranking solution f on R�N
 sat-

isfies Improving path monotonicity if for each pair {i, j} ⊆ N of distinct agents 
and each ij-path (≿�)t

�=−r
⊆ R𝛺N

 such that r > t , it holds that:

Remark 2  It must be noted that for IPM and for the two following axioms of path 
monotonicity, the order on which the coalitions are used to construct the path does 
not matter, provided that, along the path, the index of each improving coalition is 
lower than the index of each deteriorating coalition. So, the only relevant parameters 
are the set of improving coalitions and the set of deteriorating coalitions, with a pri-
ority in the path for the improving coalitions.

Consider for instance a football team management that must update the infor-
mation about groups’ performance after each match of championship. Suppose 
that, at the original time t0 (beginning of the championship season), a player i 
is at least as strong as another individual j based on a given social ranking solu-
tion applied to the current coalitional ranking. Now, based on the new evaluation 

{1, 2, 3} ∼ {1, 2} ≻ {1, 3} ≻ {2, 3} ∼ {1} ≻ {2} ∼ {3}.

{1, 2, 3} ∼0 {1, 2} ∼0 {2} ≻0 {1, 3} ≻0 {2, 3} ∼0 {1} ≻0 {3},

{1, 2, 3} ∼1 {2} ≻1 {1, 3} ∼1 {1, 2} ≻1 {2, 3} ∼1 {1} ≻1 {3},

{1, 2, 3} ≻2 {1, 3} ∼2 {1, 2} ≻2 {2, 3} ∼2 {2} ∼2 {1} ≻2 {3}.

[
if (≿)j

]
⟹

[
i ≻f (≿� ) j

]
.
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after the new match, the team management recognizes that a coalition containing 
individual i (but not j) improves the position in the coalitional ranking. Match 
after match, the team management take a record of all the improvements of coa-
litions containing i (but not j), as well as the record of coalitions that eventu-
ally deteriorate their position, with respect to an original coalitional ranking used 
as a reference. It’s then extremely tempting to take into account this history of 
improvements or deteriorations to end up with an individual comparison keep-
ing into account players pivotal role along the championship season. One simple 
way to do it is to look at the number of improvements r and deteriorations t of a 
player i and, at the end of the season, break an eventual tie between i and j in the 
original ranking (the previous season) according to the comparison between r and 
t (in favour of i if r > t ), provided that all improvements and deteriorations are 
performed on a comparable ordinal scale, i.e., all improvements of coalitions end 
up in the same equivalence class of some benchmark ranking ≿0 ; and all deterio-
rations of coalitions start from this equivalence class of ≿0 as well (see Point 5 in 
the definition of ij-path). This intuition brings to the above IPM axiom.

Note that Improving Path Monotonicity is a stronger axiom than Monotonicity, 
that is,

To see this, it suffices to set r = 1 and t = 0 in the ij-path.
Of course IPM is not the only way to break possible ties in the original coalitonal 

ranking. Under some dominant game-pattern tactic adopted by the team, the team 
management could argue that it is not the number of improving or deteriorating 
moves that makes the difference between two equivalent players, but actually the 
size of the smallest coalition generating an improvement (leading to definition of 
the PMPSC axiom below), or that such a size-based criterion to break ties should 
apply only if the number of improving moves equals the number of deteriorating 
ones (leading to the WPMPSC axiom below).

More precisely, the next axiom focuses on the size of the coalitions we use in 
an ij-path and not on the number of improving moves compared to the deteriorat-
ing moves. Assume that two coalitional rankings ≿ and ≿′ are connected through an 
ij-path. Assume further that among the coalitions we use in the improving moves, 
one of them, say the first one S−r , contains strictly less elements than the coalitions 
we use in the deteriorating moves. The principle indicates that if agent i is at least 
highly ranked than agent j in f (≿) , then i becomes strictly better ranked than j in 
f (≿�) . Reciprocally, assume that St−1 contains strictly less elements than each coali-
tion we use in the improving moves. The principle indicates that if agent j is at least 
highly ranked than agent i in f (≿) , then j becomes strictly better ranked than i in 
f (≿�) . In this sense, this principle gives priority to the smallest coalition whatever 
the number of improving moves and deteriorating moves along the ij-path.

Path Monotonicity with Priority to the Smallest Coalition (PMPSC) A social 
ranking solution f on R�N

 satisfies Path Monotonicity with Priority to the Smallest 
Coalition if for each pair {i, j} ⊆ N of distinct agents and each ij-path (≿�)t

�=−r
⊆ R𝛺N

 
such that, for each � ∈ {0,… , t − 1} , |S�| > |S−r| , then it holds that:

[ Improving Path Monotonicity ] ⟹ [Monotonicity ].
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Note that Path Monotonicity with Priority to the Smallest Coalition is stronger than 
Monotonicity,

To see this, it suffices to set r = 1 and t = 0 in the definition of an ij-path. Note 
also that neither Path Monotonicity with Priority to the Smallest Coalition implies 
Improving Path Monotonicity nor it is implied by Improving Path Monotonicity.

The last axiom is a weak version of Path Monotonicity with Priority to the Smallest 
Coalition. It only says something when an ij-path contains an equal number of improv-
ing and deteriorating moves. In such a case, a priority is still given to the smallest 
coalition.

Weak Path Monotonicity with Priority to the Smallest Coalition (WPMPSC) 
A social ranking solution f on R�N

 satisfies Weak Path Monotonicity with Priority 
to the Smallest Coalition if for each pair {i, j} ⊆ N of distinct agents and each ij-path 
(≿�)t

�=−r
⊆ R𝛺N

 such that r = t and for each � ∈ {0,… , t − 1} , |S�| > |S−r| , then it 
holds that

Path Monotonicity with Priority to the Smallest Coalition implies Weak Path Mono-
tonicity with Priority to the Smallest Coalition. Indeed, in Path Monotonicity with 
Priority to the Smallest Coalition, no condition on the number of improving and 
deteriorating moves on an ij-path is needed to give priority to the smallest coalition.

4 � Preliminary results

Given a coalitional ranking ≿∈ R𝛺N
 and an agent i ∈ N , we construct the matrix 

M≿,i of size (n,  k) where each entry M≿,i
pq

 denotes the number of coalitions of size 
p ∈ {1,… , n} containing i in the equivalence class E≿

q
 , q ∈ {1,… , k} . For each p, it 

holds that:

For each pair {i, j} ⊆ N , each equivalence class E≿
q
 and each size p ∈ {1,… , n} , 

define the subsets of coalitions:

We have:

[
if (≿)j

]
⟹

[
i ≻f (≿� ) j

]
.

[
Path Monotonicity with Priority to the Smallest Coalition

]
⟹

[
Monotonicity

]
.

[
if (≿)j

]
⟹

[
i ≻f (≿� ) j

]
.

(7)
k∑

q=1

M≿,i
pq

=

(
n − 1

p − 1

)
, and so

n∑
p=1

k∑
q=1

M≿,i
pq

= 2n−1.

Ei,j,p
q

= E≿

q
∩
{
S ∶ S ∋ i, S ∋ j, |S| = p

}
and Ei,j̄,p

q
= E≿

q
∩
{
S ∶ S ∋ i, S ∌ j, |S| = p

}
.

M≿,i
pq

= |Ei,j,p
q

| + |Ei,j̄,p
q

| and M≿,j
pq

= |Ei,j,p
q

| + |Ej,ī,p
q

|.
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In case M≿,i = M≿,j , the above equalities imply that, for each equivalence class 
E≿
q
 , q ∈ {1,… k} and each size p ∈ {1,… , n} , |Ei,j̄,p

q | = |Eī,j,p
q | . Therefore, for each 

equivalence class and each size, there exists a bijection

Definition 1  For any ≿∈ R𝛺N
 and any pair {i, j} ⊆ N of distinct agents such that 

M≿,i = M≿,j , define the following subset of size invariant, agent i invariant and agent 
j invariant permutations 𝜋≿,ij ∈ 𝛱∗

𝛺N
 : 

1.	 for each S ⊆ N ⧵ {i, j} and each S ⊇ {i, j} , 𝜋≿,ij(S) = S;
2.	 for each q ∈ {1,… , k} , each size p ∈ {1,… , n} and each coalition S ∈ E

i,j̄,p
q  , 

 where bij,pq  is given by (8);
3.	 for each q ∈ {1,… , k} , each size p ∈ {1,… , n} and each coalition T ∈ E

j,ī,p
q  , 

Lemma 2  Consider any coalitional ranking  ≿∈ R𝛺N
 such that M≿,i = M≿,j for some 

pair {i, j} ⊆ N of distinct agents, the permutation � ∈ �N such that �(i) = j , 
�(j) = i , and �(�) = � for each � ∈ N ⧵ {i, j} , and any permutation 𝜋≿,ij ∈ 𝛱∗

𝛺N
 as 

in Definition 1. Then, (≿𝜋≿,ij )𝜎 =≿.

Proof  By points 2 and 3 of Remark 1, (≿𝜋≿,ij )𝜎 =≿𝜎◦𝜋≿,ij , and by point 4 it suffices to 
show that the equivalence classes of (≿𝜋≿,ij )𝜎 coincide with the equivalence classes 
of ≿ . Therefore, consider the composition 𝜎◦𝜋≿,ij . Pick any S ∈ �N . Several cases 
arise.

Case 1 Either S ⊇ {i, j} or S ⊆ N ⧵ {i, j} . In such a case, we have (𝜎◦𝜋≿,ij)(S) = S , 
and so trivially (𝜎◦𝜋≿,ij)(S) ∼ S.

Case 2 S ∈ E
i,j̄,p
q  . By point 2 of Definition 1 and definition of � , we have:

where bij,pq (S) ∈ E
i,j̄,p
q  . This implies that S ∼ (𝜎◦𝜋≿,ij)(S).

Case 3 S ∈ E
j,ī,p
q  . This case is similar to the previous case.

From the above three cases, we deduce that

(8)bij,p
q

∶ Ei,j̄,p
q

⟶ Ej,ī,p
q

𝜋≿,ij(S) =
(
bij,p
q
(S) ⧵ {j}

)
∪ {i},

𝜋≿,ij(T) =
(
(bij,p

q
)−1(T) ⧵ {i}

)
∪ {j}.

(𝜎◦𝜋≿,ij)(S) = 𝜎
(
(bij,p

q
(S) ⧵ {j}) ∪ {i}

)
= bij,p

q
(S),

(𝜎◦𝜋≿,ij)(E≿

q
) ⊆ E≿

q
.
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By the fact that (𝜎◦𝜋≿,ij) is a bijective function as a composition of two bijective 
functions, we obtain the desired result:

By point 4 of Remark 1,

which proves that the quotient order ≻∗
𝜎◦𝜋≿,ij

 coincides with the quotient order ≻∗ . 
Thus, we obtain the desired result (≿𝜋≿,ij )𝜎 =≿.

Proposition 2  Let f be a social ranking solution on R�N
 satisfying Neutrality (N) 

and Super Weak Coalitional Anonymity (SWCA). For each ≿∈ R𝛺N
 , it holds that:

Proof  Let f be as hypothesized. Pick any coalitional ranking ≿∈ R𝛺N
 and any two 

distinct agents i and j in N such that M≿,i = M≿,j . First, consider the permutation 
� ∈ �N such that �(i) = j , �(j) = i and �(�) = � for each � ∈ N ⧵ {i, j} . Next, con-
sider a size invariant permutation 𝜋≿,ij ∈ 𝛱∗

𝛺N
 as in Definition 1. By Super Weak 

Coalitional Anonymity,

By Neutrality,

and so, by definition of � , jf ((≿𝜋≿,ij )𝜎)i . By Lemma 2, (≿𝜋≿,ij )𝜎 =≿ . Therefore, we 
conclude that

and so i ∼f (≿) j , which completes the proof of Proposition 2.

Bernardi et  al. (2019) obtain a connected result (see the Per-class equality 
property in Step 2 of the proof of Theorem 1) by using Neutrality and Coalitional 
Anonymity.

Proposition 3  (Bernardi et al. (2019)) Let f be a social ranking solution R�N
 satisfy-

ing Neutrality and Coalitional Anonymity. For each ≿∈ R𝛺N
 , it holds that:

To understand the differences between both results, recall that Coalitional Anonym-
ity is a stronger axiom than Super Weak Coalitional Anonymity. As a consequence, 

(𝜎◦𝜋≿,ij)(E≿

q
) = E≿

q
.

E
≿

1
≻∗
𝜎◦𝜋≿,ij E

≿

2
≻∗
𝜎◦𝜋≿,ij ⋯ ≻∗

𝜎◦𝜋≿,ij E
≿

k
,

∀i, j ∈ N,
[
M≿,i = M≿,j

]
⟹

[
i ∼f (≿) j

]
.

[
if (≿)j

]
⟺

[
if (≿𝜋≿,ij )j

]
.

[if (≿𝜋≿,ij )j
]
⟺ [𝜎(i)f ((≿𝜋≿,ij )𝜎)𝜎(j)],

[if (≿)j] ⟹ [jf (≿)i],

∀i, j ∈ N,

[
∀q ∈ {1,… , k},

n∑
p=1

M≿,i
pq

=

n∑
p=1

M≿,j
pq

]
⟹

[
i ∼f (≿) j

]
.
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Bernardi et al. (2019) can assume a weaker condition on M≿,i and M≿,j than ours to 
obtain the indifference between i and j. In the present case, the condition

is weaker than the condition M≿,i
pq

= M
≿,j
pq  . On the other hand, because our axiom of 

Super Weak Coalitional Anonymity is weaker than the axiom of Coalitional Ano-
nymity, we need to assume a stronger condition on M≿,i and M≿,j to obtain the indif-
ference between i and j. Nevertheless, it turns out that Coalitional Anonymity can be 
replaced by the weaker axiom of Weak Coalitional Anonymity in the statement of 
Proposition 3.

Proposition 4  Let f be a social ranking solution R�N
 satisfying Neutrality (N) and 

Weak Coalitional Anonymity (WCA). For each  ≿∈ R𝛺N
, it holds that:

The proof of Proposition 4 follows similar steps as the proofs of Lemma 2 and Prop-
osition 2, and so is omitted. The main difference is that we have to consider bijections 
of the following form:

where

These bijections exist since, by hypothesis,

where, similarly as before,

Therefore, Proposition 4 is stronger than Proposition 3 obtained in Bernardi et al. 
(2019).

5 � Comparable axiomatizations of three social ranking solutions

We introduce three social ranking solutions for coalitional rankings. One of them 
is the Lexicographic excellence solution studied in Bernardi et al. (2019), the two 
other are new.

∀q ∈ {1,… , k},

n∑
p=1

M≿,i
pq

=

n∑
p=1

M≿,j
pq

∀i, j ∈ N,

[
∀q ∈ {1,… , k},

n∑
p=1

M≿,i
pq

=

n∑
p=1

M≿,j
pq

]
⟹

[
i ∼f (≿) j

]
.

bij
q
∶ Ei,j̄

q
⟶ Ej,ī

q
,

Ej,ī
q
= E≿

q
∩
{
S ∶ S ∌ i, S ∋ j

}
and Ei,j̄

q
= E≿

q
∩
{
S ∶ S ∋ i, S ∌ j

}
.

|Ei,j̄
q
| =

n∑
p=1

M≿,i
pq

− |Ei,j
q
| =

n∑
p=1

M≿,j
pq

− |Ei,j
q
| = |Ej,ī

q
|,

Ej,i
q
= E≿

q
∩
{
S ∶ S ∋ i, S ∋ j

}
.



836	 E. Algaba et al.

1 3

In the sequel, for each q ∈ {1,… , k} , the notation M≿,i
q

 stands for the sum of 
the elements M≿,i

pq
 , p ∈ {1,… , n} , that is

Definition 2  The Lexicographic excellence solution L on R�N
 is defined as:

In words, agent i has a strictly better ranking than agent j in a coalitional rank-
ing ≿ if, starting from the best equivalence class E≿

1
 , one can find an equivalence 

class E≿
q0

 where the number of coalitions containing i is strictly greater than the 
number of coalitions containing j. Otherwise, if for each equivalence class E≿

q
 , 

q ∈ {1,… , k} , the number of coalitions containing i is equal to the number of 
coalitions containing j, then both agents have the same rank under L. The Lexico-
graphic excellence solution does not take into account the size of the coalitions to 
which an agent is a member. The next two solutions incorporate a size effect.

Definition 3  The solution L(1) on R�N
 is defined as follows: i ≻L(1)(≿) j if there is 

(p0, q0) ∈ {1,… , n} × {1,… , k − 1} such that: 

1.	 ∀p ∈ {1,… , n},∀q < q0, M≿,i
pq

= M
≿,j
pq ;

2.	 ∀p < p0, M
≿,i

pq0
= M

≿,j

pq0
;

3.	 M
≿,i

p0q0
> M

≿,j

p0q0
.

In words, for any two distinct agents i and j, we explore the first equivalence 
class E≿

1
 . If, for each coalition of size p ∈ {1,… , n} , the number of coalitions 

containing i is equal to the number of coalitions containing j, then we move to the 
next equivalence class E≿

2
 . We repeat the exploration until we reach an equiva-

lence class E≿
q0

 and a coalition size p0 ∈ {1,… , n} such that the number M≿,i

p0q0
 of 

coalitions of size p0 containing i is different from the number M≿,j

p0q0
 of coalitions 

of size p0 containing j. If there are several such coalition sizes p0 , we consider the 
smallest one. If M≿,i

p0q0
> M

≿,j

p0q0
 , agent i has a strictly better rank than agent j in the 

coalitional ranking ≿ . Otherwise, if for each equivalence class E≿
q
 , q ∈ {1,… , k} , 

and each coalition size p ∈ {1,… , n} , the number of coalitions containing i is 
equal to the number of coalitions containing j, then L(1) indicates that both agents 
have the same rank in the coalitional ranking ≿.

Definition 4  The solution L(2) on R�N
 is defined as follows: i ≻L(2)(≿) j if there is 

(p0, q0) ∈ {1,… , n} × {1,… , k − 1} such that: 

M≿,i
q

∶=

n∑
p=1

M≿,i
pq
.

i ≻L(≿) j ⟺

[
∃q0 ∈ {1,… , k − 1} ∶

(
∀q < q0,M≿,i

q
= M≿,j

q

)
∧
(
M

≿,i

q0
> M

≿,j

q0

)]
.
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1.	 ∀p ∈ {1,… , n},∀q < q0, M≿,i
pq

= M
≿,j
pq ;

2.	 either (2.1)   M≿,i

q0
> M

≿,j

q0
   or   (2.2)   M≿,i

q0
= M

≿,j

q0
 ,    ∀p < p0 , M≿,i

pq0
= M

≿,j

pq0
 , and 

M
≿,i

p0q0
> M

≿,j

p0q0
.

In words, for any two distinct agents i and j, we explore the first equivalence class 
E
≿

1
 . If, for each coalition size p ∈ {1,… , n} , the number of coalitions containing i is 

equal to the number of coalitions containing j, then we move to the next equivalence 
class E≿

2
 . We repeat the exploration until we reach an equivalence class E≿

q0
 and a 

coalition size p0 ∈ {1,… , n} such that the number M≿,i

p0q0
 of coalitions of size p0 con-

taining i is different from the number M≿,j

p0q0
 of coalitions of size p0 containing j. At 

this step (which corresponds to point 2 of the definition), two cases can be 
distinguished:

(2.1) the number M≿,i

q0
 of coalitions containing i is different from the number of 

coalitions M≿,j

q0
 containing j. If M≿,i

q0
> M

≿,j

q0
 , then agent i has a strictly better rank 

than agent j in the coalitional ranking ≿;
(2.2) M≿,i

q0
= M

≿,j

q0
 . Then, we consider the smallest size p0 such that M≿,i

p0q0
 is dif-

ferent from M≿,j

p0q0
 . If M≿,i

p0q0
> M

≿,i

p0q0
 , agent i has a strictly better rank than agent j in 

the coalitional ranking ≿.
Otherwise, that is, if such a pair (p0, q0) does not exist in ≿ , the two matrices 

M≿,i and M≿,j are identical, and L(2) indicates that i and j are equivalent agents in 
the coalitional ranking ≿.

To fix the ideas, the next example shows a coalitional ranking where the three 
solutions L, L(1) and L(2) generate different rankings on the elements of N.

Example 4  Consider the coalitional ranking ≿∈ R𝛺N
 with N = {1, 2, 3, 4} such that

for any other S ⊆ N not previously listed in the ranking and such that

and

Then,

By Definition 2, we have that 2 ≻L(≿) 1 ∼L(≿) 3 ≻L(≿) 4 , whereas, by Defini-
tion 3, we have 1 ≻L(1)(≿) 2 ≻L(1)(≿) 3 ≻L(1)(≿) 4 and, finally, by Definition 4, 
2 ≻L(2)(≿) 1 ≻L(2)(≿) 3 ≻L(2)(≿) 4.

{1} ∼ {2, 3} ∼ {2, 4} ≻ {2} ∼ {3} ∼ {1, 3} ∼ {1, 4} ≻ S

E
≿

1
= {{1}, {2, 3}, {2, 4}}, E≿

2
= {{2}, {3}, {1, 3}, {1, 4}},

E
≿

3
= {{4}, {1, 2}, {3, 4}, {1, 2, 3, 4}} ∪ {S ⊆ N ∶ |S| = 3}.

M≿,1 =

⎛
⎜⎜⎜⎝

1 0 0

0 2 1

0 0 3

0 0 1

⎞
⎟⎟⎟⎠
, M≿,2 =

⎛
⎜⎜⎜⎝

0 1 0

2 0 1

0 0 3

0 0 1

⎞
⎟⎟⎟⎠
, M≿,3 =

⎛
⎜⎜⎜⎝

0 1 0

1 1 1

0 0 3

0 0 1

⎞
⎟⎟⎟⎠
, M≿,4 =

⎛
⎜⎜⎜⎝

0 0 0

1 1 2

0 0 3

0 0 1

⎞
⎟⎟⎟⎠
.
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The main result of the paper provides comparable axiomatizations of the above 
three social ranking solutions. In particular, point 1(a) in Theorem 1 below provides 
a stronger axiomatic characterization of the lex-cel solution L than the one contained 
in Theorem 1 in Bernardi et al. (2019).

Theorem 1 

1.	 The social ranking solution L is the unique solution on R�N
 satisfying Neutrality, 

Weak Coalitional Anonymity (WCA), and one of the following set of axioms:

(a)	 Independence from the Worst Class (IWC) and Monotonicity (M);
(b)	 Improving Path Monotonicity (IPM).

2.	 The social ranking solution L(1) is the unique solution on R�N
satisfying Neu-

trality (N), Super Weak Coalitional Anonymity (SWCA), Independence from the 
Worst Class (IWC) and Path Monotonicity with Priority to the Smallest Coalition 
(PMPSC).

3.	 The social ranking solution L(2) is the unique solution on R�N
 satisfying Neutral-

ity, Super Weak Coalitional Anonymity (SWCA), Independence from the Worst 
Class (IWC), Improving Path Monotonicity (IPM) and Weak Path Monotonicity 
with Priority to the Smallest Coalition (WPMPSC). 

Proof  Point 1.a. The proof is similar to step 3 in Theorem 1 in Bernardi et al. (2019) 
except that Proposition 4 is used instead of Proposition 3. So, the details of the proof 
are omitted.

Point 1.b. Obviously, the solution L also satisfies Improving Path Monotonicity. 
Conversely, consider a solution f on R�N

 that satisfies Neutrality, Weak Coalitional 
Anonymity, and Improving Path Monotonicity. Pick any two distinct agents i and j 
in N and a coalitional ranking ≿∈ R𝛺N

 such that i ≻L(≿) j . For the rest of the proof, 
recall that the sets of coalitions Ej,ī

q  and Ej,ī
q  are defined as follows:

Because i ≻L(≿) j , there exists an integer q0 such that, for each q < q0 , it holds that 
M≿,i

q
= M

≿,j
q  , and M≿,i

q0
> M

≿,j
q0

 . This implies the following facts: 

(a)	
∑

q≥q0
M≿,i

q
=
∑

q≥q0
M

≿,j
q ;

(b)	
∑

q≥q0
�Ei,j̄

q � = ∑
q≥q0

�Ej,ī
q �;

(c)	 |Ei,j̄
q0
| > |Ej,ī

q0
|.

Next, consider an ij-path (≿�)t
�=−r

 satisfying the following conditions: 

Ej,ī
q
= E≿

q
∩
{
S ∶ S ∌ i, S ∋ j

}
and Ei,j̄

q
= E≿

q
∩
{
S ∶ S ∋ i, S ∌ j

}
.
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1.	 ≿−r =≿;
2.	 for each coalition S ∈

⋃
q>q0

E
i,j̄
q  , there exists a unique � ∈ {−r,… ,−1} such that 

S = S� , the coalitional ranking ≿�+1 is S� improving with respect to ≿� and 
S� ∈ E≿0

q0
;

3.	 to complete the ij-path, note that: 

 where the last equality follows from the above point 2. of the ij-path. Therefore, 
there is a one-to-one mapping 

 from which one can define the deteriorating moves. Precisely, for each coalition 
S = �(T) , there exists an integer � ∈ {0,… , t − 1} such that S� = S and ≿�+1 is 
S� deteriorating with respect to ≿� . Furthermore, thanks to the existence of � , 
one can force that S∼�+1 T .

We have r =
∑

q>q0
�Ei,j̄

q � and t =
∑

q>q0
�Ej,ī

q � . From facts (b) and (c), we get r < t . 
By construction, the last coalitional ranking ≿t of the ij-path satisfies:

Thus, by Proposition 4, we have i ∼f (≿t) j.

By considering the reverse ij-path, i.e., the ij-path from ≿t to ≿−r=≿ , we get 
an improving path since t > r . By Improving Path Monotonicity, it follows that 
i ≻f (≿−r) j , i.e., i ≻f (≿) j . All in all, we have shown that:

Finally, if i ∼L(≿) j , then, by Proposition 4, it holds that i ∼f (≿) j . Conclude that f 
coincides with L, the desired result.

To prove point 2 and point 3, we will use another procedure that we detail 
below. First, we need a definition. Define the following lexicographic order ≤L on 
the pairs (p, q) ∈ {1,… , n} × {1,… , k − 1} : (p, q) <L (p�, q�) if either (q < q�) or 
(q = q� ∧ p < p�) , where n is the number of agents and k is the number of equiva-
lence classes in a coalition ranking ≿∈ RΩN

.

Procedure.  Consider any coalitional ranking ≿∈ RΩN
 and any two distinct 

agents i and j in N. Assume that M≿,i ≠ M≿,j . Pick the least pair (p0, q0) with respect 
to ≤L such that M≿,i

p0,q0
≠ M

≿,j
p0,q0

 . Without loss of generality, assume that 

||
⋃
q>q0

Ej,ī
q
|| =

∑
q>q0

|Ej,ī
q
| ≤ ∑

q≥q0

|Ej,ī
q
| = ∑

q≥q0

|Ei,j̄
q
| = ||

{
S ∈ E≿0

q0
∶ S ∋ i, S ∌ j

}||,

𝜇 ∶
⋃
q>q0

Ej,ī
q
⟶

{
S ∈ E≿0

q0
∶ S ∋ i, S ∌ j

}
,

∀q ∈ {1,… , k}, M≿t ,i
q

= M≿t ,j
q

.

(i ≻L(≿) j) ⟹ (i ≻f (≿) j).
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M≿,i
p0,q0

> M
≿,j
p0,q0

 . From ≿ , construct another coalitional ranking ≿′ containing q0 + 1 
equivalence classes with the following induced quotient order ≻�∗:

where

By construction, for each q ≤ q0 , the q-th column of M≿′,i is equal to the q-th col-
umn of M≿′,j . Thus, by (7), it holds that:

In particular, by construction and definition of (p0, q0),

From the equivalence classes E≿′

q0
 and E≿�

q0+1
 of ≿′ , we construct another coalitional 

ranking ≿′′ in the following way. For each size p ∈ {p0,… , n} , 

(a)	 if M≿′,i

p,q0
> M

≿′,j

p,q0
 , then that there are at least M≿�,i

p,q0
−M

≿�,j

p,q0
 coalitions of size p in 

E
≿′

q0
 containing i and not j. Let’s move these M≿�,i

p,q0
−M

≿�,j

p,q0
 coalitions in the equiv-

alence class E≿�

q0+1
;

(b)	 if M≿′,i

p,q0
< M

≿′,j

p,q0
 , then, by (9), there are at least M≿�,i

p,q0+1
−M

≿�,j

p,q0+1
 coalitions of size 

p in E≿�

q0+1
 containing i but not j. Let’s move these M≿�,i

p,q0+1
−M

≿�,j

p,q0+1
 coalitions in 

the equivalence class E≿′

q0
 . From (a) and (b), we obtain a new coalitional ranking 

≿′′ such that M≿��,i = M≿��,j . In particular, recall that M≿′,i

p0,q0
> M

≿′,j

p0,q0
 . End of the 

procedure. We have the material to prove point 2 and point 3.

Point 2. The fact that L(1) satisfies Neutrality, Super Weak Coalitional Anonym-
ity, Path Monotonicity with Priority to the Smallest Coalition, and Independence 
from the Worst Class follows from the definition of L(1) . Regarding the unique-
ness part, consider any solution f on R� satisfying Neutrality, Super Weak Coa-
litional Anonymity, Path Monotonicity with Priority to the Smallest Coalition, 
and Independence from the Worst Class. Pick any coalitional ranking ≿∈ R𝛺 . To 
show: f (≿) = L(1)(≿) . Consider any two distinct agents i and j in N. Several cases 
arise.

Case 2.1 M≿,i = M≿,j . By Proposition 2, i ∼f (≿) j and i ∼L(1)(≿) j.

E
≿�

1
≻�∗

⋯ ≻�∗ E
≿�

q0+1
,

∀q ≤ q0, E≿�

q
= E≿

q
and E

≿�

q0+1
=

k⋃
q=q0+1

E≿

q
.

(9)∀p ∈ {1,… , n}, M
≿�,i

p,q0
+M

≿�,i

p,q0+1
= M

≿�,j

p,q0
+M

≿�,j

p,q0+1

∀p < p0, M
≿�,i

p,q0
= M

≿�,j

p,q0
, andM

≿�,i

p0,q0
> M

≿�,j

p0,q0
.
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Case 2.2 M≿,i ≠ M≿,j . Without loss of generality, assume first that i ≻L(1)(≿) j and 
let the pair (p0, q0) ∈ {1,… , n} × {1,… , k − 1} as given in Definition 3. Note that 
the choice of (p0, q0) in Definition 3 is unique and corresponds to the choice of the 
least pair (p0, q0) with respect to ≤L such that M≿,i

p0,q0
≠ M

≿,j
p0,q0

 in the Procedure. By 
definition of the rule L(1) , i ≻L(1)(≿) j means M≿,i

p0,q0
> M

≿,j
p0,q0

 . From ≿ , we construct ≿′ 
and ≿′′ as indicated in the Procedure. Because the coalitional ranking ≿′′ is such 
that M≿��,i = M≿��,j , apply Proposition 2 to conclude that i ∼f (≿��) j . Next, note that 
there exists an ij-path (≿�)t

�=−r
 from ≿′′ to ≿′ satisfying the condition of Path mono-

tonicity with priority to the smallest coalition. Indeed, from ≿′′ , first use the set of 
coalitions involved in point (a) of the Procedure to define improving moves. Set 
≿−r=≿�� . The first successor of ≿′′ along the path is a coalitional ranking ≿−r+1 
obtained by moving one of the M≿�,i

p0,q0
−M

≿�,j

p0,q0
 coalitions of size p0 from the equiva-

lence class E≿��

q0+1
 to the equivalence class E≿′′

q0
 . This constitutes the first improving 

move along the path. From ≿−r+1 , continue in this manner for each coalition of size 
p0 , and then for each coalition of size p > p0 involved in point (a). We reach a coali-
tional ranking ≿0 where all coalitions involved in improving moves (the coalitions 
considered in point (a)) now belong to the same equivalence class E≿0

q0
 . Along this 

part of the sequence, coalitions involved in point (b) of the Procedure have not be 
moved and so also belong to E≿0

q0
 . The successor ≿1 of ≿0 along the ij-path is obtained 

by a deteriorating move: a coalition as in point (b) is moved from the equivalence 
class E≿0

q0
 to the equivalence class E≿0

q0+1
 . From ≿1 , continue in this way until all coali-

tions in point (b) have been exhausted. At this step, ≿′ is reached. Because there is 
no coalition of size strictly less than p0 involved in the ij-path, the latter satisfies the 
condition of Path Monotonicity with Priority to the Smallest Coalition. By Path 
Monotonicity with Priority to the Smallest Coalition, we have:

By construction, ≿ is a refinement of ≿′ obtained from the last equivalence class 
E
≿�

q0+1
 that we divide into the equivalence classes E≿

q0+1
,… ,E

≿

k
 . Thus, by Independ-

ence from the Worst Class,

In short, we have shown the following implication:

Reciprocally, consider the case i ≻f (≿) j . For the sake of contradiction, assume first 
that i ∼L(1)(≿) j . By Definition 3 of L(1) , M≿,i = M≿,j . By Proposition 2, we obtain 
i ∼f (≿) j , which contradicts the fact that i ≻f (≿) j . The relation j ≻L(1)(≿) i is also 
impossible since we have just seen above that j ≻L(1)(≿) i implies j ≻f (≿) i . The only 
possibility is thus i ≻L(1)(≿) j , so that

[
i ∼f (≿��) j

]
⟹

[
i ≻f (≿�) j

]
.

[
i ≻f (≿�) j

]
⟹

[
i ≻f (≿) j

]
.

[
i ≻L(1)(≿) j

]
⟹

[
i ≻f (≿) j

]
.

[i ≻f (≿) j] ⟹ [i ≻L(1)(≿) j].
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We conclude that ≿f (≿)=≿L(1)(≿) . This completes the proof of point 2.

Point 3. The fact that L(2) satisfies Neutrality, Super Weak Coalitional Anonym-
ity, Independence from the Worst Class, Improving Path Monotonicity and Weak 
Path Monotonicity with Priority to the Smallest Coalition follows directly from the 
definition of L(2) . Regarding the uniqueness part, consider any solution f on RΩN

 
satisfying Neutrality, Super Weak Coalitional Anonymity, Independence from the 
Worst Class, Improving Path Monotonicity and Weak Path Monotonicity with 
Priority to the Smallest Coalition. Pick any coalitional ranking ≿∈ R𝛺 . To show: 
f (≿) = L(2)(≿) . Consider any two distinct agents i and j in N. In a similar way as in 
point 2., if M≿,i = M≿,j , then, by Proposition 2, i ∼f (≿) j and i ∼L(2)(≿) j . So, assume 
that M≿,i ≠ M≿,j . Without loss of generality, assume first that i ≻L(2)(≿) j and let the 
pair (p0, q0) ∈ {1,… , n} × {1,… , k − 1} as given in the Procedure. From ≿ , we 
construct ≿′ and ≿′′ as in the Procedure. Again, because the coalitional ranking ≿′′ 
is such that M≿��,i = M≿��,j , apply Proposition 2 to conclude that i ∼f (≿��) j . At this 
step, by Definition 4 of the rule L(2) , two cases arise.

Case 3.1 M≿,i

q0
> M

≿,j

q0
 as in point 2.1 of Definition 4. By construction, the q0 th 

column of M≿′,i coincides with the q0 th column of M≿,i and the q0 th column of M≿′,j 
coincides with the q0 th column of M≿,j , and so M≿′,i

q0
> M

≿′,j

q0
 . From this observation, 

we deduce that there is an ij-path from ≿′′ to ≿′ satisfying the conditions of Improv-
ing Path Monotonicity, that is an ij-path (≿�)t

�=−r
 such that the number of improving 

moves is strictly greater than the number of deteriorating moves. Indeed, and as in 
point 2., start from ≿′′ and use the set of coalitions involved in point (a) to define 
improving moves up to the coalitional ranking ≿0 . In the coalitional ranking ≿0 , all 
coalitions involved in improving moves (the coalitions considered in point (a)) now 
belong to the same equivalence class E≿0

q0
 . Along this part of the sequence, coalitions 

involved in point (b) have not be moved and so also belong to E≿0

q0
 . Then, from ≿0 

use the set of coalitions involved in point (b) to define deteriorating moves up to the 
coalitional ranking ≿′ . Because M≿′,i

q0
> M

≿′,j

q0
 , the number of improving moves using 

coalitions as in point (a) is strictly greater than the number of moves using coalitions 
as in point (b), as specified by Improving Path Monotonicity. By Improving Path 
Monotonicity, we obtain:

Case 3.2 M≿,i

q0
= M

≿,j

q0
 , and for each p < p0 , M≿,i

pq0
= M

≿,j

pq0
 , and M≿,i

p0q0
> M

≿,j

p0q0
 as in 

point 2.2 of Definition 4. Note that this pair (p0, q0) corresponds to one chosen 
above. Once again, we have M≿�,i

q0
= M

≿�,j

q0
 . By points (a) and (b) of the construction 

of ≿′′ and (9), it follows that the number of improving moves is necessarily equal to 
the number of deteriorating moves along the ij-path. Furthermore, there is no coali-
tion of size strictly less than p0 involved in the ij-path. Therefore the ij-path associ-
ated with the Procedure satisfies the conditions of Weak Path Monotonicity with 

[
i ∼f (≿��) j

]
⟹

[
i ≻f (≿�) j

]
.
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Priority to the Smallest Coalition. By Weak Path Monotonicity with Priority to the 
Smallest Coalition,

From Cases 3.1-3.2, we hereby conclude that i ∼f (≿��) j implies i ≻f (≿�) j . By con-
struction, ≿ is a refinement of ≿′ obtained from the last equivalence class E≿�

q0+1
 that 

we divide into the equivalence classes E≿

q0+1
,… ,E

≿

k
 . Thus, by Independence from 

the Worst Class,

In short, we have shown the following implication:

From this point on, the proof is similar to the last part of the proof of point 2, and 
so is omitted. We finally obtain f (≿) = L(2)(≿) . This completes the proof of point 3.

6 � Logical independence of the axioms

We prove that the axioms used in points 1(a), 1(b), 2 and 3 of Theorem  1 are 
logically independent. Without loss of generality, assume in the sequel that 
N = {1,… , n}.

Neutrality is not satisfied. Consider the social ranking solution f C on R�N
 

defined as follows:

Thus, whatever the coalitional ranking, f C ranks the agents according to the natural 
order on ℕ . This constant social ranking solution f C satisfies (Super) Weak Coali-
tional Anonymity, Independence from the Worst Class, (Improving Path) Monoto-
nicity, and (Weak) Path Monotonicity with Priority to the Smallest Coalition, but 
obviously violates Neutrality.

Monotonicity is not satisfied. Consider the social ranking solution f I on R�N
 

defined as follows:

Whatever the coalitional ranking, f I indicates that all agents in N have the same 
rank. This constant social ranking solution f I satisfies Neutrality, (Super) Weak 
Coalitional Anonymity, Independence from the Worst Class, but obviously violates 
Monotonicity.

Improving Path Monotonicity is not satisfied. Because the solution f I violates 
Monotonicity, it also violates Improving Path Monotonicity.

[
i ∼f (≿��) j

]
⟹

[
i ≻f (≿�) j

]
.

[
i ≻f (≿�) j

]
⟹

[
i ≻f (≿) j

]
.

[
i ≻L(2)(≿) j

]
⟹

[
i ≻f (≿) j

]
.

∀ ≿∈ R𝛺N
, f C(≿) = (1 ≻f C(≿) 2 ≻f C(≿) … ≻f C(≿) n − 1 ≻f C(≿) n).

∀ ≿∈ R𝛺N
, f I(≿) = (1 ∼f I (≿) 2 ∼f I (≿) … ∼f I (≿) n − 1 ∼f I (≿) n).
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Path Monotonicity with Priority to the Smallest Coalition is not satisfied. 
Because the solution f I violates Monotonicity, it also violates Path Monotonicity 
with Priority to the Smallest Coalition.

Weak Path Monotonicity with Priority to the Smallest Coalition is not sat-
isfied. The solution L satisfies Neutrality, Super Weak Coalitional Anonymity, 
Improving Path Monotonicity, Independence from the Worst Class, but violates 
Weak Path Monotonicity with Priority to the Smallest Coalition because it is not 
influenced by the size of the coalitions involved in an ij-path. Furthermore, if the 
number of improving moves is equal to the number of deteriorating moves along 
an ij-path, then the relative ranking of the pair {i, j} is not changed under L.

Independence from the Worst Class is not satisfied. We introduce the trans-
pose of the solution L(1) which relies on the same principle as L(1) except that it 
first explores the lines of the matrices M≿,i , i ∈ N , instead of their columns. This 
results in the following solution (L(1))T defined as follows: i ≻(L(1))T (≿) j if there is 
(p0, q0) ∈ {1,… , n} × {1,… , k − 1} such that: 

1.	 ∀q ∈ {1,… , k − 1},∀p < p0, M≿,i
pq

= M
≿,j
pq ;

2.	 ∀q < q0, M≿,i
p0q

= M
≿,j
p0q

;
3.	 M≿,i

p0q0
> M

≿,j
p0q0

.

The social ranking solution (L(1))T satisfies Neutrality, (Super) Weak Coalitional 
Anonymity, Path Monotonicity with Priority to the Smallest Coalition, but obvi-
ously violates Independence from the Worst Class.

(Super) Weak Coalitional Anonymity is not satisfied. From L(1) and L(2) , we 
construct two associated social ranking solutions. To this end, for each ≿∈ R𝛺N

 
and each i ∈ N , define

as the set of agents belonging in a coalition of size two containing i in the best 
equivalence class of ≿ . For each r ∈ {1, 2} , let L(r)∗  be the social ranking solution on 
R�N

 defined as follows: i ≻
L
(r)
∗ (≿) j if

–	 either i ≻L(r)(≿) j,
–	 or 

[
i ∼L(r)(≿) j and ∃� ∈ Ni ∶ ∀�� ∈ Nj, {�} ≻ {��}

]
;

and, i ∼
L
(r)
∗ (≿) j otherwise. Note that these solutions induce total preorders on the 

agent set, as required by the definition of a social ranking solution.
For each r ∈ {1, 2} , L(r)∗  satisfies all the axioms satisfied by L(r) except Super 

Weak Coalitional Anonymity. To see this, consider a coalitional ranking ≿∈ R𝛺N
 

where, for some i and j in N, Ni = {�} and Nj = {��} such that {�} ≻ {��} and 
i ∼L(r)(≿) j for each r ∈ {1, 2} . We have i ≻

L
(r)
∗ (≿) j since {�} ≻ {��} . Take the per-

mutation � ∈ �∗
�N

 such that �({�}) = {��} and �({��}) = {�} and �(S) for each 
other coalition S. Clearly, this permutation is agent i invariant, agent j invariant, 
and size invariant. But, for each r ∈ {1, 2} , j ≻

L
(r)
∗ (≿𝜋 )

i . Thus, Super Weak Coali-

Ni =
{
j ∈ N ⧵ {i} ∶ {i, j} ∈ E

≿

1

}
,
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tional Anonymity is violated. In particular, this implies that each L(r)∗  does not 
satisfy Weak Coalitional Anonymity. We also note that L(1)∗  satisfies Neutrality, 
Independence from the Worst Class, Improving Path Monotonicity, and so Mono-
tonicity, but violates Super Weak Coalitional Anonymity, and so violates Weak 
Coalitional Anonymity. Thus, Neutrality, Independence from the Worst Class and 
Monotonicity do not imply Weak Coalitional Anonymity. This remark is useful to 
show the logical independence of point 1(a).

7 � Application to sport rankings

As an example of application of the different social ranking solutions introduced in 
this paper, we analyze the performance of four attacking players of the Paris Saint 
Germain (PSG) team during the eight matches of Champions League played during 
the season 2019/2020 (temporarily suspended on March 2020 for the covid-19 emer-
gency). At this time, the PSG boss Thomas Tuchel faces a selection dilemma when 
he must select among the four attacking stars Di María (D), Icardi (I), Mbappé (M) 
and Neymar (N). Attempting to provide a ranking of the individual contributions of 
the four players during the last eight matches of Champions League, we considered 
all different subsets of the four stars, and we assessed some relevant parameters like 
the total number of points scored p, the number of goals scored s and the one of 
goals conceded c by those groups when employed together in a match. These param-
eters are reported in Table 1.

A coalitional ranking has been computed according to a lexicographic compari-
son of vectors (p, s,−c) . The negative sign for parameter c represents the fact that 
a smaller number of goals conceded is preferred; furthermore, all coalitions not 
employed during these matches have been provided with vectors (0, 0, 0) and then 
classified in the worst equivalence class of the coalitional ranking. Therefore we 
obtain:

for each other S ⊆ {D, I,M,N} (which are all in the same worst equivalence class). 
In such a case, we have that

{I,D,M} ≻ {I,D} ≻ {I,M,N} ≻ {D,N} ≻ {M} ≻ {N,M} ≻ S,

Table 1   Relevant parameters for 
coalitions of four PSG attackers 
during eight matches of 
Champions League 2019/2020

Coalitions Points Goals Goals
(p) Scored (s) Conceded (c)

{I,D,M} 6 6 0
{I,D} 6 4 0
{I,M,N} 3 5 0
{D,N} 3 2 0
{M} 1 2 2
{N,M} 0 1 2
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It is easy to verify that all three solutions L, L(1) and L(2) yield the same ranking 
I ≻L(≿) D ≻L(≿) M ≻L(≿) N.

On the other hand, if we believe that a close “similarity” in terms of vectors 
(p, s,−c) in Table 1 determines a substantial equivalence between the corresponding 
coalitions, one might be led to consider coalitions {I,D,M} and {I,D} in the same 
equivalence class, as well as coalitions {I,M,N} and {D,N} , respectively. Accord-
ingly, we would have a new coalitional ranking ≿′ such that

for all other S (which are all in the same worst equivalence class). Now, we have that

So, now, I and D are ranked indifferently according to L (i.e., I ∼L(≿�) D ), but 
according to L(1) and L(2) , D is ranked strictly better than I (i.e., D ≻L(1)(≿�) I and 
D ≻L(2)(≿�) I ) due to the higher importance assigned by L(1) and L(2) to players that 
contribute to a smaller coalition in the second equivalence class (while in the first 
equivalence class I and D always appear together).

8 � Conclusion

The importance about of ranking groups/agents has been arisen in numerous areas 
and it is of big interest in many settings. The subject of ranking sets over the set of 
all subsets of an agent set N as a modeling tool for choice from a ranking over the 
single elements of the set N has been exhaustively studied in the literature (see, for 
instance, Kannai and Peleg (1984) or Barberà et al. (2004) for a survey).

In this paper, we focus on ranking the single elements of the set N from a ranking 
of the subsets of N, i.e., we focus on how to categorize agents or items taking into 
account the classification of groups.

In Bernardi et  al. (2019), the authors introduced the Lexicographic excellence 
(lex-cel) solution based on the idea of a lexicographic comparison of vectors where 
the individuals that are in the more highly scored groups are rewarded. However, in 
certain contexts, it would be more advisable considering to participate in excellent 

M≿,I =

⎛
⎜⎜⎜⎝

0 0 0 0 0 0 1

0 1 0 0 0 0 2

1 0 1 0 0 0 1

0 0 0 0 0 0 1

⎞
⎟⎟⎟⎠
, M≿,D =

⎛
⎜⎜⎜⎝

0 0 0 0 0 0 1

0 1 0 1 0 0 1

1 0 0 0 0 0 2

0 0 0 0 0 0 1

⎞
⎟⎟⎟⎠

M≿,M =

⎛
⎜⎜⎜⎝

0 0 0 0 1 0 0

0 0 0 0 0 1 2

1 0 1 0 0 0 1

0 0 0 0 0 0 1

⎞
⎟⎟⎟⎠
, M≿,N =

⎛
⎜⎜⎜⎝

0 0 0 0 0 0 1

0 0 0 1 0 1 1

0 0 1 0 0 0 2

0 0 0 0 0 0 1

⎞
⎟⎟⎟⎠

{I,D,M} ∼� {I,D} ≻� {I,M,N} ∼� {D,N} ≻� {M} ≻� {N,M} ≻� S,

M≿�,I =

⎛
⎜⎜⎜⎝

0 0 0 0 1

1 0 0 0 2

1 1 0 0 1

0 0 0 0 1

⎞
⎟⎟⎟⎠
, M≿�,D =

⎛
⎜⎜⎜⎝

0 0 0 0 1

1 1 0 0 1

1 0 0 0 2

0 0 0 0 1

⎞
⎟⎟⎟⎠
.
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groups with a determined size. Integrate this feature in the idea of lexicographic 
excellence solution can enrich and improve the output in certain frameworks. With 
this purpose, we formulate desirable principles in the given context, and look for 
identifying social rankings satisfying combinations of them. Next, two novel social 
rankings are presented. Unlike of the lexicographic excellence solution, these two 
new solutions incorporate the effect of the size of coalitions on them. Finally, a new 
characterization for the lex-cell solution is given, and to highlight the essential dif-
ference among this solution and the two new solutions, comparable characteriza-
tions of these three solutions is provided. A summary of the axiomatic characteriza-
tion of the solutions studied in this paper, together with the results provided by the 
analysis of the logical independence of the axioms used in such characterizations, is 
presented in Table 2.

As we already noticed, the IWC axiom penalizes the elements that are members 
of worst groups. Although ranking individuals based on their excellence is, in gen-
eral, appealing, one could argue that a dual formulation of the IWC axiom rewarding 
mediocrity could be more appropriate, for instance, if the objective of a social rank-
ing is triggering a competition at the lowest level (e.g., to boost the reserve players 
for a promotion to the first team). In this direction, already introduced in Bernardi 
et al. (2019), a new axiom, Independence of the Best Class (IBC), can be formulated 
by considering, in the definition of the IWC axiom, any refinement obtained from 
the first equivalence class of a coalitional ranking, instead of any refinement from 
the last equivalence class. In words, the IBC axiom implies that the performance 
of agents in coalitions placed in the best position is less important. Thus, if a deci-
sion about the (strict) ranking between two agents is taken according to a solution 
satisfying the IBC axiom, any change in the relative ranking of coalitions in the best 
equivalence class should be ignored (see Bernardi et al. (2019) for more details). Of 
course, such solutions would not satisfy any more the axioms involving the notion 
of ij-path introduced in this paper. To characterize such solutions, it suffices to intro-
duce new axioms of path monotonicity by considering first the sequence of deterio-
rating coalitions, and then the sequence of improving coalitions.

However, there are many other challenging aspects that we will analyze in future 
research. In fact, a more realistic assumption, in many contexts, would be to consider 
a set of feasible coalitions F  of N instead of the set of all subsets of N. To illustrate 
it, consider a network of associated editors in the editorial boards of journals in a 

Table 2   A summary of the axioms that are satisfied by the social ranking solutions considered in this 
paper
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certain area. Usually, there are some associated editors who are members of the edi-
torial board of several journals in the field. This network has the structure of a union 
stable system as introduced in Algaba et  al. (2000) where the editorial boards of 
associated editors in the considered set of journals form the basis of a union stable 
system or the so called supports. It would be of interest, for instance, to have a tool 
to analyze editorial board members performance, where set rankings come into play 
because journals need to rank sets based on their individual rankings and also the 
inverse problem how to rank associated editors of a certain set of journals accord-
ing to the coalitional ranking over their editorial boards. More specifically, starting 
from a ranking over the elements of N to obtain a ranking of the set of feasible coa-
litions of N and also the inverse problem as dealt with this paper when the domain 
is F  . Therefore, it will be specially appealing to look for social rankings when the 
set of feasible coalitions has a special structure, for instance, as mentioned in the 
above example, when focusing on union stable systems which are the more gen-
eral structures reflecting communication and constitute a refinement of hypergraphs 
(see Algaba et al. (2004)) and an extension of the set of connected coalitions of an 
undirected graph, or of the set of winning coalitions in a voting game as studied in 
Algaba et al. (2019) (see also Algaba et al. (2015)) or of the particular class of anti-
matroids (see Dilworth (1940) and Edelman and Jamison (1985)) which would take 
into account the hierarchical features in the set of feasible coalitions, or the more 
particular case derived from the conjunctive or disjunctive approach (see Gilles et al. 
(1992) and van den Brink (1997)). Also, it will be compelling to consider structures 
which integrate, simultaneously, both communication and hierarchical properties as 
accessible union stable systems (see Algaba et al. (2018)), among others. So, given 
a set of feasible coalitions, further research will include the presentation of rankings 
in this context, as well as the analysis of how the properties of the set of feasible 
coalitions could influence the axioms which characterize them.
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