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Abstract

This study examines the mechanism design problem for public goods provision in

a large economy with n independent agents. We propose a class of dominant-strategy

incentive compatible and ex-post individually rational mechanisms, which we call

the adjusted mean-thresholding (AMT) mechanisms. We show that when the cost of

provision grows slower than the
√

n-rate, the AMT mechanisms are both eventually

ex-ante budget balanced and asymptotically efficient. When the cost grows faster

than the
√

n-rate, in contrast, we show that any incentive compatible, individually

rational, and eventually ex-ante budget balanced mechanism must have provision

probability converging to zero and hence cannot be asymptotically efficient. The AMT

mechanisms have a simple form and are more informationally robust when compared

to, for example, the second-best mechanism. This is because the construction of an

AMT mechanism depends only on the first moment of the valuation distribution.
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1 Introduction

This study examines the mechanism design problem for public goods in a model of inde-

pendent private valuations. We take an asymptotic approach to study the Myerson and Satterthwaite

(1983)’s impossibility theorem in large economies.1 As a main result, we propose a class

of dominant-strategy incentive compatible, and ex-post individually rational mechanisms that

are eventually ex-ante budget balanced and asymptotically efficient as the population grows.

Such mechanisms enjoy simplicity and informational robustness in that the mechanism

designer only needs to know the first moment of the valuation distribution. The robust-

ness feature is useful from the designer’s perspective and is in line with Wilson (1987)’s

doctrine that a mechanism is recommended if it works under a wide range of valuation

distributions.

The difficulty of the public goods problem is represented in the tension between bud-

get balance and efficiency. The social planner wants to serve everyone the public good

but cannot raise enough money to afford so. This tension is due to the social planner’s

limited ability in collecting payments for the public good, for which there is a clear eco-

nomic intuition: there is no way to decline one agent while serving another. It is thus

difficult to incentivize the agents to pay for the public good since a single agent’s report

is unlikely to influence the collective decision.

In an asymptotic framework where the number of agents goes to infinity, the key to

the tension between budget and welfare is the pivotal probability — the probability that

an agent’s report is pivotal to the collective decision on the public good. From the effi-

ciency perspective, the pivotal probability needs to decrease fast as the number of agents

increases since the social planner wants to provide the public good decisively. From the

budget perspective, there needs to be a significant fraction of pivotal agents because they

are the ones paying for the public good. The question is whether there exists a rate of

decrease for the pivotal probability such that budget balance and efficiency can both be

achieved asymptotically as the number of agents increases to infinity.

The first contribution of our paper is to explicitly find such a rate of the pivotal prob-

1Myerson and Satterthwaite (1983) establish the impossibility result in the bilateral trade setting, but it
extends directly to the public goods problem. We provide a more substantial overview of this problem
below.
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ability and construct simple mechanisms that resolves the tension between budget and

welfare. The mechanism we study is called the adjusted mean-thresholding (AMT) mecha-

nism. Here we describe its simplest form. Let there be n agents, and each has a private

valuation Vi ≥ 0 of the public good. The valuations are independent and identically dis-

tributed (iid) with mean µ. Consider the following decision rule for providing the public

good:2

1{∑ Vi ≥ nµ + αn}. (1)

Under this decision rule, the public good is provided whenever the sum of valuations

exceeds the total expected surplus nµ adjusted by the term αn. The transfer payments

are given by the usual revenue equivalence result such that the incentive constraints are

satisfied. The adjustment term αn is a sequence of constants that goes to negative infinity.

It characterizes the rate of decrease for the pivotal probability, which in turn determines

the trade-off between budget balance and efficiency.

We find the following theoretical results. If the cost of providing the public good

grows slower than
√

n (in a way defined more precisely later), then by setting the rate of

|αn| to be between
√

n and
√

n log n, we can make the mechanism described by (1) enjoy

two desirable properties: (1) the ex-ante budget is always balanced for n large enough

(i.e., eventually ex-ante budget balanced), and (2) the ratio between the achieved wel-

fare and the optimal welfare converges to one (i.e., asymptotically efficient). Moreover,

we show that the assumption on the asymptotic growth rate of the cost is inevitable for

budget balance because the maximum collectible revenue grows at the
√

n-rate.

Besides its simplicity, the mechanism described by (1) is informationally robust. The

only information required about the distribution of Vi is its first moment µ. In particu-

lar, this AMT mechanism is more informationally robust than the second-best mechanism

studied by Güth and Hellwig (1986), whose construction relies on the entire distribution

function.3 The qualitative difference between the mean and the entire valuation distribu-

tion can be formalized by using the information theory. Specifically, given an amount of

data, the estimation error of the mean is smaller by orders of magnitude than that of the

2For any measurable set E, we use 1E to denote the indicator function of E.
3The second-best mechanism maximizes welfare among the class of mechanisms that are incentive com-

patible, individually rational, and budget balance. We discuss more about the second-best mechanism in
Section 1.1 and Section 2.
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entire distribution.

The second contribution of our paper is in reconciling the positive and negative results

in the public good literature regarding the growth rate of the cost. Mailath and Postlewaite

(1990) show that it is impossible to resolve the tension between budget and welfare if the

cost grows proportionally with n. On the other hand, Hellwig (2003) shows that the ten-

sion can be resolved if the cost remains fixed (does not grow with n). Our results demon-

strate that it is the
√

n growth rate of the cost that draws the line between negative and

positive results. This is important in practice when the marginal cost of providing the

public good is decreasing in the number of participants. In particular, our results implies

that the public good can be efficiently provided under the budget constraint if and only

if the marginal cost decreases faster than 1/
√

n.

The third contribution of our paper is that we provide a novel approach to calculating

the asymptotic budget. By the revenue equivalence result, the expected total payments

collected from the mechanism (1) can be represented as a truncated expectation of the

sum of virtual valuations:

E

[

∑ ψ(Vi)1{∑(Vi − µ) ≥ αn}
]

, (2)

where the virtual valuation is defined as ψ(Vi) ≡ Vi − (1− F(Vi))/ f (Vi) with F and f be-

ing the cumulative distribution function and the density function, respectively. When n

is large, ∑(Vi − µ) and ∑ ψ(Vi) are approximately joint normal by the central limit theorem.

We can therefore approximate the expectation in (2) with a normal distribution. When n

is finite, however, the joint distribution of
(

∑(Vi − µ), ∑ ψ(Vi)
)

can deviate from normal

distribution and lead to a sizable approximation error that grows with n. To bound this

approximation error, we use the multivariate Berry-Esseen theorem, which specifies the con-

vergence rate of the multivariate central limit theorem.4 More specifically, Berry-Esseen

theorem allows us to find the rate of the adjustment term αn such that the budget of (1)

is ensured to balance eventually, even with the presence of approximation error. Such

an explicit result on the rate of αn would be impossible if we only apply the central limit

4The central limit theorem states that the distribution of sum of iid random variables is approximately a
normal distribution. The Berry-Esseen theorem further specifies how close the normal approximation is.
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theorem without more accurate convergence results such as Berry-Esseen theorem.5

The remaining part of this section discusses the literature. Section 2 introduces the

public goods provision problem and the asymptotic approach we take. Section 3 proposes

the AMT mechanisms and examines the asymptotic behavior of their budget and welfare.

Section 4 concludes. Proofs of the results in the main text are listed in Appendix A.

In a longer version of the paper, we provide several extension results.6 These exten-

sions include independent but not necessarily identical valuations, ex-post budget and

welfare, non-binary decision environment, non-linear utility functions, and asymptotic

profit. Due to space limits, these extensions are not presented in the current paper.

1.1 Literature Review

Our study addresses a long-existing challenge in the literature on the mechanism design

problem for public goods. The aforementioned tension between budget balance and effi-

ciency is in fact a quadrilemma, as the incentive constraints also play a role in the prob-

lem. More concretely, Myerson and Satterthwaite (1983) show that efficiency cannot be

achieved simultaneously with the three criteria: budget balance, incentive compatibility,

and individual rationality. For example, the VCG mechanism (Vickrey, 1961; Clarke, 1971;

Groves, 1973) implements the efficient outcome but always leads to a budget deficit. In

fact, our results imply that even the pivot mechanism (originally due to Green and Laffont

(1977), also known as the Clarke mechanism), which is the VCG mechanism with the least

budget deficit, can incur a growing budget deficit as the population grows. As another

example, the second-best mechanism introduced by Güth and Hellwig (1986) maximizes

the welfare under the three criteria but leads to inefficiency.

The next question is whether this tension can be alleviated in the large economy set-

ting, where the number of agents increases to infinity.7 As mentioned earlier, the answer

depends on the growth rate of cost. Mailath and Postlewaite (1990) let the cost grow pro-

5For example, it would be difficult to derive such a result based on the proof method in Hellwig (2003).
We provide a discussion on this issue in Appendix B.

6This version can be found at: https://arxiv.org/abs/2101.02423v3.
7There is another notion of “large economy” in the literature that considers a continuum of agents and

each agent is negligible compared to the population (Bierbrauer, 2009, 2014; Bierbrauer and Hellwig, 2015,
2016).
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portionally with the population size, and show that for any mechanism satisfying the

above three criteria, the probability of public-good provision goes to zero as the number

of agents increases. On the other hand, Hellwig (2003) allows the cost to remain fixed and

shows that the second-best mechanism is asymptotically efficient. Our results fill the gap

between these two papers. We show that the second-best provision probability converges

to zero if the cost grows faster than the
√

n-rate. On the other hand, if the cost grows

slower than the
√

n-rate, the AMT mechanisms we propose have a provision probability

converging to one.8

Besides the asymptotic approach we take, another case where efficiency can be achieved

simultaneously with budget balance, incentive compatibility, and individual rationality is

when the valuations are correlated, and their joint distribution is known to the mechanism

designer, as demonstrated by Kosenok and Severinov (2008). Their mechanisms extract

the social surplus by taking advantage of the correlation structure among agents’ valua-

tions. This result can be seen as an extension of the finding of Crémer and McLean (1988)

regarding the public goods scenario. Our paper complements their results by examining

the case of independent valuations with an unknown distribution.

Our proposed class of mechanisms is novel in that it significantly reduces the infor-

mation requirements on the valuation distribution as compared with the aforementioned

studies. The second-best mechanism requires the full information of valuation distribu-

tions. The mechanism by Kosenok and Severinov (2008) requires the exact details of the

joint distribution of all agents’ valuations. The AMT mechanism we propose, in contrast,

is appealing in its simplicity and robustness as it requires only one moment from the val-

uation distribution.9 A moment of a distribution contains much less information than the

distribution itself: a moment condition can be satisfied by an infinite number of distri-

butions.10 The notion of informational robustness under moment restrictions has become

8Hellwig (2003) also identifies the
√

n-rate in the context of Bayesian incentive compatibility. Our results
are focused on the dominant-strategy incentive compatibility. One take-away here is that the weaker notion
of Bayesian incentive compatibility does not relax this bound. This notion of equivalence between Bayesian
incentive compatibility and dominant-strategy incentive compatibility represented by the requirement on
the growth rate of cost can be seen as a complement to the theoretical results in Gershkov et al. (2013).

9This moment can come from any increasing and continuous transformation of the valuation. See Sec-
tion 3.

10In Section 3.3, we provide a more formal discussion of the qualitative difference between a moment
and the distribution by using results in the information theory.
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popular in recent literature. For example, Carrasco et al. (2018) study the maxmin auction

under general moment restrictions. Azar and Micali (2013) and Pınar and Kızılkale (2017)

analyze robust auctions when the mean and the variance of the valuations are known.11

Our study also relates to the literature on the asymptotic optimality results for selling

strategies and auction designs. For example, Armstrong (1999) studies tariffs for a mul-

tiproduct monopolist firm. The proposed nonlinear tariff is almost optimal and depends

only on the mean of the distribution of total surplus. In the auction setting, Swinkels

(1999) shows the asymptotic efficiency of the discriminatory auction when the number of

independent bidders grows large.12 More recently, in the setting of interdependent val-

uations, Du (2018) and McLean and Postlewaite (2018) design robust auctions in which

the seller extracts the full surplus asymptotically.13 These results are different from ours

due to the intrinsic difference between private and public goods: the auctioneer does not

need to worry about the budget constraint and is focused on maximizing revenue rather

than welfare.

2 The Public-Good Provision Problem

2.1 Basic setup

Consider a sequence of communities indexed by n = 2, 3, · · · In the nth community, there

are n individuals who have to make a joint decision on whether to produce some indivisi-

ble and non-excludable public good. The setup of our problem is similar to Kuzmics and Steg

(2017) and Chapters 3 and 4 in Börgers (2015). The only difference is that in our setting

n is not fixed since we focus on conducting an asymptotic analysis where the number of

agents in the economy increases toward infinity.

Let Vi be the private value of the public good for agent i. These valuations are col-

11These papers examine the model of independent valuations. It is also possible to allow for correlated
valuations while maintaining the moment restrictions on the marginal distributions. See Brooks and Du
(2021); Zhang (2021).

12Other works regarding the asymptotic efficiency of auctions in the independent private value setting
include Swinkels (2001); Feldman et al. (2016).

13Other works on asymptotic approximation of the optimal revenue using robust auctions include Segal
(2003); Neeman (2003); Goldberg et al. (2006); Dhangwatnotai et al. (2015). See also Hartline (2016, Chapter
5) for a comprehensive treatment of prior-independent mechanism design.
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lected into the vector V ≡ (V1, V2, . . . , Vn). We assume the valuations are independent and

identically distributed (iid) draws from an unknown distribution F, which we call the val-

uation distribution. We assume the support of F to be [0, v̄],14 where v̄ ∈ (0, ∞) is also

unknown to the designer. Assume that F is absolutely continuous with density function

f . For the relevant expectations to exist, we assume for simplicity that f is bounded away

from zero on [0, v̄].15

We consider the direct mechanisms: the social planner asks each agent to report their

valuations, and then make decisions on (1) whether to provide the public good and (2)

transfer payments from the agents. We use qn : R
n
+ → {0, 1} to denote a decision rule that

assigns each reported valuation vector v ∈ R
n
+ to a collective decision about the public

good.16 For each agent i, we use tn
i : R

n
+ → R to describe the transfer that agent i makes

based on the valuations. The set of functions (qn, {tn
i }) constitutes a direct mechanism.

There is a cost associated with the provision of the public good, which is denoted by

cn > 0. We explicitly allow the cost to increase with the number of agents. The ex-post

budget of a mechanism is the difference between the sum of the received payments and

the incurred cost:

bn(V) ≡ ∑ tn
i (V)− cnqn(V), (3)

The ex-ante budget is E[bn(V)], the expectation of the ex-post budget. We say that a mecha-

nism is ex-ante budget balanced if its ex-ante budget is non-negative, that is, E[bn(V)] ≥ 0.17

For an individual i, her utility is determined by the provision of the public good qn, her

private valuation Vi, and transfer payment ti. We assume the utility takes the linear form:

Viqn − tn
i . The ex-post welfare achieved by a mechanism is the sum of n agents’ utilities:

wn(V) ≡ ∑ Viq
n(V)− ∑ tn

i (V), (4)

14In Section 3, we discuss why the support is assumed to be in this form.
15We can relax the assumptions that v̄ is finite and that f is bounded away from zero. We only need to

assume that the appropriate moments exist. However, that makes the exposition inconvenient.
16In this paper, we use upper case letters to denote random variables and lower case letters to denote

realizations or reported values.
17We use the notion “budget balance” as in Kuzmics and Steg (2017) and Börgers (2015). It is also termed

“feasible” or “subsidy-free” in the literature. Some literature uses the term “budget balance” to refer to the
more stringent case where the total payment exactly equals the cost.
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This is equal to the difference between the sum of the valuations (if the public good is

provided) and the total payments. This welfare is constructed from the utilitarian per-

spective.18 The ex-ante welfare is E[wn(V)], the expectation of the ex-post welfare.

If the social planner observes the private valuations V , then the public good problem

is

max
(qn,{tn

i })
wn(V) subject to bn(V) ≥ 0.

That is, the social planner maximizes the ex-post welfare under the ex-post budget bal-

ance constraint. The solution to this problem is to provide the public good whenever the

sum of valuations exceeds the cost cn. This provision rule is called the efficient (or the

first-best) decision rule:

1{∑ vi ≥ cn}, (5)

We use w∗(V) to denote the efficient ex-post welfare achieved under the efficient rule:

w∗(V) ≡ (∑ Vi − cn)1{∑ Vi ≥ cn}. (6)

The expectation E
[
w∗(V)

]
is the efficient ex-ante welfare.

In practice, the social planner does not observe the private valuations V , a problem

often referred to as asymmetric information. We need to design the mechanism (qn, {tn
i })

in a way that the agents are willing to participate and report the true valuation. For this

purpose, we introduce the following two criteria: dominant-strategy incentive compati-

bility and ex-post individual rationality. Let v ∈ R
n
+ be a vector of realized valuations.

We follow the convention of using v−i to denote the vector v excluding the ith element.

The realized utility of agent i who chooses to report v′i is

viq
n(v′i , v−i)− tn

i (v
′
i, v−i). (7)

18This definition of social welfare is standard in the literature. From the social planner’s perspective, the
production cost does not enter into welfare because it does not directly affect agents’ utility. The cost only
plays a role through the budget constraint.
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A mechanism (qn, {tn
i }) is dominant-strategy incentive compatible if, for each agent i, each

set of valuations v ∈ R
n
+, and each report v′i ∈ R+,

viq
n(vi, v−i)− tn

i (vi, v−i) ≥ viq
n(v′i , v−i)− tn

i (v
′
i, v−i). (8)

A mechanism is ex-post individually rational if for each agent i and each set of valuations

v ∈ R
n
+,

viq
n(vi, v−i)− tn

i (vi, v−i) ≥ 0. (9)

By the routine revenue equivalence result in the public-good scenario (Börgers, 2015;

Kuzmics and Steg, 2017), we know that a mechanism is dominant-strategy incentive com-

patible and ex-post individually rational if and only if the following conditions hold:

qn is non-decreasing in every entry, (10)

tn
i (0, v−i) ≤ 0, for all v−i ∈ R

n−1
+ , (11)

tn
i (v) = v̂i(v−i)q

n(v) + tn
i (0, v−i), for all v ∈ R

n
+, (12)

where

v̂i(v−i) ≡ inf{v ≥ 0 : qn(v, v−i) = 1} (13)

denotes the pivotal value of agent i given the other agents’ valuations v−i. An equivalent

way to write Equation (12) is

tn
i (v) = viq

n(v)−
∫ vi

0
qn(v, v−i)dv + tn

i (0, v−i).

By changing the order of integration, we can write the expected payment from agent i as

E
[
tn
i (V)

]
= E

[
ψ(Vi)q

n(V) + tn
i (0, V−i)

]
, (14)
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where ψ is the virtual valuation function defined by

ψ : v 7→ v − 1 − F(v)
f (v)

. (15)

The expectation in (14) is taken over the valuations V .

Given the two criteria introduced above, we can specify the public good problem un-

der asymmetric information:

max
(qn,{tn

i })
E[wn(V)] subject to E[bn(V)] ≥ 0,

and (qn, {tn
i }) satisfies Conditions (10) - (12).

It is well-known that the efficient mechanism is not the solution to the above problem.

In particular, the efficient mechanism cannot simultaneously satisfy dominant-strategy

incentive compatibility, ex-post individual rationality, and ex-ante budget balance.19 The

solution to the above problem is referred to as the second-best mechanism in the literature.

The second-best mechanism suffers from two problems. First, the construction depends

on the entire distribution F and hence is not robust. Second, even if we know the distribu-

tion, it is difficult to obtain an analytical expression of the mechanism due to the complex-

ity of the optimization problem. In this paper, we do not study the second-best mecha-

nism. Instead, we propose mechanisms that are less informationally demanding and have

a simple and explicit analytical expression. Moreover, these mechanisms achieve welfare

comparable to that of the second-best mechanism when n is large.

2.2 Asymptotic criteria

The setup introduced above is standard in the mechanism design literature. Next, we

present a novel asymptotic approach for studying the public goods problem. Considering

the impossibility result mentioned previously, we propose two optimality criteria, which

are respectively the asymptotic relaxation of the ex-ante budget balance condition and

efficiency.

19See, for example, Myerson and Satterthwaite (1983) and Mailath and Postlewaite (1990).

11



Definition 1. A sequence of mechanisms (qn, {tn
i }) (indexed by the number of agents n) is even-

tually ex-ante budget balanced, if there is an integer n0 such that

E
[
bn(V)

]
≥ 0, ∀n > n0,

where bn is defined in (3). That is, the mechanism is ex-ante budget balanced for large enough n.

We examine the ex-ante budget rather than the ex-post one. A rationale for this ap-

proach is offered by Kunimoto and Zhang (2021). In their Theorem 4, the authors demon-

strate that no DSIC and EPIR mechanism can achieve ex-post budget balance, provided

that the mechanism adheres to a richness condition. This condition requires that the pub-

lic good be supplied if all agents, except one, have their highest type—a relatively mild

condition in large economies. This reasoning supports the relaxation of the budget bal-

ance constraint into eventual EABB.20

Definition 2. A sequence of mechanisms (qn, {tn
i }) is asymptotically efficient if as n → ∞,

E[w∗(V)] − E
[
wn(V)

]

E[w∗(V)]
→ 0, (16)

where wn and w∗ are defined in (4) and (6), respectively.

The ratio in (16) can be interpreted as the welfare regret ratio of the mechanism de-

signer. The numerator is the difference between the efficient ex-ante welfare and the

achieved ex-ante welfare by the mechanism (qn, {tn
i }), which is often interpreted as the

regret of the decision-maker associated with the current valuation distribution. The de-

nominator in (16) is the efficient ex-ante welfare. Therefore, this ratio represents the nor-

malized regret of the mechanism designer. The regret ratio is frequently used in the litera-

ture as a criterion to rank probabilistic objects. The axiomatic foundation of such criterion

from the maxmin perspective is established by Brafman and Tennenholtz (2000).21 The

literature on approximately optimal mechanism design usually aims to find a mechanism

20The valuations explored in Kunimoto and Zhang (2021) are discrete. However, this aspect does not
impact the results qualitatively, as both discrete and continuous distributions can be addressed using the
general measure theory. Specifically, discrete probability measures have density functions with respect to
the counting measure, enabling the computation of virtual valuations accordingly.

21They refer to the “regret ratio” in this paper as “competitive ratio.”
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that guarantees a fraction of the benchmark welfare or revenue, which can also be consid-

ered as the regret ratio criterion. See Roughgarden and Talgam-Cohen (2019) for a survey

of that literature.

Our goal is to propose dominant-strategy incentive compatible and ex-post individu-

ally rational mechanisms that are both eventually ex-ante budget balanced and asymptot-

ically efficient, but involve much less knowledge about the valuation distributions than

the second-best mechanism. Moreover, we characterize the growth rate of the budget

surplus as well as the convergence rate of the welfare regret ratio for the proposed mech-

anisms.

3 Welfare Maximization with Many Agents

3.1 AMT mechanisms

We want to generalize the mechanism introduced in (1) by considering transformations

of the valuations. By allowing for transformations, we can incorporate many important

mechanisms into the framework. Let h : R+ → R+ represent a transformation on the

space of valuations. We denote µh ≡ E[h(Vi)] as the mean of the transformed value h(Vi)

and introduce the following mechanism.

Definition 3. The adjusted mean-thresholding (AMT) mechanism (qn, {tn
i }) with transforma-

tion h and adjustment term αn is defined as

decision rule: qn (v) ≡ 1{∑ h(vi) ≥ nµh + αn},

transfer payment: tn
i (v) ≡ v̂n

i (v−i)q
n(v), 1 ≤ i ≤ n,

where v̂n
i is the pivotal value of agent i under the decision rule qn as defined in (13). More specif-

ically, the transfer payment tn
i is specified by (12) with tn

i (0, v
−i) set to 0. For simplicity, we

suppress the dependence on h and αn in the notation of the mechanism (qn, {tn
i }). We will explic-

itly state the transformation h whenever necessary.

The AMT mechanism is called as such because the mechanism transforms the valua-

tions using h and compares the sum of transformed values, ∑ h(Vi), with a threshold. This

13



threshold is the sum of the means, nµh, adjusted by the term αn. We set the adjustment

term to be negative and decreasing towards −∞. The reason αn is called the adjustment

term is that, as shown later, the asymptotic order of αn is smaller than that of nµh for the

AMT mechanism to work. That is, the leading term in the threshold is the sum of means

nµh, and αn is an adjustment that slightly raises the allocation probability of the public

good. The reason for introducing the transformation h in Definition 3 is to include a wide

range of mechanisms. Below are some examples that can be seen as special cases of the

AMT mechanism with different choices of the transformation h and adjustment term αn.

Example 1 (Identity Transformation). Let h be the identity mapping id, i.e., h(v) = id(v) ≡ v.

Denote µ ≡ E[Vi]. Then the AMT mechanism with the identity transformation has decision rule

qn (v) ≡ 1{∑ vi ≥ nµ + αn}.

This decision rule is the one specified by (1) in the Introduction.

Example 2 (Pivot Mechanism). The pivot mechanism is the mechanism that is given by the

efficient decision rule (5) and by the transfer payment defined by (12) with ti(0, v
−i) set to 0.22

By rewriting the efficient decision rule

1{∑ vi ≥ cn} = 1{∑ vi ≥ nµ + (cn − nµ)
︸ ︷︷ ︸

αn

},

we can see that the pivot mechanism is a special case of the AMT mechanism in Example 1 with a

particular choice of the adjustment term αn = cn − nµ.

Example 3 (Virtual Valuation Transformation). By setting h = ψ, where ψ is defined in (15),

we obtain the AMT mechanism with the virtual valuation transformation, which has decision rule:

qn (v) ≡ 1{∑ ψ(vi) ≥ αn}.

This mechanism chooses to provide the public good if and only if the sum of virtual valuations

exceeds the adjustment term αn. Notice that the virtual valuation is always mean zero, that is,

22This definition is equivalent to Definition 3.8 in Börgers (2015).
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µψ = 0.23

It is important to note that, the construction of this mechanism depends on the entire valuation

distribution through ψ. However, the ex-ante budget of this mechanism has a simple form, which

we examine next.

3.2 Preliminary analysis with known and regular distribution

We start the analysis of the AMT mechanisms with the special case of Example 3, which

requires that the valuation distribution is known to the mechanism designer and satis-

fies the Myerson regularity condition. This case is used to familiarize the reader with

the asymptotic optimality criteria introduced in Definitions 1 and 2 and showcase the

intuitions of the AMT mechanism in general.

The decision rule qn is non-decreasing when the valuation distribution satisfies the

Myerson regularity condition, under which the mechanism (qn, {tn
i }) is dominant-strategy

incentive compatible and ex-post individually rational.24 From Equation (14), we can

write the ex-ante budget as

E[bn(V)] = E[∑ ψ(Vi)1{∑ ψ(Vi) ≥ αn}]
︸ ︷︷ ︸

total expected payment

−E[cn1{∑ ψ(Vi) ≥ αn}]
︸ ︷︷ ︸

expected cost

. (17)

The total expected payment is simply the αn-truncated mean of the total virtual valuation

∑ ψ(Vi). This simple expression of the total expected payment is why we start the analysis

of AMT mechanisms with the transformation h = ψ.

We will briefly explain the intuition why the AMT mechanism with h = ψ works

in the setting of many agents.25 Since the virtual valuations are independent and mean

zero, according to the central limit theorem, the total virtual valuation behaves similar

to a normal random variable with zero mean. Therefore, the total expected payment is

approximately the αn-truncated normal mean. Since values below αn are truncated, this

truncated normal mean is always positive due to the symmetry in the normal distribution.

23Since F is supported on [0, v̄], we have
∫ v̄

0 (1 − F(v))dv = E[Vi], E[ψ(Vi)] = E[Vi]−
∫ v̄

0 (1 − F(v))dv =
0. See the end of Section 3.2 for a discussion of the support.

24See Equation (12) and the discussion before it.
25A similar intuition can be found in the proof of Proposition 3 in Hellwig (2003). Here, we provide a

more detailed discussion regarding the rate of the threshold αn.

15



We expect this truncated mean to increase towards infinity if αn does not move toward

negative infinity too quickly. When the truncated mean grows faster than the cost cn, the

ex-ante budget is balanced eventually.

On the other hand, if the cost increases at a slower rate than the sum of expected val-

uations, the efficient decision rule 1{∑ Vi ≥ cn} nearly always chooses to provide the

public good when there are many agents. Therefore, if αn → −∞ fast enough, then the

AMT mechanism would almost always make the same decision as the efficient mecha-

nism would, and hence approximate the efficient ex-ante welfare.

The above discussion demonstrates two compelling forces that represent the trade-off

between budget balance and welfare maximization. For the budget to balance, we would

want the adjustment term to decrease slowly so that the public good is allocated less often

and more payments can be collected. For the welfare regret ratio to converge to zero, we

would want the adjustment term to decrease rapidly so that the public good is allocated

more often and the agents’ welfare can be improved. Therefore, the performance of the

mechanism crucially depends on the asymptotic behavior of the threshold.

We utilize the Berry-Esseen theorem in probability theory to determine the middle

ground of the aforementioned asymptotic trade-off between budget and welfare. The

Berry-Esseen theorem is a stronger version of the central limit theorem that characterizes

the convergence rate of the sample average towards the normal distribution. It takes into

account the approximation error that stems from the difference of the normal distribution

and the true distribution, which allows us to obtain a lower bound on the budget. Our

next theorem shows that the AMT mechanism (qn, {tn
i }) can be both eventually ex-ante

budget balanced and asymptotically efficient, if (1) the cost does not grow too fast, and

(2) the mechanism designer carefully calibrates the adjustment term αn.

Theorem 1. Assume the valuation distribution F is Myerson regular, then the AMT mechanism

(qn, {tn
i }) with transformation h = ψ (Example 3) is dominant-strategy incentive compatible and

ex-post individually rational. The following limiting statements hold true for this mechanism as

n → ∞.

16



(i) Assume that the cost satisfies

lim sup
n→∞

cn

n1/2−ε
< ∞, for some ε ∈ (0, 1/2). (18)

If we set the adjustment term αn to satisfy

lim
n→∞

|αn|
√

n log n
= 0, (19)

then the mechanism is eventually ex-ante budget balanced.

(ii) Assume that the cost satisfies

lim
n→∞

cn

n
= 0.

If we set the adjustment term αn to satisfy

lim
n→∞

|αn|√
n

= ∞, (20)

then the mechanism is asymptotically efficient.

(iii) In particular, if the cost satisfies Condition (18), and we set the adjustment term to satisfy

Conditions (19) and (20), then the AMT mechanism (qn, {tn
i }) with transformation h = ψ

is both eventually ex-ante budget balanced and asymptotically efficient.

Remark. The growth rate of the ex-ante budget and the convergence rate of the welfare regret

ratio are provided in the proof in Appendix A. As an example, the adjustment term can be set as

αn =
√

n
√

log n, a term that simultaneously fulfills Conditions (19) and (20).

Remark. The proof of Theorem 1 also shows that the mechanism generates an ex-ante budget

surplus. This surplus grows at the rate of
√

nσψφ

(

αn√
nσψ

)

, where φ is the probability density

function of the standard normal distribution, and σψ is the standard deviation of ψ(Vi).

Theorem 1 states that if we control αn to diverge at a rate between
√

n and
√

n log n,

the mechanism can be both eventually ex-ante budget balanced and asymptotically effi-

cient provided that the cost increases slower than
√

n-rate. Later, we will show that the
√

n-rate of cost is also necessary to balance the budget.
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Before ending this section, we will briefly discuss the role of the support of F. The

analysis in this section relies on the fact that the virtual valuation has zero mean, which is

true when the lower bound of the support is exactly at zero. In general, if F is supported

on [v, v̄], then the expectation of the virtual valuation is equal to v. For a small population,

it is reasonable to consider a case where v > 0. However, we argue that, when conducting

the asymptotic analysis for n → ∞ as in this paper, setting v = 0 is the correct assumption.

In a large economy, setting v = 0 means that we do not rule out the possibility that some

agents hardly benefit from the public good. On the other hand, assuming v > 0 for a large

economy means that everyone in the infinite population can receive a significant benefit

from the public good. In this case, the problem becomes trivial as the ex-ante budget can

be easily balanced while maintaining efficiency. Therefore, we assume that the lowest

valuation starts from 0, which is common in the literature (e.g., Hellwig, 2003).26

It is important to note that having v = 0 rather than v > 0 is not only reasonable but,

to some extent, necessary.27 If v is strictly positive and the cost cn grows at the
√

n rate,

then for sufficiently large n, we have nv > cn. This implies that we can always provide

the public good and ask each participant to share the cost. Specifically, the mechanism

has a decision rule qn(v) = 1 and payment transfers tn
i (v) = cn/n for all i. The suggested

mechanism is DSIC and exactly budget balanced for any n, and it also satisfies ex-post

efficiency and EPIR for sufficiently large n. This positive result in large economies offers

additional justification for examining the more stringent case of v = 0.

It is also of interest to study the case where the lower bound v is negative. Kuzmics and Steg

(2017) offer real-world examples, such as a seller selling to a group or land rezoning.

However, our theoretical analysis cannot be directly applied to cases involving negative

valuations. The reason is that, in such instances, E[ψ(Vi)] = v < 0. This implies that the

sum ∑ ψ(Vi) is not centered around zero but rather at nv → −∞. As a result, our ear-

lier analysis of the truncated mean no longer applies. Therefore, following the approach

of both Mailath and Postlewaite (1990) and Hellwig (2003), we refrain from considering

cases where v < 0. We defer a more comprehensive examination of this issue to future

26However, we can extend our analysis to allow for a point mass at 0 in the distribution F. In that case,
the density f is the Radon-Nykodim derivative of the probability measure F with respect to the measure
L + δ0, where L is the Lebesgue measure on R+ and δ0 is the Dirac measure at 0. This underlying measure
is σ-finite, and hence our analysis applies.

27We are grateful to a referee for pointing this out.
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research.

3.3 The robust mechanism

There are two reasons why the mechanism examined in the previous subsection is un-

satisfactory. First, the construction of such a mechanism requires the full knowledge of

the virtual valuation function ψ. Second, when the valuation distribution is not Myer-

son regular, the mechanism may violate dominant-strategy incentive compatibility. We

now attempt to remove these two assumptions and extend the previous results to general

AMT mechanisms.

To find out when the general AMT mechanism works, we want to identify the prop-

erties of the virtual valuation function that are useful in deriving Theorem 1 and then

impose these properties on the transformation function h. First, we need h to be increas-

ing so that the mechanism is dominant-strategy incentive compatible. Second, we want to

approximate the sum of expected payments by using a truncated normal mean as before.

In this case, the total expected payment is

E

[

∑ tn
i (V)

]

= E

[

∑ ψ(Vi)1{∑(h(Vi)− µh) ≥ αn}
]

. (21)

Here the total virtual valuation is truncated by the variable ∑(h(Vi)− µh), which makes

this total expected payment more complicated to analyze than the one in Equation (17).

Nevertheless, most of the previous arguments can be recovered. By definition, each

h(Vi) − µh is mean zero. Then by the central limit theorem, the two sums ∑ ψ(Vi) and

∑(h(Vi)− µh) are approximately joint normal. If ψ(Vi) and h(Vi) are positively correlated,

then we can infer that this truncated normal mean is positive and increases eventually to-

wards infinity, which gives a similar result as before. However, if the correlation between

ψ(Vi) and h(Vi) is negative, then the truncation in (21) becomes qualitatively different

from (17).

Based on the above discussion, the question now becomes what additional require-

ments are needed for an increasing function h to be positively correlated with the virtual

valuation. A straightforward answer is that if F is Myerson regular so that ψ is increasing,
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then ψ and h are positively correlated.28 Perhaps more surprisingly, this positive corre-

lation does not depend on the Myerson regularity condition; it simply results from the

construction of the virtual valuation function. We summarize this result in the following

lemma.

Lemma 1 (Correlation between ψ and h). If the function h is continuous on [0, v̄], then the

covariance between ψ and h, denoted by σψh, is equal to

σψh ≡ E[ψ(Vi)h(Vi)] = E

[
∫ Vi

0
v dh(v)

]

,

where dh(v) denotes integration with respect to the Lebesgue-Stieltjes measure associated with h.

In particular, σψh > 0 if h is increasing and continuous on [0, v̄].

The above lemma states that any increasing and continuous h is positively correlated

with the virtual valuation. As discussed above, this lemma shows that the intuition from

Section 3.2 still applies when we replace ψ by a general increasing function h. We further

illustrate this result with Example 1.

Example 4 (continues = eg:identity). By using Lemma 1, we can show that the covariance

between the valuation Vi and the virtual valuation ψ(Vi) is in fact equal to one half of the second

moment of Vi:

cov(Vi , ψ(Vi)) = E

[
∫ Vi

0
vdv

]

=
1

2
E[V2

i ] > 0.

Therefore, the valuation is always positively correlated with the virtual valuation, even without

the Myerson regularity condition. This means that if the mechanism designer observes a large Vi,

it is likely that agent i’s virtual valuation is also large. Hence, it is reasonable to use the valuation

in place of the virtual valuation in guiding the public-good provision decision that aims to collect

payments. To the best of our knowledge, this is a new finding in regards to the literature, and we

believe it is of independent research interest.

28For every random variable X and increasing functions g1 and g2, the random variables g1(X) and g2(X)
are positively correlated (see, e.g., Thorisson, 1995).
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We now study the ex-ante budget and ex-ante welfare of the AMT mechanism (qn, {tn
i })

with a general transformation h, which are defined in Equations (3) and (4), respectively.

The following result is the main theorem of this paper, which states that the results ob-

tained in Theorem 1 can be generalized to any AMT mechanisms (qn, {tn
i }) with an in-

creasing and continuous transformation h. It uses the multivariate Berry-Esseen theorem

(e.g., Bentkus, 2005) to establish the convergence rate of the multivariate central limit the-

orem.

Theorem 2. Assume that the transformation h is increasing and continuous on [0, v̄], then the

results in Theorem 1 applies to the AMT mechanism with transformation h. In particular, if the

cost satisfies Condition (18), and we set the adjustment term αn to satisfy Conditions (19) and

(20), then the AMT mechanism with transformation h is dominant-strategy incentive compatible,

ex-post individually rational, eventually ex-ante budget balanced, and asymptotically efficient.

Remark. The growth rate of the ex-ante budget and the convergence rate of the welfare regret ratio

are provided in the proof in Appendix A. An optimal convergence rate of the welfare regret ratio

does not exist. This is because the faster αn moves toward negative infinity the faster the welfare

regret ratio converges, but the asymptotic order of αn needs to be strictly smaller than
√

n log n

for the eventually ex-ante budget balanced condition to hold. For any mechanism (qn, {tn
i }) that

is eventually ex-ante budget balanced, we can strictly improve its welfare convergence rate by

increasing the rate of αn while keeping it strictly slower than
√

n log n.

A general AMT mechanism can be implemented with many choices of the increas-

ing function h and does not require any knowledge of the virtual valuation ψ (not even

the monotonicity of ψ imposed by the Myerson regularity condition). In particular, as

demonstrated in Example 1, the mechanism designer could simply employ the identity

function. Furthermore, Theorem 2 shows that the eventual ex-ante budget balance con-

dition and asymptotically efficiency can still be achieved under the same assumptions on

cn and αn as in Theorem 1.

The construction of the AMT mechanism only depends on the valuation distribution

F through the moment µh. This dependence is much weaker than the case of h = ψ. This

is because the moment µh is a scalar that contains much less information about F than

the virtual valuation function ψ. A moment condition can be satisfied by an infinite num-
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ber of distributions which can potentially be very different, while the virtual valuation

function ψ uniquely determines the distribution function F.29

We can formalize this notion of informational robustness with well-known results in

statistics. With a sample of m iid observations, the moment µh can be estimated by the

sample average with the rate of m−1/2 under standard conditions. The estimation of the

density (which is required for constructing the virtual valuation), on the other hand, is

much more difficult for the following reasons. First, the density f (v) can only be esti-

mated at a slower rate of m−1/3 for each v ∈ [0, v̄].30 This is due to the nonparametric

nature of the density estimation problem. Second, we have to estimate the entire density

function, which further slows down the convergence rate (by a log m factor when using

the supremum norm).31 The m iid data points used for estimation are not from the current

mechanism as that would distort the incentives. Instead, they can be taken from similar

public projects executed in the past.

We end this subsection with a discussion of the pivot mechanism introduced in Exam-

ple 2.

Example 5 (continues = eg:pivot). The pivot mechanism implements the efficient decision rule:

1{∑ vi ≥ cn} = 1{∑ vi ≥ nµ + cn − nµ} = qn(v),

with the adjustment term being αn = cn − nµ, which decreases much faster than the
√

n log n

rate. Hence, the pivot mechanism runs a budget deficient, which is a well-known result in the

literature. 32

3.4 Tightness of the condition on cost

In both Theorem 1 and 2, the cost cn is specified to grow slower than the
√

n-rate. This

restriction on the growth rate of cost is not only sufficient but also, in a sense, necessary for

29To see this, note that the definition of ψ implies d log(1 − F(v))/dv = −1/(v − ψ(v)).
30See, for example, Stone (1980). If the density f is differentiable, then the optimal rate of convergence is

m−1/3. Please refer to that paper for the exact definition of optimal convergence rates.
31The optimal uniform convergence rate of density estimators is derived in Stone (1983).
32To obtain a crude estimate, we can use Lemma 7 in the Appendix, which indicates that the expected to-

tal payment from the pivot mechanism is at most O(n1/4). Therefore, the pivot mechanism runs a growing
budget deficit if the cost grows faster than that rate.
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achieving both budget balance and efficiency asymptotically. In this section we show that

the optimal revenue (total expected payment) grows at the
√

n-rate. Therefore, if the cost

grows faster than the
√

n-rate, the budget balance condition will require the provision

probability to diminish as the population size grows.33

This result on the growth rate of the revenue is not restricted to the class of dominant-

strategy incentive compatible and ex-post individually rational mechanisms. In fact, it

holds for a larger class of mechanisms defined as follows. For a mechanism (qn, {tn
i }), we

say it is incentive compatible if for each agent i, valuation vi, and report v′i,

viE[qn(vi, V−i)]− E[tn
i (vi, V−i)] ≥ viE[qn(v′i, V−i)]− E[tn

i (v
′
i , V−i)].

This is the interim (or Bayesian) version of the dominant-strategy incentive compatibility

condition specified in (8) and is therefore weaker than the dominant-strategy incentive

compatible condition. We say the mechanism is individually rational if for each agent i and

valuation vi,

viE[qn(vi, V−i)]− E[tn
i (vi, V−i)] ≥ 0.

This is the interim (or Bayesian) version of the ex-post individual rationality condition de-

fined in (9). The class of dominant-strategy incentive compatible and ex-post individually

rational mechanisms is contained in the class of incentive compatible and individually ra-

tional mechanisms.

The following theorem shows that the optimal revenue for the class of incentive com-

patible and individually rational mechanisms grows at the
√

n-rate.

Theorem 3 (Tightness of the Condition on Cost). The maximum total expected payment for

any sequence of incentive compatible and individually rational mechanisms grows at the
√

n-rate.

That is,

lim sup
n→∞

sup
(qn,{tn

i })
E

[

∑ tn
i (V)

] /√
n < ∞,

33Notice that, however, the cost cannot grow exactly at the
√

n-rate, because in that case we would need
the adjustment term αn to also decrease at the

√
n-rate to balance the budget, leading to an inefficient

allocation decision.
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where the supremum sup(qn,{tn
i })

is taken over all incentive compatible and individually rational

mechanisms. Consequently, if the cost satisfies

lim
n→∞

cn√
n
= ∞,

then for any sequence of mechanisms (qn, {tn
i }) that is incentive compatible, individually rational,

and eventually ex-ante budget balanced, the provision probability of the public good converges to

zero under the following rate

lim sup
n→∞

P(qn(V) = 1)√
n/cn

< ∞.

Remark. As pointed out by Mailath and Postlewaite (1990) in their Theorem 2, if cn ≤ n(µ − δ)

for some δ ∈ (0, µ), then the efficient (first-best) provision probability should converge to one.

In such circumstances, our Theorem 3 implies that no incentive compatible, individually rational

and eventually ex-ante budget balanced mechanism can be asymptotically efficient when cn grows

faster than the
√

n-rate.

Theorem 3 is an enhancement of the results in Mailath and Postlewaite (1990) in two

ways. First, in that paper, the authors show that the provision probability converges to

zero when the cost grows proportionally with the number of agents. Here, we show that

any rate of cn faster than
√

n gives the same negative result. Second, Mailath and Postlewaite

(1990) illustrate that the provision probability converges at the n−1/4-rate when the cost

grows proportionally with the number of agents. This convergence rate can be refined to

the faster n−1/2-rate using our result in Theorem 3.

The
√

n-rate of the revenue given by Theorem 3 is known in the literature (Hellwig,

2003; Kleinberg and Yuan, 2013).34 This tightness result, together with the positive re-

sult in Theorem 2, characterizes the role of the provision cost in the public goods prob-

lem. In particular, we identify
√

n as the “boundary case” of the growth rate of cost.

When the cost grows faster than the
√

n-rate, we can recover the negative result by

Mailath and Postlewaite (1990) that no incentive compatible, individually rational, and

34As we clarify in Appendix B, while the result in Hellwig (2003) are correct, the proof is slightly flawed.
On the other hand, Kleinberg and Yuan (2013) only provide a heuristic (but informal) argument with the
uniform distribution to explain why the optimal revenue grows at the

√
n-rate.
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eventually ex-ante budget balanced mechanism can be asymptotically efficient. When

the cost grows slower than the
√

n-rate, we can recover the positive result by Hellwig

(2003) that budget balance and efficiency can be achieved asymptotically (and in an infor-

mationally robust way).35

4 Concluding Remarks

The main objective of this paper is to address the problem of mechanism design for public

goods provision when the number of agents grows to infinity. The public goods problem

is a classic textbook problem, yet the asymptotic and statistical approach we take is novel.

The technical contribution of the paper is in introducing the central limit estimate and the

Berry-Esseen theorem as helpful tools in calculating quantities such as ex-ante budget

and revenue, which was previously a formidable task. We show that what the mech-

anism designer can achieve depends crucially on how the cost of providing the public

good grows with the number of agents. When the cost increases faster than the
√

n-rate,

the mechanism designer cannot implement the efficient decision, even asymptotically,

with a balanced budget. When the cost grows slower than the
√

n-rate, we advocate the

mechanism designer to use AMT mechanisms. The AMT mechanisms can achieve bud-

get balance and efficiency asymptotically and have the advantage of being simple and

informationally robust.

A Technical Proofs

Appendix A.1 presents general convergence results dervied based on the Berry-Esseen

theorem. Appendix A.2 presents the proofs for theorems in the main text.

35The nature of the assumption on the growth rate of cn is essentially about the production technology
and how the marginal cost decreases with the number of agents. See Roberts (1976) for a discussion on the
relationship between the cost of a public good and the number of consumers.

25



A.1 Preliminary Results

This section provides some general results as useful lemmas. We denote φ and Φ respec-

tively as the pdf and cdf of the standard normal distribution. We use C to denote a generic

constant that does not depend on n, which may have different values at each appearance.

Lemma 2. Let X and Y be two random variables with E|X| < ∞, then for any α ∈ R,

E

[

X1[α,∞)(Y)
]

=
∫ ∞

0
P (X > x, Y ≥ α) dx −

∫ 0

−∞
P (X < x, Y ≥ α) dx.

In particular, if X = Y, then

E

[

X1[α,∞)(X)
]

=
∫ ∞

0
P (X > x) dx −

∫ 0

α
P (X < x) dx, for α ≤ 0,

and

E

[

X1[α,∞)(X)
]

=
∫ ∞

α
P (X > x) dx, for α > 0.

Proof of Lemma 2. Define X+ = max{X, 0} and X− = max{−X, 0}. For X+, notice that

X+ =
∫ ∞

0
1[0,X+](x)dx.

Using Fubini theorem, we have

E

[

X+1[α,∞)(Y)
]

= E

[∫ ∞

0
1[0,X+](x)1[α,∞)(Y)dx

]

=
∫ ∞

0
E

[

1[0,X+](x)1[α,∞)(Y)
]

dx

=
∫ ∞

0
P

(

X+
> x, Y ≥ α

)

dx

=
∫ ∞

0
P (X > x, Y ≥ α) dx.
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Similarly, for X−, we have

E

[

X−1[α,∞)(Y)
]

=
∫ ∞

0
P

(

X−
> x, Y ≥ α

)

dx

=
∫ 0

−∞
P (X < x, Y ≥ α) dx.

The result then follows from the fact that E[X] = E[X+]− E[X−].

Let (Xi, Yi), 1 ≤ i ≤ n be an independent sequence of random vectors in R
2 with

zero mean and E|Xi|3 , E|Yi|3 < ∞. We introduce the following set of notations for their

marginal moments: σ2
X = EX2

i , σY = EY2
i , ρX = E|Xi|3 , ρY = E|Yi|3 , and correlation:

σXY = E[XiYi]. All these moments are finite. Define SX
n = ∑ Xi and SY

n = ∑ Yi. Let

(ZX , ZY) be a joint normal random vector with zero mean and the same covariance struc-

ture as (SX
n , SY

n ). We use‖·‖ to denote both the induced 2-norm of matrices and the Eu-

clidean norm of vectors.

We want to bound the difference between the distributions of (SX
n , SY

n ) and (ZX , ZY)

using the Berry-Esseen theorem. The following lemma is the univariate Berry-Esseen

theorem.

Lemma 3. There is a constant C > 0 such that

sup
x∈R

∣
∣
∣
∣
∣
P

(

SX
n ≤ x

)

− Φ

(

x√
nσX

)∣
∣
∣
∣
∣
≤ C√

n
.

Then we prove the multivariate case.

Lemma 4. Assume X and Y are not perfectly correlated. The following bound holds between the

joint distributions of (SX
n , SY

n ) and (ZX , ZY): let B be the set of all measurable convex sets in R
2,

then there is a constant C > 0 such that

sup
B∈B

∣
∣
∣P

(

(SX
n , SY

n ) ∈ B
)

− P

(

(ZX , ZY) ∈ B
)∣
∣
∣ ≤ C√

n
.
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Proof of Lemma 4. We use ΣXY to denote the normalized (by n) covariance matrix of (SX
n , SY

n ),

ΣXY =




σ2

X σXY

σXY σ2
Y



 .

The multivariate Berry-Esseen theorem (Bentkus, 2005) says there exists a universal con-

stant C, such that

sup
B∈B

∣
∣
∣P

(

(SX
n , SY

n ) ∈ B
)

− P

(

(ZX , ZY) ∈ B
)∣
∣
∣

≤ C ∑ E

[∥
∥
∥(nΣXY)

−1/2(Xi , Yi)
′
∥
∥
∥

3
]

≤ C√
n

(

1

n ∑ E

[∥
∥
∥Σ−1/2

XY

∥
∥
∥

3∥
∥(Xi , Yi)

′∥∥3
])

=
C√

n

∥
∥
∥Σ−1/2

XY

∥
∥
∥

3
E

[∥
∥(Xi , Yi)

′∥∥3
]

.

The induced 2-norm of a positive semi-definite matrix equals to its largest eigenvalue. So

we have
∥
∥
∥Σ−1/2

XY

∥
∥
∥

3
= λ−3/2

min ,

where λmin is the smallest eigenvalue of ΣXY. We next compute λmin. The characteristic

function of ΣXY is

det




σ̄2

X − λ σXY

σXY σ2
Y − λ



 = λ2 − (σ2
X + σ2

Y)λ + σ2
Xσ2

Y − σ2
XY.

The smaller eigenvalue is

λmin =
1

2

(

σ2
X + σ2

Y −
√

(σ2
X + σ2

Y)
2 − 4(σ2

Xσ2
Y − σ2

XY)

)

=
1

2

(

σ2
X + σ2

Y −
√

(σ2
X − σ2

Y)
2 − 4σ2

XY

)

,

which is a positive constant when σ2
Xσ2

Y − σ2
XY 6= 0.
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To deal with the remaining part of the bound, we employ the Minkowski inequality.

E

[∥
∥(Xi, Yi)

′∥∥3
]

= E

[

(X2
i + Y2

i )
3/2
]

≤
((

E

[

(X2
i )

3/2
])2/3

+

(

E

[

(Y2
i )

3/2
])2/3

)3/2

=

((

E|Xi|3
)2/3

+
(

E|Yi|3
)2/3

)3/2

=
(

ρ2/3
X + ρ2/3

Y

)3/2

≤
√

2(ρX + ρY).

The last inequality follows from the fact that the function x 7→ x2/3 is concave so that for

any two positive numbers a and b, it holds that

a2/3 + b2/3

2
≤
(

a + b
2

)2/3

=⇒
(

a2/3 + b2/3
)3/2

≤
√

2(a + b).

Lemma 5. The following expression of the normal truncated mean holds true:

E

[

ZX1{ZY ≥ αn}
]

=
√

n
σXY

σY
φ

(

αn√
nσY

)

.

In particular, for X = Y, we have

E

[

ZX1{ZX ≥ αn}
]

=
√

nσXφ

(

αn√
nσX

)

.

Proof of Lemma 5. Define e = ZX − σXY
σ2

Y
ZY. It is straightforward to compute that Ee = 0.
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Since e and ZY are jointly normal and uncorrelated, e ⊥ ZY. Therefore,

E

[

ZX1{ZY ≥ αn}
]

= E





(

σXY

σ2
Y

ZY + e

)

1{ZY ≥ αn}





=
σXY

σ2
Y

E

[

ZY1{ZY ≥ αn}
]

=
√

n
σXY

σY
φ

(

αn√
nσY

)

.

Lemma 6. For any sequence of numbers αn, there is a constant C > 0 such that

∣
∣
∣
∣
∣
E

[

SX
n 1{SX

n ≥ αn}
]

−
√

nσXφ

(

αn√
nσX

)∣
∣
∣
∣
∣
≤ Cn1/4.

Proof of Lemma 6. By Lemma 2 and 5, we have

∣
∣
∣
∣
∣
E

[

SX
n 1{SX

n ≥ αn}
]

−
√

nσXφ

(

αn√
nσX

)∣
∣
∣
∣
∣

≤
∫ ∞

0

∣
∣
∣P

(

SX
n > x

)

− P

(

ZX
> x

)∣
∣
∣ dx +

∫ 0

−∞

∣
∣
∣P

(

SX
n < x

)

− P

(

ZX
< x

)∣
∣
∣ dx.

Using Chebyshev’s inequality, we have

∣
∣
∣P

(

SX
n > x

)

− P

(

ZX
> x

)∣
∣
∣ ≤ nσ2

X
x2

.

Together with Lemma 3, we have

∫ ∞

0

∣
∣
∣P

(

SX
n > x

)

− P

(

ZX
> x

)∣
∣
∣ dx ≤

∫ n3/4

0

C√
n

ρX

σ3
X

dx +
∫ ∞

n3/4

nσ2
X

x2
dx

= n1/4

(

C
ρX

σ3
X
+ σ2

X

)

Lemma 7. Suppose X and Y are not perfectly correlated. For any sequence of numbers αn, there
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is a constant C > 0 such that

∣
∣
∣
∣
∣
E

[

SX
n 1{SY

n ≥ αn}
]

−
√

n
σXY

σY
φ

(

αn√
nσY

)∣
∣
∣
∣
∣
≤ Cn1/4.

Proof of Lemma 7. By Lemma 2 and 5, we know that the absolute difference we want to

bound is

∣
∣
∣E

[

SX
n 1{SY

n ≥ αn}
]

− E

[

ZX1{ZY ≥ αn}
]∣
∣
∣

≤
∣
∣
∣
∣

∫ ∞

0
P

(

SX
n > x, SY

n ≥ αn

)

− P

(

ZX
> x, ZY ≥ αn

)

dx
∣
∣
∣
∣

︸ ︷︷ ︸

I1

+

∣
∣
∣
∣
∣

∫ 0

−∞
P

(

SX
n < x, SY

n ≥ αn

)

− P

(

ZX
< x, ZY ≥ αn

)

dx

∣
∣
∣
∣
∣

︸ ︷︷ ︸

I2

.

We first deal with I1. Notice that

P

(

SX
n > x, SY

n ≥ αn

)

≤ P

(

SX
n > x

)

≤ nσ2
X

x2
,

where the second inequality follows from the Chebyshev inequality. Similarly, we have

P

(

ZX
> x, ZY ≥ αn

)

≤ P

(

ZX
> x

)

≤ nσ2
X

x2
.

So putting these two tail bounds together, we have

∣
∣
∣P

(

SX
n > x, SY

n ≥ αn

)

− P

(

ZX
> x, ZY ≥ αn

)∣
∣
∣ ≤ nσ2

X
x2

, for all x > 0.
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Then, based on Lemma 4, we have

I1 ≤
∫ n3/4

0

∣
∣
∣P

(

SX
n > x, SY

n ≥ αn

)

− P

(

ZX
> x, ZY ≥ αn

)∣
∣
∣ dx

+
∫ ∞

n3/4

∣
∣
∣P

(

SX
n > x, SY

n ≥ αn

)

− P

(

ZX
> x, ZY ≥ αn

)∣
∣
∣ dx

≤ n3/4 C√
n
+
∫ ∞

n3/4

nσ2
X

x2
dx

= n1/4
(

C + σ2
X

)

.

Following the same steps we can derive a same bound for I2. Then the result follows.

A.2 Proofs of Results in the Main Text

We introduce some notations that are useful in the proofs. The moments of the valuation

distribution are denoted by

µ ≡ E[Vi], σ2 ≡ E|Vi − µ|2, ρ ≡ E|Vi − µ|3, σ2
ψ ≡ E|ψ(Vi)|2, ρψ ≡ E|ψ(Vi)|3.

They are all finite since we assume that f has a bounded support and is bounded away

from zero on the support. To keep the asymptotic analysis concise, we use the notations

in the following table.36

Notation Definition Short Explanation

dn = o(en) dn/en → 0 |dn| dominated by en
dn = O(en) lim sup|dn| /en < ∞ |dn| bounded above by en
dn = ω(en) |dn|/en → ∞ |dn| dominates en
dn = Ω(en) lim inf|dn|/en > 0 |dn| bounded below by en
dn = Θ(en) |dn| = O(en), |dn| = Ω(en) |dn| bounded below and above by en
dn = Oε(en) ∃ε > 0, dn = O(n−εen) |dn| nearly bounded above by en
dn = ωε(en) ∀ε > 0, dn = ω(n−εen) |dn| nearly dominates en

Proof of Theorem 1. (i) We first obtain an asymptotic lower bound for the ex-ante bud-

36The first five notations are standard. The expression dn = Oε(en) means that dn is asymptotically
bounded above by en divided by some (sufficiently small) power of n. The expression dn = ωε(en) means
that dn asymptotically dominates en divided by any power of n.
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get:

E[bn(V)] = E

[

∑ ψ(Vi)1
{

∑ ψ(Vi) ≥ αn

}]

− cnP

(

∑ ψ(Vi) ≥ αn

)

≥ E

[

∑ ψ(Vi)1
{

∑ ψ(Vi) ≥ αn

}]

− cn

≥
√

nσψφ

(

αn√
nσψ

)

− Cn1/4 − cn,

where the last inequality follows from Lemma 6. Then we show that the first term

on the RHS is the leading term. First, by the assumption αn = o(
√

n log n), we have

log




√

nφ

(

αn√
nσψ

)/

n1/4



 =
1

4
log n −

(

αn

σψ
√

n

)2

+ C

= log n




1

4
−
(

αn

σψ

√
n log n

)2

+ o(1)





= log n(1/4 + o(1)) → ∞.

Next, by the assumption that cn = Oε(
√

n), there exist C, ε > 0 such that cn ≤
Cn1/2−ε for large n. Then log cn/ log n ≤ 1/2 − ε/2 for large n. Therefore,

log




√

nφ

(

αn√
nσψ

)/

cn





=
1

2
log n −

(

αn

σψ
√

n

)2

− log cn + C

= log n




1

2
−
(

αn

σψ

√
n log n

)2

− log cn

log n
+ o(1)





≥ log n(ε/2 + o(1)) → ∞.

The above asymptotic results show that the leading term in the lower bound is
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√
nσψφ

(

αn√
nσψ

)

. We then derive an upper bound for the ex-ante budget:

E[bn(V)] ≤ E

[

∑ ψ(Vi)1
{

∑ ψ(Vi) ≥ αn

}]

≤
√

nσψφ

(

αn√
nσψ

)

+ Cn1/4,

where the last inequality again follows from Lemma 6. By the previous analysis, the

leading term in the upper bound is also
√

nσψφ

(

αn√
nσψ

)

. Therefore, we only need

to derive the growth rate of that term. Take any ε > 0, we have

log




√

nφ

(

αn√
nσψ

)/

n1/2−ε



 = ε log n − 1

2

(

αn

σψ
√

n

)2

+ C

= log n



ε − 1

2

(

αn

σψ

√
n log n

)2

+ o(1)





= log n
(
ε + o(1)

)
→ ∞.

(ii) First notice that E[wn(V)] ≤ E[w∗(V)]. We break the ex-ante welfare into two parts

E[wn(V)] = E

[

∑ Viq
n(V)− ∑ tn

i (V)
]

= E

[(

∑ Vi − cn

)

qn(V)

]

− E[bn(V)].
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We obtain a lower bound for the first term on the RHS:

E

[(

∑ Vi − cn

)

qn(V)

]

=E

[

1
{

∑ ψ(Vi) ≥ αn

}

∑ Vi

]

− cnP

(

∑ ψ(Vi) ≥ cn

)

≥E

[

1
{

∑ ψ(Vi) ≥ αn

}]

E

[

∑ Vi

]

− cnP

(

∑ ψ(Vi) ≥ cn

)

=(nµ − cn)P
(

∑ ψ(Vi) ≥ αn

)

≥(nµ − cn)



1 − Φ

(

αn√
nσψ

)

− C√
n





≥nµ − cn − nµ



Φ

(

αn√
nσψ

)

+
C√

n



 ,

where the second inequality follows from the fact that ψ is non-decreasing and the

second to last inequality follows from Lemma 3. By the result in part (i), we can

bound the ex-ante budget from above by

E[bn(V)] ≤
√

nσψφ

(

αn√
nσψ

)

+ Cn1/4

≤
√

nσψ/
√

2π + Cn1/4,

where the last inequality follows from the fact that φ(·) ≤ 1/
√

2π. The ex-ante

efficient welfare is bounded above by E[w∗(V)] ≤ E [∑ Vi] = nµ. Combining these

results, we get

E[w∗(V)] − E[wn(V)]

E[w∗(V)]
≤ cn

nµ
+ Φ

(

αn√
nσψ

)

+
C√

n
→ 0.

The remaining task is to show that the leading term in the above expression is
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Φ(αn/
√

nσψ). We use the well-known lower bound on the tail of Φ:

Φ(v) = 1 − Φ(|v|) ≥|v| exp(−v2/2)/
(√

2π(1 + v2)
)

, v ≤ 0.

Then

log




√

nΦ

(

αn

σψ
√

n

)



≥1

2
log n + log

(

|αn|√
n

)

− 1

2

(

αn

σψ
√

n

)2

− log
(

1 + (αn/σψ

√
n)2
)

+ C

=
1

4
log n + log

(

|αn|√
n

)

− 1

2

(

αn

σψ
√

n

)2

+ log

(

n1/4

1 + (αn/σψ
√

n)2

)

+ C

= log n




1

4
− 1

2

(

αn

σψ

√
n log n

)2


+ log

(

|αn|√
n

)

+ log

(

n1/4/ log n

1/ log n + (αn/σψ

√
n log n)2

)

+ C,

where the last line goes to ∞. Therefore, Φ(αn/
√

nσψ) is ω(1/
√

n) and hence the

leading term of the welfare ratio.

(iii) The result comes directly from the previous two parts.

Proof of Lemma 1. By the definition of ψ, we have

σψh = E
[
ψ(Vi)h(Vi)

]

= E
[
Vih(Vi)

]
−
∫ ∞

0
h(v)(1 − F(v))dv.
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By the Fubini theorem, the second term on the RHS is

∫ ∞

0
h(v)(1 − F(v))dv =

∫ ∞

0
h(v)E[1[0,Vi)

(v)]dv

= E

[∫ ∞

0
h(v)1[0,Vi)

(v)dv
]

= E

[
∫ Vi

0
h(v)dv

]

< ∞.

The above quantity is finite since V has a bounded support and h is continuous. Then we

perform integration by parts to the above Lebesgue-Stieltjes integral:

∫ Vi

0
h(v)dv = vh(v)

∣
∣
∣
∣

Vi

0

−
∫ Vi

0
vdh(v) = Vih(Vi)−

∫ Vi

0
vdh(v).

Therefore,

σψh = E

[

Vih(Vi)−
∫ Vi

0
h(v)dv

]

= E

[
∫ Vi

0
v dh(v)

]

,

which is positive if h is increasing.

For Theorem 2, we introduce the following notations for the moments of h(Vi):

µh ≡ E[h(Vi)], σ2
h ≡ E|h(Vi)− µh|2, ρh ≡ E|h(Vi)− µh|3.

They are finite when h is a continuous function on [0, v̄].

Proof of Theorem 2. If h(Vi) and ψ(Vi) are perfectly correlated (i.e., h and ψ are linearly

dependent), then the result follows from Theorem 1. Therefore, we only need to study

the case where h(Vi) and ψ(Vi) are not perfectly correlated.
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(i) We first obtain an asymptotic lower bound for the ex-ante budget:

E[bn(V)] = E

[

∑ ψ(Vi)1
{

∑ h(Vi) ≥ αn

}]

− cnP

(

∑ h(Vi) ≥ αn

)

≥ E

[

∑ ψ(Vi)1
{

∑ h(Vi) ≥ αn

}]

− cn

≥
√

n
σψh

σh
φ

(

αn√
nσh

)

− Cn1/4 − cn,

where the last inequality follows from Lemma 7. The first term is strictly positive

by Lemma 1. Then following the same steps as in the proof of Theorem 1(i), we

can show that the leading term in the above expression is
√

n
σψh
σh

φ
(

αn√
nσh

)

under the

assumptions αn = o(
√

n log n) and cn = Oε(
√

n).

We then derive an upper bound for the ex-ante budget:

E[bn(V)] ≤ E

[

∑ ψ(Vi)1
{

∑ h(Vi) ≥ αn

}]

≤
√

n
σψh

σh
φ

(

αn√
nσh

)

+ Cn1/4,

where the last inequality again follows from Lemma 7. By the previous analysis, the

leading term in the upper bound is also
√

n
σψh
σh

φ
(

αn√
nσh

)

, and the result follows.

(ii) We follow the proof of Theorem 1(ii). First notice that E[wn(V)] ≤ E[w∗(V)]. We

break the ex-ante welfare into two parts

E[wn(V)] = E

[

∑ Viq
n − ∑ tn

i (V)
]

= E

[(

∑ Vi − cn

)

qn(V)

]

− E[bn(V)].
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We obtain a lower bound for the first term on the RHS:

E

[(

∑ Vi − cn

)

qn(V)

]

=E

[

1
{

∑ h(Vi) ≥ αn

}

∑ Vi

]

− cnP

(

∑ h(Vi) ≥ cn

)

≥E

[

1
{

∑ h(Vi) ≥ αn

}]

E

[

∑ Vi

]

− cnP

(

∑ h(Vi) ≥ cn

)

=(nµ − cn)P
(

∑ h(Vi) ≥ αn

)

≥(nµ − cn)



1 − Φ

(

αn√
nσh

)

− C√
n





≥nµ − cn − nµ



Φ

(

αn√
nσh

)

+
C√

n



 ,

where the second line follows from the fact that h is non-decreasing and the second

to last line follows from Lemma 3. Following the proof of part (i), we can upper

bound the ex-ante budget by

E[bn(V)] ≤
√

n
σψh

σh
φ

(

αn√
nσh

)

+ Cn1/4

≤
√

n
σψh

σh
√

2π
+ Cn1/4.

We use the same upper bound on the efficient ex-ante welfare E[w∗(V)] ≤ nµ as

before. Combining these results together, we get a similar bound as in part (ii) of

Theorem 1:

E[w∗(V)] − E[wn(V)]

E[w∗(V)]
≤ cn

nµ
+ Φ

(

αn√
nσh

)

+
C√

n
→ 0.

Similar as in the proof of Theorem 1(ii), the leading term in the above expression is

Φ
(
αn/

√
nσh
)
.

(iii) The result comes directly from the previous two parts.
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Proof of Theorem 3. It is well-known that the total expected payment of an incentive com-

patible and individually rational mechanism (qn, {tn
i }) is equal to

E

[

∑ tn
i (V)

]

= E

[

∑ ψ(Vi)q
n(V)

]

+ E

[

∑ tn
i (0, V−i)

]

.

See, for example, Equation (3.6) in Hellwig (2003). Since the expected payment E[tn
i (0, V−i)]

needs to be non-positive for any i by the individually rational condition, the total expected

payment is maximized by setting qn(v) = 1{∑ ψ(vi) ≥ 0} and tn
i (0, v−i) = 0. Such a

mechanism is in fact a special case of the mechanism in Example 3 with the adjustment

term αn = 0. From the proof of Theorem 1, we can see that the total expected payment

is O(
√

n). Notice that even though this particular mechanism may violate incentive com-

patibility when the distribution is not Myerson regular, the asymptotic order O(
√

n) is

nonetheless a valid upper bound on the growth rate of the maximum total expected pay-

ment.

Then for any sequence of incentive compatible and individually rational mechanisms

(qn, {tn
i }) that satisfies eventually ex-ante budget balanced, it must be true that

0 ≤ E

[

∑ ti(V)− cnq(V)
]

≤ O(
√

n)− cnP(qn(V) = 1), for n large enough.

This implies that the provision probability of the public good is converging to zero:

P(qn(V) = 1) ≤ O(
√

n)/cn → 0.

B Discussion on Proposition 3 in Hellwig (2003)

In this section, we discuss the proof method of Proposition 3 in Hellwig (2003), hereafter

H2003. We first translate the result and the proof with the terminology in our paper.

Proposition 3 in H2003 shows that the second-best mechanism is asymptotically efficient

when the cost of the public good does not grow with n. The proof in H2003 essentially
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tries to show that the AMT mechanism in Example 3 is ex-ante budget balanced and

asymptotically efficient. Therefore, since the second-best mechanism must have a higher

welfare by definition, it is also asymptotically efficient.

To better explain the proof, we link the notations in H2003 to the ones in our paper.

The mechanism Qnk defined in (4.6) and (4.7) on p.597 of H2003 corresponds to the AMT

mechanism with h = ϕ in our Example 3. The scalar k in the mechanism Qnk corresponds

to our adjustment term αn. The discussion following Inequality (4.8) on p.598 of H2003

shows that when the adjustment term k is fixed (does not vary with n), the mechanism

Qnk is ex-ante budget balanced. The discussion following Inequality (4.10) on p.598 of

H2003 shows that when the adjustment term k decreases to −∞, the mechanism Qnk is

asymptotically efficient.

We argue that this reasoning is incomplete because a discussion of the ex-ante bud-

get when k varies with n is lacking. More specifically, the proof in H2003 requires that

Inequality (4.4) on p.597 to hold for any ε > 0 and n sufficiently large. In particular, we

can take ε = 1/n. Then the k(ε) on the second line after (4.10) depends explicitly on n

and is decreasing as n increases. In this case, the discussion following Inequality (4.8) is

no longer sufficient to show that the mechanism Qnk is ex-ante budget balanced. This is

because a decreasing k would decrease the budget. The previous argument that Qnk is

ex-ante budget balanced when k is fixed and n → ∞. However, this does not address the

budget when k is decreasing. For example, in the extreme case where k decreases so fast

that it is equal to −∞, the revenue becomes zero in the limit, leading to a budget deficit.

This is where the Berry-Esseen theorem becomes useful: we want to characterize the

ex-ante budget when n increases and the adjustment term k decreases. This is possible

under the Berry-Esseen theorem because it gives the convergence rate of the central limit

theorem. For each n and k, we know not only that the budget can be approximated by a

normal distribution but also how close this approximation is. Therefore, we can derive the

rate of k under which the budget becomes balanced eventually. The details are described

in Section 3.2 and in the proofs in Appendix A.
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