
Vol.:(0123456789)

Social Choice and Welfare (2024) 62:549–569
https://doi.org/10.1007/s00355-023-01502-1

1 3

ORIGINAL PAPER

Consistent social ranking solutions

Takahiro Suzuki1   · Masahide Horita1 

Received: 25 May 2022 / Accepted: 29 November 2023 / Published online: 23 January 2024 
© The Author(s) 2024

Abstract
The performance of coalitions is an important measure for evaluating individuals. 
Sport players, researchers, and firm workers are often judged with their team per-
formances. The social ranking solution (SRS) is a function that maps the ranking on 
the set of all feasible coalitions (the domain of coalitions) into the ranking of indi-
viduals. Importing the axiom of consistency from voting theory, we study consistent 
SRSs under the variable domains of coalitions. We suppose that there are several 
domains of coalitions (e.g., a set of research teams made up of only young research-
ers and a set of research teams including senior researchers), and the individuals are 
required to be evaluated consistently on each domain of coalition. Such a situation is 
typical because all the logically possible coalitions are often too huge to deal with. 
We obtain a new characterization of the lexicographic excellence solution (LES) and 
its dual (DLES): they are the only SRSs satisfying consistency, neutrality, weak coa-
litional anonymity, and complete dominance. This characterization is expected to 
provide a new ground for determining the impacts of individuals based on the lexi-
cographic comparisons of their team performances.

1  Introduction

The ordinal social ranking problem (SRP) is the search of the ordinal ranking of 
individuals based on the ordinal ranking of their coalitions; such as the evaluation of 
researchers based on their collaborative papers or that of individual workers based on 
their team performances. While the origin of such a study can be traced back to clas-
sic cooperative game theory, like the Shapley value (Shapley 1953), it is only recently 
that its ordinal counterpart was developed in Moretti and Öztürk (2017). To date, sev-
eral social ranking solutions (SRSs) for the SRP have been axiomatically characterized. 
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Haret et al. (2019) characterizes ceteris paribus majority (CP majority); Khani et al. 
(2019) characterizes ordinal Banzhaf index (OBI); and Bernardi et  al. (2019) and 
Algaba et al. (2021) characterize lexicographic excellence solution (LES). The LES is 
an SRS that evaluates candidates by searching their coalitions from the top to the bot-
tom in the ranking of coalitions. Candidate x is judged to be at least as good as y if it 
appears more often in the higher ranked coalitions.

The present paper’s contribution lies in importing the idea of consistency from the 
standard voting theory into the study of the SRP and in giving a new characterization 
of the LES and dual LES (DLES). Specifically, we characterize the LES and DLES 
as the only SRSs satisfying consistency (CON), complete dominance (CD), neutral-
ity (N), and weak coalitional anonymity (WCA) (Theorem 1). In the literature on the 
LES, Bernardi et al. (2019) have characterized the LES by N, coalitional anonymity 
(CA), monotonicity, and independence from the worst class. Following this, Algaba 
et al. (2021) weakened CA and M to get a series of characterizations of lexicographic 
solutions including the LES. Béal et al. (2022) also introduces two new lexicographic 
solutions with their characterizations.

A novelty of this study is that we consider multiple sets of feasible coalitions 
(domains of coalitions); in other words, the domain of coalitions on which SRSs is for-
mulated is assumed to be variable. To the best of our knowledge, this is the first analy-
sis of the SRP under variable domains of coalitions. When evaluating researchers, for 
example, we usually do not consider all the logically possible coalitions, which is often 
too colossal to deal with and has little practical sense; rather, we usually consider only 
a small number of existing coalitions from practical viewpoints (ages, affiliations, etc.). 
Therefore, our model studies the relationship of judgements on such multiple domains 
of coalitions.

Consistency, in the standard social choice theory, demands that social choices/rank-
ings of a society N should be related properly with those of partitioned societies, N1 
and N2 (with N1 ∩ N2 = � and N1 ∪ N2 = N ). However, our CON considers the parti-
tion of the domain of coalitions, rather than of a partition of societies. For instance, 
consider two domains of coalitions as (a) the set of all research teams made up of only 
young researchers, and (b) the set of all research teams including both young and senior 
researchers. If a young researcher, x, is ranked above another young researcher, y, under 
both (a) and (b), then our CON demands that x also be ranked above y based on the 
ranking of the whole coalitions (the union of (a) and (b)). An interesting consequence 
of this importation is that the Borda rule, as an SRS, does not satisfy CON (Proposi-
tion 2), while CON is often used as a key axiom in the characterization of the Borda 
rule (Young 1974; Nitzan and Rubinstein 1981; Debord 1992), Approval Voting (Fish-
burn 1979; Alós-Ferrer 2006), etc.

This paper is organized as follows. In Sect. 2, we develop formal models of the SRS 
with a variable domain of coalitions. Section 3 provides the characterization of the LES 
and DLES. Section 4 contains the concluding remarks.
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2 � Model

In this section, in Sects. 2.1 and 2.2 we introduce the preliminary notations and 
explain the main concepts, respectively. Section 2.3 shows extra notations (read-
ers can skip this subsection at first and can come back when necessary). Exam-
ples of the main concepts as well as various SRSs will be introduced in Sect. 2.4.

2.1 � Preliminaries

A binary relation, ≿ , on set A is a subset of A × A . It is called reflexive if [for any 
a ∈ A , a ≿ a ], complete if [for any a, b ∈ A with a ≠ b , either a ≿ b or b ≿ a ], 
and transitive if [for any a, b, c ∈ A , if a ≿ b and b ≿ c , then a ≿ c ]. A reflexive, 
complete, and transitive binary relation, ≿ , on set A is called a weak order. Let 
TA (resp. BA ) be the set of all weak orders (resp. reflexive and complete binary 
relations) on A. The asymmetric (resp. symmetric) part of a binary relation, ≿ , 
is denoted by P(≿) (resp. I(≿) ). For a binary relation, ≿ , on set A and a subset 
B ⊆ A , we denote the restriction of ≿ to B as ≿ |B . For a weak order ≿ on set A, 
the set A is called the underlying set of ≿ , denoted by A = und (≿) . For a posi-
tive integer k, we denote by [k] the set of all positive integers that are less than 
or equal to k, that is, [k] = {m ∈ ℕ ∶ 1 ≤ m ≤ k} . The union of two disjoint sets A 
and B with A ∩ B = � is often denoted as A + B.

2.2 � Main concepts: social ranking solutions

Our model investigates how to order participants when the performances of some 
(not all) of their coalitions are known. We introduce the formal definitions of cen-
tral concepts, followed by their interpretations.

•	 X ∶= {1, 2,… , n} is the set of all candidates with 3 ≤ n < +∞.
•	 X ∶= 2X�{�} is the set of all nonempty subsets of X, interpreted as the set of 

all logically possible coalitions.
•	 � ∶= {weak order ≿∶ 𝜙 ≠ und (≿) ⊆ X} is the set of all weak orders whose 

underlying sets are nonempty subsets of X  . For ≿∈ D , und (≿) is called the 
domain of coalition, interpreted as the set of all feasible coalitions (of ≿ ), and 
elements of ptc (≿) ∶= {x ∈ X ∶ ∃B ∈ und (≿) s.t. x ∈ B} are called the par-
ticipants of ≿.

•	 A social ranking solution (SRS) R is a function that maps each ≿∈ � to a 
complete and reflexive binary relation on the set of all participants. Formally, 
for each ≿∈ � , an SRS R returns R(≿) ∈ B ptc (≿) . For the ease of notation, we 
write R(≿) as R≿ . Similarly, the asymmetric (resp. symmetric) part of R≿ is 
denoted by P≿ (resp. I≿ ) instead of P(R≿) (resp. I(R≿) ). We distinguish several 
SRSs by the upper scripts ( RU ,RB , and so on). The same notation rule applies 
to them, as well. For instance, we denote RU(≿),P(RU(≿)) , and I(RU(≿)) as 
RU
≿
,PU

≿
, and IU

≿
—respectively.
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Given a weak order ≿∈ � (which is interpreted as a performance ranking of the 
feasible coalitions), an SRS returns a binary relation R(≿) on the set of partici-
pants. Our model assumes that und (≿) is any nonempty subset of X  . This means 
that the set of all feasible coalitions are considered variable. This is different 
from most of the previous studies (Moretti and Öztürk 2017; Bernardi et al. 2019; 
Allouche et al. 2021), which assumes that the underlying set is fixed as X  (i.e., all 
the logically possible coalitions are considered in the input order).

In this paper, the sum of two weak orders (with disjoint underlying sets) plays 
the key role. For ≿1,≿2∈ � with und (≿1) ∩ und (≿2) = 𝜙 , let

When ≿∈≿1 ⊕ ≿2 , we say that ≿ is a sum of ≿1 and ≿2 , and the pair of ≿1 and ≿2 is 
called a partition of ≿.

Example 1  Suppose X = {1, 2, 3, 4, 5} . Then, 

(a)	 Let ≿1,≿2,… ,≿5∈ � as follows: 

 We describe weak orders by arraying the elements of the underlying set as 
seen above. For instance, ≿1 is a weak order such that {1} is ranked above both 
{2} and {1, 2} ; {2} and {1, 2} are indifferent with each other; and the under-
lying set is und (≿1) = {{1}, {2}, {1, 2}} . In this style, we do not omit the 
elements of the underlying set so that we can properly find the underlying 
set from the description. So, {1} ≻ {2} is not an abbreviated description of 
{1} ≻ {2} ∼ {1, 2} . They describe different weak orders with different underly-
ing sets.

	   It follows that und (≿2) = {{1}, {2}} and und (≿3) = {{3, 4, 5}, {3, 4}, {4, 5}} . 
Since they are disjoint, ≿2 ⊕ ≿3 is properly defined. By definition of ⊕ , one can 
verify that ≿4∈≿2 ⊕ ≿3 . But ≿5∉≿2 ⊕ ≿3 , because ≿5 | und (≿2)

∶ {1} ∼ {2} is 
different from ≿2∶ {1} ≻ {2} . The set of all participants of each ≿2 and ≿3 is 
ptc (≿2) = {1, 2} and ptc (≿3) = {3, 4, 5}.

(b)	 One familiar interpretation of ≿2 and ≿3 is the ranking of feasible coalitions in 
two disjoint departments, say sales department ptc (≿2) = {1, 2} and personnel 
department ptc (≿3) = {3, 4, 5} in a firm. Following this, und (≿2) = {{1}, {2}} 
means that the sales department has only one-person coalitions, while und (≿3) 
= {{3, 4, 5}, {3, 4}, {4, 5}} means that the personnel department has two-person 
or three-person coalitions. One can interpret ≿4 as the evaluation of the whole 

≿1 ⊕ ≿2 ∶= {≿∈ � ∶ und (≿) = und (≿1) ∪ und (≿2) and

≿ | und (≿i)
=≿i for i = 1, 2}.

≿1∶ {1} ≻ {2} ∼ {1, 2}

≿2∶ {1} ≻ {2}

≿3∶ {3, 4, 5} ≻ {3, 4} ≻ {4, 5}

≿4∶ {3, 4, 5} ≻ {3, 4} ∼ {1} ≻ {2} ≻ {4, 5}

≿5∶ {3, 4, 5} ≻ {3, 4} ∼ {1} ∼ {2} ∼ {4, 5}
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coalitions of the two departments because ≿4∈≿2 ⊕ ≿3 . In other words, ≿2 and 
≿3 are interpreted as the restriction of ≿4 into each of the two departments.

(c)	 In (b), we describe a case when any feasible coalition is made up within a single 
department; candidates belonging to different departments do not make feasible 
coalitions. In general, however, coalitions made up of multiple departments 
(organizations, institutions, groups, etc.) are often found. Let us add such an 
example. Interpret {1, 2, 3} as the set of professors at the department of eco-
nomics (E-professor[s]) and {4, 5} as the set of professors at the department 
of mathematics (M-professor[s]). Consider a subset of X = {1, 2, 3, 4, 5} as a 
research group, for example, {2} represents a single-researcher group of Profes-
sor 2, and {1, 4, 5} represents the three-researcher group of Professors 1, 4, and 
5. Let ≿6,≿7,≿8∈ � as follows. 

 Suppose that ≿6,≿7 , and ≿8 represent the contribution ranking of the (feasible, 
existing) research groups including E-professors. ≿6 represents the ranking for 
coalitions including only E-professors (intradisciplinary coalitions), ≿7 repre-
sents the ranking for coalitions including both E-professors and M-professors 
(interdisciplinary coalitions), and ≿8 represents the ranking of the whole. In this 
sense, ≿6 and ≿7 are restrictions of ≿8 regarding the interdisciplinary research.

(d)	 In general, a weak order has multiple partitions (just as a set is usually partitioned 
in various ways). Recall the context in (c). Suppose that the age of the professors 
matters rather than their collaboration with other departments. Suppose that 
the odd numbered professors (1, 3, and 5) are young and the even numbered 
professors (2 and 4) are seniors. One might, then, be interested to partition ≿8 
into ≿9 [ranking of coalitions of only young researchers] and ≿10 [ranking of 
coalitions including at least one senior researcher] as follows. One can verify 
that ≿8∈≿9 ⊕ ≿10 . 

(e)	 In general, two weak orders (with disjoint underlying sets) can have multiple 
sums. For instance, the following ≿11 and ≿12 are also the sums of ≿9 and ≿10 
(i.e., ≿11,≿12∈≿9 ⊕ ≿10 ). 

 This multiplicity occurs because ≿9 and ≿10 are the rankings of only a part of 
the whole coalitions, but the element of ≿9 ⊕ ≿10 is a ranking of the whole 
coalitions. Therefore, even if we know ≿9 and ≿10 , there is more than one way 
of ranking {3, 5} ( ∈ und (≿9) ) and {1, 2} ( ∈ und (≿10)).

≿6∶ {1, 2} ≻ {1} ∼ {2} ∼ {3}

≿7∶ {3, 5} ≻ {2, 3, 4} ∼ {1, 5}

≿8∶ {1, 2} ∼ {3, 5} ≻ {1} ∼ {2} ∼ {3} ∼ {2, 3, 4} ∼ {1, 5}

≿9∶ {3, 5} ≻ {1} ∼ {3} ∼ {1, 5}

≿10∶ {1, 2} ≻ {2} ∼ {2, 3, 4}.

≿11∶ {3, 5} ≻ {1} ∼ {3} ∼ {1, 5} ≻ {1, 2} ≻ {2} ∼ {2, 3, 4}

≿12∶ {1, 2} ≻ {2} ∼ {2, 3, 4} ≻ {3, 5} ≻ {1} ∼ {3} ∼ {1, 5}.
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2.3 � Extra notations

For readers’ convenience, extra notations are all introduced in this subsection. They 
will be referred to when they first appear in the remaining text. 

1.	 Let Σ1 ≻ Σ2 ≻ ⋯ ≻ ΣK be the quotient order of ≿∈ � (i.e., each Σ1,Σ2,… ,ΣK is 
an equivalence class with respect to I(≿) ). For x ∈ X and k = 1, 2,… ,K , let xk be 
the number of coalitions in Σk that contain x; that is, xk ∶= |{A ∈ Σk ∶ x ∈ A}| . 
The K-dimensional vector 𝜃≿(x) ∶= (x1, x2,… , xK) is called the appearance vec-
tor of x (at ≿ ). The sum of the coordination is called the appearance of x (at 
≿ ), denoted as ‖𝜃≿(x)‖ ∶= x1 + x2 +⋯ + xK . Four orders ≥E,≥DE,≥L , and ≥DL 
are defined as follows: for any K-dimensional vectors x ∶= (x1, x2,… , xK) and 
y ∶= (y1, y2,… , yK),

•	 x ≥E y if and only if ( xk = yk for all k ∈ [K] ) or ( ∃k ∈ [K] such that xi = yi 
for all i < k and xk > yk).

•	 x ≥DE y if and only if ( xk = yk for all k ∈ [K] ) or ( ∃k ∈ [K] such that xi = yi 
for all i > k and xk < yk).

•	 x ≥L y if and only if y ≥E x.
•	 x ≥DL y if and only if y ≥DE x.

	    Furthermore, we write x >E y if x ≥E y and1 ¬(y ≥E x) . >DE,>L , and >DL 
are similarly defined. It is straightforward to verify that ≥E,≥DE,≥DL , and ≥DE 
are transitive. These orders will be used to define the lexicographic SRSs (Defini-
tion 2).

2.	 For ≿∈ � and A ⊆ X , let und A(≿) ∶= {K ∈ und A(≿) ∶ A ⊆ K} . With a little 
abuse of notation, when A is a singleton, such as A = {x} , we write und x(≿) 
instead of und {x}(≿) . This notation will be used in many parts.

3.	 For ≿∈ � and x, y ∈ ptc (≿) , let 

 and 

 These are used in the definitions of the majority rules (Definition 4).
4.	 For ≿∈ � and its participants x, y ∈ ptc (≿) , we say that x completely domi-

nates y at ≿ if und x(≿)� und y(≿) ≠ 𝜙 , und y(≿)� und x(≿) ≠ 𝜙 , and C ≻ D for all 
C ∈ und x(≿)� und y(≿) and D ∈ und y(≿)� und x(≿).

d≿(x, y) ∶= |{(S + x, S + y) ∶

S ⊆ X�{x, y}, S + x, S + y ∈ und (≿), S + x ≿ S + y}|,

d≿(x, y) ∶= |{(S + x, T + y) ∶

S, T ⊆ X�{x, y}, S + x, T + y ∈ und (≿), S + x ≿ T + y}|.

1  We denote by ¬ the negation of a statement.



555

1 3

Consistent social ranking solutions﻿	

2.4 � SRSs

We introduce several examples of SRSs.

Definition 1  (Trivial SRSs) 
(a)	 A unanimous SRS, denoted by RU , is an SRS that judges every participant as 

indifferent; that is, for any ≿∈ � and x, y ∈ ptc (≿) , xIU
≿
y.

(b)	 An SRS R is called primitive if for any ≿∈ � and x, y ∈ ptc (≿) such that 
{x}, {y} ∈ und (≿) , we have xR≿y ⇔ {x} ≿ {y}.

The unanimous/primitive SRSs are originally introduced in Moretti and Öztürk 
(2017) under the fixed domain of coalitions und (≿) = 2X . Our definition is its direct 
extension for the variable domains of coalitions. These are instances of trivial SRSs; 
the unanimous SRS RU posits that all participants are indifferent regardless of the 
input, and a primitive SRS judges each participant by their singletons (collaborative 
performances with other candidates are not at all considered). Note that the primi-
tive SRS is not unique in the present model; this is because for participant x, its sin-
gleton coalition {x} is not necessarily in und (≿) . In such a case, the condition says 
almost nothing about the social ranking of x.

Definition 2  (Lexicographic SRSs) [See item 1 of Sect.  2.3 for the definition of 
≥E,≥DE,≥L , and ≥DL.]

The LES—denoted by RE—is an SRS such that for all ≿∈ � and x, y ∈ ptc (≿) , 
xRE

≿
y ⇔ 𝜃≿(x) ≥E 𝜃≿(y) . Similarly, dual-lexicographic excellence solution (DLES) 

RDE , lexicographic least solution (LLS) RL , and dual-lexicographic least solution 
(DLLS) RDL are defined by substituting ≥E with ≥DE,≥L , and ≥DL—respectively.

The LES and DLES2 are introduced in Bernardi et al. (2019). When comparing 
participants x and y, every LES, LLS, DLES, and DLLS sees the appearance vectors 
in a lexicographic way. The LES (resp. DLES) sees the vectors from the top to the 
bottom (resp. from the bottom to the top) to look for k such that xk ≠ yk holds for 
the first time: participant x is judged better than y if xk > yk (resp. xk < yk ) at such 
k. The intuition behind this is that the participants that appear more often (resp. less 
often) in coalitions of high (resp. low) positions should be better. The remaining 
two, the LLS and DLLS, are the reversals of the LES and DLES, respectively. Note 
that the LLS and DLLS are not the main targets of our characterization; they do not 
appear until we verify the independence of the axioms in Sect. 3.3. Nevertheless, we 
introduce them here because some arguments (Proposition 1) apply to the LLS and 
DLLS, too.

2  It is called dual lexicographic solution in Bernardi et al. (2019).
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Definition 3  (The Borda rule) [See item 2 of Sect. 2.3 for the definition of und x(⋅).]
We define Borda rule RB in two plausible styles. No matter which is applied, 

RB does not satisfy CON (Proposition 2). For any ≿∈ � and for all x, y ∈ ptc (≿) , 
xRB

≿
y ⇔ s≿(x) ≥ s≿(y) , where

•	 First definition: 

•	 Second definition: 

The first and second definitions measure the score in two different styles. In the 
first definition, the score associated with C ∈ und x(≿) is the number of coalitions 
that are either indifferent with, or ranked lower than C. The score of x at ≿ (i.e., 
s≿(≿) ) is given by taking the sum of all feasible coalitions C including x. In the sec-
ond definition, the score associated with C ∈ und x(≿) is the difference between the 
number of coalitions ranked below C and the number of coalitions ranked above C.

Within the literature, Borda rule for weak preference profiles has been defined 
in several ways; each of which coincides with Borda rule in its usual sense when 
the input is a linear preference profile. Our two definitions are inspired by the ones 
found in the literature. Our first definition corresponds with that of Fleurbaey (2003) 
and Terzopoulou and Endriss (2021), while the second definition is closer to the one 
found in Gärdenfors (1973), Young (1974), and Black (1976).

Definition 4  (Majority rule as SRSs) [See item 3 of Sect. 2.3 for the definition of 
d, d.]

(a)	 Ceteris paribus majority (CP majority), denoted by RCPM , is an SRS such that 
for any ≿∈ � and x, y ∈ ptc (≿), xRCPM

≿
y ⇔ d≿(x, y) ≥ d≿(y, x).

(b)	 Round robin majority (RR majority), denoted by RRRM , is an SRS such that for 
any ≿∈ � and x, y ∈ ptc (≿), xRRRM

≿
y ⇔ d≿(x, y) ≥ d≿(y, x).

CP majority (Haret et al. 2019) is an SRS based on CP comparison—that is, to com-
pare the performances of participants with the other teammates being the same. For 
instance, in comparing participants 1 and 2, it sees the matches between {1} and {2} , 
{1, 3} and {2, 3} , and, in general, {1} ∪ S and {2} ∪ S for S ⊆ X�{1, 2} . CP majority 
counts the number of victories in CP comparisons and declares that x is socially at least 
as good as y if x wins y as many times as y wins x. However, RR majority counts the 
number of victories in all pairs between x’s coalitions (coalitions including x but not y) 
and y’s coalitions (coalitions including y but not x). From the viewpoint of Fig. 1, CP 
majority sees only parallel matches, while RR majority also sees diagonal matches.

s≿(x) ∶=
∑

C∈ und x(≿)

(|{D ∈ und (≿) ∶ C ≿ D}|).

s≿(x) ∶=
∑

C∈ und x(≿)

(|{D ∈ und (≿) ∶ C ≻ D}| − |{D ∈ und (≿) ∶ D ≻ C}|).
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3 � Characterization of LES and DLES

This section provides a characterization of the LES and DLES. Section 3.1 intro-
duces relevant axioms; then, we provide a characterization of the LES and DLES in 
Sect. 3.2. The independence of each axiom is shown in Sect. 3.3.

3.1 � Axioms

Definition 5  (CON) An SRS R is said to satisfy CON if for any ≿,≿1,≿2∈ � with 
≿∈≿1 ⊕ ≿2 , and participants x, y ∈ ptc (≿1) ∩ ptc (≿2) , if xR≿1

y and xR≿2
y , then 

xR≿y . Furthermore, if xR≿1
y , xR≿2

y , and ( xP≿1
y or xP≿2

y ), then xP≿y.

Simply speaking, CON implies that the social ranking at ≿ must be consistent with 
the social rankings at its partitioned weak orders ≿1 and ≿2 (where ≿∈≿1 ⊕ ≿2 ). 
CON is an analog of standard consistency in social choice theory,3 which demands 
that the social outcome at a society N must be consistent with the social outcomes 
at its partitioned sub-societies N1 and N2 (where N = N1 + N2 ). Nevertheless, the 
difference between CON and the standard consistency is often more than expected.

The standard consistency is often considered in anonymous contexts. Voters (the 
elements of N) are not distinguished. Therefore, the ballot profile of society N is 
usually represented as the list of the numbers of each type of ballot. In such a case, 
partitioning the ballot profile of society N into partitioned sub-societies, N1 and N2 , 
does not lose any information: the number of a ballot, B, in society, N, is found as 
the sum of such number for sub-societies, N1 and N2.

In our model, however, the partitions of weak orders is considered. As a result, 
two weak orders ≿1 and ≿2 usually have multiple sums (recall (e) in Example 1). 
Since CON requires that the social ranking R≿1

 and R≿2
 are consistent with R≿ for 

all ≿∈≿1 ⊕ ≿2 , its requirement can be stronger than what the standard consistency 
means in the anonymous contexts. This can lead to the fact that the Borda count 
fails to satisfy CON (Proposition  2). Nevertheless, the multiplicity of the sum of 
two weak orders do not make the idea completely ruined. We will prove that the 
lexicographic SRSs surely satisfy CON (Proposition 1). This is attractive especially 
when the whole coalitions are too large or too mixed, as only the small domain of 
coalitions are considered (e.g., interdisciplinary research teams or young research 

Fig. 1   What CP majority sees (left) and RR majority sees (right)

3  Among them, the closest to ours is Smith (1973), and Nitzan and Rubinstein (1981), which is designed 
for ranking-valued procedures rather than set-valued procedures.



558	 T. Suzuki, M. Horita 

1 3

teams in Example 1 (d) and (e)). Even in such a case, our results show that the lexi-
cographic SRSs can judge individuals consistently in the above sense.

First of all, Lemmas  1 and  2 identify straightforward but useful facts about 
the partition of weak orders. When ≿∈≿1 ⊕ ≿2 , Lemma  1 states the relationship 
between the quotient orders of ≿,≿1 , and ≿2 , and Lemma 2 states the relationship 
between the appearance vectors of ≿,≿1 , and ≿2.

Lemma 1  Let ≿,≿1,≿2∈ � with ≿∈≿1 ⊕ ≿2 . Let Σ1 ≻ Σ2 ≻ ⋯ ≻ ΣK be 
the quotient order of ≿ ; Σ�

1
≻ Σ�

2
≻ ⋯ ≻ Σ�

L
 be the quotient order of ≿1 ; and 

Σ��
1
≻ Σ��

2
≻ ⋯ ≻ Σ��

M
 be the quotient order of ≿2 . Then, the following holds. 

(a)	 For any l ∈ [L] , there exists unique l∗ ∈ [K] such that (i) Σ�
l
⊆ Σl∗ and (ii) 

Σ�
l
∩ Σk = � for all k ∈ [K]�{l∗} . Furthermore, (iii) 1∗ < 2∗ < ⋯ < L∗.

(b)	 For any k ∈ [K] , Σk is either 

Proof of Lemma 1 

(a)	 Since ≿ | und (≿1)
=≿1 by ≿∈≿1 ⊕ ≿2 , if two coalitions are indifferent at ≿1 , 

then they are also indifferent at ≿ . Therefore, each equivalence class (at ≿1 ) 
Σ�
1
,Σ�

2
,… ,Σ�

L
 is contained in one of Σ1,… ,ΣK . Since Σ1,… ,ΣK are equivalence 

classes at ≿ , they are disjoint with each other. This discussion proves (i) and (ii). 
By ≿ | und (≿1)

=≿1 again, if a coalition, A, is ranked above B at ≿1 , then A is also 
ranked above B at ≿ . This implies (iii).

(b)	 Because of (a), for each l ∈ [L] , each Σ1,… ,ΣK either contains Σ�
l
 or is dis-

joint with Σ�
l
 . By symmetry, the same holds for Σ��

m
 with m ∈ [M] . Since 

und (≿) = und (≿1) ∪ und (≿2) by ≿∈≿1 ⊕ ≿2 , we can write Σk as specified in 
(b) (recall that each Σ1,Σ2,… ,ΣK is nonempty). 	�  ◻

Lemma 2  Let � be either E, L, DE, or DL.

Let ≿,≿1,≿2∈ � with ≿∈≿1 ⊕ ≿2 and x, y ∈ ptc (≿1) ∩ ptc (≿2) . 

(a)	 Suppose 𝜃≿1
(x) = 𝜃≿1

(y) . Then, 𝜃≿(x) ≥𝛿 𝜃≿(y) ⇔ 𝜃≿2
(x) ≥𝛿 𝜃≿2

(y).
(b)	 Suppose 𝜃≿i

(x) >𝛿 𝜃≿i
(y) for i = 1, 2 . Then, 𝜃≿(x) >𝛿 𝜃≿(y).

Proof of Lemma 2  The proof for each � = E, L,DE,DL is essentially the same. We 
prove for � = E . Let Σ1 ≻ Σ2 ≻ ⋯ ≻ ΣK be the quotient order of ≿ ; Σ�

1
≻ Σ�

2
≻ ⋯ 

≻ Σ�
L
 be the quotient order of ≿1 ; and Σ��

1
≻ Σ��

2
≻ ⋯ ≻ Σ��

M
 be the quotient order of 

≿2 . Also, for z = x, y , we denote the appearance vectors as 𝜃≿(z) = (z1, z2,… , zK) , 
𝜃≿1

(z) = (z�
1
, z�

2
,… , z�

L
) , and 𝜃≿2

(z) = (z��
1
, z��

2
,… , z��

M
).

⎧
⎪⎨⎪⎩

Σ�
l

for some l ∈ [L],

Σ��
m

for some m ∈ [M], or

Σ�
l
∪ Σ��

m
for some l ∈ [L] and m ∈ [M].
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For each k ∈ [K] and i = 1, 2 , let4 x(i)
k
∶= |{S ∈ Σk ∩ und (≿i) ∶ x ∈ S}| and 

y
(i)

k
∶= |{S ∈ Σk ∩ und (≿i) ∶ x ∈ S}| . Note that x(i)

k
 (y(i)

k
) counts the number of ele-

ments in und x(≿i) ( und y(≿i) ) in Σk . By (b) in Lemma 1, we have that for k ∈ [K],

By (a) in Lemma 1, each Σ�
1
,Σ�

2
,… ,Σ�

L
 is contained in exactly one of Σ1,Σ2,… ,ΣK 

and is disjoint with the others. Therefore, x(1) ∶= (x
(1)

1
, x

(1)

2
,… , x

(1)

K
) is obtained by 

inserting some 0’s into 𝜃≿1
(x) = (x�

1
, x�

2
,… , x�

L
) . Similarly, each x(2), y(1), and y(2) 

are defined5 and they are obtained by inserting some 0’s into 𝜃≿2
(x), 𝜃≿1

(y), 𝜃≿2
(y) , 

respectively. By the definition of ≥E , we can infer that for i = 1, 2,

Proof of (a): Suppose that 𝜃≿1
(x) = 𝜃≿1

(y) . By (2), we have that x(1) = y(1) . So, by 
(1), we have that for each k ∈ [K],

Therefore, we can infer that 𝜃≿(x) ≥E 𝜃(y) ⇔ x(2) ≥E y(2) . By (2), we have that 
𝜃≿(x) ≥E 𝜃(y) ⇔ 𝜃≿2

(x) ≥E 𝜃≿2
(y).

Proof of (b): Suppose that 𝜃≿i
(x) >E 𝜃≿i

(y) for i = 1, 2 . Then, there exists a 
unique l ∈ [L] such that x�

i
= y�

i
 for all i < l and x′

l
> y′

l
 . Also, there exists a unique 

m ∈ [M] such that x��
i
= y��

i
 for all i < m and x′′

m
> y′′

m
 . By (a) in Lemma  1, there 

exists l∗,m∗ ∈ [K] such that Σ�
l
⊆ Σl∗ and Σ��

m
⊆ Σm∗ . Without loss of generality, we 

can assume l∗ ≤ m∗ . Then, we can infer that x(i)
k
= y

(i)

k
 for any k < l∗ , x(1)

l∗
> y

(1)

l∗
 , and 

x
(2)

l∗
≥ y

(2)

l∗
 . Therefore, with (1), we have that xk = yk for all k < l∗ and xl∗ > yl∗ . This 

implies that 𝜃≿(x) >E 𝜃≿(y) . 	�  ◻

Proposition 1  The LES, LLS, DLES, and DLLS all satisfy CON.

Proof of Proposition 1  To prove that the LES satisfies CON, we need to verify that 
for any ≿∈≿1 ⊕ ≿2 and x, y ∈ ptc (≿1) ∩ ptc (≿2) , 

(a)	 If xIE
≿1
y and xIE

≿2
y , then xIE

≿
y.

(b)	 If xIE
≿1
y and xPE

≿2
y , then xPE

≿
y.

(c)	 If xPE
≿1
y and xPE

≿2
y , then xPE

≿
y.

(1)xk = x
(1)

k
+ x

(2)

k
and yk = y

(1)

k
+ y

(2)

k
.

(2)
x(i) ⋆ y(i) ⇔ 𝜃≳i

(x) ⋆ 𝜃≳i
(y)

where ⋆ is any one of ≥E,=, or ≤E .

(3)
xk ⋆ yk ⇔ x

(2)

k
⋆ y

(2)

k

where ⋆ is any one of >,=, or < .

4  The authors thank an anonymous reviewer for a comment that inspired us to introduce the vectors x(i) 
and y(i) , which simplified the proof.
5  Formally, x(i) = (x

(i)

1
, x

(i)

2
,… , x

(i)

K
) and y(i) = (y

(i)

1
, y

(i)

2
,… , y

(i)

K
) for each i = 1, 2.
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However, these are straightforward corollaries of Lemma  2. For (a): xIE
≿1
y and 

xIE
≿2
y imply 𝜃≿i

(x) = 𝜃≿i
(y) for i = 1, 2 by the definition of the LES. Therefore, 

Lemma 2 says that 𝜃≿(x) = 𝜃≿(y) , indicating xIE
≿
y . This proves (a). (b) and (c) are 

similarly verified by Lemma  2. The LLS, DLES, and DLLS are also similarly 
verified. 	�  ◻

Proposition 2  The Borda rule RB, CP majority, and RR majority do not satisfy CON.

Proof of Proposition 2  Let us give a counterexample.

•	 The Borda rule according to the first definition in Definition 3. Let x, y, z ∈ X 
be distinct candidates. 

 Then, we have ≿∈≿1 ⊕ ≿2 . However, we obtain that yPB
≿1
x , yIB

≿2
x , and xIB

≿
y . 

This contradicts CON.
•	 The Borda rule according to the second definition in Definition  3. Let 

x, y, z ∈ X be distinct candidates. 

 Then, we have ≿∈≿1 ⊕ ≿2 . But we obtain that xPB
≿1
y , xIB

≿2
y , and yPB

≿
x . This 

contradicts CON.
•	 CP majority and RR majority: let 

 Then, either under CP majority or RR majority, x is judged indifferent with y under 
both ≿1 and ≿2 . But x is ranked above y under ≿ . This contradicts CON. 	�  ◻

Definition 6  (CD) [See item 4 of Sect. 2.3.] An SRS R is said to satisfy CD if for all 
≿∈ � and its candidates x, y ∈ ptc (≿) , if x completely dominates y, then xP≿y.

The intuition of CD is straightforward. If every coalition containing x but not y 
is ranked above those coalitions containing y but not x, then x is socially superior 
than y. In the previous literature, similar dominance properties have been proposed. 
Moretti and Öztürk (2017) introduce dominance (DOM), which demands that (1) 
if x is at least as good as y in every ceteris paribus comparison (x dominates y), x 
is socially as good as y; and (2) if x dominates y and x wins y in at least one cet-
eris paribus comparison, then x is socially better than y. Later, Suzuki and Horita 

≿1∶ {x} ≻ {y} ∼ {y, z}

≿2∶ {x, y, z}

≿∶ {x} ∼ {x, y, z} ≻ {y} ∼ {y, z}.

≿1∶ {z} ≻1 {x} ∼ 1{y} ∼ 1{y, z},

≿2∶ {z, x} ∼ 2{x, y}, and

≿∶ {z} ≻ {x} ∼ {y} ∼ {y, z} ≻ {z, x} ∼ {x, y}.

≿1∶ {x} ∼ {x, z} ≿ {x, y}

≿2∶ {y} ∼ {y, z} ≻ {x, y, z}

≿∶ {x} ∼ {x, z} ≻ {y} ∼ {y, z} ≻ {x, y} ∼ {x, y, z}
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(2021) introduce a weaker notion called weak dominance (WDOM); this demands 
that if x wins y in every ceteris paribus comparison, x is socially better than y. Let us 
demonstrate the difference between WDOM (DOM) and CD. Suppose X = {1, 2, 3} , 
and ≿∶ {1, 3} ≻ {2, 3} ≻ {1} ≻ {2} . Since 1 wins 2 in every ceteris paribus com-
parison (i.e., {1, 3} ≻ {2, 3} and {1} ≻ {2} ), WDOM implies 1P≿2 . However, 1 does 
not completely dominate 2; this is because {1} ∈ und 1(≿)� und 2(≿) is ranked lower 
than {2, 3} ∈ und 2(≿)� und 1(≿) . Therefore, CD says nothing about this situation.

Let x ∈ X . A bijection � on X  is called x-invariant if for all S ∈ X  , 
[x ∈ S ⇒ x ∈ �(S)] . For ≿∈ � and a bijection � on X  , we define ≿𝜋 as 
𝜋(C) ≿𝜋 𝜋(D) ⇔ C ≿ D for all C,D ∈ X  . Two notes are in order. First, if a bijec-
tion � on X  is both x-invariant and y-invariant, we say that � is x, y-invariant. Sec-
ond, suppose that a bijection � on X  is x-invariant. Then, � maps every element of 
Y ∶= {S ∈ X¬x ∈ S} to an element of Y . Since � is a bijection and Y is finite, we 
have that for all S ∈ X  , [x ∈ S ⇔ x ∈ �(S)].

Definition 7  (WCA​) An SRS R is said to satisfy WCA​ if for any ≿∈ � , participants 
x, y ∈ ptc (≿) , and a x, y-invariant bijection � on X  , we have xR≿𝜋

y ⇔ xR≿y.

WCA​6 was introduced in Algaba et  al. (2021) as a weaker version of CA by 
Bernardi et  al. (2019). Let us briefly explain WCA. Suppose that � is x, y-invari-
ant bijection on X  . Then, by the note just above Definition 4, we have that for all 
S ∈ X  , S ∩ {x, y} = �(S) ∩ {x, y} . Thus, the only difference between ≿ and ≿𝜋 is the 
teammates of x and y. WCA demands that such change does not affect the ranking 
between x and y.

For a bijection � on X and ≿∈ � , let 𝜎(≿) ∈ � be such that C ≿ D ⇔ 𝜎(C)𝜎(≿) 
�(D) for all C,D ∈ und (≿) (i.e., 𝜎(≿) is a ranking obtained from ≿ by changing the 
names of candidates according to � ). The last axiom, neutrality, demands that the 
name of candidates do not matter.

Definition 8  (N) An SRS R is said to satisfy N if for all ≿∈ � and x, y ∈ ptc (≿) , it 
follows that xR≿y ⇔ 𝜎(x)R𝜎(≿)𝜎(y).

3.2 � Characterization

Our primary result dictates that the four axioms characterize the LES and DLES 
(Theorem 1). Three lemmas (Lemmas 3, 4, and 5) are provided for the proof of The-
orem 1. Lemmas 3 and 4 state that if an SRS satisfies the four axioms (while CD is 
not necessary in Lemma 3), then the social ranking is determined by the appearance 
vectors 𝜃≿(x) and 𝜃≿(y) . Lemma 3 is on the indifference case, and Lemma 4 is on the 
strict case. Lemma 5 is a technical lemma guaranteeing that the two cases consid-
ered in Lemma 4 are exhaustive.

6  Our definition of WCA is a direct extension of Algaba et al. (2021) into our model (where the variable 
domains of coalitions are considered).
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Lemma 3  Let R be an SRS satisfying CON, N, and WCA. For any ≿∈ � with 
x, y ∈ ptc (≿) , we have 𝜃≿(x) = 𝜃≿(y) ⇒ xI≿y.

Proof of Lemma 3  Fix any x, y ∈ X . We will prove that for any ≿∈ � with 
x, y ∈ ptc (≿) , [𝜃≿(x) = 𝜃≿(y) ⇒ xI≿y] . The proof is made by induction on ‖𝜃≿(x)‖ , 
that is, the appearance of x (recall item 1 in Sect.  2.3). Note that x, y ∈ ptc (≿) is 
equivalent to ‖𝜃≿(x)‖, ‖𝜃≿(y)‖ ≥ 1 . Also, 𝜃≿(x) = 𝜃≿(y) implies ‖𝜃≿(x)‖ = ‖𝜃≿(y)‖ . 
Therefore, we will prove that for any ≿∈ � with ‖𝜃≿(x)‖ ≥ 1 , [𝜃≿(x) = 𝜃≿(y) ⇒ xI≿y].

Suppose ‖𝜃≿(x)‖ = 1 and 𝜃≿(x) = 𝜃≿(y) . This means that exactly one element in 
und (≿) contains x (denote the element as A), exactly one element in und (≿) con-
tains y (denote the element as B), and A ∼ B . If A = B , it contains both x and y. 
Because no other coalition in und (≿) contains x or y, exchange of x and y at ≿ does 
not change ≿ at all. By N (and since R≿ is complete), we have xI≿y . Suppose A ≠ B . 
Let ≿�∈ � be the weak order obtained from ≿ by substituting A and B with {x} and 
{y} , respectively. By WCA, we have R≿|{x,y} = R≿� |

{x,y}
 . We can prove again that 

transposing x and y at ≿′ does not change ≿′ at all. Therefore, N demands xI≿′y . With 
R≿|{x,y} = R≿� |

{x,y}
 , we obtain xI≿y.

Suppose that [𝜃≿� (x) = 𝜃≿� (y) ⇒ xI≿�y] holds for all ≿�∈ � with 1 ≤ ‖𝜃≿� (x)‖ ≤ k . 
Let ≿∈ � with ‖𝜃≿(x)‖ = k + 1 and 𝜃≿(x) = 𝜃≿(y) . Fix any A ∈ und x(≿) . If y ∈ A , 
let ≿1∶ A (i.e., ≿1 is a trivial weak order on {A} ) and ≿2∶= ≿ | und (≿)�{A} . Then, 
𝜃≿1

(x) = 𝜃≿1
(y)(= (1)) . By (a) in Lemma  2, 𝜃≿2

(x) = 𝜃≿2
(y) . By assumption of 

induction, we have xI≿1
y and xI≿2

y . By CON, we have xI≿y . Suppose y ∉ A . Then, 
since 𝜃≿(x) = 𝜃≿(y) , there exists B ∈ und (≿) such that x ∉ B ∋ y and A ∼ B . Let 
≿1∶ A ∼ B and ≿2∶= ≿ | und (≿)�{A,B} . Again, we have 𝜃≿1

(x) = 𝜃≿1
(y)(= (1)) . By (a) 

in Lemma 2, 𝜃≿2
(x) = 𝜃≿2

(y) . By assumption of induction, we have xI≿1
y and xI≿2

y . 
By CON, we have xI≿y . 	�  ◻

Lemma 4  Let ≿∗∶ {1, 2} ≻ {1} . Let R be an SRS satisfying CON, N, WCA, and CD. 

(a)	 Suppose that 1P≿∗2 . Then, for any ≿∈ � and x, y ∈ ptc (≿) , we have 
[𝜃≿(x) >E 𝜃≿(y) ⇒ xP≿y].

(b)	 Suppose that 2P≿∗1 . Then, for any ≿∈ � and x, y ∈ ptc (≿) , we have 
[𝜃≿(x) >DE 𝜃≿(y) ⇒ xP≿y].

Proof of Lemma 4  Since (a) and (b) are verified similarly, we prove (a). Fix any 
x, y ∈ X . Note that x, y ∈ ptc (≿) is equivalent to ‖𝜃≿(x)‖, ‖𝜃≿(y)‖ ≥ 1 . Therefore, 
we are supposed to prove the following: for any ≿∈ � with ‖𝜃≿(x)‖, ‖𝜃≿(y)‖ ≥ 1 , 
[𝜃≿(x) >E 𝜃≿(y) ⇒ xP≿y] . We will prove this by induction on ‖𝜃≿(x)‖ + ‖𝜃≿(y)‖ . We 
will first prove Claims 1 and 2, which cover the case of ‖𝜃≿(x)‖ + ‖𝜃≿(y)‖ ≤ 3 , and 
then prove the induction step. Let z ∈ X�{x, y} . 	�  ◻
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Let us begin with two preliminary claims.

Claim 1  If ‖‖‖𝜃≿(x)
‖‖‖ = 1 and 𝜃≿(x) >E 𝜃≿(y) , then xP≿y.

Proof of Claim 1 ‖𝜃≿(x)‖ = 1 and 𝜃≿(x) >E 𝜃≿(y) can hold only if the unique element 
of und x(≿) is ranked strictly above any element of und y(≿) (otherwise, it must be 
that 𝜃≿(y) ≥E 𝜃≿(x) ). Therefore, x completely dominates y. By CD, we have that 
xP≿y . 	�  ◻

Claim 2  If ‖𝜃≿(x)‖ = 2 , ‖𝜃≿(y)‖ = 1 , and 𝜃≿(x) >E 𝜃≿(y) , then xP≿y.

Proof of Claim 2  we consider two possibilities, (i) at least one coalition in und (≿) 
contains both x and y, and (ii) there is no such coalition. 

	 (i)	 Let A ∈ und (≿) be such that x, y ∈ A . Because ‖𝜃≿(x)‖ = 2 and ‖𝜃≿(y)‖ = 1 , 
there exists B ∈ und (≿) such that x ∈ B and y ∉ B . Because ‖𝜃≿(y)‖ = 1 , at 
least one of {x, y} and {x, y, z} is not in und (≿) . Let C be such element—that 
is, 

 In other words, C is a coalition such that {x, y} ⊆ C and C ∉ und (≿) . Now, 
let ≿1∶ C . Let us construct ≿2∈≿ ⊕ ≿1 by putting C above any element of 
und(≿ ). Then, by N, we have xR≿1

y ⇔ yR≿1
x . Because R≿1

 is complete by the 
definition of SRS, it follows that xI≿1

y . Therefore, CON implies that 
R≿2

|
{x,y}

= R≿|{x,y} . However, let ≿3∶ C ≻ B and ≿4∶= ≿2 | und (≿2)�{B,C}
 . By 

WCA and 1P≿∗
2 , we have xP≿3

y . By N, we have xI≿4
y . Because ≿2∈≿3 ⊕ ≿4 , 

CON implies that xP≿2
y . Because we have already shown that 

R≿2
|
{x,y}

= R≿|{x,y} , this implies that xP≿y.
	 (ii)	 Suppose that no element of und (≿) contains both x and y. Because ‖𝜃≿(x)‖ = 2 

and ‖𝜃≿(y)‖ = 1 , und x(≿) has two elements and und y(≿) has exactly one ele-
ment. Let us denote them as und x(≿) = {A,B} and und y(≿) = {A�} . Further-
more, let C ∶= {x, y} . Because no element of und (≿) contains both x and y, it 
follows that C ∉ und (≿) . Because 𝜃≿(x) >E 𝜃≿(y) , we have either A ≿ A′ or 
B ≿ A′ . Without loss of generality, assume A ≿ A′ . Now, let ≿1∶ C . Let us 
construct ≿2∈≿ ⊕ ≿1 by putting C above any element of und (≿1) . [The 
remaining part is almost the same as (i)]. By N, we have xI≿1

y . Therefore, 
CON implies that R≿2

|
{x,y}

= R≿|{x,y} . However, let ≿3∶ C ≻ B and 
≿4∶= ≿2 | und (≿2)�{B,C}

 . By WCA and 1P≿∗
2 , we have xP≿3

y . By N, we have 
xI≿4

y . Because ≿2∈≿3 ⊕ ≿4 , CON implies that xP≿2
y . As we have already 

shown that R≿2
|
{x,y}

= R≿|{x,y} , this implies that xP≿y . 	�  ◻

C =

{
{x, y} if {x, y} ∉ und (≿)

{x, y, z} otherwise.
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3.2.1 � Induction step

Assume that for any ≿∈ � with ‖𝜃≿(x)‖, ‖𝜃≿(y)‖ ≥ 1 and ‖𝜃≿(x)‖ + ‖𝜃≿(y)‖ ≤ s , 
[𝜃≿(x) >E 𝜃≿(y) ⇒ xP≿y] . Claims  1 and 2 cover the whole case of s ≤ 3 (i.e., 
(‖𝜃≿(x)‖, ‖𝜃≿(y)‖) = (1, 1), (1, 2), (2, 1) ). Therefore, we can assume s ≥ 3 to prove 
the induction step.

Let ≿∈ � with ‖𝜃≿(x)‖, ‖𝜃≿(y)‖ ≥ 1 , ‖𝜃≿(x)‖ + ‖𝜃≿(y)‖ = s + 1(≥ 4) , and 
𝜃≿(x) >E 𝜃≿(y) . We prove xP≿y . By Claims  1 and 2, we have only to prove the 
case of ‖𝜃≿(x)‖, ‖𝜃≿(y)‖ ≥ 2 . Let Σ1 ≻ Σ2 ≻ ⋯ ≻ ΣK be the quotient order of ≿ . 

	 (i)	 Suppose that there exists k with xk, yk > 0 . If there exists D1 ∈ Σk such that 
x, y ∈ D1 , let ≿1∶ D1 . Otherwise, xk, yk > 0 implies that D2,D3 ∈ Σk exist 
such that y ∉ D2 ∋ x and x ∉ D3 ∋ y . In this case, let ≿1∶ D2 ∼ D3 . In 
either case, we have 𝜃≿1

(x) = 𝜃≿1
(y) . Therefore, Lemma 3 says that xI≿1

y . 
Let ≿2∶= ≿ | und (≿)� und (≿1)

 . Because 𝜃≿(x) >E 𝜃≿(y) , (b) in Lemma 2 says that 
𝜃≿2

(x) >E 𝜃≿2
(y) . By the assumption of induction, we have xP≿2

y . Because 
≿∈≿1 ⊕ ≿2 , CON implies that xP≿y.

	 (ii)	 Suppose that for any k ∈ [K] , either xk = 0 or yk = 0 . In this case, 
{x, y} ∉ und (≿) . Let ≿1∶ {x, y} . Lemma 3 states that xI≿1

y . Let ≿2∈≿ ⊕ ≿1 . 
CON says that R≿|{x,y} = R≿2

|{x,y}.
Because of 𝜃≿(x) >E 𝜃≿(y) , there exists k ∈ [K] , such that xi = 0 for all i < k and 
xk > 0 . Let D ∈ und x(≿) ∩ Σk . Because of the assumption of (ii), we have yk = 0 . 
Furthermore, because xi = 0 for all i < k and 𝜃≿(x) >E 𝜃≿(y) , it follows that any 
element of und y(≿) is ranked below D at ≿ . Let ≿3∶= ≿2 |{D}∪ und y(≿2)

 and 
≿4∶= ≿2 | und (≿2)� und (≿3)

 . By the above discussion, it follows that 𝜃≿3
(x) >E 𝜃≿3

(y) 
and ‖𝜃≿3

(x)‖ + ‖𝜃≿3
(y)‖ < ‖𝜃≿(x)‖ + ‖𝜃≿(y)‖ . By the assumption of induction, we 

have xP≿3
y . It also follows that 𝜃≿4

(x) ≥E 𝜃≿4
(y) and 

‖𝜃≿4
(x)‖ + ‖𝜃≿4

(y)‖ < ‖𝜃≿(x)‖ + ‖𝜃≿(y)‖ . By the assumption of induction (and 
Lemma  3), we have xR≿4

y . By CON, we have xP≿2
y . Because of 

R≿|{x,y} = R≿2
|{x,y} , this means that xP≿y . � ▪

Lemma 5  Let ≿∗∶ {1, 2} ≻ {1} . Let R be an SRS satisfying CON, N, WCA, and CD. 
Then, 1I≿∗

2 never holds.

Proof of Lemma 5  Let

Suppose to the contrary that 1I≿∗
2 . By WCA, we also have that 1I≿1

2 . By N, we have 
that 1I≿2

2 . Since ≿3∈≿∗ ⊕ ≿2 , CON implies that 1I≿3
2.

However, let

≿∗∶ {1, 2} ≻ {1},

≿1∶ {1, 2, 3} ≻ {1}

≿2∶ {1, 2, 3} ≻ {2}, and

≿3∶ {1, 2} ∼ {1, 2, 3} ≻ {1} ≻ {2}.
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By N, we have 1I≿4
2 . By CD, we have 1P≿5

2 . Because ≿3∈≿4 ⊕ ≿5 , CON implies 
that 1P≿3

2 . This contradicts 1I≿3
2 . 	�  ◻

Now, we are ready to show the main result.

Theorem 1  An SRS satisfies CON, CD, N, and WCA if and only if it is the LES or 
DLES.

Proof of Theorem  1  We have already shown that the LES and DLES satisfy CON 
(Proposition 1). They trivially satisfy N and CD. Recall that the outcomes of the

LES and DLES are determined by the appearance vectors, and the appearance 
vectors are calculated by counting the number of each individual in each equiva-
lence class. Therefore, the ranking between x and y does not change when the input 
ranking ≿ is shifted into ≿𝜋 by the x, y-invariant bijection (i.e., 𝜃≿(x) = 𝜃≿𝜋

(x) and 
𝜃≿(y) = 𝜃≿𝜋

(y) for any x, y-invariant bijection of X). This means that the LES and 
DLES satisfy WCA.

We will now prove the “only if” part of the theorem. Let R be any SRS satisfy-
ing CON, CD, N, and WCA. Let ≿∗∶ {1, 2} ≻ {1} . By Lemma 5 (and since R≿ is 
complete), there are only two possibilities: 1P≿∗

2 or 2P≿∗
1 . We will prove that if the 

former (latter) holds, R is the LES (DLES).
Suppose that 1P≿∗

2 . Then, by Lemma  3 and (a) in Lemma  4, we can say that 
for any ≿∈ � with x, y ∈ ptc (≿) , 𝜃≿(x) ≥E 𝜃≿(y) ⇔ xR≿y . Therefore, R is the LES. 
Suppose that 2P≿∗

1 . Then, by Lemma 3 and (b) in Lemma 4, we can say that for any 
≿∈ � with x, y ∈ ptc (≿) , 𝜃≿(x) ≥DE 𝜃≿(y) ⇔ xR≿y . Therefore, R is the DLES. 	�  ◻

3.3 � Independence of the axioms

We will introduce several other SRSs to show the independence of the axioms.

3.3.1 � Extra notation

For ≿∈ � with quotient order Σ1 ≻ Σ2 ≻ ⋯ ≻ ΣK and x ∈ X , let 
𝜏≿(x) ∶=

(
x1, x2,… , xK

)
 , where for k ∈ [K] , let

In other words, if Σk ∩ und x(≿) ≠ 𝜙 (i.e., if there is at least one coalition in Σk that 
contains x), then xk represents the smallest cardinality of those coalitions. Other-
wise, if Σk ∩ und x(≿) = 𝜙 , then xk is |X| + 1 , which is higher than the cardinality of 
any other coalitions.

≿4∶ {1, 2} ∼ {1, 2, 3}, and

≿5∶ {1} ≻ {2}.

(4)x̄k ∶=

{
min

C∈Σk∩ und x(≿)
|C| if Σk ∩ und x(≿) ≠ 𝜙,

|X| + 1 if Σk ∩ und x(≿) = 𝜙.
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3.3.2 � Two SRSs are introduced

•	 The LES with tie-breaking according to ex ante linear ordering REEO

Let ⊳ be a linear order on X. For all ≿∈ �,

 

•	 The LES with tie-breaking according to coalition size RECS

Define RECS as for all ≿∈ � , then

Both REEO and RECS are interpreted as a variety of the LES equipped with a tie-
breaking system. Let ≿∈ � and x, y ∈ ptc (≿) . If xPE

≿
y (i.e., if x is ranked above 

y by the LES), then x is also ranked above y by either under REEO and RECS . Their 
difference appears only when xIE

≿
y (i.e., x and y are indifferent by the LES). In such 

a case, REEO and RECS breaks the tie according to ⊳ and 𝜏≿ , respectively. The tie-
breaking by REEO is simply made by the given linear order ⊳ . The tie-breaking by 
RECS is made by seeing whether 𝜏≿(x) ≥L 𝜏≿(y) holds. In general, 𝜏≿(x) >L 𝜏≿(y) 
holds if there exists k ∈ [K] such that xi = yi for all i < k and xk < yk . Then, xk < yk 
means that x can be ranked at Σk with only xk − 1 colleagues, but y cannot. In this 
sense, the intuition of REES is that if two coalitions demonstrate the same achieve-
ment, then the members in the smaller coalition are more competent than those in 
the larger. Let us demonstrate them with an example.

Let X = {1, 2, 3} and ≿∶ {1, 2} ≻ {1} ∼ {2, 3} . Then, we have that 
𝜃≿(1) = 𝜃≿(2) = (1, 1) , 𝜃≿(3) = (0, 1) , 𝜏≿(1) = (2, 1) , 𝜏≿(2) = (2, 2) , and 
𝜏≿(3) = (4, 2) . Since 1IE

≿
2 and 𝜏≿(1) >L 𝜏≿(2) , 1PECS

≿
2 . This is because the second 

component of 𝜏≿(1) is smaller than that of 𝜏≿(2).

Proposition 3  The four axioms in Theorem 1 are logically independent:

•	 RECS satisfies the four axioms except for WCA.
•	 REEO satisfies the four axioms except for N.
•	 RU , RL , and RDL satisfy the four axioms except for CD.
•	 RRRM satisfies the four axioms except for CON.

Proof of Proposition 3  On RECS. It clearly satisfies N and CD; however, RECS does not 
satisfy WCA: ≿∶ {1, 2} ≻ {1} ∼ {2, 3} and ≿�∶ {1, 2} ≻ {1} ∼ {2} . Then, we have 
1PECS

≿
2 and 1IECS

≿′ 2 . This contradicts WCA.
Finally, let us prove that RECS satisfies CON. Since RE is complete and reflexive, 

the definition of RECS implies the following:

xREEO
≿

y ⇔
[
xPE

≿
y or

(
xIE

≿
y and x ⊳ y

)]
.

xRECS
≿

y ⇔
[
xPE

≿
y or

(
xIE

≿
y and 𝜏≿(x) ≥L 𝜏≿(y)

)]
.
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Suppose that ≿,≿1,≿2∈ � with ≿∈≿1 ⊕ ≿2 and x, y ∈ ptc (≿1) ∩ ptc (≿2) . We 
must prove the following: 

(a)	 xIECS
≿1

y and xPECS
≿2

 imply xPECS
≿

y.
(b)	 xP≿

ECS

1
y and xPECS

≿2
y imply xPECS

≿
y.

(c)	 xIECS
≿1

y and xIECS
≿2

y imply xIECS
≿

y.

For (a), [ xIECS
≿1

y and xPECS
≿2

 ] implies that [ xIE
≿1
y and xPE

≿2
y ] by (1). Because RE sat-

isfies CON (Proposition 1), we have xPE
≿
y . This implies that xPECS

≿
y.

For (b), [ xPECS
≿1

y and xPECS
≿2

 ] implies that [ xPE
≿1
y and xPE

≿2
y ] by (1). Because RE 

satisfies CON (Proposition 1), we have xPE
≿
y . This implies that xPECS

≿
y.

For (c), suppose that xIECS
≿1

y and xIECS
≿2

y . By (1), we have xIE
≿1
y and xIE

≿2
y . Because 

RE satisfies CON (Proposition 1), we have xIE
≿
y . Therefore, we are supposed to ver-

ify that 𝜏≿(x) = 𝜏≿(y) (given that 𝜏≿i
(x) = 𝜏≿i

(y) for i = 1, 2 ). This is done similarly 
as the proof of (a) in Lemma 2. Let

(i.e., substituting ≿ with ≿i in (4)). y(i)
k

 is defined in the same way. By (b) in Lemma 
1, we have that for k ∈ [K],

Suppose that 𝜏≿1
(x) = 𝜏≿1

(y) . By (a) in Lemma 1, each Σ�
1
,Σ�

2
,… ,Σ�

L
 is contained in 

exactly one of Σ1,Σ2,… ,ΣK and is disjoint with the others. When Σ�
l
⊆ Σk , one can 

find that x(1)
k

= y
(1)

k
 . In the same way, by 𝜏≿i

(x) = 𝜏≿i
(y) ( i = 1, 2 ), we can infer that 

x
(i)

k
= y

(i)

k
 for all k ∈ [K] and i = 1, 2 . By (6), we have that 𝜏≿(x) = 𝜏≿(y).

On REEO : As the tie-breaking is done by a fixed linear order, it does not satisfy N. 
REEO clearly satisfies CD and WCA. REEO satisfies CON. This is similarly verified as 
RECS.

On RU , RL , and RDL : Let ≿∶ {1} ≻ {2} . Then, 1IU
≿
2 , 1IL

≿
2 , and 1IDL

≿
2 . This contra-

dicts CD. RU clearly satisfies N, WCA, and CON. RL and RDL clearly satisfy N and 
WCA. They satisfy CON (Proposition 1).

On RRRM : It clearly satisfies N, WCA, and CD. But it does not satisfy CON (Prop-
osition 2). 	�  ◻

(5)
xPECS

≿
y ⇔

[
xPE

≿
y or

(
xIE

≿
y and 𝜏≿(x) >L 𝜏≿(y)

)]

xIECS
≿

y ⇔
[
xIE

≿
y and 𝜏≿(x) = 𝜏≿(y)

]
.

x
(i)

k
∶=

{
min

C∈Σk∩ und x(≿i)
|C| if Σk ∩ und x(≿i) ≠ 𝜙,

|X| + 1 if Σk ∩ und x(≿i) = 𝜙.

(6)x̄k = min
{
x̄
(1)

k
, x̄

(2)

k

}
and ȳk = min

{
ȳ
(1)

k
, ȳ

(2)

k

}
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4 � Concluding remarks

This paper introduces consistent SRSs with variable domains of coalitions. We con-
sider a situation where there are several (mutually disjoint) domains of coalitions, 
and a consistent series of ordinal rankings of participants are required. Our char-
acterization result (Theorem 1) reveals the merits of using the LES and DLES in 
such situations. It is worth noting that the Borda rule and majority rules as SRSs (as 
defined in Sect. 2.4) are not consistent (Proposition 2) while the LES, DLES, and 
some of its variants are found to be consistent (Proposition 3). These results imply 
the connection between the lexicographic type SRSs and consistency. Our model 
considers the partition of a weak order into two weak orders with disjoint underlying 
sets (i.e., ≿1 ⊕ ≿2 was defined only when und (≿1) ∩ und (≿2) = 𝜙 ). This assump-
tion sounds natural when several disjoint families of coalitions matter (as in (c) and 
(d) in Example 1). In general, however, a research team can appear in different rank-
ings of coalitions (e.g., the ranking within journals of economics and the ranking 
within journals of mathematics). Extending the consistency axiom into such com-
plex situations can be an interesting future topic.
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