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1 Introduction

Establishing which collective choices respond best to the values of concerned
individuals is a central problem in economics, ethics and politics. In order to
take these values into account, they must be known, either directly or indi-
rectly. Some decision-making processes recognize this explicitly and require
citizens to vote, as in political elections, or to express their preferences other-
wise, as when applying for admission to public universities or internships in
hospitals. In other cases, the reference to interested individuals is more indi-
rect. It is not always clear whether and how decision makers integrate the
preferences of their constituencies into their calculations, but they cannot be
completely insensitive to them.

Knowledge of individual preferences is a primary example of asymmetri-
cally distributed private information. In an extreme version, we may claim
that each individual knows her preferences perfectly, and that nobody else has
any information about them. Less extremely, it is easy to accept that we all
know about our own preferences better than anybody else. There is another
sense in which information about preferences is private: agents are entitled to
hold any opinion, and to sustain it as their own, even if others know it is not.
Therefore, individual preferences must be the guide to good collective deci-
sions, but knowledge about them is typically dispersed among individuals, and
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not obviously available to the decision-makers or to the institutions which
determine social outcomes.

Can we guarantee that agents will provide the decision-maker with accu-
rate information regarding their preferences, or that they will behave within a
given institution in a way that reveals their actual preferences? Not necessar-
ily! Even in ancient times people who voted were aware of the possibility that
not revealing one’s true preferences might be a superior strategy than just
voting straightforwardly. Farquharson (1969) based one of the early contem-
porary monographs on strategic voting on a letter by Plinius the Young, who
discusses a debate in the Roman Senate where three groups of voters were
equally split in favor of three alternative courses of action. Plinius himself,
fearing that his worse preferred outcome could come about, was considering
to join the supporters of the decision that was intermediate for him, in order
to at least guarantee himself that much. Writers of the enlightenment period in
France, like Borda and Condorcet, who anticipated the importance of voting
in democratic societies, defended specific methods by going well beyond their
mere description: they actually defended their specific methods over others by
providing sound discussions of their properties and their respective advan-
tages. These founders of the modern theory of voting were also well aware of
the possibility that voters might not only be led by their true preferences, but
also by other calculations, when filling their ballots. Getting closer to our-
selves, let us use some introspection: anyone who has sometimes rooted for a
loser must have debated whether to actually vote for the hopeless candidate,
just to make the point, or else select the least undesirable candidate among the
potential winners, and cast a “useful” vote.

So, we learn from the books and from our own experience that it may be
hard to know about the actual preferences of agents, even if we are informed
about their actions, unless we can get a hold of the actual connections between
what people want and what people do. How can we get such a hold? To begin
with, notice that people with the same objectives may act differently depend-
ing on the rules under which society operates. I may find that my best action is
to vote sincerely under majority rule, but prefer to be devious under point
voting. Hence, if we want to control for the connections between desires and
actions, we must be specific about the institutions through which society is
making decisions. In fact, knowing that many well known rules are manipu-
lable does not exempt us from asking a first and very natural question: could
there be some voting rule, or some other institution for collective decision
making, under which all agents would always find it best to act straightford-
wardly and reveal their true preferences? We are not interested in naive, my-
opic agents, but on sophisticated ones; could it be that, after careful scrutiny
of all opportunities, all agents would always conclude that their best action is
to be truthful? If and when they exist, rules under which this would happen
will be called strategy-proof, or non-manipulable. The aim of this article is to
explain under what circumstances it may be possible to design strategy-proof
rules, and how they would be like.

Before we jump to this main objective, let me elaborate a bit more on the
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connections between individual preferences and individual actions. Strategy-
proof rules, if they exist, will elicit the true preferences of agents. If, on top of
that, the rule’s choices are efficient from the point of view of declared prefer-
ences, then they will be truly efficient, since people will have declared their
true preferences. And even if the chosen actions are suboptimal, we can still
rely on meaningful preferences to make any welfare statements which might
apply. There are other, more sophisticated procedures for arriving at efficient
decisions, while not necessarily learning about the true preferences of agents.
When asked to act within an institution, agents are allowed a number of
strategies. Social outcomes are determined once each agent picks a strategy,
through some outcome function. Under voting rules, strategies are ways to fill
the ballots. Under market rules, they may include the possible decisions to
supply or demand, or the possibility to fix prices, or some other actions.
Sometimes, strategies are simple enough that they can be identified with the
simple expression of preferences. For example, a ballot may be seen as a way
to describe my preferences over candidates. Similarly, my willingness to pay
for some good reveals an important part of my preferences. Then, for worlds
where my set of preferences are essentially the same as my set of actions, a
strategy-proof rule is one where, it is always a dominant strategy for me to use
the strategy that reveals my actual preferences. To be dominant, a strategy
must not only be the best response to some set of actions by other agents:
it must be a best response to any set of actions that others may take. This is
such a strong requirement that dominant strategies might well not exist, in
many cases.

Then, strategy-proofness cannot be achieved, but there is still some hope
to link the actions of rational agents with the set of socially desirable out-
comes, by designing mechanisms that implement these outcomes. Combina-
tions of individual strategies can still be in equilibrium even if agents do not
have dominant strategies. There are different notions of equilibrium, and
what we’ll say next applies to any of them. But, for the sake of argument,
consider Nash-equilibria, that is, combinations of strategies having the in-
ternal property that each one of them is a best response to the others. Fix the
preferences of agents, and consider the Nash equilibria associated with the
game that a given institution gives rise to, once the agent’s preferences are
set. Are the outcomes of the institution satisfactory, given the agent’s pref-
erences? If yes, check the same for another game, resulting from the same
rules (the same institutions) but under another set of preferences. Are the
Nash-equilibrium outcomes again satisfactory, given the new preferences? If
so, proceed again. Should the answer always be positive for a family of
preference profiles, we then can say that the institution at hand implements
in Nash equilibria the performance criterion under which we have evaluated,
in each case, whether the outcomes were satisfactory. Here is a more indirect
and sophisticated way to connect the actions of individuals with their con-
sequences: just design mechanisms under which the actions of agents (truth-
ful or not, assuming that this word makes sense here) lead to desirable out-
comes at equilibrium.
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The purpose of implementation theory is to study when it is possible to
implement some performance criteria by means of appropriate sets of strat-
egies and outcome functions, and eventually to describe the types of insti-
tutions that would emerge from such a designing exercise. This issue also
contains a primer to implementation theory and mechanism design due to
Matthew Jackson (2001). Implementation theory anticipates the sophistica-
tion of agents and creates institutions where essentially all strategic efforts to
beat the rules are self defeating. The quest for strategy-proof rules is part of
this large intellectual building, but it is probably its most quiet room: we look
for the case where people will find it rational to convince themselves that en-
gaging in these self-defeating exercises is just not worth their effort.

This paper is meant as an introduction to the literature on strategy proof-
ness. It is not a survey: the exposition concentrates on a handful of models.
Suggestions for further reading are given in the concluding remarks, and the
references include just a sample of the vast literature on the topic. My selec-
tion tries to be suggestive of the types of questions, the kinds of results to ex-
pect and the techniques of proof that appear in this literature. The paper is
structured as follows. In Sect. 2, I state an important theorem, establishing
that manipulations are essentially unavoidable unless the preferences of agents
over alternatives are restricted. I also provide a guide to some of the alterna-
tive proofs for this important result. Section 3, then, reviews a family of
models where it is natural to assume that the preferences of agents will be
restricted, and this allows for the existence of nontrivial strategy-proof social
choice functions. The basic restriction I consider is single-peakedness on a
line, which naturally arises in many political and economic contexts. I also
discuss extensions of this concept to more complicated sets of alternatives.
Sections 2 and 3 concentrate on cases where all agents are concerned by the
complete description of the alternatives as a whole, and they are all allowed to
have similar preferences. For example, an alternative may be a political can-
didate, and then anyone can consider the candidate to be first, or last, or
middle. By contrast, Sects. 4 and 5 consider models where agents are essen-
tially concerned only on those aspects of the global choices that concern them
directly. For example, in an exchange economy, the social alternatives are the
matrices that represent the allocation of all resources among all agents, but
each one of them can selfishly care only about the row in this matrix that
refers to his own consumption. Hence, my preferences on the global alter-
natives will be based on my private component and will come from a different
set of preferences on the global alternatives than those of other agents. In this
type of environments it still makes sense to consider restricted domains of
preferences, although the relevant restrictions will come from other motiva-
tions: they may include standard restrictions on economic preferences, like
convexity or monotonicity. Section 4 considers rationing problems, and Sect.
5 considers exchange economies. In both cases I describe specific methods to
allocate private resources to agents in a strategy-proof manner, for appropri-
ate domain restrictions. Section 6 contains some final comments and refers to
further readings.
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2 Strategy-proofness for unrestricted domains: the Gibbard Satterthwaite
Theorem

2.1 Preliminaries

A will be a set of alternatives, (finite or infinite). 7 = {1,2,...,n} will be a
finite set of agents. Agents in I will be assumed to have preferences on A.
Preferences will be always complete, reflexive, transitive binary relations on 4.
R will stand for the set of all possible preferences on A. Preference profiles are
n-tuples of preferences, one for each agent in 7 = {1,2,...,n}.

A social choice function on the domain Dy x --- x D, = R" is a function
f:Dy x---x D, — A, where each D; is considered to represent the set of
preferences which are admissible for agent i.

What preferences are admissible, or interesting, or relevant, will change
with the interpretation of A4, the set of alternatives. Different economic situa-
tions will give rise to alternative setups, some of which will be considered
along this paper.

We shall focus on social choice functions which are strategy-proof, or non-
manipulable. 4 social choice function f : Dy X --- x D, — A is manipulable ift

there exists some preference profile (=,..., =,) € D x --- x D,, and some
preference =’ € D;, such that
f'(>la"'7 >/[a"'7 ?n) >_if'(>]a"'7 ?iw"v ?n)

The function [ is strategy-proof iff it is not manipulable.

Given a social choice function f, denote by r, the range of f. Given a
complete preference relation > on the set 4 of alternatives, and a subset B
of A, let C(»,B) ={be Blforall ce B,b}=c}. The set C(=, B) denotes the
»-maximal elements in B, and is interpreted as the set of alternatives that
an agent endowed with preferences = would consider best out of those in B.

A social choice function f is dictatorial iff there exists a fixed agent i such
that, for all preference profiles,

f(?la"w?n)ec(?ivrf)

Hence, a dictatorial social choice function is trivial, in that it does not
really aggregate preferences of agents, but simply chooses one of the best ele-
ments of one and the same agent (when it is unique, this fully describes the
rule; otherwise complementary criteria to break ties are allowed, but this
hardly allows to consider the rule anything but trivial).

The following theorem establishes that all non trivial social choice func-
tions on the universal domain of preferences are manipulable. We informally
bunch up, under the term ““trivial”, two types of rules: those that are dictato-
rial, and those which only choose between two alternatives. Indeed, for the
simple case where society must decide between only two alternatives, the
majority rule, or any reasonable variant of it, are strategy-proof. But these
rules break down dramatically when more than two choices are at stake, as
expressed by the following
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Theorem 1. (Gibbard (1973 ), Satterthwaite (1975)) Any social choice function
f:R" — A, whose range contains more than two alternatives, is either dicta-
torial or manipulable.

Notice that choosing by majority over two alternatives (with an appropri-
ate tie-breaking rule) is a nondictatorial and non-manipulable social choice
function. Because of this and other similar examples, Theorem 1 must be ex-
plicit about the requirement that there are at least three alternatives in the
range. Another essential assumption of this theorem is that the social choice
function is defined on the universal set of preferences over A.

2.2 Proofs of the Gibbard-Satterthwaite Theorem

Because the theorem is important, it has been the object of much attention,
and many alternative proofs of it have been offered. We shall briefly outline
several of them. To unify the discussion, we concentrate on the case where the
set of alternatives is finite.

The earliest proof is due to Gibbard (1973), and it relies heavily on
Arrow’s impossibility theorem (1951). The latter refers to social welfare
functions: that is, to rules which assign a transitive preference relation to
each preference profile. It states that a social welfare function over the uni-
versal domain satisfying the properties of Pareto (P) and Independence of
Irrelevant Alternatives (IIA) must be dictatorial (when there are at least three
alternatives).

Gibbard’s proof (and some variants of it, like a very elegant one due to
Schmeidler and Sonnenschein 1978) run as follows. Start from a strategy-
proof social choice function f with at least three alternatives in its range;
construct (in a way to be described) an auxiliary rule, based on f, that assigns
to each profile a binary relation on the alternatives in the range of f; prove
that, under the given construction, this binary relation is transitive (if f is
strategy-proof ), and that the auxiliary rule wy is thus a social welfare function:
show that, again due to f's strategy-proofness, w, must also satisfy the con-
ditions of Pareto and IIA; conclude (from Arrow’s theorem) that wy is dicta-
torial and (from the construction) that f must also be.

Different ways to define w, from f can be used to make the above argu-

ment. Gibbard’s is as follows: for any profile (>,..., ,), and any two
alternatives x and y in the range, construct a new profile (3>7,..., =),

where each agent i places x and y on the top of his ranking, while keeping the
relative order of x and y as in =, and also respecting the relative orders of
any pair not involving x and y; calculate the outcome f(=\”,..., =7);if f is
strategy-proof, we must get either x or y (this takes an easy proof); then, de-
clare x socially preferred to y under profile (=, ..., »,) if x is the outcome of
S for (=,..., %)), or y preferred to x if y comes out.

The above construction was initially proposed as a tool to prove the
Gibbard-Satterthwaite Theorem. But, once set in place, the construction
allows to establish a close connection between the set of social choice func-
tions satisfying strategy-proofness and that of social welfare functions meeting
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Arrow’s conditions. This connection is very interesting, as emphasized by
Satterthwaite (1975), and it holds not only under the universal domain as-
sumption, but also for some restricted domains (like those where agents’
preferences are single-peaked — see Barbera et al. 1993). However there are
domains admitting nondictatorial strategy proof social choice functions that
do not admit nondictatorial Arrowian social welfare functions. And there are
domains where the converse holds. Hence, the close connection between the
possibility of solving Arrow’s aggregation problem, and that of finding a
strategy-proof rule cannot be taken as a universal fact: it must be checked for
each restricted domain.

A second interesting proof of the Gibbard-Satterthwaite theorem is based
on a close examination of strategy-proof social choice rules for the two-
person, three-alternative case, followed by a double induction on the number
of agents and alternatives (Schmeidler and Sonnenschein 1978). Concentrat-
ing first on the 6 x 6 matrix corresponding to the combinations of strict pref-
erences for the two agents, a number of short but subtle arguments lead to the
conclusion that strategy-proofness only allows for social outcomes which
always coincide with the preferred alternative of one of the two agents. Then,
a simple reasoning extends the conclusion to general preferences (admitting
indifferences), and induction does the rest. This proof emphasizes that the two
person, three alternative case contains all the essential elements of the theo-
rem, in a nutshell.

Finally, I would like to sketch a proof that was presented in Barbera and
Peleg (1990), and has its roots in Barbera (1983). The preceding proofs only
apply when the number of alternatives is finite. The proof I am about to
present, although it is still proposed here for the finite case, can be easily
adapted to cover the case with a continuum of alternatives. It is also a good
starting point for the analysis of strategy-proof rules operating under
restricted domains. Because of that, many of the results to be surveyed later
are proven with techniques similar to those I will now present.

To be concise, I'll consider two-agent social choice functions, and assume
that agents have strict preferences. We denote the set of all strict preferences
by 2 (here again, the extensions to general preferences and to n agents are
quite straightforward). The argument runs as follows.

e Given f, let f: ? x # — A be strategy-proof
¢ Given f, define the notion of an option set. This will be key to our proof.
The options left for 2, given a preference P; for agent 1, are defined by

03(P1) = {x|3Py, f(P1P>) = x}

Notice that this definition is relative to f. We should write 0,/(P;), but we
omit the f for simplicity. These are the outcomes that 2 could obtain, by some
declaration of preferences (truthful or not), should 1 declare preferences P;.

The proof now proceeds along five elementary remarks. The first remark
is that, if f is strategy-proof, then for all preference profiles f(Py,P;) =
C(P3,02(Py)). This is just a rewording of the strategy-proofness condition, but
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it allows us to think of functions satisfying this property as generated by a two
stage process: agent one, by declaring her preferences P;, narrows down 2’s
options to 0,(P;); then, agent 2 chooses her best alternative out of the options
left by 1. (Clearly, the argument is symmetric; the roles of 1 and 2 could be
reversed all along). Notice that, if agent 1 was a dictator, then 0,(P;) would be
a singleton and coincide with 1’s preferred alternative. On the other hand if 2 is
a dictator o0,(P;) =rr for any Pj, since 1’s declaration is irrelevant to the
function’s outcome, and fixing it does in no way restrict the possible choice of 2.

Given this first remark, the proof of the Gibbard-Satterthwaite Theorem
consists in showing that a strategy-proof social choice function must generate
option sets 0,(P1) which always select a singleton (1’s best alternative) or al-
ways leave all of ry for 2 to choose from. This is easily proven through a se-
quence of additional remarks, which shed light on the structure of strategy-
proof functions, and whose proofs are really simple. (The reader can try to
prove them directly. If in need, turn to Barbera and Peleg, Sect. 2).

The second remark is that, for any P;, 0,(P;) must contain the best ele-
ment of P; in ry. That is, agent 1 should always leave room for 2 to choose,
eventually, 1’s favorite outcome.

The third remark establishes that whenever C(Pi,rs) = C(Pj,ry), then
02(P1) = 02(Py). That is, only the “top” alternative for agent 1 in ry can be
relevant in determining the options that 1 leaves for 2.

The fourth remark is that, whenever the range of f contains at least three
alternatives, then o0,(P;) must either be, for each P, equal to ry or to
C (P 1y }’f).

The fifth and last remark concludes the proof by showing that, in fact, only
one of the two possibilities above can hold. Either 0,(P;) is always equal to ry,
or it is always equal to C(Py,ry). Hence, f/ must be dictatorial if it is strategy-
proof, has at least three alternatives in its range (this plays a role in proving
the fourth remark) and is defined on a universal domain (this is used to prove
the last three remarks).

Like all important results, the Gibbard-Satterthwaite Theorem can be
looked at from different angles. The proofs we have sketched correspond to
different approaches, and each one of them has brought some new insights
into the structure of strategy-proof social choice functions. The purpose of this
section was to present these basic insights somewhat informally, and to
encourage the reader to learn the G-S theorem in full detail, as a useful first
step for the design of strategy-proof social choice rules.

3 Strategy-proofness and single-peakedness

3.1 The choice of linearly ordered alternatives, when individual preferences are
single-peaked

The clear-cut conclusion of the Gibbard-Satterthwaite Theorem is obtained at
some costs: one of them is the assumption of universal domain, according to
which all possible preferences over alternatives are admissible for all agents.
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In many cases, however, the nature of the social decision problem induces
a specific structure on the set of alternatives and this structure suggests, in
turn, some restrictions on the set of admissible individual preferences. It is
then natural to investigate how much does the negative conclusion of the
Gibbard-Satterthwaite Theorem change, when social choice functions are
only required to operate on restricted domains of preferences. In the rest of
this essay we’ll study a number of special problems, each one giving rise to a
specific structure for the set of alternatives and to some natural domain
restrictions. In each of these instances, we’ll investigate the possibility of
defining nontrivial strategy-proof social choice functions, and try to charac-
terize the sets of such functions when possible.

We'll first consider situations where alternatives can be linearly ordered,
according to some criterion (from “left” to “right” in political applications,
from smaller to greater according to some quantitative index, etc.) In this
context, it makes sense to say that one alternative x is between two others,
z and w, say. And it is sometimes natural to assume that the preference of
agents over alternatives is single-peaked, meaning that (1) each agent has a
single preferred alternative 7 (=), and (2) if alternative z is between x and
T (), then z is preferred to x (intuitively, this is because z can be considered
closer than x to the ideal 7 (=)).

Single peaked preferences were first discussed by Duncan Black (1948) and
they arise naturally in many contexts. Here is an example from location
theory. Let the real line stand for a set of locations, let each agent be located
at some point in the line, and let the alternatives be the locations where to
place a facility. Take any location / and look at it from the point of view of an
agent located at @. Consider some /’ which is between / and a (hence, closer to
a than [). If it is always the case that an agent in @ would prefer the “closest”
alternative /' to /, which is farther away, then the preferences of this agent are
single peaked. For another example, consider an agent who has preferences on
the space %i Let points (x,y) € %i stand for the amounts spent by govern-
ment on services X and Y, respectively. The budget line Z; + Z, = B for
Z; > 0 represents the different ways to distribute a budget B between there
two types of expenditures. It is easy to check that any agent with monotonic
and strictly convex preference on 8‘%1 will rank the elements of the budget line
single-peakedly.

To be specific, we’ll concentrate on the case where the number of alter-
natives is finite, and identify them with the integers in an interval [a,b] =
{a,a+1,a+2,...,b} = A. (All the results we describe also apply to the case
where A is the real line, ordered by the = relation. In fact, that is the context
of Moulin 1980, whose results we adapt here). We assume throughout that the
preferences of all agents are single-peaked.

Under these assumptions, there exist non trivial strategy-proof social
choice functions. Here are some examples:

Example 1. There are three agents. Allow each one to vote for her preferred
alternative. Choose the median of the three voters.
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To see that the rule is not manipulable, consider the options of one agent,
say 1, when the other two have already voted for some alternatives ¢ and d
(without loss of generality, let ¢ < d). Then, 1 can determine any outcome
between ¢ and d, and none other (if ¢ = d, then this is the outcome regardless
of I’s vote). If 1’s top alternative is in the integers interval [c,d], then 1 gets
her best without manipulating. If her top alternative is below ¢, then c is the
outcome and, by single-peakedness, this is better for 1 than any outcome in
[¢, d]. Similarly, if the top for 1 is above d, d is 1’s best option. Notice that the
same rule would not be strategy-proof for larger domains, allowing prefer-
ences not to be single-peaked.

Example 2. There are two agents. We fix an alternative p in |a,b]. Agents are
asked to vote for their best alternatives, and the median of p, 71 and T is the
outcome.

Again, the median is well defined, because it is taken from an odd number
of values: two of them are the agent’s votes, while the third one is a fixed
value. We'll call this value a phantom.

Example 3. For any number of agents, ask each one for their preferred alterna-
tive and choose the smallest.

This is another strategy-proof rule. Notice that the options left to any agent
are those smaller than or equal to the smallest vote of others. Hence, if this
agent’s ideal is still lower, she can choose it. Otherwise, the outcome of voting
for her best (which is the lowest vote of others) cannot be improved either.

Remark that this rule, which might appear to be quite different from the
preceding ones, can in fact also be written as a median. To do so, when there
are n agents, place n — 1 phantoms and # alternatives on the lowest alternative
a. Then the function can be described as choosing the median between these
n — 1 phantoms and the # alternatives supported by actual voters.

Up to here, those rules are anonymous: interchanging the roles of agents
(along their votes) does not change the outcome. The following and last ex-
ample describes a strategy-proof rule where different agents play different
roles.

Example 4. There are two agents. Fix two alternatives wy and wy, (wy < wy). If
agent 1 votes for any alternative in [wy, w,), the outcome is 1’s vote. If I votes
for an alternative larger than wy, the outcome is the median of w, and the votes
of both agents. If 1 votes below wy, then the outcome is the median of wi and the
votes of both agents.

Notice that this rule can also be described in other ways.

One way is the following. Assign values on the extended real line to the
sets {1},{2},{1,2}. Specifically, let a; = wi, a» = w», a1 2 =a (the lowest
value in the range). Now, define the rule as choosing

S ) sup(as, ﬂz»} ‘

= inf [
Se{{L,2},{1}{2}} ies
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We shall state immediately that this formula generalizes. There are also other
ways to write the same rule. These will be discussed in Sect. 3.2.

Moulin (1980) characterized the class of all strategy-proof social choice
functions. Actually, he worked on the extended real line. He also assumed that
the rules were only based on the preferred elements for each voter. This is an
unnecessary assumption, because strategy proof social choice rules in these
(and in many other) domains are restricted to only use information on what
each agent considers best. This was proven in Barbera and Jackson (1994) in a
context of public goods, and also in Sprumont (1991) in a context of alloca-
tion rules. As a result, we can express the structure of all strategy-proof social
choice functions (defined on the full set of single-peaked preference profiles),
even if the actual rules we discuss only use information about the peaks. Our
adaptation of Moulin’s characterization is as follows.

Construction. For each coalition S € 2V\ (¥, fix an alternative as. Define
a social choice function in a such a way that, for each preference profile

(?l?"w >n)7

F(rrieees 20) = o, [suplas. 7))

The functions so defined will be called generalized median voter schemes.

The values ag, appear here just as parameters defining functions in this
class. Their role becomes more clear under the alternative definition of gen-
eralized median voter schemes proposed in Sect. 3.2.

Theorem 2. ( Moulin, 1980) A social choice function on profiles of single-peaked
preferences over a totally ordered set is strategy-proof if and only if it is a gen-
eralized median voter scheme.

This characterization can be sharpened if we restrict attention to anony-
mous social choice functions. In this case, the only strategy-proof rules are
those which are indeed based in calculating the medians of agents’ votes and
some fixed collection of phantoms.

Theorem 3. ( Moulin, 1980) An anonymous social choice function on profiles of
single-peaked preferences over a totally ordered set is strategy-proof if and only
if there exist n+ 1 points py,...,pny1 in A (called the phantom voters), such
that, for all profiles,

S(F1 s 70) =med(pys .o puii; T (F1), - T (Z0)

(A similar statement, with /" defined with only n — 1 phantoms, character-
izes strategy-proof and efficient social choice functions).

3.2 An alternative definition of generalized voter schemes

Generalized median voter schemes are an important class of voting rules, and
it will prove useful to provide a second definition of that class. This second
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definition is equivalent to the one given above. It is useful when stating and
proving some results. It also provides an alternative view on how these rules
operate.

To motivate this new definition, let us first consider the case when we must
choose among two alternatives only. A possible rule would be to choose 1
unless there is enough support for the opposite, in which case 0 will be
selected. What do we mean by “enough support”’? We could establish the list
of coalitions that will get 0 if all their members prefer it to 1; and it is natural
to require that, if a coalition can enforce 0, then its supersets are also able to.
Such a family of “winning” coalitions will fully describe the rule; it corre-
sponds to what is called a monotonic simple game.

We now explain how this same idea can be extended to cases where we
must select among a finite set of values on the real line (as opposed to only
two). Without loss of generality, we can identify these values with a list of
integers, from a to b. Let each voter declare her preferred value. Now, we can
start by asking whether « should be chosen. If “enough” people have voted
for a, then let us choose a. To determine what we mean by “enough”, we can
give a list of coalitions C(a). If all agents in one of these coalitions support a,
then a if chosen. If not, go to a + 1. Now ask the question whether “enough”
agents support values up to « + 1. That is, look at all agents who support
either a or a + 1, and check whether they form a group in the list C(a + 1). If
they do, then choose a + 1. If not, go to a + 2, and check whether the agents
who support a, @ + 1 and a + 2 form a group in C(a + 2). If so, choose a + 2;
if not, proceed to a+ 3, etc. Given appropriate lists of coalitions C(a),
Cla+1),...,C(b—1), C(b), the rules described above should lead us to
choose some value between a and b, for each list of the agents’ preferred
values. These lists of coalitions will be called left coalition systems, because
the first value to the left of the interval to get enough support is declared to be
the choice. (One can similarly describe the rules by a set of right coalition
systems, and then start by checking first whether b has enough support, then
b — 1, then b — 2, etc. In this description, the first value to the right which gets
enough support should be chosen). To complete the description of a left co-
alition system, we need to add a few requirements on the lists of values for
C(.), in order to guarantee that the above description makes sense. These
requirements are that (1) if a coalition is “strong enough” to support an out-
come, its supersets are too; (2) if a coalition is “‘strong enough” to support the
choice of a given value, it is also “strong enough” to support any higher value;
and (3) any coalition is “strong enough” to guarantee that the choice will not
exceed the maximum possible value b. (Similar requirements must hold for
right coalition systems). All of this is summarized by the following formal
definitions. Definition 1 formalizes our description of left(right) coalition sys-
tems. Definition 2 describes how each of these coalition systems can be applied
to produce a generalized median voter scheme. Notice that the parameters as
in Moulin’s definition of a generalized median voter scheme (Sect. 3.1) corre-
spond to the minimum (or maximum) value of a at which coalition S appears
in C(a).



Strategy-proof social choice 631

Definition 1. A4 left (resp. right) coalition system on the integer interval B =
[a,b] is a correspondence € assigning to every o€ B a collection of non-empty
coalitions €(a), satisfying the following requirements:
1. if c € () and ¢ = ¢, then ¢’ € € («);
2. if f > o (resp. f < a) and ¢ € €(x), then ¢ € €(f); and
3. €(b) = 2N\ (resp. €(a) = 2N\ ).

We’ll denote left coalition systems by ., and right coalition systems by %.
Elements of % will be denoted by /(-), and those in Z by ().

We can now proceed with our definition of generalized median voter
schemes.

Definition 2. Given a left (resp. right) coalition system £ (resp. #) on B =
[a, b], its associated generalized median voter scheme is defined so that, for all

profiles (=1,..., 7,

S(Fro 70) = BT {i[ 7 () < py e Z(P)

and

{i|l7(Z)<p-1}¢Z(p-1)
(respectively,

S(Frses 20) = BT {i| T () > B} € 2(P)
and

{i|l7(7)>p+1 ¢ 2B+ 1)

Clearly, we could have just referred to either left (or right) coalition system
as the primitives in our definitions. To every generalized median voter scheme
we can associate one system of each type. Referring to both simultaneously
will be useful later on.

Notice that, in order for these rules to be well defined, we only need the
alternatives to be linearly ordered and the agents to have a unique maximal
alternative. Whether or not the rules have good properties depends then on
the domain of preferences over which thus operate.

Example 5. Let B=[1,2,3], N = {1,2,3}. Let (1) = £(2) = {Se2M\J :
#S =2}

Define [ to be the generalized median voter scheme associated with & .
Then, for example

f(1,2,3) =2
f(3,2,3)=3
F(1,3,1) =1

This is, in fact, the median voter rule.
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Example 6. Let now B=[1,2,3,4], N = {1,2,3}. Consider the right coalition
system given by

R4)=R3)=#2)={Ce2M\F:1eCand2e C}

In that case, both 1 and 2 are essential to determine the outcome.

Let g be the generalized median voting scheme associated with R.
Here are some of the values of g:

g(1,4,4) =1
9(3,3,1)=3
9(3,2,2) =2

3.3 Strategy-proof social choice functions on K-dimensional sets, with
generalized single-peaked preferences

The assumption that social alternatives can be represented by a set of linearly
ordered values is a very fruitful one. It allows us to represent situations where
society must choose among different locations along a road, or a river, or in
some space that can be described by a single parameter. But sometimes a
spatial location requires at least two coordinates to be properly described.
Similarly, the choice of how much to spend on a given project is naturally
represented by the costs of the different ways in which this project can be ac-
complished: this is another natural setting for our one-dimensional model.
However, it is more often the case that we can choose among different proj-
ects, each one admitting several ways to be accomplished. Then again, a
multi-dimensional representation of social alternatives would allow for a
much richer representation of the choices open to society. You can think of
those characteristics which are crucial to distinguish among alternatives. For
example, when choosing among political candidates, you may decide that they
can be fully described by their stand on economic, human rights and foreign
policy issues, say. Then, candidates could be described by a three dimensional
vector, whose first component would describe the candidate’s position on the
economic dimension, with the second and third standing for the candidate’s
stand on the other two issues. On each issue, that is, on each of the three
dimensions, you should decide how the candidates’ stands can be attached a
value, from lowest to highest.

The following framework will allow us to formalize multi-dimensional
social choices of a rather general sort.

Let K be a number of dimensions. Each dimension will stand for one
characteristic that is relevant to the description of social alternatives. Allow
for a finite set of admissible By = [ay, b] on each dimension k € [K]. Now the
set of alternatives can be represented as the Cartesian product B = IT{ | By.
Sets like this B are called K-dimensional boxes. Representing the set of social
alternatives as the set of elements in a K-dimensional box allows us to describe
many interesting situations. With two dimensions, we can describe location
problems in a plane. We can describe political candidates by their positions on
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different issues. We can describe alternative plans for a municipality, by
specifying which projects could be chosen in each of the different dimensions
of concern: schools, safety, sanitation, etc.

There still remains a number of limitations in this specification. One is that
we keep assuming that the projects are linearly ordered within each dimen-
sion. Another one is that, by assuming that any point in the Cartesian product
is a possible choice for society, we are implicitly saying that there are no fur-
ther constraints on the choices faced by society. We shall later comment on
how to relax these assumptions. But the multidimensional model can repre-
sent a variety of interesting situations. We first consider what can be said
about strategy-proof rules in this setting and will then proceed to other, may-
be more realistic ones. (Again, we proceed with a specification that assumes a
finite set of alternatives. Similar results can be expressed in a continuous set-
ting (see Border and Jordan 1983, Barbera et al. 1998Db).

Before we proceed, we must be specific about the type of restrictions to
impose on preferences over such sets of alternatives. We shall maintain the
spirit of single-peakedness, by requiring every preference to have a unique top
(or ideal) and then assuming that, if z is between x and 7 ( =;), then z is pre-
ferred to x. But in order to make the “betweenness” relationship precise, we
must take a stand. Following Barbera et al. (1993), we endow the set B with
the L; norm (the “city block” metric), letting, for each o € B, ||| = S5, o]
Then, the minimal box containing two alternatives o« and f is defined as
MB(o,B) = {y € B| |l — Bl = |« — 7l + Iy — Bl

We can interpret that z is “between” alternatives x and 7 (%), if
z€ MB(x,7 (;)). Under this interpretation, the following is a natural ex-
tension of single-peakedness.

Definition 3. A preference =; on B is generalized single-peaked iff for all distinct
p,ye€ B, fe MB(7 (%,),y) implies that f ;.

This definition collapses to that of standard single-peakedness when the set
of alternatives is one-dimensional. It implies, and it is in fact equivalent to, the
following two conditions: (a) the restriction of generalized single-peaked
preference to sets of alternatives that only differ on one dimension is single-
peaked, and (b) the projection of the best element on each of this sets is the
best element within them.

One possible way to choose from K-dimensional boxes consists in using K
(possibly different) generalized median voter schemes, one for each dimen-
sion. Then, if each agent is asked for her best alternative, the k< component
of her ideal can be combined with the k” component corresponding to other
agents, and used to determine a choice, by means of the specific generalized
median voter scheme that is attached to this k< component. Similarly, the
values for any other component can also be computed, and the resulting K-
tuple of values be taken as social outcome.

Formally, we can define (K-dimensional) generalized median voter
schemes on B = H,leBk = H,le [ak, by, as follows:

Let & (resp. #Z) be a family of K left (resp. right) coalition systems, where
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each % (resp. %) is defined on [ay,by]. The corresponding k-dimensional
generalized median voter scheme is the one that, for all profiles of preferences
on B, chooses

S(F1- 70 = B (i) T (7)) < Bi} € Zi(B)

and

{l | e9~(>z) < ﬁkfl} ¢ g(ﬁkfl)a
forall k =1,...,K (or respectively,

S(F1- 7)) = BT T () < P} € A (By)

and

{17 (F) <P} € 2(Bir))

Example 7. We can combine examples 5 and 6 in the preceding section, and give
an example of a generalized median voter scheme.

Let B=11,2,3] x [1,2,3,4], N = (1,2,3). Let %, be as ¥ in example 5.
Let &, be as X in example 6. Let h be the two-dimensional generalized median
voter scheme associated to this coalition system. Then, for example,

h((lv 1)7 (274)7 (374)) = (27 1)
h((?” 3)’ (2’ 3)’ (3’ 1)) = (3’ 3)
h((lv 3)3 (332)3 (132)) - (132)

Moulin’s theorem generalizes nicely to this context. We just need to add a
condition on the social choice function, which is usually referred to as voters’
sovereignty. This condition requires that each one of the alternatives should
be chosen by the function, for some preference profile.

Theorem 4. (Barbera et al. 1993) A social choice function [ defined on the set
of generalized single peaked preferences over a K-dimensional box, and
respecting voters’ sovereignty is strategy-proof iff it is a (K-dimensional) gen-
eralized median voter scheme.

The theorem above applies to the general case where alternatives are ele-
ments of any K-dimensional box and voters’ preferences are generalized single
peaked. A specific instance of this general setup can help us to describe what
we have learned. The example is interesting on its own, and it was studied in
Barbera et al. (1991). Consider a club composed of N members, who are fac-
ing the possibility of choosing new members out of a set of K candidates. Are
there any strategy-proof rules that the club can use?

We consider that the club has no capacity constraints, nor any obligation
to choose any pre-specified number of candidates. Hence, the set of alter-
natives faced by the present members consists of all possible subsets of candi-
dates: they can admit any subset. Because of that, it is natural to assume that
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the preferences of voters will be defined on these subsets: every member of the
club should be able to say whether she prefers to add S, rather than S’, to the
current membership, or the other way around.

What is the connection between this example and our n-dimensional
model? Observe that, given K candidates, we can represent any subset S of
candidates by its characteristic vector: that is, by a K-dimensional vector of
zeros and ones, where a one in the I’ component would mean that the 7%
candidate is in S, while a zero in the J” component indicates that the J*
candidate is not in S. Hence, the set of all subsets of K candidates can be
expressed as the Cartesian product of K integer intervals. Each of these inter-
vals would only allow for two values now: ¢ = 0, and b = 1. The “character-
istics” of the alternatives are known once we know what candidates are in and
what candidates are out. Therefore, choosing members for a club can be seen
as a particular problem within our general class of K-dimensional choice
problems.

What about strategy-proofness? We certainly should not expect a general
positive answer unless we assume some restriction on preferences. Consider,
for example, that there are two candidates x and y, and that I am a voter. I
prefer x to y, but since these two candidates would always be fighting if both
elected, I prefer nobody to be elected rather than both being in: the latter is
my worst alternative. Suppose that, under some voting rule, y will be elected
even if I don’t support it, while x would only be elected if I add my support to
that of other voters. Then, I might not support x, which I like, in order to
avoid the bad outcome that both candidates are in! This type of manipulation
is almost unavoidable, unless the preferences of voters are restricted in such a
way that these strong externalities from having several candidates can be ruled
out. One way to do it is by restricting attention to separable preferences.

To check whether a given preference order on sets of candidates is sepa-
rable, say that a candidate is “good” if it is better to choose this candidate
alone than choosing no candidate at all; otherwise, call the candidate “bad”
(this, of course, refers to the given preference order). Now, we’ll say that the
overall order is separable, if whenever we add a “good’ candidate g to any set
S of candidates, the enlarged set is better than S, and whenever we add a bad
candidate b to S, then the enlarged set is worse than S.

In Barbera et al. (1991), it is shown that there exists a wide class of
strategy-proof social choice rules when the preferences of club members over
sets of candidates are separable. In fact, this is a corollary of Theorem 4 above.
This is because, when there are only two possible values for each dimension,
the separability assumption we just stated is equivalent to the assumption of
generalized single-peakedness for the general case. Then the class of strategy-
proof rules we are looking for is the one formed by all possible generalized
median voter schemes. But, as we already remarked at the beginning of Sect.
3.2, the left coalition systems corresponding to the case with only two possible
values are given by committees, that is, by monotonic families of winning
coalitions. As a result, here is the way to guarantee strategy-proofness in our
clubs. For each candidate, determine what sets of voters will have enough
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strength to bring in that candidate, if they agree to do so. Make sure that if a
set is strong enough, so are its supersets. Then, ask each voter to list all the
candidates that she likes. Choose all candidates that are supported by a co-
alition which is strong enough to bring him in. This is a full characterization.
In particular, it contains a family of very simple rules, called the quota rules.
Fix a number ¢ between 1 and N. Let each agent support as many candidates
as she likes. Elect all candidates which receive at least ¢ supporting votes.
These rules are not only strategy proof under separable preferences. They are
also the only ones to treat all candidates alike (neutrality) and all voters alike
(anonymity).

In this section we have provided a characterization of all strategy-proof
social choice functions when alternatives can be described as K-tuples of inte-
ger numbers and agents’ preferences are single-peaked. What if we allow for a
richer class of preferences? Certainly no new rules will arise, but will all gen-
eralized median voter schemes still be strategy-proof? If not, we could claim
single-peakedness to be a maximal domain admitting non-trivial, strategy-
proof rules (notice that we can always express dictatorship as an extreme ex-
ample within the class; hence our reference to nontriviality). In fact single-
peakedness does not exactly fit the requirement (see Berga 1998; Barbera et al.
1998a). But the sharper results on the subject are just remarks on fine points,
and the basic message one can derive from them is that the hunch that single-
peakedness provides a maximal domain is not far off the mark.

3.4 Voting under constraints

Many social decisions are subject to political or economic feasibility con-
straints. Different feasible alternatives may fulfill different requirements to
degrees that are not necessarily compatible among themselves. A community
may have enough talent to separately run a great program for the fine arts, or
a top quality kindergarten, but not to maintain both programs simultaneously
at the same level of excellence. We can still model these constraints within our
model, where alternatives are described by K-tuples of integer values, as long
as we do no longer require the set of alternatives to be a Cartesian product.
For example, if a firm must choose a set of new employees out of K =
{1,2,...,k} candidates, the alternative sets can be identified with the elements
in the box B = ITX. 110, 1]. But if only three positions are open, and at least one
of them must be filled, the feasible set — consisting of K-tuples with at least a
nonzero and at most three nonzero components — is no longer a Cartesian
product. Similarly, the location of two facilities in some pair of sites out of a
set of five municipal plots (p;,pa,...,ps) can be formalized as a choice from
[1,5] x [1,5], excluding (by feasibility) the elements with the same first and
second component.

Here is how I will formalize the distinction between feasible and conceiv-
able alternatives. Start from any set Z. Let B be the minimal box containing
Z. Identify Z with the set of feasible alternatives. Restrict attention to func-
tions whose range is Z. Then by exclusion, interpret the elements of B\Z as
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those alternatives that are conceivable but not feasible. Let the agents’ pref-
erences be defined on the set Z. Specifically, consider domains of preferences
which are restrictions to Z of multidimensional single-peaked preferences on
B, with the added requirement that the unconstrained maximal element of
these preferences belongs to Z. (This is a limitation, since it rules out inter-
pretations of our model under which preferences would be monotonic on the
levels of characteristics. These levels cannot be such that, for all agents, the
higher is always the better).

Two major facts can be established in this context (see Barbera et al. 1997b;
also Barbera et al. 1998b for a version with a continuum of alternatives). One
is that, regardless of the exact shape of the set of feasible alternatives, any
strategy-proof social choice function must still be a generalized median voter
scheme. Notice, then, that not all generalized median voter schemes will now
give rise to well defined social choice functions, because some of these
schemes, by choosing the values on different dimensions in a decentralized
way, could recommend the choice of non feasible alternatives. Our second
result characterizes the set of all generalized median voter schemes that are
proper social choice functions, for any Z — B. This characterization is based
on the intersection property, a condition which states that the decision rules
operating on different dimensions will be coordinated to always guarantee the
choice of a feasible alternative. Before stating it, let us remark that it is not a
simple condition, but it provides a full characterization, and it can orient our
research for strategy-proof rules for any specification of feasibility constraints.

All of the above is expressed in the following results (Barbera et al. 1997b)

Definition 4. 4 generalized median voter scheme f on B respects feasibility on
Z<Bif f(F1, .., 7)) < Zforal (z,...,r,) such that 7 (3;) € Z.

Definition 5. Let Z < B and let f be a generalized median voter scheme on B,
defined by the left coalition system & or, alternatively by the right coalition
system R. Let o ¢ Z and S < Z. We say that f has the intersection property for
(o, S) iff for every selection r(oy) and I(ay) from the sets R (o) and L (o), re-
spectively, we have

ﬂ[( U l(ka)>u< U V(“k))
pes ke M+ (a,p) ke M~ (a,f)

where Mt (o, ) = {k e K|B, > o} and M~ (o, ) = {k € K|S < otk }-
We will say that f satisfies the intersection property if it is does for every
(o, S) € (B—Z,2K).

#J

Theorem 5. (Barbera et al. 1997b) Let f be a generalized median voter scheme
on B, let Z = B, and f respect voters’ sovereignty on Z. Then f preserves fea-
sibility on Z if and only if satisfies the intersection property.

Denote by ¥, the set of all single peaked preferences with top on Z < B.
Let f be an onto social choice function with domain %' and range Z.
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Theorem 6. (Barbera et al. 1997b) If f : &' — Z is strategy-proof, then f is a
generalized median voter scheme.

Theorem 7. (Barbera et al. 1997b) Let f : %] — Z be an onto social choice
Sunction. Then f is strategy-proof on &' iff it is a generalized median voter
scheme satisfying the intersection property.

3.5 A surprising twist. Back to the Gibbard-Satterthwaite Theorem

One may by now feel to be walking on very narrow grounds. We have speci-
fied the alternatives to be a subset of K-dimensional space. We have required
the preferences to be single-peaked with their top on the pre-specified subset.
We have seen that strategy-proofness requires to use very specific voting rules,
satisfying a general and not always easy to interpret condition (the intersec-
tion property). The Gibbard-Satterthwaite Theorem is an elegant result, even
if it only applies to a specific situation, where all conceivable preferences are
admissible. Our last theorem can be interpreted either as a possibility or an
impossibility theorem, depending on the range restriction. Indeed, when the
set of alternatives is Cartesian, our theorems are quite positive. True, respect-
ing strategy-proofness restricts us to choose among generalized median voter
schemes, but these are quite versatile, and different ones can be chosen for
different dimensions. On the other hand, for some special shapes of the range,
the intersection property becomes highly restrictive, and only very special
rules are eligible. Moreover, our theorems apply to preferences which are
restrictions to feasible sets of more general preferences, which in turn we
assumed to be single-peaked on the minimal box containing our feasible
alternatives, and to have their best element within this set. Hence, while the
universal domain assumption is quite invariant to the specification of alter-
natives (modulo their total number), our domain restriction are specific,
varying with the set of alternatives under consideration.

Because of all these ifs and buts, it is particularly pleasant to remark
that our theorem is, in fact, a very general one, and includes the Gibbard-
Satterthwaite as a corollary. The apparent specificity can be otherwise
interpreted as a source of versatility, as allowing us to cover many different
environments, and the one envisaged by Gibbard-Satterthwaite Theorem in
particular.

Consider any finite set of alternatives, with no particular structure. We can
always identify them with the k unit vectors in a k-dimensional space. The
minimal box containing them is the set B = I7_[0, 1]. Since no third element
in the set of unit vectors U is ““between’ any other two, any arbitrary order of
these unit vectors can be obtained as the restriction to U of a preference with
peak on U which is single-peaked on B. Hence, our last theorem applies to
social choice functions defined on all preferences over U, with range U. Any
strategy-proof social choice function must be a generalized median voter
scheme satisfying the implications of the intersection property. These impli-
cations are that the same scheme must be used for all dimensions, and that it
must be dictatorial. This is the Gibbard-Satterthwaite Theorem. It is not a
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separate entity, but the consequence of a much large characterization involv-
ing special shapes for the range, specific domain restrictions, and the general
structure of the strategy-proof rules.

4 Agent-specific preferences: Rationing and exchange

In the preceding sections, we have studied situations where agents do care for
alternatives in ways that are potentially the same for all. The same preferences
on A can be held by all agents; unanimity is not required, but it is not precluded.

In other cases, the views of agents are necessarily conflictive. When we
must split a dollar, distribute a bunch of desirable objects, decide who will
perform an indivisible and unpleasant task, alternatives have to specify how
much each one of us may get, or who is to work. Then, alternatives which are
best for an agent will typically rank low for others, and unanimity is not to be
expected. The sets of admissible preferences for agents over alternatives will
not be common, but specific to each agent. In addition it will often be natural
to assume that different alternatives assigning the same consequences to one
agent are indifferent to her, even if they affect others in quite varied forms.
This is the assumption of selfishness, which involves a particular form of spe-
cific preferences. Many different collective choice situations are well described
by models where the set of agent’s preferences over alternatives are specific.
The analysis of strategy-proof social choice functions in these context is more
intricate that for cases as those considered till now. This is partly due to the
fact that unanimity can play a much weaker role in proofs. Another added
complication, which we have skipped until now, is that strict preferences over
the whole set of alternatives may not be admissible.

I will illustrate the analysis of strategy-proof rules in the specific prefer-
ences case by describing results for two closely related models.

4.1 Strategy-proof rationing

We’ll now consider cases where a group of agents must share a task or a good.
Examples include division of a job among individuals who have collectively
agreed to complete it, distributing assets among creditors in a bankruptcy,
sharing the cost of a public project or the surplus of a joint venture, or
rationing goods traded at fixed prices. Since shares of the total task, or of the
total amount of good, are the specific objects of choice, individuals are
assumed to have preferences on shares.

Notice here that the alternatives are the distributions of the total among all
agents. Since we’ll be modelling situations where each agent only cares about
her share of the total, preferences will not be common. Agent / will be in-
different among any two alternatives that give her the same share, but j will
not be, if these two alternatives give her different amounts. We shall not be
insisting on this, and just refer to agents’ preferences over their own shares,
rather than over complete alternatives. But it is worth making the point here,
since the fact will make a difference on the results. We’ll examine the class of
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problems where preferences of agents are selfish and single-peaked over their
own shares. This is well justified if we think of a reduced model, where the
task assignment carries some reward, or the share of good one obtained must
be paid for. It is then perfectly natural to prefer some amount of the task or
good over all other amounts (and their accompanying rewards/costs), and to
consider other amounts the better the closer to their ideal. In fact, this would
be a consequence of assuming convex, increasing preferences in the effort/
reward on good/cost space, and of having the agent choose her share on a
convex bounded set.

Formally, for finite set of agents N = {I,...,n}, allotments will be n-
tuples a in the set 4 = {a € [0,1"]| >,y a; = 1}. Preferences being selfish and
continuous, they can be identified with continuous utility functions on [0, 1],
denoted by u;, u/,u;,.... These utility functions will represent single peaked
preferences. That is, for each u; there will be some x* € [0, 1] such that, for any
y,z€[0,1],

x* <y <z=u(x*)>u(y) > uz),
and,
x>y >z=u(x*) > u(y) > ulz).

Denote by S the set of all continuous single-peaked utility functions on
[0, 1]. We'll be interested in allotment rules of the form

f:8"—[0,1]"
with

Z filuy=1 forallueS”

ieN

Notice that u stands for a profile of preferences, (u,...,u,). The value of
f;(u) is the share that goes to i under preference profile u, given rule f.

Some standard requirements, like efficiency and anonymity, can be applied
to allotment rules. Efficiency requires that the selected allotment be Pareto
efficient at each preference profile. When coupled with the requirement that
preferences are single-peaked it is equivalent to the following: at each prefer-
ences profile, agents that do not get exactly their ideal point must either all get
less than what they wished, or all get more.

Anonymity is a property of symmetric treatment for all agents: for all
permutations z of N (z is a function from N onto N) and u € S, fy(;(u™) =
Si(u), where u™ = (tz-1(1), ..., Uz-1()). As we shall discuss, anonymity may or
may not be an attractive property of allotment rules, depending on the a priori
rights of the agents involved.

Finally, in our context, strategy-proofness can be written as the require-
ment that, for allie N, ue S" and v; € S,

ui(fi(u) = wi(fi(u_i, v;))
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An elegant result due to Sprumont (1991) provides a full characterization
of allotment rules satisfying the three requirements above. Actually, only one
rule can satisfy all three simultaneously.

Theorem 8. (Sprumont 1991) An allotment rule is efficient, strategy-proof and
anonymous if and only if it is the uniform rule ™ defined by

o fminlxt(u), Aw)] A 37 xT(u) > 1
Jitw) = {maX[X*(ui),u(u)} i3 () < 1

where  A(u)  solves Y,y min[x*(u;),A(u)] =1 and u(u) solves
5o max[x” (), ()] = 1

In order to relate this result to previous ones, as well as to understand its
possible extensions to the non anonymous case, let us take a second look at
the case where only two individuals must share. This case does not capture all
the features of the problem, but gives us some interesting hints. With two
agents, the allotment is fully described by a; since a; = 1 — a;. Hence, the
preferences of agent 2 can be expressed as preferences on gy, as well, by letting
ir(ar) = up(1 — ay). Clearly, @, is continuous and single-peaked whenever u,
is. The allotment problem is now reduced to choosing a single point in [0, ]
when both agents have preferences which are single-peaked over the same
variable. We have already seen that anonymity and strategy-proofness force
us to use the rule that chooses medians among the agents’ peaks and one
phantom. By symmetry, this phantom must be at % in our case. It is easily seen
that this is exactly the uniform rule for this simple case.

We can interpret the rule as giving each agent the implicit right to guar-
antee herself the (one half-one half) distribution. From this guaranteed level,
mutually desired improvements can be achieved. A similar interpretation for

. . 1
the n-person case would start by guaranteeing the egalitarian share (— of the
n

total) to each agent. Changing these guaranteed levels, while keeping the
possibility of mutually consented changes away from them, would be a
natural way to eliminate anonymity while keeping efficiency and strategy-
proofness. In particular, for the two person case, this would be equivalent to
maintain the median rule, but have a phantom at any point p € [0, 1] different

1 .
than > thus guaranteeing agent 1 the share of p, and the agent 2 the share

1—p.

But, why drop anonymity at all? The reason is that, in many situation,
people may have different rights or entitlements: these may be respected, while
allowing agents who do not want to use them to pass on their rights and allow
others to enjoy what they don’t need. Age, seniority, previous contribution, all
are examples of criteria calling for possibly non-symmetric treatment of
agents, while efficiency and strategy-proofness are still desirable. Surprisingly,
there is only one anonymous rule satisfying efficiency and strategy-proofness,
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but there is a continuum of non-anonymous rules with the two latter prop-
erties. One of the apparent reasons, is that implicit rights can vary; moreover,
they can change quite independently in the cases of excess demand from these
of excess supply. To see this, let us take a final look at the uniform allotment
rule, and at its possible modifications. This time we can look at an example,

3 2 5 6

1 h = 1 h 1 l 1 Ol — . F— jA—
wit ;14 5 agents with ideal points xj 20 X5 20 X3 20 X, 20
x% = ——. The outcome prescribed by the uniform rule can be reached through

20°
the following algorithm (see S6nmez 1994):
Step 1. Determine whether >, , x*(u;) equals, exceeds, or falls short
of 1. If .y x*(u;) =1, then allot shares equal to the ideal points. If
Y ien X (u;) > 1, allot their ideal points to those agents who demand no more

1
than p If Y, c v x*(u;) < 1, allot their ideal point to those agents who demand

1 : .
at least —. In our case, >, y x*(#;) > 1, and agent 1 and 3’s ideal points are
n

less than % Thus, a; = % and a3 = %

Step 2. Determine the remaining number of agents to be allotted and the
remaining share to be allotted. Say, there are k agents and an amount s to be
shared. Perform the same procedure as in Step 1, letting s replace 1 and con-

sidering only the k agents. Iterate this step until all the &’ remaining agents
!/

have ideal points exceeding (or falling short of’) %

15 . 5
In our case, k =3 and s = 20 Agent 2 is allotted a; = 20 There are now

. . 10 . . .

k' = 2 agents remaining with s’ = 20 Each has an ideal point which exceeds
s 5
) y

Step 3. Allot the remairsling o each.

In our case a4 = as = —.

We conclude that a z?lts are allotted the shares 35255

g 20°20°20°20°20)°

5 1
20 4

The above description suggests possible ways to create new non anony-
mous allotment rules in similar ways (and thus with good chances to still buy
strategy-proofness and efficiency).

which corresponds to the outcome of the uniform rule with A(u)

1 . . .
1. Rather than have — as a starting reference point, choose any collection of
n

shares ¢; such that ) .y ¢; = 1.
2. Rather than having the same reference point for the cases of Y,y x*(u;)
<land Y, _yx*(u;) > 1, choose different reference points ¢} and ¢/.
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3. Let the reference levels depend on the share remaining in each iteration of
Step 2 (with enough qualifications on the form of this dependence, in order
to preserve strategy-proofness).

The above remarks can lead to a characterization of wide classes of effi-
cient and strategy-proof allotment rules. This is done in Barbera et al. (1997a),
although the article also presents examples which indicate the need for qual-
ifications of the suggested steps for technical reasons. But the essence is in
what we have described: there are many reasonable and quite satisfactory
ways to design allotment rules, if we can expect preferences on shares to be
single-peaked.

Unfortunately, this property cannot be expected to hold for agent’s pref-
erences on richer types of alternatives, and in particular in the traditional case
of exchange economies, where more than one good is to be distributed. We
discuss this in the next session.

5 Strategy-proof exchange

One of the most classical models in economics is that of an exchange econ-
omy. There are n consumers holding initial endowments of / private goods.
No production takes place. Consumers can exchange among themselves and
reallocate the existing amounts of goods. This model emphasizes that prefer-
ence diversity is an important basis for the existence of mutually advantageous
trade among economic agents. Because of that, it is also an important testing
ground for questions on preference revelation. The cost of strategy-proofness
in exchange economies is efficiency. It has been shown that in exchange
economies strategy-proof social choice functions which are efficient are also
dictatorial. Hurwicz (1972) proved that result for two agents and two goods,
for functions satisfying the added requirement of individual rationality with
respect to the initial endowment. Zhou (1991) proved that this negative result
holds for two people even without the assumption of individual rationality.
Serizawa (1998) has recently extended Hurwicz’s result to economies with any
finite number of agents.

These negative results are important, because they point at some unavoid-
able trade-offs. But, if we want to go beyond, and perform any kind of second
best analysis, it is worth pursuing matters a little further. Suppose we can
characterize all the social choice functions that are strategy-proof in exchange
economies, as we already have done in voting contexts. Clearly, no reasonable
rule within this class will be efficient (we exclude dictatorial rules as unrea-
sonable). But some may be more efficient than others, or less inefficient. This
may also be qualified in reference to some additional information, regarding
the number of agents, the distribution of preferences, or any other relevant
parameters.

I will report on some of the existing characterization results for strategy-
proof social choice rules in exchange economies. They are important because
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they give us a catalog of those mechanisms which can satisfy strategy-
proofness in full. Then, we may want to choose among them those that satisfy
other interesting properties to some satisfactory extent. Of course, one could
start by characterizing the set of rules that satisfy some alternative properties,
and then select among them those which are “closest” to satisfy strategy-
proofness. While this is also possible, it raises the question of what we mean
by “approximate strategy-proofness.” We shall not go deeply in that direc-
tion, but this is a good moment to mention the issue, in connection with the
possibility of using the Walrasian mechanism, or some procedure related to it,
and expect them to have good incentive properties, especially for economies
with a large number of agents. Roberts and Postlewaite (1976) provide con-
ditions under which the gains from manipulating the Walrasian mechanism
become small as the economy grows large. However, small gains will still
justify deviations by maximizing agents, and these deviations may have
meaningful impacts when aggregated across a large population. Jackson
(1992) and Jackson and Manelli (1997) investigate the size and impact of these
deviations on the final equilibrium outcome, relative to the truthful one. They
show that, under general conditions, each agent’s deviations, as well as their
aggregate impact, will again become small as the economy grows large. Let
me also mention two related papers, one by Cordoba and Hammond (1998),
the other by Kovalenkov (1997). Rather than concentrate on the Walrasian
mechanism, which is manipulable for any finite economy, the latter papers
describe variants of this mechanism that would be strategy proof (although
not always balanced) for finite economies. Then, each of these strategy proof
mechanisms are shown to be “approximately balanced” and “approximately
Walrasian” when the number of agents is large. These papers nicely comple-
ment the previous ones in their attempt to capture the incentive properties of
the Walrasian mechanism. One set of papers tends to support the statement
that, for large economies, the Walrasian mechanism will perform approxi-
mately as if it was strategy-proof. The other set supports the statement that,
again for large enough economies, some strategy-proof mechanisms will be-
come approximately Walrasian.

As announced, we’ll consider economies with / private goods and n con-

sumers. The endowment of goods is denoted by e = (e!,...,e") € Rj’rl . An al-
location is a list x = (x!,..., x") of goods received by each agent, and the set

of balanced allocations constitutes the set of alternatives to choose from

A= {xeRﬂﬂin:Ze’}.
i i

To keep within our general framework, agents should be endowed with
preferences over the set of alternatives, that is, on the set of full allocations.
But since we’ll limit ourselves to the analysis of situations when preferences
are selfish, we’ll resort to the traditional formulation in general equilibrium
theory, where agents are attributed preferences over the set of admissible
consumption vectors (elements in R, in our case). We assume that the pref-
erences satisfy some further restrictions of convexity and monotonicity. But
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selfishness itself is also a restriction: all together, these conditions on prefer-
ences define the restricted domain for which we’ll discuss the possibility of
strategy-proof social choice functions. The preferences of agent i are repre-
sented by a utility function u’ : R — R. U denotes the set of all continuous,
strictly quasi-concave and increasing u”s.

5.1 Two agent, two good exchange economies

This is a particular case which turns out quite easy to analyze completely, and
ties in the specific preference case with the common preference one.

To get a feeling for the general results, let us first consider a specific set of
rules that will result in a strategy-proof social choice function (the rules define
a game under which declaring the truthful preferences is a dominant strategy;
the social choice rule is then the one assigning to each preference profile the
outcome of this game under truthful strategies).

Example 8. Fix a positive price p, and allow each agent i to select her best al-
ternative out of the set B(p,e;) = {(xi,xn)|pxi + xn = pein +en}. This
describes the supply/demand of both the agents for both goods. If both agents
have excess demand/supply of the same good, the final allocation is e. If the
excess demand/supply allow for mutually advantageous trade at price p, then
the prescribed allocation is the one where the agent who is less inclined to trade
maximizes her utility.

This rule of voluntary trading at fixed prices and with rationing on the
short side offers no advantage to manipulation. Since prices are fixed and the
rationing rule is not sensitive to the size of unsatisfied demands, it is best for
all agents to express what they want. The associated social choice rule is
clearly strategy-proof. In what follows, we’ll describe other strategy-proof
rules for exchange economies. But the essential insights can always be referred
back to this simple example.

Remark that, in this simple case, we can identify the exchange economies
problem with one of choosing the level of a public good (hence connecting the
problem of common preferences with those of specific preferences). This is
because, once we have fixed a price ratio p and endowments e, choosing the
level of one good for one agent, say x|, fully determines the levels of x!, x7,
x3. Moreover, the preferences of agent 1 over values of x| compatible with
allocation on the budget line are single peaked (because u' is quasi-concave
and monotonic), and so are the preferences of agent 2 over the same x| values
(which automatically determine 2’s consumptions). Therefore, our allocation
problem reduces to the choice of one value on a totally ordered set, with two
agents and single-peaked preferences. Our rule above can be simply rewritten
as one picking the median between the best values of x| for 1 and 2 and the
value e of 1I’s endowment for good 1. With ¢;; as phantom voter, this is one
of the median voter rules we have already identified in Part 1!

Trading at one fixed price has some features that are essential to any
strategy-proof rule. Others can be dispensed with, to get a some general result.
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Remark that any budget line corresponding to a positive price ratio defines a
diagonal set within the set of allocations, in the following sense:

Definition 6. 4 set D = A is diagonal iff for each agent i and for all x,y € D,
(x #y),x' %y and y' # x".

Diagonality of the range rules out the possibility of some agent i getting
more of all the goods in one allocation in the range than i would get at an-
other allocation also in the range.

In our case, the budget line corresponding to the fixed price is, indeed, the
range of our social choice function. Diagonality of the range is necessary for a
social choice function on 2 x 2 exchange economies to be strategy-proof. The
use of only one price is not, as shown by the following examples.

We begin by a numerical example.

Example 9. (See Fig. 1) Agent 1 is endowed with ten units of each of the two
goods and agent 2 is endowed with five units of each of the two goods. Agent 1
may offer to buy good one at a price of 2 (units of good two per unit of good

1
one) and sell good one at a price of > If, for instance, agent 1 finds buying 3

units of good one most preferred (u' in Fig. 1), then agent 1’s dominant strategy
is to offer to buy up to 3 units of good one. If agent 2 has the utility function u>

2
X
1 x2== {0,0)
]
X2
2
X2
x '=10,0) X,

Fig. 1.
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in Fig. 1, then his or her dominant strategy is to offer to sell up to 2 units of
1
good one (at a price of 2) and buy up to 1 unit of good one (at a price Ofi)' In

this case, the outcome of the fixed-price procedure would be that agent 2 sells 2
units of good one to agent 1 at a price of 2. The final allocation for uis (12, 6)
for agent 1 and (3, 9) for agent 2. If instead, agent 2 has the utility function i
(see Fig. 1 again), then he or she will not offer to sell good one, but will offer to
buy up to 2 units of good one. In this case, no goods are exchanged and the final
allocation is the initial endowment.

The principles underlying the case above can be rewritten in a more gen-
eral form. This is the purpose of our next example.

Example 10. A rwo-price rule. Endow agents with any initial endowments e’.
Select one of the two agents, say 1. Choose two prices for the first good in terms
of the second good. Interpret the first (and lowest) as the price at which agent 1
can offer to sell good 1; the second (and highest) as the price at which he can
offer to buy the same good. Given her preferences, agent 1 can then choose to
offer some amount of the first good (up to her endowment), or else post an offer
to buy some amount (only one of these choices will be optimal, given that pref-
erences are quasi-concave and the selling price is not higher than the lower one;
agent 2, given these prices, might have had two best strategies — one of them
selling and the other buying — but we do not allow this to be relevant). If agent 1
has made an offer to buy and 2 is ready to sell at the buying price, exchange
takes place to the extent of the lowest willingness to transact (and up to 2’s en-
dowment). The same occurs if agent 1 wants to sell and 2 is ready to buy.

Examples 9 and 10 implicitly describe, again, a strategy-proof social choice
function. Their ranges are still diagonal. Also, the preferences of each agent
over their option sets (given the declared preferences of the others) are single-
peaked (our previous remark on two maxima already hinted that overall
preferences of agent 2 on the whole range may no longer be single-peaked). In
these two examples, as well as in Example 8, each agent can guarantee herself,
by declaring the true preferences, that the social outcome will be at least as
good as her initial endowment. The rules are individually rational. Subject to
this qualification, the second class of rules we just described through Examples
9 and 10 (to be called the double fixed price rules) are the only ones to guar-
antee strategy-proofness in 2 x 2 exchange economies. Example 8, which is a
special case where the selling and the buying prices coincide (to be called the
single fixed price rule) constitutes the subclass which, in addition, respects
anonymity (i.e., allows both agents to play symmetric roles), provided the
initial endowments of both agents are also identical.

Theorem 9. (Barbera and Jackson 1995) A social choice function on a two-
good, two-agent economy is strategy-proof and individually rational iff it is the
outcome of a double fixed price exchange mechanism. If, in addition, the func-
tion is anonymous, then it is the outcome of a single fixed price mechanism from
the egalitarian endowment.
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The above theorem would need some qualifications to be rigorously stated
(a more precise statement of the next theorem will cover this one as a special
case). Some bounds on the traded amounts can be exogenously fixed, and a
formal definition of what we have presented informally as examples would be
in order. The interested reader is referred to Barbera and Jackson (1995). But
the essentials are laid down.

Notice that all the functions covered by the theorem have very narrow
ranges, and that these are formed by linear prices. This is a consequence of
the fact that the domain of preferences includes all strictly quasi-concave
utility functions and that both agents play a role in determining the outcome.
Dictatorship is excluded by individual rationality. Since dictatorial rules are
obviously strategy proof, a full characterization of rules satisfying this prop-
erty would require to drop the individual rationality assumption (for this, we
refer again to Barbera and Jackson 1995).

5.2 Two agents, | goods

Having learned about the 2 x 2 case, we can now ask whether the same basic
ideas extend to exchange economies with more than two goods. We still retain
the case of two agents, since this (plus our focus on distributing all the
resources) allows us to describe the full allocation once we know what one
agent gets.

Fixed prices were the key to strategy-proof exchange with two goods: the
range is a line. But fixed prices, when there are more than two goods, describe
budget sets whose boundaries are hyperplanes. However restrictive, these rules
allow too much flexibility. Strategy-proofness cannot be satisfied if agents are
allowed to express their preferences on such large sets. What happens is that,
for two goods, the notion of fixed prices and fixed proportions are equivalent.
For more than two goods, strategy-proof social choice functions can be based
on limited trades, along some collection of fixed proportions satisfying some
additional properties. In fact, they must be of this particular form if they are
to satisfy individual rationality.

Let us express these ideas more formally, after an example.

Example 11. There are two agents and three goods. Endowments are ' = > =

(5,5,5), for a total (10,10, 10) resource vector. Agent 1 can buy units of any of
the goods from agent 2, provided she pays one unit of each of the remaining two
goods. Hence, agent 1 can offer multiples (but not combinations) of the trades
(1,—-1,-1), (-1,=-1,1), (=1,1,=1). The range of f in terms of 1's final allo-
cation, is rp ={x|3y€[0,1] s.t. x'=y(5,5,5)+(1-7)(10,0,0), or x'=y(5,5,5)
+(1—=19)(0,10,0), or x"=y(5,55)+ (1 —7)(0,0,10)}. If agent I's must
preferred point in the range is, say, (7,3,3), then the allocation is 2’s most pre-
ferred point from the convex combination of (5,5,5) and (7,3,3) (allocations
are expressed in terms of what agent 1 gets. Then 2 gets (10,10, 10) — x’).

Notice that, given the structure of the range, agent 1 always has a unique
most preferred point, and that all convex combinations of that point and the
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endowment are preferred to all other points on any other segment. It is this
property, that the agent who actually chooses the possible trades actually
prefers these trades to any other, that makes the fixed proportion trading
strategy-proof.

We now provide, after some preliminaries, a more formal definition of
fixed proportion trading.

Preliminaries. Given points @ and b in A, we write ab to denote the set of
points lying on the segment with endpoints a and b, so ab = {x|3y € [0, 1],
x=ya+ (1—y)b}. We write ¢ >% ab if ¢’ > ya' + (1 — y)b' for some y € [0, 1].
Then ¢ >} ab indicates that ¢ lies above the segment ab from agent i's
perspective.

Given a set B 4 and a utility profile u € U2, let T7(B, u) denote the set of
allocations in B which maximize u’. This set is non empty if B is closed.
A function ¢/, which is a selection from T, is called a tie-breaking rule. A tie-
breaking rule ¢ is j-favourable at B € ry if for any u, (B, u) # t'(B,u™,v/)
only if v/(¢'(B,u™,v7)) > v/(t'(B,u)).

Definition 7. A social choice function f defined on a two-agent exchange econ-
omy is the result of fixed proportion trading if ry the range of f, is closed,
diagonal and contains e, and there exists an agent i such that the following holds.

1. for all distinct x and y in 1y either x € ey, y € ex or e >} xy;

2. there exist tie-breaking rules t' and t/ such that t' is j-favourable at ry and t/
is i-favourable at ea N 1y, for all e € ry

3. f(u) =t/(eanrr,u), where a = t'(ry,u).

Condition (1) assures that 7, lies along k < / diagonal line segments, each
having the endowment as an endpoint. If one chooses x from one segment and
y from another segment, then e > xy. Condition (2) states that tie-breaking
rules either are constant or choose in favor of the other agent. This condition
only comes into play if the range is not connected, since then agents might
have two possible utility maximizing choices. (This is an aspect that we have
not emphasized in our previous informal discussion; it is needed for complete
characterization and certainly complicates matters, but does not change any-
thing essential). Condition (3) states that the outcome of f is agent j’s most
preferred point in the range, which lies between the endowment and agent i’s
most preferred point in the range. We can now state

Theorem 10. ( Barbera and Jackson 1995) A two-person social choice function
is strategy-proof and individually rational iff it is the result of fixed proportion
trading.

5.3 Three or more agents

With three or more agents, it is no longer the case that what one of them gets
is determinant of the global allocation. This opens up new possibilities for
strategy-proof rules, some of which are not necessarily attractive. For exam-
ple, agent 1 might be offered to choose her best among some feasible baskets
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of goods. Then, either agent 2 or agent 3 might get the remaining resources,
with the beneficiary being determined, say, according to which one of the
rejected baskets agent 1 declares to be her worst. This rule is clearly strategy-
proof, since agent 1 guarantees herself the best attainable basket, and does not
care who gets the rest; while the other two agents cannot help 1’s choice of
who will be the lucky one.

This is an example of a bossy social choice function, i.e., one where some
essential part of the allocation is trusted to an agent who is unaffected by the
choice, while affecting the utility of the others. Bossy functions were described
by Satterthwaite and Sonnenschein (1981). They are usually considered unat-
tractive, and efforts to characterize strategy-proof social choice functions have
concentrated on finding rules not in this class, called non-bossy.

Barbera and Jackson (1995) provide a characterization of non-bossy
strategy-proof social choice functions satisfying a version of anonymity and
some additional technical conditions. Although the characterization becomes
rather involved, it is in the spirit of the results we have described for two agent
exchange economies: strategy-proofness requires a limited range of possible
exchange, does not allow from trade to be exploited, and thus enters in con-
flict with efficiency.

6 Concluding remarks

We have described the characterizations of classes of social choice functions
for different models; each model represents some family of economic or poli-
tical situations where collective decisions must be adopted. The nature of these
decisions suggests that alternatives may have a structure, which varies from
one model to another; this structure of the alternatives, and the underlying
situation we try to model, will usually suggest the class of admissible prefer-
ences relative to which our analysis of strategy-proofness takes place.

To emphasize the common thread in our approach, let us reconsider, for a
last time, the notion of strategy-proofness.

Given a social choice function defined over a domain of preference pro-
files, we can naturally define a game form describing the strategic possibilities
of agents who participate in this social choice. Preferences in the domain of
the function are the possible strategies. Alternatives in its range are the out-
comes. The social choices for each n-tuple of strategies define an outcome
function. We can fix any profile of preferences in the domain and interpret
them as the actual preferences of agents; each choice of profile, along with the
previously defined game form, defines a game. The incentive properties of the
social choice function are given by the solutions of the games in this class.
Implementation theory deals with the connection between such solutions
(taken to be the prediction of behavioral analysis) and the normative desider-
ata of the society, as expressed by the social choice function.

One particular important question within this framework is the following.
Since every specific preference profile, once interpreted as the set of ““actual”
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preferences, defines one game in the class, and it is also an n-tuple of strategies
in this game, is this n-tuple formed by dominant strategies for each player? If
so, we say that the social choice function generating the class of games in
question is strategy-proof. If not, the function is manipulable.

It is well known that games where all agents have dominant strategies are
rare and it should come as no surprise that classes of games having all this very
strong property are not easy to find. What we have illustrated is that, in spite
of these small odds, it is possible to examine the question systematically for
many different social choice functions, once we understand that these objects
are defined on specific domains, and that the extent of the domain is a crucial
element to determine the class of social choice functions that may satisfy
strategy-proofness. In general terms, only rather trivial social choice functions
can be strategy-proof when the domains of admissible preferences are “large”.
Yet, nontrivial social choice functions are known for economic and political
analysis. Our examples have been chosen to illustrate both the positive and the
negative side of this picture. Generalized median voter schemes, or allotment
rules like the uniform rule and its non anonymous extensions, prove that it is
worth examining each interesting environment without the prejudice that no
interesting rule is strategy-proof. On the other hand, the Gibbard-Satterthwaite
Theorem, or the characterization of the narrow and inefficient methods which
are strategy-proof for exchange economies, remind us that, in many situations,
rational agents will find themselves endowed with rich strategic possibilities, if
they are ready to use their private information as a form to gain advantage over
other participants in collective decision processes.

Let me finish by making it very clear that there is a vast literature on
strategy-proofness, and the choice of examples has been biased. I have, in
particular, concentrated only on the problem of disclosing the preferences of
agents. While preferences are certainly an important part in the description of
the relevant characteristics of agents, other aspects may be private informa-
tion for these. We have skipped anything having to do with revealing one’s
abilities, an issue that becomes essential when studying productive processes.
Even in worlds with trivial preferences we may need to elicit what people can
do in order to know how to compensate them, how to allocate scarce resour-
ces among them, what production plans to shoot at. There is a lot done, and a
lot still to do in this topic. There are also many results and some open ques-
tions in the narrow topic that I have focused on, by assuming that available
alternatives are already fixed, and that preferences are all that matter in order
to choose among them. The reader is referred to the surveys by Moore (1992),
Sprumont (1995), Barbera (1996), and Moulin (1996) for further discussion.
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