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We discuss interactive techniques for multidimensional scaling (MDS). MDS in its
conventional batch implementations is prone to uncertainties with regard to 1) local
minima in the underlying optimization, 2) sensitivity to the choice of the optimiza-
tion criterion, 3) artifacts in point configurations, and 4) local inadequacy of the point
configurations. These uncertainties will be addressed by the following interactive tech-
niques: 1) algorithm animation, random restarts, and manual editing of configurations,
2) interactive control over parameters that determine the criterion and its minimiza-
tion, 3) diagnostics for pinning down artifactual point configurations, and 4) restricting
MDS to subsets of objects and subsets of pairs of objects.

A system, called “XGvis”, which implements these techniques, is freely available with
the “XGobi” distribution. XGobi is a multivariate data visualization system that is
used here for visualizing point configurations.

Key Words: Proximity Data, Multivariate Analysis, Data Visualization, Interactive
Graphics.

1 Introduction

We describe methodology for multidimensional scaling based on interactive data visualiza-
tion. This methodology was enabled by software in which MDS is integrated in a multivariate
data visualization system. The software, called “XGvis”, is described in a companion paper
(Buja et al. 2001) that lays out the implemented functionality in some detail; in the current
paper we focus on the use of this functionality in the analysis of proximity data. We therefore
do not dwell on the mechanics of creating certain plots; instead we focus on problems that
arise in the practice of proximity analysis: issues relating to the problem of multiple local
minima in MDS optimization, to the detection and interpretation of artifacts, and to the
examination of local structure.
The paper is organized as follows: Section 2 introduces the (in)famous Rothkopf Morse

code data and gives a detailed analysis that illustrates the reach of data visualization and di-
rect manipulation through graphical interaction. Section 3 discusses the advantages of visual
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stopping of MDS optimization. Section 4 illustrates the problem of multiple local minima
and shows ways to diagnose its nature and severity. Section 5 explains the fundamental
problem of indifferentiation, that is, the tendency of proximity data to assign too similar
distances to too many pairs of objects. Sections 6 and 7 demonstrate two ways of uncovering
local structure: within-groups MDS, and MDS with truncated or down-weighted dissimilar-
ities. The final Section 8 introduces a novel use of non-Euclidean Minkowski metrics for the
rotation of configurations.
Background on multidimensional scaling can be found in the following books: Borg and

Groenen (1997), Cox and Cox (1994), Davison (1992), Young and Hamer (1994), as well as
some older ones: Borg and Lingoes (1987), Schiffman (1981), Kruskal and Wish (1978). For
the advanced reader there exist overview articles by, for example, Carroll and Arabie (1980,
1998) and Carroll and Green (1997). The collection edited by Davies and Coxon (1982)
contains some of the seminal articles in the field, including Kruskal’s (1964a,b). An older
book article we still recommend is Greenacre and Underhill (1982). Many books on multi-
variate analysis include chapters on multidimensional scaling, such as Gnanadesikan (1997)
and Seber (1984).

2 The Rothkopf Morse Code Data (Yet Again)

In order to illustrate the techniques described in this paper, we use the inescapable Rothkopf
Morse code data (1957) as our running example. While these data may seem stale to those
who are familiar with some of the MDS literature, there is merit in using a well-known
dataset exactly because of the fact that so many prior analyses have appeared in print. This
fact offers comparisons and it avoids distractions from the main point of the paper, which is
methodology.
The Rothkopf Morse code data originated in an experiment where inexperienced subjects

were exposed to pairs of Morse codes; the subjects had to decide whether the two codes in a
pair were identical or not. The resulting data were summarized in a table of confusion rates.
As confusion rates are similarity measures (Si,j), conversion to dissimilarities (Di,j) is

required in order to apply Kruskal-Shepard MDS. In principle any monotone decreasing
transformation could be used for conversion, but we modeled the confusion rates by inner
products, Si,j ≈< xi,xj >, which suggests the conversion formula

D2i,j = Si,i + Sj,j − 2Si,j ,

mimicking the identity ‖xi − xj‖
2 = ‖xi‖

2 + ‖xj‖
2 − 2 < xi,xj >.

Some properties of the resulting dissimilarities are the following: The similarities of
codes with themselves (Si,i) are not ignored; all values are non-negative due to the diagonal
dominance of the confusion matrix (Si,j); dissimilarities of codes with themselves are zero
(Di,i = 0); and finally: classical MDS of the dissimilarities Di,j amounts to an eigenanalysis
of the similarities Si,j.
After subjecting the resulting dissimilarity matrix to nonmetric Kruskal-Shepard scaling

in two, three and four dimensions, we obtained the configurations shown in Figure 1. We
interactively decorated the configurations with labels and lines to aid interpretation [one of
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Figure 1: Views of Converged Nonmetric Scaling Solutions in 2-D, 3-D and 4-D. The stress
values are 0.1874, 0.1254, and 0.0974, respectively. The second and the third frame show two
projections of a 3-D configuration, and the frames in the bottom row show three projections
of a 4-D configuration. The 3-D projections were obtained with 3-D rotations, the 4-D
projections with so-called grand tours and manual tours.

the benefits of a visualization system; Swayne et al. (1998)]. In particular, we connected
groups of codes of the same length, except for codes of length four which we broke up into
three groups and a singleton. In the 2-D solution, one observes that the code length increases
left to right, and (with the exception of the codes of length one) the fraction of dots increases
from the bottom up, in agreement with the many published accounts (Shepard 1962, Kruskal
and Wish 1978 p. 13, Borg and Lingos 1987 p. 69, Borg and Groenen 1997 p. 59 for example).
The 2-D plot is of course rotation invariant, and it has been rotated to align code length with
the horizontal axis and fraction of dots with the vertical axis. Expressions such as “left
to right” and “bottom up” have to be interpreted accordingly with regard to a desirable
rotation.
As a first application of visualization methodology to MDS, we examine the 3-D and

4-D solutions. The methods we use are 3-D rotations and their generalizations to higher
dimensions, grand tours and manual tours [implemented in XGobi: Swayne et al. (1998),
Cook and Buja (1997), Buja et al. (1996)]. Making the usual caveats that the insights gained
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Figure 2: Views of a Nonmetric 3-D Solution of the Subset of Morse Codes of Lengths three,
four and five. The stress is 0.1170.

by viewing dynamic rotations and tours cannot be captured in a series of still pictures, we
report what we were able to see:

• The 3-D solution is only seemingly more complex than the 2-D solution. Roughly
speaking, the 3-D solution is the 2-D solution wrapped around the surface of an ap-
proximate sphere, with the difference that the codes of length one, “E” and “T”, are
further removed from the codes of length two and higher. This is the main insight: the
2-D solution has the defect that it has no good place for the codes of length one. The
true distinctness of the shortest codes cannot be properly reflected in 2-D, but it can
in 3-D. Thus, the additional dimension did not reveal a new dimension in the usual
sense; it revealed an odd subset that should be separated from the rest by a dummy
variable. Below we will also show that the pair {E,T} is extremely influential in the
following sense: it inhibits an additional dimension inherent in the longer codes.

• The 4-D solution, when viewed in a grand tour, reveals a rigidity of the codes of length
three, four and five in their positions relative to each other. They form three roughly
parallel sheets with low and high fractions of dots aligned across the sheets. The codes
of length two form a line that tries to align itself with the longer siblings, but it seems
to suffer from a strong attraction by the codes of length one.

This last finding suggests a simple diagnostic: remove the codes of lengths one and two,
and analyze the longer codes separately. The result is in Figure 2 where we show two
views of a nonmetric 3-D solution. The configuration was interactively rotated for optimal
interpretation. The views share the vertical axis in 3-space, while the horizontal axes are
orthogonal to each other. Here are the findings:

• The left hand view shows the layers of codes of constant length, as well as the matching
trends from low to high fractions of dots within the layers. We note that the layers lean
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to the left, suggesting that code length and fraction of dots are slightly confounded. If
the axis for code length is horizontal from left to right, then the axis for fraction of
dots runs roughly from south-south-east to north-north-west. There is some intuitive
meaning in this type of confounding in terms of physical duration of a code: long
codes that have many dots are more often confused with shorter codes that have many
dashes, than vice versa; for example, “5=·····” and “O=−−−” are more often confused
than “S=· · ·” and “0=−−−−−”. One could therefore interpret the horizontal axis as
physical duration and the strictly vertical axis as fraction of dashes. As a consequence,
the duration of “5=· · · · ·” would be about the same as that of “J=· −−−” as they
have about the same horizontal position.

• The right hand view of Figure 2 can be interpreted as follows: the codes fall into two
subsets, one subset corresponding to the arc that runs from the left side to the top,
the other subset to the arc that runs from the right side to the bottom. The two
arcs differ in one aspect: codes in the upper left all start with a dot, the codes in
the lower right all start with a dash. Therefore, the direction from the bottom right
to the top left corresponds to a dimension that reflects the exposed initial position
of the codes: initial dots and dashes correspond to a separate dimension. The fact
that this dimension runs in the descending diagonal direction shows that it is slightly
confounded both with fraction of dots (an initial dot contributes to the fraction of
dots) and duration (an initial dot contributes to a shorter physical duration).

In summary, we have found four dimensions in the Morse code data: 1) code length,
2) fraction of dots, 3) a dummy for the codes of length one, and 4) a dummy for initial
exposure position for the long codes.
A methodological message from this exercise is that dimension can be local. Insisting on

global dimensions for all objects may obscure the presence of local dimensions in meaningful
subsets.
To close this section, we drill down to a still smaller subset: the codes of length five,

representing the digits “0”,...,”9”. These codes have an obvious circular structure:

0 = − − − − −
1 = · − − − −
2 = · · − − −
3 = · · · − −
4 = · · · · −
5 = · · · · ·
6 = − · · · ·
7 = − − · · ·
8 = − − − · ·
9 = − − − − ·

This structure is reflected in a loop-shaped arrangement of MDS configurations, as shown in
Figure 3. Of the two configurations in the figure, the metric version appears cleaner than the
nonmetric version. This should not be a surprise as the isotonic transformation of nonmetric
scaling becomes tenuous to estimate for small numbers of objects.
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Figure 3: Configurations of the Morse Codes of Length Five, Obtained with Nonmetric and
Metric MDS, Respectively.

3 Visual Checks of Convergence of Optimization

We start by way of illustration: Figure 4 shows a sequence of snapshots of an animation
starting with a random configuration and ending with a locally converged nonmetric MDS
configuration in k = 2 dimensions for the Morse code data.
Animation of stress minimization gives users a way to check convergence of the configura-

tion. The stress function alone is sometimes not a good numerical indicator of convergence as
the stress can be quite flat near a local minimum. Conventional stopping criteria may kick in
when gradient steps may still be visually noticeable. In such situations it is highly desirable
to have the ability to visually check convergence and stop the algorithm interactively.
It is difficult to demonstrate the benefits of visual convergence checks in print because

the motions near a local minimum tend to be small and difficult to convey by comparing
two static plots, yet trivial to pick up by eye. We therefore omit further illustrations and
close this brief section with a general remark: Human vision is extremely acute at detecting
motion throughout the field of vision, including the periphery. As a consequence, there is
no need for a user to focus on any particular area of a dynamic plot: motion can be picked
up literally out of the corner of the eye. Motion detection is therefore quite robust to the
unpredictability of users’ eye motions.

4 Local Minima

Most versions of MDS have trivial multiple minimum configurations due to symmetries in the
stress function. Stress functions are invariant under rotations when the metric in configura-
tion space is Euclidean; and they are invariant under reflections on the axes when the metric
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Figure 4: Snapshots from an Animation of the Stress Minimization for Nonmetric Scaling
of the Morse Code Data in 2-D. The numbers above the frames are the stress values.

is Minkowski, which includes Euclidean and city block metrics. Therefore, in discussions of
local minima in MDS it is always implicit that two configurations are “different” only if they
are not images of each other under transformations that leave the stress function invariant.
In order to facilitate such comparisons, one would really need configuration matching with
the Procrustes method. Matching of configurations is sometimes difficult in three and higher
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dimensions, but in two dimensions it can usually be done with eye-balling.
Examples of truly different local minima are shown in Figure 5, where the Morse code

data are scaled into two dimensions. The six locally minimal configurations are sorted in
ascending order of stress. The first two differ mostly only in a local inversion of the placement
of the two shortest codes in the bottom left, “E=·” and “T=−”. The third configuration
places the shortest codes at the top, which implies a slight deformation of the rest of the
configuration when compared to the first two plots. The fourth configuration is very similar
to the first two, but this time the shortest codes are placed in the top left. The fifth
configuration is more seriously different from the preceding ones in that the codes of length
two together with those of length one are trapped at the top; the code “S=· · ·” forms a
barrier that is impenetrable for the shorter codes. The sixth and last configuration is the
most deformed in that both the codes of length one and two are trapped to the right of the
digits.
In all six configurations of Figure 5 the codes of length three, four and five attempt to

reflect the dimensions of code length and fraction of dots. In fact, we were never able to
achieve stronger rearrangements of the longer codes than those seen in Figure 5. We have
therefore another indication that in 2-D the placement of the short codes of length 1 and 2
is problematic, while the placement of the long codes of length 3, 4 and 5 is quite robust.
In Figure 5 we showed only nonmetric solutions. It is known that different varieties of

MDS suffer from local minima to differing degrees: Classical MDS produces essentially unique
configurations because it is solved by an eigendecomposition; among metric and nonmetric
Kruskal-Shepard MDS, the former is sometimes thought to be less prone to multiple local
minima, but this is not so. Metric MDS is less prone to degeneracies than nonmetric MDS,
but metric MDS can actually be more prone to local minima than nonmetric MDS. This is
particularly the case when the raw dissimilarities require a strongly nonlinear transformation
to achieve a good fit, which is in fact the case for the Morse code data. To give an idea of
the extent of the problem, we show in Figure 6 three local minimum configurations. While
we were not able to upset the basic structure of the long Morse codes with nonmetric MDS,
this was easily possible with metric MDS. Local barriers abounded, and almost any point
could get trapped in implausible places. To make MDS behave more reasonably on these
data, one needs a strongly nonlinear transformation of the dissimilarities. Nonmetric MDS
will find such a transformation, but a third power of the dissimilarities will do almost as
well. In Section 5 we will analyze one particular cause of local minima in a larger context.
In practice local minima are easily diagnosed if the software used offers a few basic

techniques. The three techniques we found most helpful are the following:

• Repeated stress minimization starting from random configurations: The metric
solutions shown in the second and the third frame of Figure 6 were created in this way.

• Stress minimization starting from systematically constructed configurations: The
solutions in the first frames of both Figure 5 and Figure 6 resulted from an initial
configuration that amounts to a plot of the fraction of dots against code length. That
is, we started from a configuration that was a perfect representation of the two major
dimensions approximately recovered by MDS. It is no surprise that their stress values
are the lowest compared to the other locally minimal solutions.
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Figure 5: Multiple Local Minima of the nonmetric MDS Stress Function. The figure shows
six converged configurations in two dimensions for the Morse code data. The stress value
appears above each frame.

• Extensive experimentation is possible if the software at hand permits interactive
editing of configurations. Users can then modify solutions by moving points or
groups of points into suspected locations of local stability and rerun the optimizer to
check the guess. This is indeed how we generated the local minima in all except the
first frame of Figure 5. In the first four frames we dragged the codes of length 1 into
various positions while continuing to run the optimizer; in the fifth and the sixth frame
we dragged the codes of length 1 and 2 to the top and to the right, respectively.

All three approaches are implemented in the XGvis/XGobi software: random restarting
with a mouse click, importing precomputed configurations from files, and manually drag-
ging points and groups of points. Point dragging was simultaneously and independently
implemented by McFarlane and Young (1994) in their ViSta-MDS software. In the XGobi
software, dragging points and groups of points is possible in rotated and toured views as
well: dragging on the screen is translated into motion parallel to the projection plane in
data space. Projection planes are implicit in all data rotations and tours.
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Figure 6: Multiple Local Minima of the metric MDS Stress Function. The figure shows
three converged configurations in two dimensions for the Morse code data, none of which is
an absolute minimum; the center frame of Figure 7 shows a solution whose stress is lower
than any of the three shown here.
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Figure 7: Metric MDS Solutions of the Morse Code Data after Power Transformations Dpi,j.
The powers p and the stress values are shown above the configuration plots. Below are
histograms of the transformed dissimilarities Dpi,j.

5 The Problem of Indifferentiation

The problem of indifferentiation arises when dissimilarity data cluster around a positive
constant. Such clustering is easily diagnosed with a histogram of the dissimilarities, an
example of which is shown in the histogram of the raw Morse code dissimilarities in the
center frame of Figure 7. Data of this type approximate an extreme case in which the
dissimilarities are all identical: Di,j = c ∀i 6= j, where c > 0. This is illustrated by the
histogram in the left hand frame of Figure 7.
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p=1.0, dim=2 p=0.0, dim=2 p=0.0, dim=3

Figure 8: An Example of the Effects of Complete Indifferentiation on Metric MDS. The raw
dissimilarities describe a 5×5 grid as reflected in the 2-D configuration on the left. When
subjected to the power zero, the dissimilarities become constants. The result are the 2-D
configuration in the center and the 3-D configuration on the right.

5.1 Constant Dissimilarities as the Extreme of Indifferentiation

Constant dissimilarities are a form of null data in which every object is equally dissimilar to
every other object – hence our term “indifferentiation”. The tighter a histogram of dissimi-
larities clusters around a non-zero value, the more the data suffer from indifferentiation.
Constant dissimilarities call for a configuration that is a regular simplex in (N − 1)-

dimensional space. A simplex re-creates constant dissimilarities exactly, with zero stress.
When one flattens the (N−1)-D simplex with MDS into lower dimensions, the stress increases
as the dimension decreases.
Whatever the configuration, though, the stress for constant dissimilarities is invariant

under permutation of the objects:

SD(x1, ...,xN) = SD(xπ(1), ...,xπ(N))

As a consequence, permutation of the labels of a minimum configuration yields another
minimum configuration: There may exist as many as N ! different minimum configurations.
Permutation symmetry under indifferentiation lends itself as an explanation for the abun-
dance of multiple local minima in the application of metric MDS to data sets that exhibit
approximate indifferentiation, such as the raw Morse code dissimilarities.

5.2 Power Transformations for the Analysis of Indifferentiation

Approximate indifferentiation does not necessarily mean that the dissimilarities are uninfor-
mative. We know, for example, from the application of nonmetric MDS that the Morse code
data are indeed highly structured and hence informative after the application of a mono-
tone transformation. In order to make metric MDS more competitive with nonmetric MDS,
we implemented power transformations in XGvis. Their exponent is controlled by a slider,
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which greatly facilitates experimentation. The use of interactive power transformations is
twofold:

• Lowering the exponent to zero transforms the dissimilarities to the constant one, as in
the left frame of Figure 7. Observing the effect gives an indication of how close the
raw data are to indifferentiation. Comparison of the left frame and the center frame of
Figure 7 shows that the two are indeed quite close: the rounding of the configuration
in the center frame approximates the circular configuration in the left hand frame.

• Sliding up the scale of exponents affords searching for the lowest stress value, as we did
when we found that the exponent p = 3.2 is approximately optimal. We notice that
the histogram of the transformed dissimilarities is flat, in particular, it is not clustered
around a positive constant, and the configuration is very similar to the nonmetric
configurations in the first and the second frame of Figure 5.

5.3 The Structure of Null Configurations

Minimum configurations of constant dissimilarity data are highly structured. For a first
impression, see the left frame of Figure 7 and the center and right frame of Figure 8. Knowl-
edge of this “null structure” is of considerable importance for the practice of MDS because
this is structure in the output of MDS that indicates the absence of real structure in the
input, an example of the unlikely case of “garbage in, structure out”. For real structure
to be completely absent is rare, but it is often weak, which puts such data in the vicin-
ity of indiscrimination with approximate null structure in the configurations. This is the
methodologically important point: null structure appears to a variable degree, and it must
be recognized as such to avoid overinterpretation of the data.
We first describe the null structure of MDS solutions for the case of perfectly constant

dissimilarities as seen in computer experiments:

• In two dimensions, a minimum configuration often arranges the points on a set of con-
centric circles, as in the left hand frame of Figure 7 and the center frame of Figure 8.
This has been widely noted and described by, for example, de Leeuw and Stoop (1984,
p. 397). The concentric circles, however, are somewhat inessential to a null configu-
ration in 2-D. In light of theoretical results described below, the essential aspect of a
null configuration is that it shows a point density that fills a circular disk with sharp
boundary; the density is circularly symmetric with lowest density in the center and
increasing density towards the boundary.

• In three and higher dimensions, a minimum configuration arranges the points so as
to approximate a uniform distribution on a sphere. This is harder to illustrate in
the printed medium, but the rightmost frame of Figure 8 gives an impression of this
effect for data that describe a 5 × 5 grid in their raw form, after having been made
constant with a zero’th power transformation. In an interactive data visualization
system such as XGvis/XGobi, one uses data rotations and data slicing to verify that
the configurations are indeed spherically symmetric and hollow in the center.
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Figure 9: Null Analysis in 2-D: All configurations are of size 750.
Top left: the null density for N → ∞ as a function of radius; its form is f(x1, x2) =
(1− (r/R)2)−1/2/(2πR) where r = (x21 + x

2
2)
1/2 < R = (3/2)1/2.

Top right: a null configuration obtained from constant dissimilarities, both with metric and
nonmetric MDS.
Bottom: two configurations obtained from uniformly random dissimilarities; left: metric;
right: nonmetric.

These types of dimension-dependent null structure have a mathematical basis described in
Buja, Logan, Reeds and Shepp (1994), under an idealization in which the number of objects
N →∞. The analysis suggests the following:

• In two dimensions the minimum configurations approximate a circularly symmetric
distribution on a disk with a density that increases radially from the center to the
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periphery of the disk. The top left of Figure 9 shows the theoretical density as a
function of radius.

• The same analysis suggests that in three and higher dimensions the minimum config-
urations approximate a uniform distribution on a sphere.

5.4 Noisy Dissimilarities and Indifferentiation

The problem of indifferentiation arises not only when dissimilarities pile up around a positive
value. The same effect occurs when the dissimilarities are noisy. The reason is essentially
that for sufficiently large N noise washes out and only its expected value is of relevance. In
short: if dissimilarities {Di,j}i<j are independently and identically distributed, then they are
asymptotically equivalent to constant dissimilarities Di,j = E(D), that is, to indiscrimina-
tion. This holds more so for nonmetric than metric MDS because the isotonic regression in
nonmetric MDS smooths random Di,j very nearly to a constant.
An illustration of these facts is shown in Figure 9: The top right shows a null solution for

perfectly constant dissimilarities; the bottom row shows a metric and a nonmetric solution
for uniform random dissimilarities. The nonmetric solution matches the null configuration,
while the metric solution is a fuzzy version thereof. This comparison indicates that metric
MDS has greater problems with noise than nonmetric MDS because the latter has a certain
ability to average out noise.

5.5 Null Structure in Empirical Configurations

In light of these facts, it is now possible to interpret the 2-D metric configuration of the raw
Morse code data shown in the center frame of Figure 7: The circular shape is in all likelihood
a consequence of a fair amount of indifferentiation in the raw dissimilarities. The histogram
of the dissimilarities below the center plot confirms this impression with the values piling up
near the maximum value.
A similar diagnosis is possible for Figure 4, the leftmost frame in the second row: there,

the initial configuration is random and its pairwise distances largely uncorrelated with the
dissimilarities; hence the isotonic regression maps the latter very nearly to a constant, which
generates an approximate null configuration as a transition phase of the optimization. This
is probably a general fact for MDS minimizations that start from a random configuration.
A general conclusion from these considerations is that the following properties of local

minimum configurations are usually artifacts:

• in 2-D: circular disk shape with a sharp edge and low density in the center;

• in 3-D and higher: sphericity and holes in the center.

These features should not be interpreted as properties of the data, but as hinting at a degree
of indifferentiation, possibly stemming from noise.
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Figure 10: The Horseshoe Effect for Metric MDS as an Approximation to the Null Structure
of Indiscrimination. Top row: 2-D; bottom row: 3-D.

5.6 Horse Shoes

We suspect that the well-known “horseshoe effect” derives from the null structure just de-
scribed. Some empirical evidence can be found in Figure 10: The dissimilarities in these plots
were generated from 50 perfectly ordered equispaced points. These data were subjected to
several power transformations with exponents starting at p = 1.0 and ending at p = 0.0.
In 2-D, the intermediate exponents exhibit very clear horseshoe shapes. They turn scraggly
for exponents near zero, so as to approximate a 2-D null configuration. In 3-D, there are
more possibilities for a curve to bend, hence the shape is no longer so simple that it could be
described as a horseshoe. However, data that have intrinsic 2-D structure such as the 5×5
grid of Figure 8 will be bent in a simple way because they must approach a sphere in the
limit, as in the rightmost frame of the figure.
The horseshoe effect in metric and nonmetric MDS of the Kruskal-Shepard variety should

not be confused with the horseshoe effect in multivariate methods that are based on eigende-
compositions, such as correspondence analysis and nonlinear principal component analysis.
In these methods the horseshoes have a much simpler explanation: they arise in the same
way as certain systems of orthogonal polynomials arise as solutions of spectral decomposi-
tions of certain linear operators. Horseshoes are here just an expression of the fact that the
two dominant eigenfunctions are linear and quadratic. In noisy data this translates to two
dominant eigensolutions, one which is ascending and one which is broken into two pieces,
one piece descending and the other ascending. We leave things intentionally vague as they
are the topic of another literature (see for example Buja (1990), Donnell et al. (1994), and
the references therein). We only note that the mathematics of null configurations in MDS
(idealized for N →∞) is very different: it requires the solution of a variational problem that
has no relation to eigendecompositions. A closer relative is potential theory because of the
similarity in the roles of dimensions one and two versus three and higher, but the variational
problem can not be reduced to potential theory either.
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6 Localization with Groups

With localization we mean the examination of structure contained in relatively small dissim-
ilarities. Localization is a difficult problem because of the following received wisdom about
MDS:

The global shape of MDS configurations is determined by the large dissimilarities;
consequently, small distances should be interpreted with caution: they may not
reflect small dissimilarities.

These statements are based on a widely cited study by Graef and Spence (1979) who ran
simulations in which they removed, respectively, the largest third and the smallest third
of the dissimilarities. They found devastating effects when removing the largest third, but
relatively benign effects when removing the smallest third.
As a consequence, if the points representing the Morse codes “T” and “E” lie close

together, it does not follow that they are perceptually similar, that is, often confused. It
may much rather mean that there exists a large set of codes from which they are both
roughly equally dissimilar. Shared patterns in large dissimilarities are vastly more powerful
contributors to the stress function than the single dissimilarity between the codes “T” and
“E”. Thus it would be of interest to diagnose whether “T” and “E” are indeed close.
To answer these and similar questions, one may want to use some form of localized MDS.

One proposal is as follows: Assume the objects have been partitioned into disjoint groups,
where the groups have presumably been chosen to be homogeneous in some sense, as in
the Morse code data the groups of codes of the same length. Then perform MDS with a
stress function that has a reduced set of dissimilarities, namely, those for pairs of objects
in the same group; omitted are the terms in the stress function that contain dissimilarities
for objects in different groups. We have dubbed this method “within-groups MDS”. The
resulting locally minimal configurations have the following properties:

• The relative positions of points in the same group are meaningful as they are con-
strained by the within-group dissimilarities.

• The relative positions of the group configurations are not meaningful as they are un-
constrained due to the removal of the between-groups dissimilarities. Similarly, ori-
entations of groups configurations are not meaningful. Users of XGvis can experience
this lack of constraint by dragging the groups interactively. [There exists one overall
constraint, though: we always center the overall configuration at the origin and we
always normalize the overall configuration size. That this is happening does not seem
to pose problems to users.]

• In metric MDS the relative sizes of the groups are meaningful and can be compared
because the within-group configuration distances approximate dissimilarities that live
on the same scale. In nonmetric MDS it is not clear how to handle the isotonic
transformation: in XGvis we estimate one shared transformation across groups, which
again puts the transformed dissimilarities on a shared scale so that group sizes can be
compared. The alternative of estimating a separate isotonic transformation in each
group would decouple the group sizes, but this version is problematic because groups
are often small and degenerate transformations become likely.
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Figure 11: Metric Within-groups MDS of the Morse Code Data, with Groups Defined by
Code Length.

XGvis uses groups defined by colors and glyphs. The groups can be precomputed and entered
in color and glyph files, or they can be continually redefined with brushing operations in the
XGvis window or in auxiliary linked XGobi windows.
Figure 11 shows within-groups configurations for the Morse code data partitioned into

groups of constant code length. We rearranged and rotated the groups by dragging them
interactively to new locations and orientations in order to facilitate comparisons. One recog-
nizes that the shortest codes, “E” and “T”, are relatively far apart from each other, farther
than previous figures would have made us believe. In the circular structure of the codes of
length five adjacent codes are clearly closer to each other than “E” and “T”, which seems
intuitive: we would expect for example “−− · · ·” and “−−− · ·” to be more often confused
with each other than “·” and “−”.

7 Localization by Truncation and Weighting

Within-groups MDS is a powerful way of exploring local structure. Yet it is another method
of localization that is often proposed for MDS: dropping the large dissimilarities from the
stress function and approximating only the small dissimilarities with configuration distances.
The intuition behind this idea is that small dissimilarities reflect local properties, and that
by building configurations from local information one obtains more faithful global config-
urations. This proposal is generally a great disappointment, which is not too surprising
in light of Graef and Spence’s (1979) work quoted earlier. Minimization of stress without
the large dissimilarities does often not converge to meaningful global configurations. The
approach fails mathematical intuitions trained on differential equations, where infinitesimal
information is successfully integrated up to global solutions. Attempts at integrating local
to global structure are often not successful in MDS.
Just the same, it is of interest to know whether removal of large dissimilarities actually

fails MDS for a particular dataset. In XGvis we implemented two mechanisms for assessing
the influence of large and small dissimilarities:

• Truncation in order to drop large (or small) dissimilarities from the stress function.
Both truncation thresholds can be interactively controlled.
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Figure 12: The Effects of Truncating Large Dissimilarities on Nonmetric MDS in 2-D,
Applied to the Morse Code Data. Above the plots are the numbers of retained dissimilarities.
The top left configuration stems from the complete set of dissimilarities.

• Weighting in order to smoothly change the influence of small and large dissimilarities.
The weights we provide are powers of the dissimilarities: wi,j = D

q
i,j. For q < 0 large

dissimilarities are down-weighted; for q > 0 they are up-weighted. (The default are
identical weights: q = 0.) The exponent q can be interactively controlled.

In our experience, both truncation and weighting have a data-dependent range in which
they produce useful alternative configurations. Outside this range MDS minimization tends
to disintegrate. Figure 12 shows configurations obtained by truncating successively larger
numbers of largest dissimilarities. For each configuration, stress minimization was started
from the previous configuration. This minimization scheme masks the full scale of instability
that would be apparent if one started each minimization from a random configuration. With
the stability-favoring scheme, almost half of the largest dissimilarities can be removed and
the configurations are still meaningful.
The interpretation of local features even in seemingly meaningful configurations requires

caution, though, because of potential decoupling of distant objects. In the bottom row of
Figure 12, for example, all dissimilarities between the codes {“E”, “T”} and the rest had
been truncated, and the placement of these codes is inherited from the last configuration in
which a constraint to the rest existed.
The detection of decoupling is therefore a necessity. In XGvis there exist two different

approaches to the problem: 1) instant local feedback can be obtained by interactively drag-
ging a point of interest while stress minimization is in progress; if the point is constrained, it
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Figure 13: Minkowski Metrics Fitted to the Morse Code Data. The Minkowski parameters are
shown above the configurations. The stress values are 0.1984 (m = 1.0), 0.1872 (m = 2.0),
0.1842 (m = 6.0).

will instantly snap back into its position on release. 2) A global overview of the constraints
can be obtained in a scatterplot of the indices i and j for which the dissimilarity Di,j is
present in the current stress function; such a plot is accessible in a diagnostics window that
shows the included dissimilarities Di,j , their fitted distances, and their indices i and j.
We end this section by noting that the problem of decoupling does not arise with power-

weighting of dissimilarities: large dissimilarities are only down-weighted, but they never
disappear from the stress function.

8 The Use of Minkowski Distances for Rotation of Con-

figurations

General Minkowski (or Lebesgue) distances on configuration space are sometimes used as
alternatives to Euclidean distances. This family of metrics is parametrized by a parameter m
which ranges between 1 and ∞, both limits included. For m = 2 one obtains the Euclidean
metric as a special case. Of particular importance are the two extremes of the Minkowski
family: for m = 1 the L1 (or city block or Manhattan) metric, and for m = ∞ the L∞ (or
maximum) metric. In rare cases greater plausibility of L1 or L∞ over the L2 metric can be
argued.
In our experiments with interactive MDS, we found another use for Minkowski metrics:

rotation of configurations for interpretation, similar to factor rotation in factor analysis.
The point is to exploit non-Euclidean metrics to break the rotation invariance of the stress
function: For m 6= 2, optimal configurations must align themselves in particular ways with
the coordinate axes. This alignment often leads to interpretable axes. For example, if there
exist certain axial (near-)symmetries in a configuration, non-Euclidean metrics may force
the axes of symmetry to line up with the coordinate axes. In order to find these special
alignments, the following simple recipe can be used:

Temporarily choose a Minkowski metric with parameterm > 2 orm < 2, optimize
the configuration, switch back to m = 2, and optimize again.

The result is a rotated version of the L2 configuration. Typically, for configurations in 2D,
the major difference between solutions based on Lm>2 and Lm<2 is a 45 degree rotation.
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Figure 13 illustrates this use of Minkowski metrics with an application to the Morse code
data in 2-D: the two center frames show the Euclidean solution in two orientations, the
left center frame obtained by approaching m = 2 from m = 1, the right center frame by
approaching m = 2 from m = 6 (the highest implemented value in XGvis). Clearly the right
center frame has the more desirable solution because it roughly aligns the horizontal and
vertical axes with the dimensions code length and fraction of dots.

9 Conclusions

The intention of this paper was to describe a rich methodology for visualizing, diagnosing
and manipulating MDS configurations. The list of techniques introduced here is by no means
complete and other ideas should be tried, but we hope to have shown that MDS has much
to gain from contemporary interactive data visualization tools.
The XGvis/XGobi software, in which this methodology can be realized, is freely available

from the following web site:
http://www.research.att.com/areas/stat/xgobi/

The software was developed for the X Window SystemTMwhich is used by the Linux R©and
UNIX R©operating systems, but B. Ripley produced a version that runs under Microsoft
WindowsTM using an X emulator.
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