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Abstract

As data sets continue to grow in size and complexity, effective and efficient techniques are needed
to target important features in the variable space. Many of the variable selection techniques that are
commonly used alongside clustering algorithms are based upon determining the best variable subspace
according to model fitting in a stepwise manner. These techniques are often computationally intensive
and can require extended periods of time to run; in fact, some are prohibitively computationally expensive
for high-dimensional data. In this paper, a novel variable selection technique is introduced for use in
clustering and classification analyses that is both intuitive and computationally efficient. We focus
largely on applications in mixture model-based learning, but the technique could be adapted for use
with various other clustering/classification methods. Our approach is illustrated on both simulated and
real data, highlighted by contrasting its performance with that of other comparable variable selection
techniques on the real data sets.

Keywords: Classification; Cluster analysis; High-dimensional data; Mixture models; Model-based clus-
tering; Variable selection.

1 Introduction

Variable selection is an important feature of many types of statistical analyses, including clustering and
classification. The use of variable selection techniques can facilitate both model fitting and the interpretation
of results. With the continued growth in data dimensionality, the importance of efficient variable selection
techniques is increasing. In this paper, we put forward a flexible variable selection technique that can
be used in unsupervised, semi-supervised, or fully supervised classification contexts. We focus largely on
the unsupervised format (i.e., clustering) and specifically the usage of model-based techniques to guide the
algorithm. However, the algorithm’s applicability under a classification format will be briefly illustrated in
Section 4.

Model-based clustering is often used on high-dimensional data sets, such as those found in the field of
bioinformatics. Though clustering on very large data sets is possible, it is difficult to execute for a number
of reasons. The most obvious reason is time: as the dimensionality of the data increases, the number of
parameters requiring estimation increases, often in a quadratic fashion. Of more importance, however, is
that the human brain (accustomed to three-dimensions visually, plus a few other senses) is not prepared
to understand dimensionality that can run well into the thousands. Thus, to facilitate interpretation of
high-dimensional data sets, determining which variables are most active in cluster formation is important.
A final consideration is the cost in creating high-dimensional data sets, which can be enormous; knowing
which variables are important for differentiating between groups-of-interest can save both time and money.
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Although algorithm efficiency is certainly a worthwhile reason in its own right, variable selection tech-
niques can drastically improve clustering performance. This is achieved through eliminating noisy variables
that can cloud the clustering algorithm’s ability to distinguish groups. Unfortunately, variable selection
techniques do not necessarily improve clustering performance; it is, therefore, important that an inferior
reduced-variable solution is not chosen over a solution on the full variable set (cf. Section 5).

In Section 2, we conduct a short review of comparable variable selection techniques and other relevant
background material. Then we discuss our methodology (Section 3), before running simulations (Section 4)
and real-data examples (Section 5). Finally, we conclude with a summary and suggestions for future work
(Section 6).

2 Background

A number of dimensionality reduction techniques are available to researchers interested in clustering data
sets. For the purposes of microarray data sets, the select-genes procedure from the EMMIX-GENE
software (McLachlan et al., 2002) fits multi-component mixture models to each variable and then calculates
the likelihood ratio test statistic between these and the one-component model. Unfortunately, fitting mixture
models to each individual variable is time consuming and, by relying on random initializations, select-genes
can be inconsistent.

Another variable selection technique is given by Raftery and Dean (2006), whereby multiple models
from the MCLUST family are compared using approximate Bayes factors (Kass and Raftery, 1995). This
variable selection technique is readily available via the clustvarsel package (Dean and Raftery, 2006) in
R (R Development Core Team, 2012). However, because the number of parameters that require estimation
in some of the MCLUST models is quadratic in data-dimensionality, the clustvarsel package can be very
slow in high-dimensions. Furthermore, the application of clustvarsel can sometimes lead to inferior results
when compared to the use of mclust alone (cf. McNicholas and Murphy, 2008). A related approach, denoted
selvarclust, is taken by Maugis et al. (2009), where the assumptions on the role of variables are relaxed
with the potential benefit of avoiding the over-penalization of independent variables.

In addition to these procedures, a number of implicit and explicit variable selection procedures are built
into model-based clustering algorithms. Implicit variable selection procedures include approaches such as
mixtures of factor analyzers (cf. Ghahramani and Hinton, 1997; Tipping and Bishop, 1999; McLachlan
and Peel, 2000; McNicholas and Murphy, 2008, 2010; Andrews and McNicholas, 2011a,b; Montanari and
Viroli, 2010; Viroli, 2010). An explicit dimensionality reduction approach is taken in some recent work by
Scrucca (2010) and Bouveyron and Brunet (2012); the latter also gives a summary of other work in the
area of dimensionality reduction with respect to clustering. Outside of model-based methods, Witten and
Tibshirani (2010) recently introduced a dimensionality reduction technique that is based on k-means; we
provide a comparison to this technique in Section 5.6.

For the purposes of variable selection within a clustering context, the desire is to find variables that
show differentiation between the a priori unknown groups and eliminate variables that do not. The variable
selection method introduced herein seeks precisely this, and is flexible enough to implement using a variety
of clustering/classification techniques.

3 Methodology

3.1 Introduction

Variable selection for clustering and classification (VSCC) is intended to find the variables that simultane-
ously minimize the ‘within-group’ variance and maximize the ‘between-group’ variance. The combination of
these two criteria will give variables that best show separation between the desired groups. Note that the
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within-group variance for each variable j = 1, . . . , p can be written as

Wj =

∑G
g=1

∑n
i=1 zig(xij − µgj)

2

n
,

where xij is observation i on variable j, µgj is the mean of variable j in group g, n is the number of
observations, and zig is a group membership indicator variable defined so that

zig =

{
1 if observation xi = (xi1, . . . , xip) belongs to cluster g,
0 otherwise.

The leftover variance within variable j not accounted for byWj , or σ2
j −Wj in the common notation, is then

a measure of the variance between groups. In general, calculation of this value will be necessary. However,
if the data have been standardized to have equal variance across variables, then any variable minimizing the
within-group variance is also maximizing the leftover variance.

The VSCC method utilized in this article will be applied to data that have been standardized to have
mean 0 and variance 1 and, as such, calculation of theWj is sufficient. In addition to the variance calculations,
our method uses the correlation between variables; we let ρij denote the correlation between variables i
and j. The actual implementation of VSCC procedures depends on the form of the data; in our analyses, we
consider examples where no memberships are known (clustering) as well as where some observations have
known membership (classification). Specifics regarding the implementation of the VSCC algorithm under
each format can be found in Sections 3.5 and 3.6. In the sections that immediately follow, we motivate and
describe the VSCC algorithm.

3.2 A Motivating Example

VSCC will proceed in a step-wise fashion after calculating the within-group variances. The first variable
selected is the variable with the minimum Wj . One way to select from the remaining variables is by using
simple, user-specified thresholding. For example, by sorting the Wj in ascending order we could consider
each variable in a step-wise manner and select those variables with Wj less than some value w where all
|ρjr| are also less than some value c, ∀ r ∈ V ; here, V is the set of previously selected variables. While this
approach could be useful, it requires the user to adjust the algorithm to maximize its effectiveness.

An additional concern behind this type of selection criterion can be shown via a simple example. Consider
a three-dimensional data set where the first variable minimizes Wj and so is already selected. Suppose that
the remaining two variables can be summarized as follows.

• Variable 2: W2 = 0.6 and |ρ12| = 0.75.

• Variable 3: W3 = 0.2 and |ρ13| = 0.75.

Suppose we simply use the thresholds described previously. In the current example, if the correlation
threshold was set at c = 0.70 then both variables would be considered equally ‘bad’ and neither would be
selected. However, if the correlation threshold was set at c = 0.80, and assuming both that |ρ23| < 0.8
and w > 0.6, then both variables would be selected. Under the argument that within-group variance is our
primary concern and correlation is a secondary concern, we propose that, in this scenario, retaining Variable 3
and eliminating Variable 2 would be desirable. To this end, we need to go beyond simple, user-specified
thresholding.

3.3 The VSCC Method

We have illustrated a desire for a sliding correlation threshold that is more forgiving for small values of
Wj and more stringent for larger values. Thus, we seek to define a relationship between the within-group
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variance and between-variable correlation that properly expresses this goal. As a first attempt, we consider
a linear relationship between the two quantities. Let V represent the space of currently selected variables,
then we select variable j if for all r ∈ V ,

|ρjr| < 1−Wj .

Other potential relationships will be discussed shortly, but utilizing this relationship we can write the VSCC
algorithm as follows:

1. Calculate within-group variances Wj .

2. Sort Wj in ascending order, denote this sorted list Ws.

3. W1 minimizes Ws and is automatically selected and placed into the set of selected variables V . Set
count k = 2.

4. If |ρkr| < 1−Wk, for all r ∈ V , variable s = k is placed into V .

5. If k < p, set k = k + 1 and return to Step 4. Else end algorithm.

The linear relationship defined in Step 4 of the VSCC algorithm might be too strong a criterion. For
instance, a variable with within-group variation of 0.25 and correlation of 0.76 with one of the previously
selected variables would be rejected. Given the interval that correlation values (and the Wj when the data
are standardized) will lie on, a simple fix is to consider relationships of order greater than one (Table 1); a
visualization of these criteria is given in Figure 1.

Table 1: List of variance-correlation relationships considered for implementation into Step 4 of the VSCC
algorithm.

Linear |ρkr| < 1−Wk

Quadratic |ρkr| < 1−W 2
k

Cubic |ρkr| < 1−W 3
k

Quartic |ρkr| < 1−W 4
k

Quintic |ρkr| < 1−W 5
k

Many different relationships could be defined between the within-group variance and the between-variable
correlation. However, many of these relationships would be intuitively silly. For example, any relationship
that will allow a variable with Wj = 1 to be selected should not be allowed. Also, any relationship that
results in impossible values (those outside of the interval [0,1]) need not be considered. Obviously, piecewise
relationships could be considered that solve some of these issues for more complicated relationships. However,
we consider that the relationships in Table 1 constitute a relatively thorough, common-sense handling of the
issue of variance-correlation relationships.

3.4 Subset Selection

Using multiple criteria for selecting variables will naturally lead to multiple subsets of variables — as many
as five solutions under the current relationship structure. Under a clustering framework, one must define
a method for choosing between these subsets without specific knowledge of which subset produces the best
classifier. One could develop a Bayes factors framework similar to that used by clustvarsel (Raftery and
Dean, 2006) to compare variable subsets. However, this approach is complicated by the fact that subsets
will not necessarily differ by only one variable, as would happen in a truly step-wise approach. Instead,
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Figure 1: Graphical representation of the selection criteria considered for implementation into Step 4 of the
VSCC algorithm.

we introduce a novel approach to selecting variable subsets that relies on one of the major strengths of
model-based clustering/classification: measuring the uncertainty of the classification.

The uncertainty for each observation is found simply through the fuzzy classification matrix; i.e., the
n × G matrix containing the ẑig. Each ẑig element of this matrix is a measure of the strength of evidence
indicating observation i belongs to group g. For well-defined clusters, the ẑig will all be approximately equal
to 0, with one entry per row i being approximately equal to 1. We take the uncertainty to be the sum of all
the ẑig entries, except the maxg{ẑig} entries. This can be expressed as

∑n
i=1

∑G
g=1 ẑig −

∑n
i=1 maxg{ẑig} or

equivalently as n−
∑n

i=1 maxg{ẑig}.
Selecting the variable subset that minimizes the uncertainty in the classification suggests we will be

selecting the variables that produce the strongest group structure, so there is some intuitive appeal. In
some ways, this is a large departure from information-based criteria; however, the uncertainty is used in the
calculation of the integrated completed likelihood by Biernacki et al. (2000), which marries the uncertainty
and the Bayesian information criterion (BIC; Schwarz, 1978). The efficacy of using the uncertainty as a
relationship selection criterion will be shown in Sections 4 and 5.

The authors note that one concern about using the uncertainty calculations is that, by definition, the
uncertainty for any G = 1 solution will be 0. It is considered a strength within the clustering field that
model-based clustering using the BIC can consider G = 1 as a solution and inform the user that there are, in
fact, no groups in the data. Unfortunately, given a G = 1 solution, the VSCC algorithm cannot be computed
as described in this paper. As such, it is an implicit assumption by even running VSCC that G > 1 groups
exist. Tying into this assumption, it is therefore somewhat reasonable to ignore any variable subsets that
produce G = 1 as a solution. We recognize this is an unfortunate consequence of utilizing model uncertainty
as a subset selection device, and we leave this matter as the subject of future research.

Philosophically, it makes sense to approach variable selection under a “do no harm” mentality. In this
vein, note that because we can calculate the uncertainty from the original (non-feature reduced) data set,
this solution can be considered as part of the variable selection process. In other words, under VSCC we
can select the full data set rather than a reduced set if the full data set results in the minimum uncertainty;
we note that for illustrative reasons we will ignore this ability during the simulations in Section 4.
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3.5 Clustering

In a clustering scenario, the values of indicator variables zig are unknown for all i = 1, . . . , n. The VSCC
method needs these variables to compute the Wj . However, an initial run of clustering can be used to give
‘good’ estimates of the component memberships ẑig; any clustering approach could be used (e.g., agglomer-
ative hierarchical, model-based, k-means).

Herein, we focus on the use of a model-based clustering procedure to initialize VSCC, specifically the
mclust algorithm (Fraley and Raftery, 2002, 2003, 2006). Note that the applications in Section 5 will
incorporate ‘hard’ (0s and 1s in the context of ẑig) initializations from a model-based clustering technique,
though ‘soft’ (‘fuzzy’ or probabilistic) classifications could be easily incorporated into the procedure instead.
Under the clustering format, the algorithm runs as follows:

1. Perform mclust under default settings.

2. Use the resultant (hard) ẑig to initialize VSCC.

3. Perform mclust on the (up to) five variable subsets given by VSCC, selecting the best model via the
BIC in each case.

4. Select the best variable subset according to the total model uncertainty, and report the results from
mclust on that subset.

3.6 Classification

In a classification scenario, a subset of the zig is known and can be utilized by the VSCC method to compute
the Wj in two potential ways. The first option is to use only the known zig to calculate the Wj . The other
option is to calculate the Wj in a more semi-supervised format, where an original classification algorithm is
run to find good estimates of the unknown ẑig. The algorithms for both options follow.

3.6.1 Supervised Algorithm

1. Use only the known zig to initialize VSCC.

2. Perform model-based classification on the (up to) five variable subsets given by VSCC, selecting the
best model via the BIC in each case.

3. Select the best variable subset according to the total model uncertainty, and report the results from
model-based classification on that subset.

3.6.2 Semi-Supervised Algorithm

1. Perform model-based classification to estimate the unknown ẑig.

2. Use both the known zig and the (hard) estimated ẑig to initialize VSCC.

3. Perform model-based classification on the (up to) five variable subsets given by VSCC, selecting the
best model via the BIC in each case.

4. Select the best variable subset according to the total model uncertainty, and report the results from
model-based classification on that subset.
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3.7 Clustering/Classification Performance

The performance of a clustering algorithm, with respect to known groups present in the data, can be measured
in a number of ways. Misclassification rates are often used, but this measure cannot be meaningfully
interpreted unless we know the correct number of groups or the clustering algorithm chooses the correct
number of groups, which is not always the case. An alternative is to use the Rand index (Rand, 1971), which
is calculated as the number of pairwise agreements (between the estimated and known groups) divided by
the number of pairs. Because the Rand index is tricky to interpret especially for lower values, the adjusted
Rand index (ARI) was introduced by Hubert and Arabie (1985). It essentially accounts for the fact that
two random groupings will have some pairwise agreements, thus making the ARI equal to 0 for random
clustering and 1 for perfect clustering.

4 Simulations

To determine the performance of VSCC under a variety of scenarios, we introduce several simulation studies.
The clusterGeneration package (Qiu and Joe, 2006) from R is used to simulate data sets.

4.1 Increased Dimension

Herein we investigate how VSCC reacts to increased dimension. The genRandomClust function from
clusterGeneration is used to generate data sets with four groups, with between 100 to 150 observations
per group and where sepVal= 0.7 (well separated groups). We generate data sets of dimension 45, 90, 120,
and 150, each containing 33% noisy variables. A total of 250 replicates of each data set are generated and
analyzed using VSCC and mclust (under default settings). Summary results are given in Table 2.

Table 2: Summary of results from mclust and VSCC on the increased dimension simulations (250 runs per
dimension size).

d = 45 d = 90 d = 120 d = 150
mclust Mean ARI 0.79 0.36 0.30 0.23
mclust SD ARI 0.15 0.14 0.17 0.17
mclust Avg Runtime (sec) 5.16 14.74 72.01 157.82

VSCC Mean ARI 0.99 0.84 0.76 0.57
VSCC SD ARI 0.03 0.20 0.30 0.33
VSCC Avg Runtime (sec) 25.95 42.89 160.04 265.62

VSCC performs better than mclust alone on all dimension sizes considered, according to mean ARI. We
do, however, note an increase in the standard deviation of the ARI as the dimension size increases. This is
due, in large part, to an increased number of G = 1 solutions given by mclust for an initialization (which is
counted as an ARI of 0 for both mclust and VSCC). Because mclust performance is on average closer to 0,
these G = 1 examples affect its standard deviation to a lesser extent.

Note also the increase in runtime for both procedures. Keep in mind that VSCC runs mclust once on the
full data set, and then up to five times on reduced-variable data sets. Thus, a large savings in computation
time could be achieved by at least initializing VSCC using a faster clustering technique (e.g., k-means). To
illustrate this point, if the initializations were given to VSCC ‘free-of-charge’ for the d = 150 simulations,
VSCC’s average runtime would be merely 98.8 seconds.
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4.2 Increased Number of Groups

In this simulation, we investigate how VSCC reacts to different numbers of groups present in the data. Once
again, the genRandomClust function is used to generate 250 replicates of each data set. In this study, we
simulate under mostly default conditions — which includes sepVal=0.01, or not well separated groups —
with 10 noisy and 10 non-noisy variables in each data set. Importantly, we generate data sets for each
of G = 2, 4, 6, 8, 15, 20 that are then analyzed using VSCC and mclust (under default settings except for
G = 15 and G = 20 data sets, where mclust is forced to consider G = 10, . . . , 20). Summary results are
given in Table 3. We also provide Table 4 for more in-depth details on the G = 2 simulation to illustrate the
specific variance-correlation relationships as well as the performance of choosing relationships via the total
model uncertainty.

Table 3: Summary of results from mclust and VSCC on the varied number of groups simulations (250 runs
per group structure).

G = 2 G = 4 G = 6 G = 8 G = 15 G = 20
mclust Mean ARI 0.88 0.79 0.80 0.75 0.74 0.73
mclust SD ARI 0.08 0.17 0.11 0.13 0.06 0.05
mclust Avg. Runtime (sec.) 2.47 6.89 10.76 16.59 97.51 197.31

VSCC Mean ARI 0.89 0.82 0.85 0.83 0.84 0.82
VSCC SD ARI 0.06 0.17 0.08 0.08 0.03 0.03
VSCC Avg. Runtime (sec.) 8.95 18.21 22.87 31.82 171.39 302.77

As the number of groups increases, the general trend for mclust is a reduction in clustering performance
from 0.88 (G = 2) to 0.73 (G = 20), coupled with an increase in average runtime (2.47 to 197.31 seconds,
respectively). Interestingly though, VSCC’s performance remains remarkably consistent, and arguably im-
proves (ignoring G = 2) as the number of groups increases to 20 (due to a reduction in variation). However,
VSCC does suffer a similar fate in runtime due to its reliance on mclust.

Several things stand out in the results presented in Table 4. For one, the linear relationship (which is
also the most stringent of those considered) performs terribly under this simulation. Fortunately, the rest of
the relationships put up solid performances and, in fact, very similar performances in general, as three of the
four select six variables most often. Interestingly, no one relationship on its own would outperform mclust

on the full data set via either mean ARI or standard deviation; by choosing the best relationship via the total
model uncertainty, however, the VSCC algorithm does narrowly beat out the full data set in both categories.
This lends support to the use of uncertainty as a selection method. This is not the only simulation where

Table 4: Detailed results from mclust and VSCC on the 250 G = 2 simulations (10 noisy variables and 10
non-noisy variables). ‘Mode # Vars’ includes the number of occurrences in parentheses.

Analysis Mean ARI SD ARI Mode #Vars Mean Unc. SD Unc.
mclust 0.88 0.08 20 (250) 5.88 3.81
VSCC Linear 0.40 0.30 2 (194) 14.45 13.27
VSCC Quadratic 0.81 0.09 3 (75) 9.67 5.26
VSCC Cubic 0.86 0.08 6 (74) 7.32 4.45
VSCC Quartic 0.87 0.09 6 (82) 6.67 4.29
VSCC Quintic 0.88 0.09 6 (71) 6.27 4.21
VSCC (min unc.) 0.89 0.06 6 (75) 5.73 2.86
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we see results such as this, but it is not universally true across all simulations. We note further support for
using the uncertainty while discussing the real data applications in our concluding paragraphs.

4.3 Classification Example

To briefly demonstrate the feasibility of VSCC in a classification scenario, we apply the method under the
supervised algorithm (cf. Section 3.6.1) to the G = 15 simulated data from the previous section. For each
data set, we randomly select 50% of the data to have known membership and analyze using model-based
classification with the MCLUST family of models, then compare these results to using VSCC (with the same
model-based classification on the chosen variables). This is performed on the 250 data sets, and a summary
of classification performance can be deduced through Figure 2. Note that the ARI reported only considers
the observations with ‘unknown’ cluster membership.

Model-based classification
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Model-based classification with VSCC
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Figure 2: Histograms of classification performance on the G = 15 simulated data set by model-based
classification and model-based classification with a reduced feature set selected by VSCC.

The mean ARI for analysis on the full data set is 0.81 with a 0.05 standard deviation, while the VSCC
reduced data set achieves a mean of 0.85 with a 0.02 standard deviation. Recall the G = 15 simulated data
set contains 10 non-noisy and 10 noisy variables. VSCC (under the supervised algorithm with 50% known)
picks out the 10 meaningful variables 226 times, or for over 90% of the data sets considered.

5 Applications

5.1 Introduction

The VSCC method will now be applied to real data sets under a clustering framework. An introduction
to each of the four data sets is given at the beginning of each subsection. To facilitate interpretation,
VSCC will be compared to the popular variable selection method introduced by Raftery and Dean (2006),
available as the clustvarsel package in R, as well as the selvarclust technique introduced by Maugis et al.
(2009), available as a command-line addition to the MIXMOD software (Biernacki et al., 2006). Recall from
Section 3.5, we utilize VSCC under a mclust framework, meaning we use mclust to initialize the ẑig and to
cluster the feature-reduced data sets. In VSCC, we will utilize mclust under the default settings: mclust

considers G = 1, . . . , 9. Hence, for fairness of comparison, clustvarsel and selvarclust will be set to
consider G = 1, . . . , 9 as well. Note that all methods will be run on standardized variable (mean 0, variance
1) versions of the data discussed. Finally, selvarclust will be restricted to the covariance parameterizations
available in mclust, again for fairness of comparison. Even so, the results presented from selvarclust are
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not as directly comparable to the other two variable selection methods due to a difference in initializations
used by the MIXMOD software versus mclust.

5.2 Leptograpsus Crabs

The Leptograpsus crabs data set can be found in the MASS library in R. It contains five length measurements
on two different colour forms of the crabs, further separated into the two genders. The results for the mclust
initialization, VSCC, clustvarsel, and selvarclust on the crabs data set are given in Table 5.

Table 5: Table of results from mclust, VSCC, clustvarsel, and selvarclust on the crabs data set. The
relationship chosen for VSCC by the total model uncertainty is given in parentheses.

Analysis ARI Time (sec.) G #Vars Unc.
mclust 0.31 3.94 4 5 14.71
VSCC (Quintic) 0.76 12.49 5 4 10.96
clustvarsel 0.76 63.01 5 4 10.96
selvarclust 0.50 256.69 5 4 12.79

On this data set, clustvarsel (via approximate Bayes factors) and VSCC (via total uncertainty) agree
on the solution that eliminates one variable and increases the ARI from 0.31 to 0.76. In fact, the selvarclust
algorithm selects the same variables, but the results are very different due to the initializations used. We
can, for all intents and purposes, consider the performance of all techniques equivalent. The main item of
interest here is that VSCC accomplishes this task five times faster than clustvarsel and over 20 times
faster than selvarclust.

Perhaps a more important aspect of this application is that VSCC manages to increase clustering per-
formance from a poor initialization (increasing the ARI from 0.31 for the correct number of groups to 0.76
for group over-estimation). One argument against an approach such as VSCC could be that one might need
‘quite good’ initializations for the technique to be useful; the crabs data set, however, shows that this is not
necessarily the case. Note that mclust actually chooses the correct number of groups, meaning that the ARI
is not artificially deflated by the choice of large G; its clustering performance is simply poor.

5.3 Italian Wine

The Italian wine data set is readily available in the gclus library in R and contains 13 chemical measurements
on 178 samples of wine originating from three different varieties (Barolo, Grignolino, and Barbera). From
the results (Table 6), we can see that VSCC outperforms the clustering done by mclust alone as well as
those done by clustvarsel and selvarclust. Running mclust on the variables selected by selvarclust

results in the same performance as listed for selvarclust. In addition to outperforming clustvarsel and
selvarclust with respect to clustering performance, VSCC runs over 10 and 200 times faster, respectively.

Table 6: Table of results from mclust, VSCC, clustvarsel, and selvarclust on the wine data set. The
relationship chosen for VSCC by the uncertainty is given in parentheses.

Analysis ARI Time (sec.) G #Vars Unc.
mclust 0.48 1.91 8 13 5.85
VSCC (Quartic) 0.90 10.25 3 9 0.90
clustvarsel 0.78 113.95 3 5 2.23
selvarclust 0.54 2220.42 7 8 6.35
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5.4 Swiss bank notes data

The Swiss bank notes data set is also available in the gclus library in R and contains six measurements on
200 monetary bills, of which some are legal tender and others counterfeit. The results (Table 7) show that
VSCC again results in the best clustering performance, with an ARI of 0.85 compared to 0.68 and 0.67 for
mclust and clustvarsel, respectively. Running mclust on the variables chosen by selvarclust results in
an ARI of 0.69, leaving it roughly on par with the mclust and clustvarsel results. VSCC utilizes fewer
variables (4 versus 5) and runs eight times faster than clustvarsel.

Table 7: Table of results from mclust, VSCC, clustvarsel, and selvarclust on the bank notes data set.
The relationship chosen for VSCC by the uncertainty is given in parentheses.

Analysis ARI Time (sec.) G #Vars Unc.
mclust 0.68 2.34 4 6 6.16
VSCC (Quadratic) 0.85 8.52 3 4 0.17
clustvarsel 0.67 66.18 4 5 6.10
selvarclust 0.25 357.51 8 3 15.71

5.5 Coffee data

The coffee data set given by Streuli (1973) contains 13 chemical measurements on 43 samples of coffee
hailing from one of two species: Arabica or Robusto.These results (Table 8) serve as an example where
a variable selection method can negatively affect clustering performance. While mclust performs perfect
classification on the full data set, clustvarsel and selvarclust (including under mclust analysis of the
selected variables) select too many groups.

Table 8: Table of results from mclust, VSCC, clustvarsel, and selvarclust on the coffee data set. The
relationship chosen for VSCC by the uncertainty is given in parentheses.

Analysis ARI Time (sec.) G #Vars Unc.
mclust 1.00 0.16 2 13 0.00
VSCC (Quadratic) 1.00 1.19 2 2 0.00
clustvarsel 0.41 2.79 3 6 0.42
selvarclust 0.37 404.67 4 7 0.23

Perhaps more importantly, VSCC gives perfect classification while reducing the number of variables from
13 to 2: caffeine and fat content. A visualization of the clusters on these two variables is given in Figure 3.

5.6 Comparison with Correctly Specified G

We conclude the analysis of real data sets by comparing VSCC with results from the sparcl package (Witten
and Tibshirani, 2011) in R, which contains an implementation of the sparse k-means technique described by
Witten and Tibshirani (2010). We use this approach under default settings, allowing KMeansSparseCluster.permute()
to select the tuning parameter. Because this approach is based on k-means, the number of groups must be
specified; this thus differs from the approaches compared in the previous sections. Table 9 contains the
results from all four data sets analyzed by sparcl and VSCC.

The results across all four data sets show that VSCC can be run in a significantly shorter amount of time
and result in better (or equal, in one case) clustering performance. Note also that sparcl has reduced the
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Figure 3: Scatterplot of the Arabica (circles) and Robusto (triangles) coffee beans on the VSCC chosen
variables.

Table 9: Table of results from VSCC and sparcl on the previously introduced data sets with the correct
number of groups pre-specified. The relationship chosen for VSCC by the uncertainty is given in parentheses.

Data Set Analysis ARI Time (sec.) #Vars

Crabs
VSCC (Quintic) 0.37 1.01 4

sparcl 0.02 6.17 5

Wine
VSCC (Cubic) 0.93 0.33 7

sparcl 0.85 6.36 13

Bank
VSCC (Quintic) 0.98 0.26 5

sparcl 0.96 4.55 6

Coffee
VSCC (Cubic) 1.00 0.12 6

sparcl 1.00 2.71 13

dimensionality of the data set but has not technically removed any variables from consideration (because
none of the variables have been weighted to zero in the model). As a small side note, we point out that the
VSCC results on the coffee and wine data sets differ slightly from those earlier in Sections 5.3 and 5.5, even
though the final number of groups selected is the same. This is due to differences in initializations from the
preliminary mclust runs, and thus is not particularly surprising.

6 Discussion and Future Work

A novel variable selection technique (VSCC) based on within-group variance was introduced and utilized
under a model-based clustering framework. The strengths of the technique lie in the speed at which it can
be run as well as its intuitive appeal. It was shown to outperform or equal clustvarsel, selvarclust, and
sparcl in clustering performance, and significantly outperform them in speed, on four commonly used data
sets. Notably, the VSCC relationship chosen by the total uncertainty was, in every real data set considered,
the relationship that resulted in the highest ARI. This, along with several of the simulation studies, lends
support for the use of total uncertainty as a subset selection criteria.

The inner workings of VSCC are flexible enough to incorporate clustering/classification algorithms other
than the model-based techniques covered in this article. One hurdle to overcome in this respect is an effective
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subset selection criterion — as non-model-based methods will not contain uncertainty measures — and this
will be a subject of future research. In addition, the development of VSCC software for the R computing
environment is intended pending code optimization and further testing.
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