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Abstract

We develop a formalism to address statistical pattern recognition of graph valued data. Of particular
interest is the case of all graphs having the same number of uniquely labeled vertices. When the vertex
labels are latent, such graphs are called shuffled graphs. Our formalism provides insight to trivially
answer a number of open statistical questions including: (i) under what conditions does shuffling the
vertices degrade classification performance and (ii) do universally consistent graph classifiers exist?
The answers to these questions lead to practical heuristic algorithms with state-of-the-art finite sample
performance, in agreement with our theoretical asymptotics.

1 Introduction

Representing data as graphs is becoming increasingly popular, as technological progress facilitates measur-
ing “connectedness” in a variety of domains, including social networks, trade-alliance networks, and brain
networks. While the theory of pattern recognition is deep [1], previous theoretical efforts regarding pattern
recognition almost invariably assumed data are collections of vectors. Here, we assume data are collections
of graphs (where each graph is a set of vertices and a set of edges connecting the vertices). For some data
sets, the vertices of the graphs are labeled, that is, one can identify the vertex of one graph with a vertex of
the others (note that this is a special case of assuming vertices are labeled, where each vertex has a unique
label). For others, the labels are unobserved and/or assumed to not exist. We investigate the theoretical and
practical implications of the absence of vertex labels.

These implications are especially important in the emerging field of “connectomics”, the study of con-
nections of the brain [2, 3]. In connectomics, one represents the brain as a graph (a brain-graph), where
vertices correspond to (groups of) neurons and edges correspond to connections between them. In the lower
tiers of the evolutionary hierarchy (e.g., worms and flies), many neurons have been assigned labels [4].
However, for even the simplest vertebrates, vertex labels are mostly unavailable when vertices correspond
to neurons.

Classification of brain-graphs is therefore poised to become increasingly popular. Although previous
work has demonstrated some possible strategies of graph classification in both the labeled [5] and unlabeled
[6] scenarios, relatively little work has compared the theoretical limitations of the two. We therefore develop
a random graph model amenable to such theoretical investigations. The theoretical results lead to universally
consistent graph classification algorithms, and practical approximations thereof. We demonstrate that the
approximate algorithm has desirable finite sample properties via a real brain-graph classification problem of
significant scientific interest: sex classification.

2 Graph Classification Models

2.1 A labeled graph classification model

A labeled graph G = (V, E) consists of a vertex set V , where |V| = n < ∞ is the number of vertices, and
an edge set E , where |E| ≤ n2.

Definition 1. Let G : Ω→ Gn be a labeled graph-valued random variable taking values G ∈ Gn, where Gn
is the set of labeled graphs on n vertices.
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Shuffled Graph Classification 2 GRAPH CLASSIFICATION MODELS

The cardinality of Gn is super-exponential in n. For example, when all labeled graphs are assumed to be
simple (that is, undirected binary edges without loops), then |Gn| = 2(n2) = dn. Let Y be a categorical ran-
dom variable, Y : Ω→ Y = {y0, . . . , yc}, where c <∞. Assume the existence of a joint distribution, PG,Y
which can be decomposed into the product of a class-conditional distribution (likelihood) PG|Y and a class
prior πY . Because n is finite, the class-conditional distributions PG|Y=y = PG|y can be considered discrete
distributions Discrete(G; θy), where θy is an element of the dn-dimensional unit simplex 4dn (satisfying
θG|y ≥ 0 ∀G ∈ Gn and

∑
G∈Gn θG|y = 1).

2.2 A shuffled graph classification model

In the above, it was implicitly assumed that the vertex labels were observed. However, in certain situations
(such as the motivating connectomics example presented in Section 1), this assumption is unwarranted. To
proceed, we define two graphs G,G′ ∈ Gn to be isomorphic if and only if there exists a vertex permutation
(shuffle) function Q : Gn → Gn such that Q(G) = G′. Let Q be a permutation-valued random variable,
Q : Ω→ Qn, where Qn is the space of vertex permutation functions on n vertices so that |Qn| = n!.

Definition 2. Let G′ = Q(G) : Ω → Gn be a shuffled graph-valued random variable, that is, a labeled
graph valued random variable that has been passed through a random shuffle channel Q.

Extending the above graph-classification model to include this vertex shuffling distribution yields PQ,G,Y .
We assume throughout this work (with loss of generality) that the shuffling distribution is both class inde-
pendent and graph independent; therefore, this joint model can be decomposed as

PQ,G,Y = PQPG,Y = PQPG|Y πY = PQ(G)|Y πY . (1)

As in the labeled case, the shuffled graph class-conditional distributions PQ(G)|y can be represented by
discrete distributions Discrete(G; θ′y). Because Q(G) can be any of |Gn| different graphs, it must be that
θ′y ∈ 4dn . When PQ is uniform on Qn, all shuffled graphs within the same isomorphism set are equally
likely; that is {θ′Gi|y = θ′Gj |y ∀Gi, Gj : Q(Gi) = Gj for some Q ∈ Qn}.

Note that one can think of a labeled graph as a shuffled graph for which Q is a point mass at Q = I ,
where I is the identity matrix.

2.3 An unlabeled graph classification model

The above shuffling view is natural whenever the vertices of the collection of graphs share a set of labels,
but the labeling function is unknown. However, when the vertices of the collection of graphs have different
labels, perhaps a different view is more natural.

An unlabeled graph G̃ is the collection of graphs isomorphic to one another, that is, G̃ = {Q(G)}Q∈Qn .
Let G̃ be an element of the collection of graph isomorphism sets G̃n. The number of unlabeled graphs on n
vertices is |G̃n| = d̃n ≈ dn/n! (see [7] and references therein). An unlabeling function U : Gn → G̃n is a
function that takes as input a graph and outputs the corresponding unlabeled graph.

Definition 3. Let G̃ = U(G) : Ω → G̃n be an unlabeled graph-valued random variable, that is, a labeled
graph-valued random variable that has been passed through an unlabeled channel. In other words, G̃ =
{Q(G)}Q∈Qn , and takes values G̃ ∈ G̃n.

The joint distribution over unlabeled graphs and classes is therefore PG̃,Y = PU(G),Y = PU(Q(G)),Y ,
which decomposes as PG̃|Y πY . The class-conditional distributions PG̃|y over isomorphism sets (unlabeled

graphs) can also be thought of as discrete distributions Discrete(G̃; θ̃y) where θ̃y ∈ 4d̃n
are vectors in the

d̃n-dimensional unit simplex. Comparing shuffling and unlabeling for the independent and uniform shuffle
distribution PQ, we have {θ′G|y = θ̃

G̃|y/|G̃| for all G ∈ G̃}.
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Shuffled Graph Classification 3 BAYES OPTIMAL GRAPH CLASSIFIERS

3 Bayes Optimal Graph Classifiers

We consider graph classification in the three scenarios described above: labeled, shuffled, and unlabeled.
To proceed, in each scenario we define three mathematical objects: (i) a graph classifier, (ii) risk, (iii), the
Bayes optimal classifier, and (iv) the Bayes risk.

3.1 Bayes Optimal Colored Graph Classifiers

A labeled graph classifier h : Gn → Y is any function that maps from labeled graph space to class space.
The risk of a labeled graph classifier h under 0 − 1 loss is the expected misclassification rate L(h) =
E[h(G) 6= Y ], where the expectation is taken against PG,Y . The labeled graph Bayes optimal classifier is
given by

h∗ = argmin
h∈H

L(h), (2)

where H is the set of possible labeled graph classifiers. The labeled graph Bayes risk is given by L∗ =
L(h∗), where L∗ implicitly depends on PG,Y .

3.2 Bayes Optimal Shuffled Graph Classifiers

A shuffled graph classifier is also any function h : Gn → Y (note that the set of shuffled graphs is the same
as the set of labeled graphs). However, by virtue of the input being a shuffled graph as opposed to a labeled
graph, the shuffled risk under 0 − 1 loss is given by L′(h) = E[h(Q(G)) 6= Y ], where the expectation is
taken against PQ(G),Y . The shuffled graph Bayes optimal classifier is given by

h′∗ = argmin
h∈H

L′(h), (3)

where H is again the set of possible labeled (or shuffled) graph classifiers. The shuffled graph Bayes risk is
given by L′∗ = L(h′∗), where L′∗ implicitly depends on PQ(G),Y .

3.3 Bayes Optimal Unlabeled Graph Classifiers

An unlabeled graph classifier h̃ : G̃n → Y is any function that maps from unlabeled graph space to class
space. The risk under 0 − 1 loss is given by L̃(h̃) = E[h̃(G̃) 6= Y ], where the expectation is taken against
PG̃,Y . The unlabeled graph Bayes optimal classifier is given by

h̃∗ = argmin
h̃∈H̃

L(h̃), (4)

The unlabeled graph Bayes risk is given by L̃∗ = L(h̃∗), where H̃ is the set of possible unlabeled graph
classifiers and L̃∗ implicitly depends on PG̃,Y .

3.4 Parametric Graph Classifiers

The three Bayes optimal graph classifiers can be written explicitly in terms of their model parameters:

h∗(G) = argmax
y∈Y

θG|yπy, (5)

h′∗(G) = argmax
y∈Y

θ′G|yπy, (6)

h̃∗(G̃) = argmax
y∈Y

θ̃
G̃|yπy. (7)

3
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CLASSIFICATION PERFORMANCE?

4 Under what conditions does shuffling the vertices degrade classification performance?

The result of either shuffling or unlabeling a graph can only degrade, but not improve Bayes risk. This is a
restatement of the data processing lemma for this scenario. Specifically, [1] shows that the data processing
lemma indicates that in the classification domain L∗X ≤ L∗T (X) for any transformation T and data X . In our
setting, this becomes:

Lemma 1. L∗ ≤ L̃∗ = L′∗.

Proof. Assume for simplicity |Y| = 2 and π0 = π1 = 1/2.

L̃∗ =
∑
G̃∈G̃n

min
y
θ̃
G̃|y =

∑
G̃∈G̃n

min
y

∑
G∈G̃

θ′G|y = L′∗

=
∑
G̃∈G̃n

min
y

∑
G∈G̃

θG|y ≥
∑
G̃∈G̃n

∑
G∈G̃

min
y
θG|y = L∗. (8)

An immediate consequence of the above proof is that the inequality in the statement of Lemma 1 strict
whenever the inequality in Eq. (8) is strict:

Lemma 2. L∗ < L̃∗ = L′∗ if and only if there exists G̃ such that

min
y
θ̃
G̃|y >

∑
G∈G̃

min
y
θG|y.

The above result demonstrates that even when the labels do carry some class-conditional signal, it may
be the case that shuffling or unlabeling does not degrade performance. In other words, the following two
statements are equivalent: (i) the labels contain information with regard to the classification task, and (ii)
some graphs within an isomorphism set are class-conditionally more likely than others: ∃ θGi|y 6= θGj |y
where Q(Gi) = Gj for some Gi, Gj ∈ Gn, Q ∈ Qn, and y ∈ Y . Uniform shuffling has the effect of
“flattening” likelihoods within isomorphism sets, from θy to θ′y, so that θ′y satisfies {θ′G|y = θ̃

G̃|y/|G̃| ∀ : G ∈
G̃}. But just because the shuffling changes class-conditional likelihoods does not mean that Bayes risk must
also change. This result follows immediately upon realizing that posteriors can change without classification
performance changing. The above results are easily extended to consider non-equal class priors and c-class
classification problems. To see this, ignoring ties, simply replace each minimum likelihood with a sum over
all non-maximum posteriors:

min
y
θG|yπy 7→

∑
y∈Y ′

θG|yπy where Y ′ = {y : y 6= argmax
y

θG|yπy}. (9)

Prior to concluding this section, we remark that one can achieve Bayes optimal risk using graph invari-
ants. A graph invariant on Gn is any function ψ such that ψ(G) = ψ(Q(G)) for all G ∈ Gn and Q ∈ Qn
(note that an unlabeling function U(G) is a special case of ψ). A graph invariant classifier is a composi-
tion of a classifier with an invariant function, hψ = fψ ◦ ψ. The Bayes optimal graph invariant classifier
minimizes risk over all invariants:

hψ∗ = argmin
ψ∈Ψ,fψ∈Fψ

E[f(ψ(G)) 6= Y ], (10)

where Ψ is the space of all possible invariants and Fψ is the space of classifiers composable with invariant
ψ. The expectation in Eq. (10) is taken against PG,Y or equivalently PQ(G),Y , since invariants are invariant.
Let Lψ∗ denote the Bayes invariant risk.
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Lemma 3. L̃∗ = Lψ∗ .

Proof. Let ψ indicate in which equivalence set G resides; that is, ψ(G) = G̃ if and only if G ∈ G̃. Then

hψ∗ (G) = argmax
y∈Y

θ̃ψ(G)|yπy

= argmax
y∈Y

θ̃
G̃|yπy = h̃∗(G). (11)

5 Do universally consistent graph classifiers exist?

Throughout this paper, we consider two distinct “flavors” of graph classifiers that we can estimate from the
data: (i) Bayes plug-in and (iii) nearest neighbor. Below, we first introduce Bayes plug-in graph classifiers.
In the following sections, we will discuss their asymptotic properties, as well as the asymptotic properties
of ks nearest neighbor graph classifiers.

5.1 Bayes Plug-In Graph Classifiers

Implementing the above optimal classifiers requires knowing the model parameters. When the parameters
are unknown (effectively always), we assume that the data are sampled identically and independently from
some unknown joint distribution: (Qi(Gi), Yi)

iid∼ PQ,G,Y . For labeled graph classification, PQ is assumed
to be the identity function, therefore, Ts = {(Gi, Yi)}i∈[s], because when graphs are labeled Qi(Gi) = Gi.
For shuffled graph classification PQ is assumed to be uniform over the permutation matrices, so that all label
information is both unavailable and irrecoverable. The training data are therefore T ′s = {(G′i, Yi)}i∈[s],
where G′i = Qi(Gi). For unlabeled graph classification the training data are again T ′s . Our task is to utilize
training data to induce a classifier that approximates a Bayes classifier as closely as possible.

A labeled graph Bayes plugin classifier, ĥs : Gn× (G×Y)s → Y , estimates the parameters {θy, πy}y∈Y
using the training data Ts = {(Gi, Yi)}i∈[s], and then plugs those estimates into the labeled Bayes classifier,
Eq. (5), resulting in

ĥs(G) = argmax
y∈Y

θ̂G|yπ̂y, (12)

where the dependency on the training data is implicit in the ĥs(G) notation.
A shuffled graph Bayes plugin classifier, ĥ′s : Gn×(G×Y)s → Y , estimates the parameters {θ′y, πy}y∈Y

using the training data T ′s = {(G′i, Yi)}i∈[s], and then plugs those estimates into the shuffled Bayes classifier,
Eq. (6), resulting in

ĥ′s(G) = argmax
y∈Y

θ̂′G|yπ̂y. (13)

An unlabeled graph Bayes plugin classifier, ˆ̃
hs : G̃n × (G̃n × Y)s → Y , first determines in which

unlabeled set each shuffled graph resides, using ψ as defined in Section 5. Then, it estimates the parameters
{θ̃ψ(G′)|y}y∈Y and {πy}y∈Y using the training data T ′s . Finally, it plugs those estimates into the unlabeled
Bayes classifier, Eq. (7), resulting in

ˆ̃
hs(G) = argmax

y∈Y

ˆ̃
θ
G̃|yπ̂y. (14)

For brevity, we will sometimes refer to the above three induced classifiers as simply “classifiers”. More-
over, the sequence of classifiers (for example, {hs}s→∞) we will also refer to as a “classifier”.

5
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5.2 Bayes Plug-in Graph Classifiers are Universally Consistent

The three parametric classifiers, Eqs. (12)–(14), admit classifier estimators that exist, are unique, and more-
over, are universally consistent, although the relative convergence rates and values that they converge to
differ.

Let L̂s = L(ĥs) be the risk of the induced labeled graph Bayes plugin classifier using the training data
Ts to obtain maximum likelihood estimators for {θy, πy}y∈Y . Note that L̂s is a random variable, as it is a
function of the random training data Ts. This yields

Lemma 4. L̂s
p→ L∗ as s→∞.

Proof. Because Gn and Y are both finite, the maximum likelihood estimates for the categorical parameters
{θy, πy}y∈Y are guaranteed to exist and be unique [1]. Hence, the labeled graph Bayes plugin classifier
is universally consistent to L∗ (that is, it converges to L∗ regardless of the true joint distribution, PQ,G,Y )
[1].

Similarly, let L̂′s = L(ĥ′s) be the risk of the induced shuffled graph Bayes plugin classifier using the
training data T ′s to obtain maximum likelihood estimators for {θ′y, πy}y∈Y . This yields

Corollary 1. L̂′s
p→ L′∗ as s→∞.

Proof. The previous proof rests on the finitude of Gn, which remains finite after shuffling (uniform or oth-
erwise), and therefore, the previous proof holds, replacing L∗ with L′∗.

Thus while one could merely plug the shuffled graphs into θ′y, such a procedure is inadvisable. Specif-
ically, the above procedure does not use the fact that all θG′

i|y = θG′
j |y whenever Q(Gi) = Gj for some

Q ∈ Q. Instead, consider the risk ˆ̃
Ls = L(

ˆ̃
hs) of the induced unlabeled graph Bayes plugin classifier upon

using the ψ function to map each shuffled graph to its corresponding unlabeled graph, and then obtaining
maximum likelihood estimates of the unlabeled graph parameters, θ̃.

Corollary 2. ˆ̃
Ls

p→ L̃∗ as s→∞.

Because |G̃n| � |Gn| (by a factor of approximately n!), it follows that classifying by first projecting
the graphs into a lower dimensional space should yield improved performance. Specifically, we have the
following result:

Lemma 5. ˆ̃
hs dominates ĥ′s for shuffled graph data.

Proof. Consider the scalar θ̃
G̃|y decomposed into the vector (θ̃G1|y, . . . , θ̃G|G̃||y), where each θ̃Gi|y = θ̃

G̃|y/|G̃|.

Note that each θ̃Gi|y = θ′Gi|y. Yet, the estimators, ˆ̃
θGi|y and θ̂′Gi|y are not equal, because the former can bor-

row strength from all shuffled graphs within the same unlabeled graph, but the latter does not. Assuming
without loss of generality that the class priors are equal and known, the above domination claim is equivalent
to stating that for each G,

P[argmax
y∈Y

ˆ̃
θG|y 6= argmax

y∈Y
θ̃G|y|T ′s ] ≤ P[argmax

y∈Y
θ̂′G|y 6= argmax

y∈Y
θ′G|y|T

′
s ]. (15)

Because θ̃G|y = θ′G|y, the only difference between the two sides of the above inequality is the estimators.
We know that the estimators have the following distributions:

s
G̃

ˆ̃
θG|y ∼ Binomial(θ̃G|y, sG̃) (16a)

sGθ̂G|y ∼ Binomial(θ̃G|y, sG), (16b)

6
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where s
G̃

is the number of observations of any G ∈ G̃ in the training data, and sG is the number of obser-

vations of G in the training data. From this, we see that for each G, ˆ̃
θG|y will have a tighter concentration

around the truth due to is borrowing strength, because s
G̃
≥ sG, so our result holds.

5.3 ks Nearest Neighbor Graph Classifiers are Universally Consistent

Corollary 2 demonstrates that one can induce a universally consistent classifier ˆ̃
hs using Eq. (14). Lemma

5 further shows that the performance of ˆ̃
hs dominates ĥ′s. Yet, using ˆ̃

hs is practically useless for two
reasons. First, it requires solving s graph isomorphism problems. Unfortunately, there are no algorithms
for solving graph isomorphism problems with worst-case performance known to be in only polynomial time
[8]. Second, the number of parameters to estimate is super-exponential in n (d̃n ≈ 2n

2
/n!), and acceptable

performance will typically require s� d̃n. We can therefore not even store the parameter estimates for small
graphs (e.g., n = 30), much less estimate them. This motivates consideration of an alternative strategy.

A ks nearest-neighbor (kNN) classifier using Euclidean norm distance is universally consistent to L∗
for vector-valued data as long as ks → ∞ with ks/s → 0 as s → ∞ [9]. This non-parametric approach
circumvents the need to estimate many parameters in high-dimensional settings such as graph-classification.
The universal consistency proof for ksNN was extended to graph-valued data in reference [10], which we in-
clude here for completeness. Specifically, to compare labeled graphs, reference [10] considered a Frobenius
norm distance

δ(Gi, Gj) = ‖Ai −Aj‖2F , (17)

where Ai is the adjacency matrix representation of the labeled graph, Gi. Let ĥδs denote the Frobenius norm
ksNN classifier on labeled graphs using δ, and let L̂δs indicate the misclassification rate for this classifier.
Reference [10] showed:

Lemma 6. L̂δs
p→ L∗ as s→∞.

Proof. Because both G and Y have finite cardinality, the law of large numbers ensures that eventually as
s→∞, the plurality of nearest neighbors to a test graph will be identical to the test graph.

Let ĥ
′δ
s denote the Frobenius norm ksNN classifier on shuffled graphs using δ′, and let L̂

′δ′
s indicate

the misclassification rate for this classifier. From the above lemma and Corollary 1, the below follows
immediately:

Corollary 3. L̂′δ
s

p→ L′∗ as s→∞.

Given shuffled graph data T ′s , however, other distance metrics appear more “natural” to us. For example,
consider the “graph-matched Frobenius norm” distance:

δ′(G′i, G
′
j) = min

Q∈Qn

∥∥Q(A′i)−A′j
∥∥2

F
, (18)

where A′i and A′j are shuffled adjacency matrices. Let ĥ
′δ′
s indicate the misclassification rate of the ksNN

classifier using the above graph-matched norm δ′ shuffled graphs, and let L̂
′δ′
s indicate the misclassification

rate for this classifier. Given an exact graph matching function—a function that actually solves Eq. (18)—we
have the following result:

Corollary 4. L̂′δ′
s

p→ L′∗ as s→∞.

7



Shuffled Graph Classification 6 REAL WORLD APPLICATION

Thus, given shuffled data T ′s , one could consider either ĥδs or ĥ
′δ′
s .

Interestingly, when the data are labeled graphs, Ts, one can outperform ĥδs by shuffling, that is, by
apparently destroying the label information. Consider an example in which θ = θ′, such that no information
is in the labels. In such scenarios, shuffling can effectively borrow strength from different labeled graphs
that are within the same unlabeled graph set. Let ĥδ

′
s indicate the misclassification rate of the ksNN classifier

using δ′ labeled graphs, and let L̂δ
′
s indicate the misclassification rate for this classifier. We therefore state

without proof:

Lemma 7. Neither ĥδ
′
s nor ĥδs dominates when data are labeled graphs.

Thus, when the training data consists of shuffled graphs, the best universally consistent classifier (of
those considered herein) is a ksNN that uses δ′ as the distance metric. Other universally consistent classifiers
that we considered either require estimating more parameters than there are molecules in the universe, or
are inadmissible under 0− 1 loss. When vertex labels are available, no classifier dominates.

5.4 Comparing Asymptotic Performances

The above theoretical results consider Bayes plug-in and ksNN classifiers. Here we consider other classi-
fiers. Specifically, let L̂ψs be the misclassification rate for some classifier that operates on T ′s , that is, only
has access to shuffled graphs. Consider the set of seven graph invariants studied in [11]: size, max degree,
max eigenvalue, scan statistic, number of triangles, and average path length. Via Monte Carlo, [11] was un-
able to find a uniformly most powerful graph invariant (test statistic [12]) for a particular hypothesis testing
scenario with unlabeled graphs. The above results, however, indicate that there exists optimal classifiers (or
test statistics) for any unlabeled or shuffled graph setting. To proceed, let ĥπ̂s be the chance classifier, that is

ĥπ̂s (G) = argmax
y∈Y

π̂y, (19)

and let L̂π̂s be the misclassification rate for this classifier. Moreover, let L̂ψs be the risk of the invariant
classifier that is equivalent to the unlabeled Bayes plug-in classifier (see Lemma 3). From the above results,
it follows that:

Lemma 8. In expectation,

L̂π̂s ≥ L̂′s =
ˆ̃
Ls = L̂ψs = L̂δ

′
s = L̂

′δ′
s as s→∞.

5.5 Comparing Computational Properties

While asymptotic results can be informative and insightful, understanding the computational properties of
the different classifiers can be as (or even more) informative for real applications. Table 1 compares the
space and time complexity of the various classifiers considered above. Only the kNN classifiers have the
property that they do not require more space than there are atoms in the universe (for any n bigger than
≈ 30). Of those, the labeled ksNN classifier does not require time exponential in the number of vertices.
Therefore, we only found one type of classifier with performance guarantees that has both polynomial
space and time. Unfortunately, the finite sample performance of this classifier is abysmal. This motivates
constructing approximate classifiers.

6 Real World Application

We buttress the above theoretical results via numerical experiments. The asymptotic results combined with
the computational complexities of the above described algorithm suggest that none of the proposed algo-
rithms have all the properties we effectively require for real world applications, in particular, polynomial

8
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Table 1: Order of computational properties for training the various shuffled graph classifiers.

name notation time space
chance ĥπ̂s s 1

invariant ĥψs ens min(2(n2)/n!, s)

labeled Bayes plug-in ĥ′s s min(2(n2), s)

unlabeled Bayes plug-in ˆ̃
hs ens min(2(n2)/n!, s)

labeled ksNN ĥδ
′
s n2s2 n2s

unshuffled ksNN ĥ
′δ′
s ens2 n2s

space and time complexity, as well as reasonable convergence rates. We therefore propose a different al-
gorithm, which lacks universal consistency, but can be run on real data with good hope for reasonable
performance. In particular, we modify ĥ

′δ′
s , the unshuffled kNN classifier. Instead of requiring this clas-

sifier to actually solve the graph matching problem, Eq. (18), we use a recently proposed state-of-the-art
approximate cubic time algorithm [16]. Denote this classifier ĥ

′δ̃
s .

6.1 Shuffled Connectome Classification

A “connectome” is a brain-graph in which vertices correspond to (groups of) neurons, and edges correspond
to connections between them. Diffusion Magnetic Resonance (MR) Imaging and related technologies are
making the acquisition of MR connectomes routine [13]. 49 subjects from the Baltimore Longitudinal Study
on Aging comprise this data, with acquisition and connectome inference details as reported in [14]. Each
connectome yields a 70 vertex simple graph (binary, symmetric, and hollow adjacency matrix). Associated
with each graph is class label based on the sex of the individual (24 males, 25 females). Because the vertices
are labeled, we can compare the results of having the labels and not having the labels.

Consider the following five classifiers:

• δ-1NN: A 1-nearest neighbor (1NN) with Frobenius norm distance on the labeled adjacency matrices.

• δ′-1NN: A 1NN with Frobenius norm distance on the shuffled adjacency matrices.

• δ̃-1NN: A 1NN with an approximate graph-matched Frobenius norm distance on the shuffled adja-
cency matrices, as described above. Because graph-matching is NP-hard [15], we instead use an
inexact graph matching approach based on the quadratic assignment formulation described in [16],
which only requires O(n3) time.

• ψ-1NN: A 1NN with Euclidean distance using the seven graph invariants described above. Prior to
computing the Euclidean distance, for each invariant, we rescale all the values to lie between zero and
one.

• π̂: Use the chance classifier defined above.

Performance is assessed by leave-one-out misclassification rate.
Figure 1 reifies the above theoretical results in a particular finite sample regime. We apply the five

algorithms discussed above to sub-samples of the connectome data, which shows approximate convergence
rates for this data. Fortunately, this real data example supports the main lemmas of this work. Specifically,
the ksNN classifier using δ on the labeled graphs (dashed gray line) achieves the lowest misclassification rate

9
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for all s, which one would expect if labels contain appropriate class signal. Moreover, the ksNN classifier
using the inexact graph-matching Frobenius norm on the shuffled adjacency matrices, δ̃, performs best of
all classifiers using only shuffled graphs (compare dashed black line with solid black and gray lines). On
the other hand, while the ksNN classifier using the Frobenius norm on shuffled graphs, δ′, must eventually
converge to L′s, its convergence rate is quite slow, so the classifier using standard invariants ψ outperforms
the simple δ′ based ksNN.
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Figure 1: Connectome misclassification rates for various classifiers. 2000 Monte Carlo sub-samples of the
data were performed for each s, such that errorbars were neglibly small. Five classifiers were compared, as
described in main text. Note that when s is larger than 20, as predicted by theory, we have L̂π̂s > L̂ψs >

L̂δ̃s > L̂δs. Moreover, L̂δ
′
s > L̂δ̃s > L̂δs.

7 Discussion

In this work, we address both the theoretical and practical limitations of classifying shuffled graphs, relative
to labeled and unlabeled graphs. Specifically, first we construct the notion of shuffled graphs and shuffled
graph classifiers in a parallel fashion with labeled and unlabeled graphs/classifiers, as we were unable to
find such notions in the literature. Then, we show that shuffling the vertex labels results in an irretrievable
situation, with a possible degradation of classification performance (Lemma 1). Even if the vertex labels
contained class-conditional signal, Bayes performance may remain unchanged (Lemma 2). Moreover, al-
though one cannot recover the vertex labels, one can obtain a Bayes optimal classifier by solving a large
number of graph isomorphism problems (Lemma 3). This resolves a theoretical conundrum: is there a set
of graph invariants that can yield a universally consistent graph classifier? When the generative distribution
is unavailable, one can induce a consistent and efficient “unshuffling” classifier by using a graph-matching
strategy (Corollary 2). While this unshuffling approach dominates the more naı̈ve approach (Lemma 5), it
is intractable in practice due to the difficulty of graph matching and the large number of isomorphism sets.
Instead, a Frobenius norm ksNN classifier applied to the adjacency matrices may be used, which is also
universally consistent (Corollary 4). Surprisingly, none of the considered classifiers dominate the other for
labeled data (Lemma 7), yet asymptotically, we can order shuffled graph classifiers (Lemma 8).

Because graph-matching isNP-hard, we instead use an approximate graph-matching algorithm in prac-
tice (see [16] for details). Applying these ksNN classifiers to a problem of considerable scientific interest—
classifying human MR connectomes—we find that even with a relatively small sample size (s ≥ 20), the
approximately graph-matched ksNN algorithm performs nearly as well as the ksNN algorithm using vertex
labels, and slightly better than a ksNN algorithm applied to a set of graph invariants proposed previously
[11]. This suggests that the asymptotics might apply even for very small sample sizes. Thus, this theoreti-

10
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cal insight has led us to improved practical classification performance. Extensions to weighted or (certain)
attributed graphs are straightforward.
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