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Abstract

We extend the standard Bayesian multivariate Gaussian generative data classifier by consid-
ering a generalization of the conjugate, normal-Wishart prior distribution and by deriving
the hyperparameters analytically via evidence maximization. The behaviour of the opti-
mal hyperparameters is explored in the high-dimensional data regime. The classification
accuracy of the resulting generalized model is competitive with state-of-the art Bayesian dis-
criminant analysis methods, but without the usual computational burden of cross-validation.
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1 Introduction

In the conventional formulation of classification problems one aims to map data samples x ∈ IRd

correctly into discrete classes y ∈ {1, . . . C}, by inferring the underlying statistical regularities from
a given training set D = {(x1, y1), . . . , (xn, yn)} of i.i.d. samples and corresponding classes. The
standard approach to this task is to define a suitable parametrization p(x, y|θ) of the multivariate
distribution from which the samples in D were drawn. If the number of samples n is large
compared to the data dimensionality d, computing point estimates of the unknown parameters θ
by maximum likelihood (ML) or maximum a posteriori probability (MAP) methods is accurate
and usually sufficient. On the other hand, if the ratio d/n is not small, point estimation based
methods are prone to overfitting. This is the ‘curse of dimensionality’. Unfortunately, the regime
of finite d/n is quite relevant for medical applications, where clinical data-sets often report on
relatively few patients but contain many measurements per patient1.

In generative classification models, a crucial role is played by the class-specific sample covari-
ance matrices, that capture the correlations between the components of x. These will have to be
inferred, either explicitly or implicitly. While the sample covariance matrix Σ is a consistent esti-
mator for the population covariance matrix Σ0 in the limit d/n→ 0, for finite d/n the empirical
covariance eigenvalue distribution %(ξ) is a poor estimator for its population counterpart %0(λ).
This becomes more pronounced as d/n increases2. In additional to the clear bias in covariance es-
timation induced by high ratios of d/n, the geometry of high-dimensional spaces produces further
extreme and often counterintuitive values of probability masses and densities [2].

1This is the case for rare diseases, or when obtaining tissue material is nontrivial or expensive, but measuring
extensive numbers of features in such material (e.g. gene expression data) is relatively simple and cheap.

2While %(λ) is not a good estimator for %0(λ), [1] showed that in contrast
∫

dλ %(λ)λ is a good estimate of∫
dλ %0(λ)λ; the bulk spectrum becomes more biased as d/n increases, but the sample eigenvalue average does not.
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The overfitting problem has been known for many decades, and many strategies have been
proposed to combat its impact on multivariate point estimation inferences. Regularization meth-
ods add a penalty term to the ML loss function. The penalty strength acts as a hyperparameter,
and is to be estimated. The penalty terms punish e.g. increasing values of the sum of absolute
parameter values (LASSO) or squared parameter values (ridge regression), or a linear combination
of these (elastic net) [3]. They appear naturally upon introducing prior probabilities in Bayesian
inference, followed by MAP point estimation. Feature selection methods seek to identify a subset
of ‘informative’ components of the sample vectors. They range from linear methods such as Prin-
cipal Component Analysis [4] to non-linear approaches such as auto-encoders [5]. They can guide
experimental work, by suggesting which data features to examine. Most of these techniques use
heuristics to determine the number of features to select. Early work by [6] introduced the concept
of shrinking a traditional estimator toward a ‘grand average’. In the univariate case, this was
an average of averages [7]. For the multivariate case, the James-Stein estimator is an admissible
estimator of the population covariance matrix [8]. This idea was further developed by [9, 10].
More recent approaches use mathematical tools from theoretical physics to predict (and correct
for) the overfitting bias in ML regression analytically [11].

Any sensible generative model for classifying vectors in IRd will have at least O(d) parameters.
The fundamental cause of overfitting is the fact that in high-dimensional spaces, where d/n is
finite even if n is large, the posterior parameter distribution p(θ|D) (in a Bayesian sense) will
be extremely sparse. Replacing this posterior by a delta-peak, which is what point estimation
implies, is always a very poor approximation, irrespective of which protocol is used for estimating
the location of this peak. It follows that by avoiding point estimation altogether, i.e. by retaining
the full posterior distribution and doing all integrations over model parameters analytically, one
should reduce overfitting effects, potentially allowing for high-dimensional data-sets to be classified
reliably. Moreover, only hyperparameters will then have to be estimated (whose dimensionality is
normally small, and independent of d), so one avoids the prohibitive computational demands of
sampling high-dimensional spaces. The need to do all parameter integrals analytically limits us in
practice to parametric generative models with class-specific multivariate Gaussian distributions.
Here the model parameters to be integrated over are the class means in IRd and class-specific d×d
covariance matrices, and with carefully chosen priors one can indeed obtain analytical results.
The Wishart distribution is the canonical prior for the covariance matrices. Analytically tractable
choices for the class means are the conjugate [12, 13] or the non-informative priors [14, 15].

As the data dimensionality increases, so does the role of Bayesian priors and their associated
hyperparameters, and the method used for computing hyperparameters impacts more on the
performance of otherwise identical models. The most commonly used route for hyperparameter
estimation appears to be cross-validation. This requires re-training one’s model k times for k-fold
cross-validation; for leave-one-out cross-validation, the model will need to be re-trained n times.

In this paper we generalize the family of prior distributions for parametric generative models
with class-specific multivariate Gaussian distributions, without loss of analytical tractability, and
we compute hyperparameters via evidence maximization, rather than cross-validation. This allows
us to derive closed form expressions for the predictive probabilities of two special model instances.
The numerical complexity of our approach does not increase significantly with d since all integrals
whose dimensions scale with d are solved analytically.

In section 2 we first define our generative Bayesian classifier and derive the relevant integrals.
Special analytically solvable cases of these integrals, leading to two models (A and B), are described
in section 3 along with the evidence maximization estimation of hyperparameters. Closed form
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expressions for the predictive probabilities corresponding to these two models are obtained in
section 3.4. We then examine the behaviour of the hyperparameters in section 4.1, and carry
out comparative classification performance tests on synthetic and real data-sets in section 5. We
conclude our paper with a discussion of the main results.

2 Definitions

2.1 Model and objectives

We have data D = {(x1, y1), . . . , (xn, yn)} consisting of n samples of pairs (x, y), where x ∈ IRd

is a vector of covariates, and y ∈ {1, . . . , C} a discrete outcome label. We seek to predict the
outcome y0 associated with a new covariate vector x0, given the data D. So we want to compute

p(y0|x0,D) =
p(y0,x0|D)∑C
y=1 p(y,x0|D)

=
p(y0,x0|x1, . . . ,xn; y1, . . . , yn)∑C
y=1 p(y,x0|x1, . . . ,xn; y1, . . . , yn)

=
p(x0, . . . ,xn; y0, . . . , yn)∑C

y=1 p(x0, . . . ,xn; y, y1, . . . , yn)
(1)

We next need an expression for the joint distribution p(x0, . . . ,xn; y0, . . . , yn). We assume that all
pairs (xi, yi) are drawn independently from a parametrized distribution p(x, y|θ) whose parameters
θ we don’t know. Using de Finetti’s representation theorem and the fact that exchangeability is
a weaker condition than i.i.d, we can write the joint distribution of {(xi, yi)}ni=0 as

p(x0, . . . ,xn; y0, . . . , yn) =

∫
dθ p(θ)

n∏
i=0

p(xi, yi|θ) (2)

It now follows that

p(y0|x0,D) =

∫
dθ p(θ)

∏n
i=0 p(xi, yi|θ)∑C

y=1

∫
dθ p(θ)p(x0, y|θ)

∏n
i=1 p(xi, yi|θ)

(3)

We regard all model parameters with dimensionality that scales with the covariate dimension d
as micro-parameters, over which we need to integrate (in the sense of θ above). Parameters with
d-independent dimensionality are regarded as hyperparameters. The hyperparameter values will
be called a ‘model’ H. Our equations will now acquire a label H:

p(y0|x0,D, H) =

∫
dθ p(θ|H)

∏n
i=0 p(xi, yi|θ, H)∑C

y=1

∫
dθ p(θ|H)p(x0, y|θ, H)

∏n
i=1 p(xi, yi|θ, H)

(4)

The Bayes-optimal hyperparameters H are those that maximise the evidence, i.e.

Ĥ = argmaxHp(H|D) = argmaxH log
{ p(D|H)p(H)∑

H′ p(D|H ′)p(H ′)

}
= argmaxH

{
log

∫
dθ p(θ|H)

n∏
i=1

p(xi, yi|θ, H) + log p(H)
}

(5)
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What is left is to specify the parametrization p(x, y|θ) of the joint statistics of covariates x and y
in the population from which our samples are drawn. This choice is constrained by our desire to
do all integrations over θ analytically, to avoid approximations and overfitting problems caused
by point-estimation. One is then naturally led to class-specific Gaussian covariate distributions:

p(x, y|θ) = p(y)p(x|y,θ), p(x|y,θ) =
e−

1
2

(x−µy)·Λy(x−µy)√
(2π)d/DetΛy

(6)

Thus the parameters to be integrated over are θ = {µy,Λy, y = 1 . . . C}, i.e. the class-specific
means and covariate matrices.

2.2 Integrals to be computed

In both the inference formula p(y0|x0,D, H) (4) and in the expression for Ĥ (5), the relevant
integral we need to do analytically is the one in

Ω(H,n,D) = − log

∫
dθ p(θ|H)

n∏
i=1

p(xi, yi|θ, H) (7)

In the case where we require Ω(H,n+ 1,D), when evaluating the numerator and the denominator
of (4), we simply replace

∏n
i=1 by

∏n
i=0, so that

p(y0|x0,D) =
e−Ω(H,n+1,D)∑C

z=1 e−Ω(H,n+1,D)|y0=z

Ĥ = argminHΩ(H,n,D) (8)

Working out Ω(H,n,D) for the parametrization (6) gives:

Ω(H,n,D) =
1

2
nd log(2π)−

n∑
i=1

log pyi

− log

∫ [ C∏
z=1

dµzdΛz pz(µz,Λz)
][ n∏

i=1

(DetΛyi)
1
2

]
e
− 1

2

∑n
i=1(xi−µyi

)·Λyi (xi−µyi
)

(9)

where p(yi) = pyi is the prior probability of a sample belonging to class yi. To simplify this expres-
sion we define the data-dependent index sets Iz = {i| yi = z}, each of size nz = |Iz| =

∑n
i=1 δz,yi .

We also introduce empirical covariate averages and correlations, with xi = (xi1, . . . , xid):

X̂z
µ =

1

nz

∑
i∈Iz

xiµ, Ĉz
µν =

1

nz

∑
i∈Iz

(xiµ − X̂z
µ)(xiν − X̂z

ν ) (10)

Upon defining the vector X̂z = (X̂z
1 , . . . , X̂

z
d), and the d×d matrix Ĉz = {Ĉz

µν}, we can then write
the relevant integrals after some simple rearrangements in the form

Ω(H,n,D) =
1

2
nd log(2π)−

C∑
z=1

nz log pz− log

∫ [ C∏
z=1

dµzdΛz pz(µz,Λz)(DetΛz)
nz
2 e−

1
2
nzµz ·Λzµz

]
× e

∑C
z=1µz ·Λz

∑
i∈Iz xi−

1
2

∑C
z=1

∑
i∈Iz xi·Λzxi

=
1

2
nd log(2π)−

C∑
z=1

nz log pz

−
C∑
z=1

log

∫
dµdΛ pz(µ+X̂z,Λ)(DetΛ)

1
2
nze−

1
2
nzµ·Λµ− 1

2
nzTr(

ˆCzΛ) (11)
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To proceed it is essential that we compute Ω(H,n,D) analytically, for arbitrary X̂ ∈ IRd and
arbitrary positive definite symmetric matrices Ĉ. This will constrain the choice of our priors
pz(µ,Λ) for the covariate averages and correlations in outcome class z. All required integrals are
of the following form, with Λ limited to the subset Ξd of symmetric positive definite matrices:

Ψz(H,n,D) =

∫
IRd

dµ

∫
Ξd

dΛ pz(µ+X̂z|Λ)pz(Λ)(DetΛ)
1
2
nze−

1
2
nzµ·Λµ− 1

2
nzTr(

ˆCzΛ) (12)

We will drop the indications of the sets over which the integrals are done, when these are clear from
the context. The tricky integral is that over the inverse covariance matrices Λ. The choice in [16]

corresponded to pz(µ,Λ) ∝ e−
1
2
µ2/β2

zδ[Λ− 1I/α2
z], which implied assuming uncorrelated covariates

within each class. Here we want to allow for arbitrary class-specific covariate correlations.

2.3 Priors for class-specific means and covariance matrices

The integrals over µ and Λ can be done in either order. We start with the integral over µ.
In contrast to most studies, we replace the conjugate prior for the unknown mean vector by a
multivariate Gaussian with an as yet arbitrary precision matrix A. This should allow us to cover
a larger parameter space than the conjugate prior (which has Λz

−1 as its covariance matrix):

pz(µ|A) = (2π)−
d
2

√
DetAz e−

1
2
µ·Azµ (13)

Insertion into (12) gives

Ψz = (2π)−
d
2

∫
dΛ pz(Λ)e−

1
2
nzTr(

ˆCzΛ)− 1
2

ˆXz ·Az
ˆXz

[
Det(Λnz)DetAz

] 1
2

×
∫

dµ e−
1
2
µ·(nzΛ+Az)µ−µ·Az

ˆXz

=

∫
dΛ pz(Λ)e−

1
2
nzTr(

ˆCzΛ)
[Det(Λnz)DetAz

Det(nzΛ+Az)

] 1
2
e

1
2
X ·Az(nzΛ+Az)−1Az

ˆXz− 1
2

ˆXz ·Az
ˆXz

=

∫
dΛ pz(Λ)e−

1
2
nzTr(

ˆCzΛ)
[
Det(nzΛ

1−nzA−1
z + Λ−nz)

]− 1
2
e−

1
2

ˆX ·[(nzΛ)−1+(Az)−1]−1 ˆXz (14)

Our present more general assumptions lead to calculations that differ from the earlier work of e.g.
[12, 14, 17]3. Our next question is for which choice(s) of Az we can do also the integrals over Λ in
(14) analytically. Expression (14), in line with [12, 14, 17], suggests using for the measure pz(Λ)
over all positive definite matrices Λ ∈ Ξd a Wishart distribution, which is of the form

p(Λ) =
(DetΛ)(r−d−1)/2

2rd/2Γd(
r
2
)(DetS)r/2

e−
1
2

Tr(S−1Λ) (15)

Here r > d− 1, S is a positive definite and symmetric d× d matrix, and Γp(x) is the multivariate
Gamma function which is expressed in terms of the ordinary Gamma function via:

Γp

(r
2

)
= πp(p−1)/4

p∏
j=1

Γ
(r

2
− j−1

2

)
(16)

3Alternative analytically tractable priors are the transformation-invariant Jeffrey’s or Reference priors, which
are derived from information-theoretic arguments [18]. There the calculation of the predictive probability is simpler,
but the sample covariance matrix is not regularized. This causes problems when n < d, where the sample covariance
matrices would become singular and the predictive probability would cease to be well defined.
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The choice (15) is motivated solely by analytic tractability. However, since the prior domain is the
space of all positive definite matrices, we are assured that upon using (15) our posterior will be
consistent. Distribution (15) implies stating that Λ is the empirical precision matrix of a set of r
i.i.d. random zero-average Gaussian vectors, with covariance matrix S. Since (15) is normalised,
for any S, we can use it to do all integrals of the following form analytically:∫

Ξd
dΛ (DetΛ)(r−d−1)/2 e−

1
2

Tr(S−1Λ) = 2rd/2Γd

(r
2

)
(DetS)r/2 (17)

In order for (14) to acquire the form (17), we need a choice for Az such that the following holds,
for some γ0, γ1 ∈ IR: [(nzΛ)−1+ (Az)

−1]−1 = γ1zΛ + γ0z1I. Rewriting this condition gives:

Az(γ0z, γ1) = [(γ1zΛ + γ0z1I)
−1 − (nzΛ)−1]−1 (18)

Clearly Az(γ0z, γ1) has the same eigenvectors as Λ. Each eigenvalue λ of Λ would thus give a
corresponding eigenvalue a(λ, z) for Az(γ0z, γ1):

a(λ, z) =
nzλ(γ1zλ+ γ0z)

(nz − γ1z)λ− γ0z

(19)

We note that the zeros of a(λ, z) occur at λ ∈ {−γ0z/γ1z, 0}, and that

λ→ 0 : a(λ, z) = −nzλ+O(λ2), λ→∞ : a(λ, z) ≈ nzγ1zλ

nz − γ1z

(20)

The natural choice is to take

γ1z ∈ (0, nz], γ0z ∈ (−λminγ1z, λmin(nz−γ1z)) (21)

This ensures that always a(λ, z) > 0. We expect that λmin will increase monotonically with r− d.
Upon making the choice (18) and using (17), we obtain for the integral (14):

Ψz = e−
1
2
γ0z

ˆX
2

z

∫
dΛ pz(Λ)

e−
1
2
nzTr(

ˆCzΛ)− 1
2
γ1z

ˆXz ·Λ ˆXz√
Det[nzΛ

1−nz(γ1zΛ + γ0z1I)−1]
(22)

We conclude that we can evaluate (22) analytically, using (17), provided we choose for pz(Λ) the
Wishart measure, and with either γ0z → 0 and γ1z ∈ (0, nz), or with γ1z → 0 and γ0z ∈ (0, nzλmin).
Alternative choices for (γ0z, γ1z) would lead to more complicated integrals than the Wishart one.

The two remaining analytically integrable candidate model branches imply the following choices
for the inverse correlation matrix Az of the prior pz(µ|Az) for the class centres:

γ0z = 0 : Az =
nzγ1z

nz−γ1z

Λ, γ1z = 0 : Az =
[
γ−1

0z 1I− (nzΛ)−1
]−1

(23)

Note that the case Az → 0, a non-informative prior for class means as in [14], corresponds to
(γ0z, γ1z) = (0, 0). However, the two limits γ0z → 0 and γ1z → 0 will generally not commute,
which can be inferred from working out (22) for the two special cases γ0z = 0 and γ1z = 0:

γ0z = 0 : Ψz =
(γ1z

nz

)d
2

∫
dΛ pz(Λ)[Det(Λ)]

nz
2 e−

1
2
nzTr(

ˆCzΛ)− 1
2
γ1z

ˆXz ·Λ ˆXz (24)

γ1z = 0 : Ψz =
(γ0z

nz

)d
2
e−

1
2
γ0z

ˆX
2

z

∫
dΛ pz(Λ)[Det(Λ)]

nz−1
2 e−

1
2
nzTr(

ˆCzΛ) (25)

This non-uniqueness of the limit Az → 0 is a consequence of having done the integral over Λ first.
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3 The integrable model branches

3.1 The case γ0z = 0: model A

We now choose γ0z = 0, and substitute for each z = 1 . . . C the Wishart distribution (15) into
(22), with seed matrix S = kz1I. This choice is named Quadratic Bayes in [14]. We also define the
p×p matrix M̂ z with entries M̂ z

µν = Xz
µX

z
ν . The result of working out (22) is, using (17):

Ψz =
(2nzγ1z

nzkrzz

)d
2 Γd(

rz+nz
2

)

Γd(
rz
2

)
[Det(nzĈz+γ1zM̂ z+k

−1
z 1I)]−(rz+nz)/2 (26)

This, in turn, allows us to evaluate (11):

Ω(H,n,D) =
1

2
nd log(π)−

C∑
z=1

nz log pz −
1

2
d

C∑
z=1

[
log(γ1z/nz)−rz log kz

]
−

C∑
z=1

log
[Γd(

rz+nz
2

)

Γd(
rz
2

)

]
+

1

2

C∑
z=1

(rz+nz) log Det(nzĈz+γ1zM̂ z+k
−1
z 1I) (27)

The hyperparameters of our problem are {pz, γ1z, rz, kz}, for z = 1 . . . C. If we choose flat hyper-
priors, to close the Bayesian inference hierarchy, their optimal values are obtained by minimizing
(27), subject to the constraints

∑C
z=1 pz = 1, pz ≥ 0, rz ≥ d, γ1z ∈ [0, nz], and kz > 0. We now work

out the relevant extremization equations, using the general identity ∂x log DetQ = Tr(Q−1∂xQ):

• Minimization over pz: pz = nz/n.

• Minimization over kz:

kz = 0 or rz = nz

[ dkz

Tr[(nzĈz+γ1zM̂ z+k−1
z 1I)−1

− 1
]−1

(28)

• Minimization over rz, using the digamma function ψ(x) = d
dx

log Γ(x):

rz = d or log kz =
1

d

d∑
j=1

[
ψ(
rz+nz−j+1

2
)− ψ(

rz−j+1

2
)
]

−1

d
log Det(nzĈz+γ1zM̂ z+k

−1
z 1I)

]
(29)

• Minimization over γ1z:

γ1z ∈ {0, nz} or γ1z =
1

rz+nz

[1

d
Tr[(nzĈz+γ1zM̂ z+k

−1
z 1I)−1M̂ z]

]−1

(30)

In addition we still need to satisfy the inequalities rz ≥ d, γ1z ∈ [0, nz], and kz > 0.
We observe in the above results that, unless we choose γ1z ∈ {0, nz}, i.e. A = 0 or A−1 = 0,

we would during any iterative algorithmic solution of our order parameter equations have to
diagonalize a d× d matrix at each iteration step. This would be prohibitively slow, even with the
most efficient numerical diagonalization methods. Since γ1z = nz implies that the prior pz(µ|A)
forces all class centres to be in the origin, we will be left for the current model branch only with
the option γ1z → 0, corresponding to a flat prior for the class centres. We thereby arrive at the
Quadratic Bayes model of [14], with hyperparameter formulae based on evidence maximization.
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3.2 The case γ1z = 0: model B

We next inspect the alternative model branch by choosing γ1z = 0, again substituting for each
z = 1 . . . C the Wishart distribution (15) into (22) with seed matrix S = kz1I. The result is:

Ψz =
(2nz−1γ0z

nzkrzz

)d
2 Γd(

rz+nz−1
2

)

Γd(
rz
2

)
[Det(nzĈz+k

−1
z 1I)]−(rz+nz−1)/2e−

1
2
γ0z

ˆX
2

z (31)

For the quantity (11) we thereby find:

Ω(H,n,D) =
1

2
nd log(π) +

1

2
dC log 2−

C∑
z=1

nz log pz −
1

2
d

C∑
z=1

[
log(

γ0z

nz
)−rz log kz

]
(32)

−
C∑
z=1

log
[Γd(

rz+nz−1
2

)

Γd(
rz
2

)

]
+

1

2

C∑
z=1

γ0zX̂
2

z +
1

2

C∑
z=1

(rz+nz−1) log Det(nzĈz+k
−1
z 1I)

If as before we choose flat hyper-priors, the Bayes-optimal hyperparameters {pz, γ1z, rz, kz}, for
z = 1 . . . C are found by maximizing the evidence (32), subject to the constraints

∑C
z=1 pz = 1,

pz ≥ 0, rz ≥ d, γ0z ≥ 0, and kz > 0. For the present model branch B, differentiation gives

• Minimization over pz: pz = nz/n.

• Minimization over kz:

kz = 0 or rz = (nz−1)
[ dkz

Tr[(nzĈz+k−1
z 1I)−1

− 1
]−1

(33)

• Minimization over rz:

rz = d or log kz =
1

d

d∑
j=1

[
ψ(
rz+nz−j

2
)− ψ(

rz−j+1

2
)
]
− 1

d
log Det(nzĈz+k

−1
z 1I) (34)

• Minimization over γ0z: γ0z = d/X̂
2

z.

In addition we still need to satisfy the inequalities rz ≥ d and kz > 0. In contrast to the first
integrable model branch A, here we are able to optimise over γ0z without problems, and the
resulting model B is distinct from the Quadratic Bayes classifier of [14].

3.3 Comparison of the two integrable model branches

Our initial family of models was parametrized by (γ0z, γ1z). We then found that the following two
branches are analytically integrable, using Wishart priors for class-specific precision matrices:

A : (γ0z, γ1z) = (0, γ̂1z) with γ̂1z → 0 (35)

B : (γ0z, γ1z) = (γ̂0z, 0) with γ̂0z → d/X̂
2

z (36)

Where conventional methods tend to determine hyperparameters via cross-validation, which is
computationally expensive, here we optimize hyperparameters via evidence maximization. As
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expected, both models give pz = nz/n. The hyperparameters (kz, rz) are to be solved from the
following equations, in which %z(ξ) denotes the eigenvalue distribution of Ĉz:

A : kz = 0 or rz = nz

[ 1∫
dξ %z(ξ)(nzkzξ+1)−1

− 1
]−1

(37)

rz = d or
1

d

d∑
j=1

[
ψ(
rz+nz−j+1

2
)− ψ(

rz−j+1

2
)
]

=

∫
dξ %z(ξ) log(nzkzξ+1) (38)

B : kz = 0 or rz = (nz−1)
[ 1∫

dξ %z(ξ)(nzkzξ+1)−1
− 1
]−1

(39)

rz = d or
1

d

d∑
j=1

[
ψ(
rz+nz−j

2
)− ψ(

rz−j+1

2
)
]

=

∫
dξ %z(ξ) log(nzkzξ+1) (40)

We see that the equations for (kz, rz) of models A and B differ only in having the replacement
nz → nz−1 in certain places. Hence we will have (kAz , r

A
z ) = (kBz , r

B
z ) +O(n−1

z ).

3.4 Expressions for the predictive probability

We can now proceed to work out formula (8) for the class prediction probabilities p(y0|x0,D).
This requires making the replacements n → n+1 and nz → nz+δy0,z (taking care not to change
the hyperparameter equations), and

X̂z
µ → X̂z

µ +
δzy0
ny0 +1

(
x0µ − X̂z

µ

)
(41)

Ĉz
µν → Ĉz

µν +
δzy0
ny0 +1

[ ny0
ny0 +1

(x0µ−X̂z
µ)(x0ν−X̂z

ν )− Ĉy0
µν

]
(42)

We introduce the d× d matrix M y0 , with entries My0
µν = (x0µ−X̂y0

µ )(x0ν−X̂y0
ν ). This leads us to

Ω(H,n+1,D)− Ω(H,n,D) =
1

2
d log(π)− log py0 −

1

2
d log(

ny0
ny0 + 1

)− log
[ Γd(

ry0+ny0
2

)

Γd(
ry0+ny0−1

2
)

]
+

1

2
γ0y0

[ 2

ny0 +1
X̂y0 · (x0−X̂y0) +

1

(ny0 +1)2
(x0−X̂y0)

2
]

(43)

+
1

2
log Det[Ξy0 ] +

1

2
(ry0 +ny0) log Det

[
1I + Ξ

− 1
2

y0

ny0M y0

ny0 +1
Ξ
− 1

2
y0

]
with the short-hand Ξz = nzĈz+k

−1
z 1I. Note that Ξz and Ĉz share the same eigenvectors. The

term with the Gamma functions can be simplified to:

Γd(
ry0+ny0

2
)

Γd(
ry0+ny0−1

2
)

=
d∏
j=1

Γ(
ry0+ny0−j+1

2
)

Γ(
ry0+ny0−j

2
)

=
Γ(

ry0+ny0
2

)

Γ(
ry0+ny0−d

2
)

(44)
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Since M y0 is proportional to a projection, the symmetric matrix Ξ
− 1

2
y0 M y0Ξ

− 1
2

y0 has only one
nonzero eigenvalue λy0 . This nontrivial eigenvalue can be computed via

λy0 = Tr[Ξ
− 1

2
y0 M y0Ξ

− 1
2

y0 ] =
d∑

µν=1

(Ξ−1
y0

)µν(x0µ−X̂y0
µ )(x0ν−X̂y0

ν )

= (x0−X̂y0) ·Ξ−1
y0

(x0−X̂y0) (45)

Hence

Ω(H,n+1,D) = Ω(H,n,D) +
1

2
d log(π)− log py0 −

1

2
d log(

ny0
ny0 +1

)− log
[ Γ(

ry0+ny0
2

)

Γ(
ry0+ny0−d

2
)
]

+
1

2
γ0y0

[ 2

ny0 +1
X̂y0 · (x0−X̂y0) +

1

(ny0 +1)2
(x0−X̂y0)

2
]

+
1

2
log Det[Ξy0 ] +

1

2
(ry0 +ny0) log

[
1 +

ny0
ny0 +1

(x0−X̂y0) ·Ξ−1
y0

(x0−X̂y0)
]

(46)

This then leads after some simple manipulations to the predictive probability for model B:

p(y0|x0,D) = (47)

Wy0e
−

γ0y0
2(ny0+1)

[
2

ˆXy0 ·(x0−
ˆXy0 )+ 1

ny0+1
(x0−

ˆXy0 )2

](
1+

ny0
ny0+1

(x0−X̂y0) ·Ξ−1
y0

(x0−X̂y0)
)− 1

2
(ry0+ny0 )

∑C
z=1Wze

− γ0z
2(nz+1)

[
2

ˆXz ·(x0−
ˆXz)+ 1

nz+1
(x0−

ˆXz)2

](
1+ nz

nz+1
(x0−X̂z) ·Ξ−1

y0
(x0−X̂z)

)− 1
2

(rz+nz)

with pz = nz/n, and

Wz = pz
( nz
nz+1

) d
2

Γ
(
rz+nz

2

)
Γ
(
rz+nz−d

2

) [DetΞz]
− 1

2 , γ0z = d/X̂
2

z, Ξz = nzĈz+k
−1
z 1I (48)

Upon repeating the same calculations for model A one finds that its predictive probability is
obtained form expression (47) simply by setting γ0y0 to zero (keeping in mind that for model A
we would also insert into this formula distinct values for the optimal hyperparameters kz and rz).

4 Phenomenology of the classifiers

4.1 Hyperparameters: LOOCV versus evidence maximization

The most commonly used measure for classification performance is the percentage of samples
correctly predicted on unseen data (equivalently, the trace of the confusion matrix), and most
Bayesian classification methods also use this measure as the optimization target for hyperparam-
eters, via cross-validation. Instead, our method of hyperparameter optimization maximizes the
evidence term in the Bayesian inference. In k-fold cross-validation one needs to diagonalize for
each outcome class a d × d matrix k times, whereas using the evidence maximization route one
needs to diagonalize such matrices only once, giving a factor k reduction in what for large d
is the dominant contribution to the numerical demands. Moreover, cross-validation introduces
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Figure 1: LOOCV classification accuracy in (k1, k2) space for uncorrelated synthetic data, with
class means µ1 = (0, 0, . . . , 0) and µ2 = (2.5, 0, . . . , 0), population covariance matrices

Σ1 = Σ2 = Id, and covariate dimension d = 50. The hyperparameters (r1, r2) for models A and
B were determined via equation (38). The results are based on a single data realisation.

fluctuations into the hyperparameter computation (via the random separations into training and
validation sets), whereas evidence maximization is strictly deterministic.

The two routes, cross-validation versus evidence maximization, need not necessarily lead to
coincident hyperparameter estimates. In order to investigate such possible differences we generated
synthetic data-sets with equal class sizes n1 = n2 = 50, and with input vectors of dimension
d = 50. Using a 100× 100 grid of values for the hyperparameters k1 and k2, with kz ∈ [0, kmax,z],
we calculated the leave-one-out cross-validation (LOOCV) estimator of the classification accuracy
for unseen cases, for a single data realisation. The values of (r1, r2) were determined via evidence
maximization, using formula (38) (i.e. following model branch A, with the noninformative prior
for the class means). The value kmax,z is either the upper limit defined by the condition rz > d− 1
(if such a limit exists, dependent on the data realisation), otherwise set numerically to a fixed large
value. The location of the maximum of the resulting surface determines the LOOCV estimate of
the optimal hyperparameters (k1, k2), which can be compared to the optimized hyperparameters
(k1, k2) of the evidence maximization method.

(k1, k2) method model A model B

Uncorrelated data Cross-validation (1-5%, 1-13%) (1%, 1%)
Evidence maximization (3%, 2%) (2%, 1%)

Correlated data Cross-validation (82-87%, 55-61%) (96-100%, 54-92%)
Evidence maximization (94%, 95%) (94%, 94%)

Table 1: Comparison of hyperparameter estimation using cross-validation and evidence maximization
for correlated and uncorrelated data. Entries are the values of (k1, k2), given as a percentage of each

class kmax, corresponding to the maximum classification accuracy (within the granularity of our
numerical experiments). A range of values is given when they all share the same classification accuracy.

Figure 1 shows the resulting surface for uncorrelated data, i.e. Σ1 = Σ2 = Id. The comparison
points from our evidence-based optimal hyperparameters (k1, k2) are shown in table 1. The small
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Figure 2: LOOCV classification accuracy in (k1, k2) space for correlated synthetic data, with
class means µ1 = (0, 0, . . . , 0) and µ2 = (2.5, 0, . . . , 0), population covariance matrices

Σ1 = Σ2 = Σ of symmetric Toeplitz form with first row (d, d− 1, . . . , 2, 1), and covariate
dimension d = 50. The hyperparameters (r1, r2) for models A and B were determined via

equation (38). The results are based on a single data realisation.

values for (k1, k2) imply that the model correctly infers that the components of x in each class
are most likely uncorrelated. The same protocol was subsequently repeated for correlated data,
using a Toeplitz covariance matrix, the results of which are shown in Figure 2 and table 1. The
larger values for (k1, k2) imply that here the model correctly infers that the components of x in
each class are correlated. In both cases the differences between optimal hyperparameter values
defined via LOOCV as opposed to evidence maximization are seen to be minor.

classification accuracy (%) method model A model B

Uncorrelated data Cross-validation 87% 86%
Evidence maximization 86% 83%

Correlated data Cross-validation 69% 64%
Evidence maximization 64% 62%

Table 2: Comparison of classification accuracy using cross-validation and evidence maximization
methods for estimating hyperparameters using the same data as Figures 1 and 2.

4.2 Overfitting

Next we illustrate the degree of overfitting for models A and B, using examples of both correlated
and uncorrelated synthetic data-sets. We sampled from the data described in Table 3, using case
1 (uncorrelated) and case 8 (correlated). In all cases we chose C = 3 classes of nz = 13 samples
each, for a broad range of data dimensions d. See the caption of Table 3 for a full description of the
statistical features of these synthetic data-sets. Measuring training and validation classification
performance via LOOCV on these data resulted in Figure 3, where each data-point is an average
over 250 simulation experiments. The degree of divergence between the training and validation
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uncorrelated data, model A uncorrelated data, model B

correlated data, model A correlated data, model B

Figure 3: Overfitting in models A and B as measured via LOOCV. Top: uncorrelated data (case 1 in
Table 3). Bottom: correlated data (case 8 in Table 3). In all cases nz = 13 for each of the three classes.

Solid lines: classification accuracy on training samples; dashed lines: classification accuracy on
validation samples. Horizontal dotted line: baseline performance of a random guess classifier.

curves (solid versus dashed) is a direct measure of the degree of overfitting. We observe that model
B overfits less for uncorrelated data, and model A overfits less for correlated data. This pattern
is also seen more generally in Table 4, for a broader range of synthetic data-sets. However, we
note that all models still perform significantly above the random guess level on unseen data, even
when d� nz. For instance, for d = 150 (corresponding to d/nz ≈ 11.5) the Bayesian models can
still classify some 80% of the unseen data correctly.

5 Classification accuracy

We compare the classification accuracy of our Bayesian models A and B, with hyperparameters
optimized by evidence maximization, to other successful state-of-the-art generative classifiers from
[17]. These include the distribution-based Bayesian classifier (BDA7), the Quadratic Bayes (QB)
classifier [14], and a non-Bayesian method, the so-called eigenvalue decomposition discriminant
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analysis (EDDA) as described in [19]. All three use cross-validation for model selection and
hyperparameter estimation. The classifiers (our models A and B and the three benchmark methods
from [17]) are all tested on the same synthetic and real data-sets, and following the definitions
and protocols described in [17], for a fair comparison. Model A differs from Quadratic Bayes [14]
only in that our hyperparameters have been estimated using evidence maximization, as described
in section 3, rather than via cross-validation. Model A is seen in Table 4 to have lower error
rates than Quadratic Bayes in the majority of the synthetic data-sets. In contrast, model B is
mathematically different from both model A and Quadratric Bayes.

5.1 Synthetic data

The study [17] used a set of ten synthetic data-sets, all with Gaussian multivariate covariate
distributions and a range of choices for class-specific means and covariance matrices. In the present
study we generated data with exactly the same statistical features. The first six of these choices
were also used in [20], and involve diagonal covariance matrices. The remaining four represent
correlated data. Each data-set has C = 3 outcome classes, and is separated into a training set,
with nz = 13 samples in each class, and a validation set, with nz = 33 samples in each class. In
terms of the balance nz/d, this allows for a direct comparison with the dimensions used in [17].
The results shown in Table 4 are all averages over 100 synthetic data runs. The data dimensions
are chosen from d ∈ {10, 50, 100}. Since all these synthetic datasets involve multivariate Gaussian
covariate distributions, there is no model mismatch with any of the models being compared.

The means and covariance matrices of the synthetic data-sets are given in Table 3. The
covariance matrices for the correlated data-sets are defined in terms of auxiliary random d × d
matrices Rz, with i.i.d. entries sampled from the uniform distribution on the interval [0, 1],
according to either Σz = RT

z Rz or Σz = RT
z RzR

T
z Rz. These covariance matrices have a single

dominant eigenvalue, and further non-dominant eigenvalues that are closer to zero for data-sets
9-10. Data-sets 7 and 9 have all class means at the origin, whereas each element of the class mean
vectors from data-sets 8 and 10 are independently sampled from a standard normal distribution.

Table 4 shows the classification error rates, as percentages of misclassified samples over the
validation set. The variability of these for results for the models BDA7, QB and EDDA, i.e. the
error bars in the classification scores, is not reported in [17] (where only the best classifier was
determined using a signed ranked test). For completeness, we have included in this study the
standard deviation of the error rate over the 100 synthetic data runs for our models A and B.
Given that all experiments involved the same dimensions of data-sets and similar average error
rates, the error bars for the [17] results are expected to be similar to those of models A and B.
We conclude from Table 4 that our models A and B perform on average quite similarly to the
benchmark classifiers BDA7, QB and EDDA. On some data-sets model A and/or B outperform the
benchmarks, on others they are outperformed. However, models A and B achieve this competitive
level of classification accuracy without cross-validation, i.e. at a much lower computational cost.

5.2 Real data

Next we test the classification accuracy of our models against the real data-sets used in [17], which
are publicly available from the UCI machine learning repository4. Three data-sets were left out due

4http://archive.ics.uci.edu/ml/index.php
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Error rate (%) d BDA7 QB EDDA model A model B

Case 1 10 13.2 19.2 11.2 12.0 ± 3.2 11.0 ± 2.8
50 27.9 33.3 21.7 19.9 ± 4.6 15.6 ± 3.4
100 35.8 31.1 24.8 32.6 ± 6.0 19.9 ± 4.3

Case 2 10 21.3 27.4 16.1 11.9 ± 3.4 11.4 ± 3.6
50 26.8 42.6 12.5 9.3 ± 3.2 5.8 ± 2.2
100 20.8 41.9 9.0 26.5 ± 5.6 3.6 ± 2.1

Case 3 10 10.4 35.0 9.1 27.2 ± 4.9 27.2 ± 5.5
50 27.2 55.7 21.2 48.6 ± 5.0 49.2 ± 5.2
100 46.9 56.4 27.7 55.4 ± 5.2 55.1 ± 4.9

Case 4 10 12.6 32.8 11.6 11.3 ± 3.5 11.1 ± 4.1
50 22.5 30.9 17.0 22.5 ± 4.4 17.8 ± 4.0
100 37.6 32.1 21.1 30.8 ± 5.2 21.9 ± 4.3

Case 5 10 4.1 15.0 4.4 12.8 ± 4.1 12.8 ± 3.5
50 1.2 30.6 0.0 9.2 ± 3.4 5.6 ± 2.7
100 0.2 38.3 0.1 10.9 ± 3.8 5.4 ± 3.4

Case 6 10 5.2 7.9 1.7 4.6 ± 2.3 4.4 ± 2.3
50 0.5 26.5 0.0 3.9 ± 2.3 3.5 ± 2.4
100 0.1 29.4 0.0 4.8 ± 2.5 4.5 ± 2.6

Case 7 10 19.5 22.8 19.7 20.0 ± 6.0 27.3 ± 7.4
50 34.7 30.9 63.9 30.2 ± 5.0 44.7 ± 7.8
100 40.0 35.2 64.8 35.2 ± 5.1 51.7 ± 7.8

Case 8 10 3.7 2.7 5.1 1.6 ± 1.9 1.5 ± 1.5
50 9.2 3.5 25.5 4.4 ± 3.2 9.5 ± 5.0
100 17.3 8.1 55.2 8.7 ± 4.4 23.9 ± 9.0

Case 9 10 1.5 0.9 1.0 0.9 ±1.1 5.4 ± 6.8
50 1.3 0.9 32.5 1.3 ± 1.2 16.9 ± 14.6
100 2.9 2.8 67.0 1.5 ± 1.5 22.4 ± 15.3

Case 10 10 0.4 0.1 3.4 0.1 ± 0.6 0.2 ± 0.6
50 1.7 0.9 32.4 0.8 ± 1.0 15.9 ± 13.6
100 2.2 2.4 64.0 1.4 ± 1.2 23.4 ± 16.0

Table 4: Classification performance for synthetic datasets. Three generative Bayesian models, BDA7,
QB and EDDA (results taken from [17]) are used as comparison with our models A and B. Error rates
are the percentages of misclassified samples from the test data-set. The error bars for models A and B

represent one standard deviation in the error rates, calculated over the 100 data realisations.
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Error rate (%) n class sizes d baseline BDA7 QB EDDA model A model B

Heart 270 150,120 10 44.4 27.4 32.0 28.3 30.3 30.1

Ionosphere 351 225, 126 34 35.9 12.5 11.1 23.3 8.3 7.5

Iris 150 50,50,50 4 66.6 6.2 5.9 7.4 7.5 6.6

Pima 768 500,268 8 34.9 28.4 29.7 29.0 28.8 28.9

Sonar 208 97,111 60 46.6 31.2 33.7 34.8 34.9 33.8

Thyroid 215 150,35,30 5 30.2 7.9 9.1 8.6 7.6 7.9

Wine 178 59,71,48 13 60.1 7.9 16.9 8.2 15.6 16.0

Table 5: Average error rate using randomly selected 10% of training samples in each class. The
remaining 90% of samples were used as a validation set. Error rates are the percentage of misclassified

samples over this validation set.

Error rate (%) n class sizes d baseline BDA7 QB EDDA model A model B

Heart 270 150,120 10 44.4 30.6 38.5 33.9 38.8 39.6

Ionosphere 351 225, 126 34 35.9 16.9 16.1 26.0 10.3 8.8

Iris 150 50,50,50 4 66.6 6.9 7.6 9.40 12.8 11.4

Pima 768 500,268 8 34.9 29.7 32.7 30.7 30.3 30.8

Sonar 208 97,111 60 46.6 36.8 40.4 39.8 45.6 39.0

Thyroid 215 150,35,30 5 30.2 11.7 14.8 14.7 34.5 14.6

Wine 178 59,71,48 13 60.1 9.6 33.1 11.2 54.4 33.0

Table 6: Average error rate using randomly selected 5% of training samples in each class. The
remaining 95% of samples were used as a validation set. Error rates are the percentage of misclassified

samples over this validation set.

to problems with matching the formats: Image segmentation (different number of samples than
[17]), Cover type (different format of training/validation/test), and Pen digits (different format
of training/validation/test). Before classification, we looked for identifying characteristics which
could allow for retrospective interpretation of the results, e.g. occurrence of discrete covariate
values, covariance matrix entropies, or class imbalances. None were found to be informative.

We duplicated exactly the protocol of [17], whereby only a randomly chosen 5% or 10% of
the samples from each class of each data-set are used for training, leaving the bulk of the data
(95% or 10%) to serve as validation (or test) set. The resulting small training sample sizes lead
to nz � d for a number of data-sets, providing a rigorous test for classifiers in overfitting-prone
conditions. For example, the set Ionosphere, with d = 34, has original class sizes of 225 and 126
samples leading in the 5% training scenario to training sets with n1 = 12 and n2 = 7. We have
used the convention of rounding up any non-integer number of training samples (rounding down
the number of samples had only a minimal effect on most error rates). The baseline column gives
the classification error that would be obtained if the majority class is predicted every time.

We conclude from the classification results shown in Tables 5 and 6 (which are to be interpreted
as having non-negligible error bars), that also for the real data, models A and B are competitive
with the other Bayesian classifiers. The exceptions are Ionosphere (where models A and B out-
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perform the benchmark methods, in both tables) and the data-sets Thyroid and Wine (where in
Table 6 our model A is being outperformed). Note that in Table 6, Thyroid and Wine have only
2 or 3 data samples in some classes of the training set. This results in nearly degenerate class-
specific covariance matrices, which hampers the optimization of hyperparameters via evidence
maximization. Model B behaves well even in these tricky cases, presumably due to the impact of

its additional hyperparameter γ0z = d/X̂
2

z. As expected, upon testing classification performance
using leave-one-out cross-validation (details not shown here) rather than the 5% or 10% training
set methods above, all error rates are significantly lower.

6 Discussion

In this paper we considered generative models for supervised Bayesian classification in high-
dimensional spaces. Our aim was to derive expressions for the optimal hyperparameters and
predictive probabilities in closed form. Since the dominant cause of overfitting in the classifica-
tion of high-dimensional data is using point estimates for high-dimensional parameter vectors, we
believe that by carefully choosing Bayesian models for which parameter integrals are analytically
tractable, we will need point estimates only at hyperparameter level, reducing overfitting.

We showed that the standard priors of Bayesian classifiers that are based on class-specific
multivariate Gaussian covariate distributions can be generalized, from which we derive two special
model cases (A and B) for which predictive probabilities can be derived analytically in fully explicit
form. Model A is known in the literature as Quadratic Bayes [14], whereas model B is novel and has
not yet appeared in the literature. In contrast to common practice for most Bayesian classifiers,
we use evidence maximization [2] to find analytical expressions for our hyperparameters in both
models. This allows us to find their optimal values without needing to resort to computationally
expensive cross-validation protocols.

We found that the alternative (but significantly faster) hyperparameter determination by ev-
idence maximization leads to hyperparameters that are generally very similar to those obtained
via cross-validation, and that the classification performance of our models A and B degrades only
gracefully in the ‘dangerous’ regime n� d where we would expect extreme overfitting. We com-
pared the classification performance of our models on the extensive synthetic and real data-sets
that have been used earlier as performance benchmarks in [15, 17]. Interestingly, the performance
of our models A and B turned out to be competitive with state-of-the-art Bayesian models that
use cross-validation, despite the large reduction in computational expense. This will enable users
in practice to classify high-dimensional data-sets quicker, without compromising on accuracy.
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