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Abstract
For high-dimensional datasets in which clusters are formed by both distance and density
structures (DDS), many clustering algorithms fail to identify these clusters correctly. This is
demonstrated for 32 clustering algorithms using a suite of datasets which deliberately pose
complex DDS challenges for clustering. In order to improve the structure finding and
clustering in high-dimensional DDS datasets, projection-based clustering (PBC) is introduced.
The coexistence of projection and clustering allows to explore DDS through a topographic
map. This enables to estimate, first, if any cluster tendency exists and, second, the estimation of
the number of clusters. A comparison showed that PBC is always able to find the correct
cluster structure, while the performance of the best of the 32 clustering algorithms varies
depending on the dataset.

Keywords Cluster analysis . Dimensionality reduction . Data visualization

1 Introduction

Many data mining methods rely on some concept of the similarity between pieces of
information encoded in the data of interest. The corresponding methods can be either data-
driven or need-driven. The latter, also called constraint clustering (Tung et al. 2001), aims at
organizing the data to meet particular application requirements (Ge et al. 2007, p. 320)
characterizing the similarity. Here, the focus is placed on data-driven methods, in which
objects are similar within clusters and dissimilar between clusters restricted to a metric (most
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often Euclidean dissimilarity). Consequently, the term cluster analysis is used. Cluster analysis
is seen here as a step in the knowledge discovery process.

No generally accepted definition of clusters exists in the literature (Bonner 1964; Hennig 2015, p.
705). Additionally, Kleinberg showed for a set of three simple properties (scale-invariance,
consistency, and richness) that there is no clustering function satisfying all three (Kleinberg 2003).
However, the property richness implies that all partitions should be achievable. By concentrating on
distance- and density-based structures and omitting constraint clustering, this work restricts clusters
in a way that the goal is to acquire new knowledge about the data. As a consequence, instead of all
partitions, only the accurate partition should be achievable which contradicts the axiom of richness.
Then, the purpose of clustering methods is to identify homogeneous groups of objects (cf. Arabie
et al. 1996, p. 8) defining cluster structures. In this case, many clustering algorithms implicitly
assume different structures of clusters (Duda et al. 2001, pp. 537, 542, 551; Everitt et al. 2001, pp.
61, 177; Handl et al. 2005; Theodoridis and Koutroumbas 2009, pp. 896, 896; Ultsch and Lötsch
2017). The twomain types are based either on distances (compact structures) or densities (connected
structures) and can be defined with the help of graph theory (Thrun 2018). Two-dimensional or 3D
datasets can be predefined accordingly (Thrun and Ultsch 2020a). The question arises on how to
discover the true structure of the underlying data and how to choose the right clustering method for
the task.

One approach is to use projections as conventional methods of dimensionality reduction for
information visualization in order to transform high-dimensional data into low-dimensional space
(Venna et al. 2010). If the output space is restricted in the projection method to two dimensions, the
result is a scatter plot. The goal of this scatter plot is a visualization of distance- and density-based
structures. As stated by the Johnson–Lindenstrauss lemma (Johnson and Lindenstrauss 1984;
Dasgupta and Gupta 2003), the 2D similarities in the scatter plot cannot coercively represent
high-dimensional distances. For example, similar data points can be mapped onto far-separated
points, or a pair of closely neighboring positions represents a pair of distant data points. These two
types of error have been identified in the literature in Ultsch and Herrmann (2005), for the case of a
Euclidean graph; in Venna et al. (2010), for the case of a KNN graph of binary neighborhoods; and
in Aupetit (2007), for the case of a Delaunay graph. Nonetheless, scatter plots generated by a
projection method remain the state-of-the-art approach in cluster analysis to visualize data structures
(e.g., Mirkin 2005; Ritter 2014; Hennig 2015). The colors of the projected points can be set by the
labels of the clustering.

To approach this problem, the authors propose a design for cluster analysis through the
visualization technique of a topographic map (Thrun et al. 2016) which visualizes both error
types and is able to show the distance- and density-based structures. This visualization method
builds on a projection method. The proposed approach here is the application of automatic
clustering on this topographic map.

2 Common Projection Methods as an Approach for Dimensionality
Reduction

Dimensionality reduction techniques reduce the dimensions of the input space to facilitate the
exploration of structures in high-dimensional data. Two general dimensionality reduction ap-
proaches exist: manifold learning and projection. Manifold learning methods attempt to find a
subspace in which the high-dimensional distances can be preserved. These subspaces may have a
dimensionality of greater than two. However, only 2D or 3D representations of high-dimensional
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data are easily graspable for to the human observer. Venna et al. (2010) argued that “manifold
learning methods are not necessarily good for […] visualization […] since they have been
designed to find a manifold, not compress it into a lower dimensionality” (p. 452), and it has
been shown by van der Maaten et al. (2009) that they do not outperform classical principal
component analysis (PCA) for real-world tasks. Therefore, the focus lies on common projection
methods. A projection is used as a method for visualizing high-dimensional data in a 2D space
such that the distance- and density-based structures of the data are captured.

In general, projection methods can be categorized as linear and nonlinear. Linear methods
perform orthonormal rotations of the data’s coordinate system. Linear projections for planar
projections choose the two directions, which are optimal concerning a predefined criterion. Typical
examples of these linear projections are PCA (variance criterion) (Pearson 1901; Hotelling 1933),
independent component analysis (ICA; non-normality criterion) (Comon 1992), and projection
pursuit (PP; user-defined criterion). Since all linear projections are orthonormal rotations of the data
coordinates, clusters that are linear nonseperable entanglements, such as the Chainlink data (Ultsch
and Vetter 1995) or overlapping convex hulls (see Table 1), cannot be separated. With this type of
projections, it is unavoidable that at some locations remote data are erroneously superimposed in the
output space.

2.1 Combining Dimensionality Reduction with Clustering

When it is suspected that some of the variables do not contribute much to the clustering structure or
when the number of features is high, usually, a preliminary principal component or factor analysis is
applied (De Soete and Carroll 1994). Afterward, the clustering is performed by k-means using the
first few components, which is called Tandem Clustering (De Soete and Carroll 1994).

However, the first few principal components usually do not define a subspace that is most
informative about the cluster structure in data (Chang 1983; Arabie and Hubert 1994) if the
task of clustering is defined as the grouping of similar objects. De Soete and Carroll (1994)
proposed the reduced k-means (RKM) approach, which simultaneously searches for clustering
and a dimensionality reduction of features based on the component analysis. The notion that
RKM may fail to recover the clustering structure if the data contains much variance in
direction orthogonal to the subspace of data led to the proposal of factorial k-means (FKM)
(Vichi and Kiers 2001; Timmerman et al. 2010).

To the knowledge of the authors, the idea of combining projection methods other than PCA
with clustering was first proposed by Bock (1987) but was never applied to empirical data.
Steinley et al. (2012) approached the challenge of higher dimensionality by using a measure of
clusterability in combination with projection pursuit. The maximum clusterability was defined
as the ratio of the variance of a variable to its range (Steinley et al. 2012), and the dimension-
ality reduction (DR) approach was independent of the clustering algorithm employed (Steinley
et al. 2012). As an alternative, Hofmeyr et al. proposed to combine projection pursuit with the
maximum clusterability index of Zhang (2001) followed by clustering by an optimal hyper-
plane (Hofmeyr and Pavlidis 2015). Further projection pursuit clustering approaches are listed
in Hofmeyr and Pavlidis (2019).

Another way of approaching the challenges of higher dimensionality is subspace clustering.
This type of clustering algorithms have the goal to find one or more subspaces (Agrawal et al.
1998) with the assumption that sufficient dimensionality reduction is dimensionality reduction
without loss of information (Niu et al. 2011). Hence, subspace clustering aims at finding a
linear subspace such that the subspace contains as much predictive information regarding the
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output variable as the original space (Niu et al. 2011). Thus, the dimensionality of subspaces is
usually higher than two but lower than the input space.

In contrast, projection-based clustering (PBC) uses methods that project data explicitly into
two dimensions disregarding the subspaces. PBC only tries to preserve (“relevant”) neighbor-
hoods. It differentiates from manifold learning methods because such methods usually project
into a subspace of higher than two (c.f. Venna et al. 2010; Thrun 2018). This means that
projection methods try to lose information, which they disregard as not relevant. In order to
accomplish this, most often, projection methods use nonlinear combinations of dimensions
through an annealing scheme and neighborhoods in order to entangle complex clusters like
two intertwined chains (Demartines and Hérault 1995; Ultsch 1995; Venna et al. 2010; Thrun
2018). For PBC introduced in the next section, only nonlinear projections will be used.
Examples of nonlinear projection methods are multidimensional scaling (Torgerson 1952),
curvilinear component analysis (CCA) [Demartines/Hérault], the t-distributed stochastic
neighbor embedding (t-SNE) (Hinton and Roweis 2002), neighborhood retrieval visualizer
(NeRV) (Venna et al. 2010), and polar swarm (Pswarm) (Thrun and Ultsch 2020b).

2.2 Projection-Based Clustering

Three steps are necessary for PBC. First, a nonlinear projection method has to be chosen to
generate projected points of high-dimensional data points. Second, the generalized U*-matrix
has to be applied to the projected points by using a simplified emergent self-organizing map
(ESOM) algorithm which is an unsupervised neural network (Thrun 2018). The result is a
topographic map (Thrun et al. 2016). Third, the clustering itself is built on top of the
topographic map.

First, the projected points1 p ∈O are transformed to points on a discrete lattice, and the
points are called the best-matching units (BMUs) bmu ∈ B ⊂ℝ2 of the high-dimensional data
points j, analogous to the case for general self-organizing map (SOM) algorithms (for details,
see Ultsch and Thrun 2017; Thrun 2018).

Next, let M = {m1,…,mn } be the positions of neurons on a 2D lattice (feature map), D a
high-dimensional distance, and W = {w(mi) =wi | i = 1,…n}, W ⊂ℝn the corresponding set of
weights or prototypes of neurons, then the simplified SOM training algorithm constructs a
nonlinear and topology-preserving mapping of the input space by finding the bmu for each l ∈
I: bmu lð Þ ¼ argminmi∈M D l;wið Þf g; i∈ 1;…; n:f g

Then, let N(j) be the eight immediate neighbors of mj ∈M, let wj ∈ W, W ⊂ℝn be the
corresponding prototype to mj, then the average of all distances between prototypes wi

u jð Þ ¼ 1

n
∑i∈N jð ÞD w mið Þ;w mj

� �� �
; n ¼ jN jð Þj

is defined as a height of the generalized U-matrix. If combined with density information as
described in Ultsch et al. (2016), the generalized U*-matrix can be computed. The term
“generalized” means that instead of using a standard SOM algorithm, a simplified approach
is used as described in Thrun (2018), p. 48, Listing 5.1) that enables to use projected points of
one of the projection methods. The generalized U-matrix itself is the approximation of the
abstract U-matrix (AU-matrix) (Lötsch and Ultsch 2014): Voronoi cells around each projected
point define the abstract U-matrix (AU-matrix).

1 Or DataBot positions on the hexagonal grid of Pswarm.
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Given a set of bmu’s B in a space ℝn, for every bmui ∈ B, find the set Li of all points of ℝn

that are closer to bmui than any other bmu of B

Li ¼ xf jx∈ℝn∧D x; bmuið Þ < D x; bmu j
� �

∀i≠ j
o

The resulting Voronoi regions Li form a tesselation of ℝn: ℝn = ∪i Li and Li is the Voronoi
region of bmui. Given a set of BMUs of B, the Delaunay graph is defined as follows:

Two BMUs, bmui and bmuj, are connected by a Delaunay edge e if and only if there is a
point x ∈ℝn which is equally close to bmui and bmuj, and closer to bmui and bmuj than any
other bmuk ∈ B:

bmui and bmuj connected ⇔

∃x∈ℝnjD x; bmuið Þ ¼ D x; bmu j
� �

∧D xbmuið Þ < D x; bmukð Þ∀k≠i; j
Let pj, l be a path between a pair of BMUs {j, l} ∈O in the output space, and from every bmuj
to bmui, a path exists, then the graph D is defined as the Delaunay graph.

In every direct neighborhood, all direct connections from the bmul to the bmuj in the output
space are weighted using the input-space distancesD(l, j), because on each border between two
Voronoi cells a height is defined. It was shown in Lötsch and Ultsch (2014) that a single wall
of the AU-matrix represents the true distance information between two points in the high-
dimensional space. Additionally, valid density information around projected points can be
calculated resulting in the AU*-matrix which represents the true distance information between
two points weighted by the true density at the midpoint between these two points. The
representation is such that high densities shorten the distance and low densities stretch this
distance. All possible Delaunay paths pj, l are calculated toroidal because the topographic map
is a toroidal visualization generated by the generalized U-matrix as an approximation of the
AU-matrix. Then, the minimum of all possible path distances pj, l between a pair of points {j,
l} ∈O in the output space is calculated as the shortest path G l; j;Dð Þ using the algorithm of
Dijkstra (1959) resulting in a new high-dimensional distance D∗(l, j).

In prior work and with the help of the graph theory, two types of clusters could be explicitly
defined resulting in compact and connected structures (Thrun 2018). Compact structures are
mainly defined by inter- versus intracluster distances (Euclidean graph), whereas connected
clusters are defined by neighborhood and density of the data which can be described by
various other graphs (Thrun 2018).

Two agglomerative processes of clustering, one called connected approach and one
compact approach, are defined: Let {j, l} be the two nearest points of the two clusters c1 ⊂ I
and c2 ⊂ I, and let D∗(l, j) be the distance as defined above; then, the connected approach is

defined with S c1; c2ð Þ ¼ min
l∈c1; j∈c2

D* bmul; bmu j
� �

.

In the connected approach, the two clusters with the minimum distance S between the two
nearest BMUs of these clusters are merged together until the given number of clusters is
reached.

Let cr ⊂ I and cq ⊂ I be two clusters such that r, q ∈ {1,…, k} and cr∩ cq = { } for r ≠ q, and
let the data points in the clusters be denoted by ji ∈ cq and li ∈ cr, with the cardinality of the sets
being k = |cq| and p = |cr| and

ΔQ j; lð Þ ¼ k*p
k þ p

D* l; jð Þ
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then, the variance between two clusters is defined as

S cr; ckð Þ ¼ ∑
k;p

i¼1; j¼1; j≠i
ΔQ j; lð Þ

In the compact approach, the two clusters with the minimal variance S are merged together
until the given number of clusters is reached.

Let cr ⊂ I and cq ⊂ I be two clusters such that r, q ∈ {1,…, k} and cr∩ cq = { } for r ≠ q, and
let the data points in the clusters be denoted by ji ∈ cq and li ∈ cr, with the cardinality of the sets
being k = |cq| and p = |cr| and

ΔQ j; lð Þ ¼ k*p
k þ p

D* l; jð Þ

then, the variance between two clusters is defined as

S cr; ckð Þ ¼ ∑
k;p

i¼1; j¼1; j≠i
ΔQ j; lð Þ

In both hierarchical approaches, a dendrogram can be shown additionally, and the number of
clusters is defined as the number of valleys in the topographic map with hypsometric tints (Thrun
et al. 2016) which is produced by the generalizedU-matrix. Hypsometric tints are surface colors that
represent ranges of elevation (Patterson and Kelso 2004). Here, contour lines are combined with a
specific color scale. The color scale is chosen to display various valleys, ridges, and basins: blue
colors indicate small distances (sea level), green and brown colors indicate middle distances (low
hills), and white colors indicate vast distances (highmountains covered with snow and ice). Valleys
and basins represent clusters, and the watersheds of hills and mountains represent the borders
between clusters. In this 3D landscape, the borders of the visualization are cyclically connected with
a periodicity (L,C). The number of clusters can be estimated by the number of valleys of the
visualization. The clustering is valid if mountains do not partition clusters indicated by colored
points of the same color and colored regions of points (see examples in Sections 4.1 and 4.2).

3 Methods

Thirty-two clustering algorithms are compared with PBC. The clustering algorithms are divided
into three groups. The first group is about the combination of DR with clustering investigating nine
algorithms and using k-means as a baseline. The second group consists of the algorithms for which
the prior literature review indicated that the algorithms are restricted in their reproducibility of
cluster structures (cf. Thrun 2018). Five algorithms are investigated, and again, k-means as baseline
was chosen. The third group consists of 18 common clustering algorithms with available open-
source software. The following three sections introduce the clustering algorithms very shortly. The
last section introduced the used datasets. All algorithms are summarized in the R package “FCPS”
on CRAN (https://CRAN.R-project.org/package=FCPS).

3.1 Algorithms Combining DR with Clustering

We use the open-source algorithms available on CRAN in the R language (R Development
Core Team 2008). For projection pursuit clustering, the “PPCI” package on CRAN is used
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(https://CRAN.R-project.org/package=PPCI) (Hofmeyr and Pavlidis 2019). In this package,
projection pursuit is combined with clustering via MinimumDensity (PPC_MD) (Pavlidis et al.
2016), MaximumClusterbility (PPC_MC) (Hofmeyr and Pavlidis 2015), NormalisedCut
(PPC_NC) (Hofmeyr 2016), and a new approach integrating kernel PCA with nonlinear
problems is proposed (Kernel_PCA_Clust) (Hofmeyr and Pavlidis 2019).

For tandem clustering, we use the R package “clustrd” on CRAN (https://CRAN.R-project.
org/package=clustrd) (Markos et al. 2019) in which RKM and FKM are implemented. As a
baseline, simple LBG k-means (Linde et al. 1980) and k-means with initialization procedure
12 (KM_I12) (Steinley and Brusco 2007) were used.

For PBC, the prior knowledge of a classification is used to switch between the connected or
compact approach in the case of natural datasets as well as the number of clusters is set, but the
advantage of the topographicmap is not used. Instead, the PBC is done entirely automaticallywhich
we do not recommend for practical use cases. This is necessary to allow for a fair comparison to
conventional methods. PBC is available as a CRAN package “ProjectionBasedClustering”
(https://CRAN.R-project.org/package=ProjectionBasedClustering).

3.2 Conventional Clustering Algorithms

The algorithms are called conventional because the cluster structures that these algorithms are
able to find is well investigated in the literature (cf. Thrun 2018, chapter 3). These clustering
algorithms are single linkage (SL) (Florek et al. 1951), spectral clustering (Ng et al. 2002), the
Ward algorithm (Ward Jr 1963), the Linde–Buzo–Gray algorithm (LBG k-means) (Linde et al.
1980), partitioning around medoids (PAM) (Kaufman and Rousseeuw 1990), and the mixture
of Gaussians (MoG) method with expectation maximization (EM) (Fraley and Raftery 2002)
(also known as model-based clustering). ESOM/U-matrix clustering (Ultsch et al. 2016) was
omitted because no default clustering settings exist for this method.

For the k-means algorithm, the CRAN R package cclust was used (https://CRAN.R-project.
org/package=cclus). For the SL and Ward algorithms, the CRAN R package stats was used. For
theWard algorithm, the option “ward.D2”was used, which is an implementation of the algorithm
as described in Ward Jr (1963). For the spectral clustering algorithm, the CRAN R package
kernlab was used (https://CRAN.R-project.org/package=kernlab) with the default parameter
settings: “The default character string “automatic” uses a heuristic to determine a suitable value
for the width parameter of the RBF kernel,” which is a “radial basis kernel function of the
“Gaussian” type.” The “Nyström method of calculating eigenvectors” was not used (=FALSE).
The “proportion of data to use when estimating sigma”was set to the default value of 0.75, and the
maximum number of iterations was restricted to 200 because of the algorithm’s long computation
time (on the order of days) for 100 trials using the FCPS datasets. For the MoG algorithm (also
known as model-based clustering), the CRAN R package mclust was used (https://CRAN.R-
project.org/package=mclust). In this instance, the default settings for the function “Mclust()”were
used, which are not specified in the documentation. For the PAM algorithm, the CRAN R
package cluster was used (https://CRAN.R-project.org/package=cluster). For every
conventional clustering algorithm, the number of clusters is set.

3.3 Algorithms for Benchmarking

The used clustering algorithms for performance benchmarking are listed as follows: self-organizing
maps (SOM) (Wehrens and Buydens 2007), ADP clustering (clustering by fast search and find of
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density peaks) (Rodriguez and Laio 2014), affinity propagation (AP) clustering (Frey and Dueck
2007), DBscan (Ester et al. 1996), fuzzy clustering (Fanny) (Rousseeuw and Kaufman 1990),
Markov clustering (Van Dongen 2000), quality clustering (QTC) (Heyer et al. 1999; Scharl and
Leisch 2006), self-organizing tree algorithm (SOTA) (Herrero et al. 2001), large application
clustering (CLARA) (Rousseeuw and Kaufman 1990), neural gas clustering (Martinetz et al.
1993), on-line update hard competitive learning (HCL clustering) (Dimitriadou 2002), as well as
the following hierarchical clustering algorithms: complete linkage (Lance and Williams 1967;
Defays 1977), average linkage (Sokol and Michener 1958), Mcquitty linkage (McQuitty 1966),
median linkage (Lance and Williams 1966b; Everitt et al. 2011), centroid linkage (Sokol and
Michener 1958), and divisive analysis clustering (DIANA) (Rousseeuw and Kaufman 1990). They
are summarized in the R package “FCPS” onCRAN (https://CRAN.R-project.org/package=FCPS).

One hundred trials per algorithm and dataset are calculated. All datasets have uniquely
unambiguously defined class labels defined by domain experts or artificially. The error rate is
defined as 1 −Accuracy (Eq. 3.1 on p. 29, Thrun 2018) which is used as a sum over all true
positive–labeled data points by the clustering algorithm. The best of all permutation of labels of
the clustering algorithm regarding the accuracy was chosen in every trial because the labels are
arbitrarily defined by the algorithms.

3.4 Datasets

The fundamental clustering problems suite (FCPS) is a repository consisting of twelve datasets
with known classifications (Thrun and Ultsch 2020a) available in the R package “FCPS” on
CRAN. The subset of artificial datasets is intentionally simple enough to be visualized2 (in 2D
or 3D) but nevertheless presents a variety of problems that offer useful tests of the performance
of clustering algorithms. The cluster structures of FCPS are defined based on the graph theory
and summarized in Table 1. The FCPS is extensively described in Thrun and Ultsch (2020a).
For the natural high-dimensional datasets of Leukemia (Haferlach et al. 2010) and Tetragonula
(Franck et al. 2004), we also refer to Thrun and Ultsch (2020a).

The Wine dataset (Aeberhard et al. 1992), Swiss Banknotes (Flury and Riedwyl 1988), and Iris
(Anderson 1935) are described in Thrun (2018). The Cancer dataset consists of 801 subjects with
20,531 random extractions of gene expressions, and it is a part of the RNA-Seq (HiSeq) PANCAN
dataset which is maintained by the Cancer Genome Atlas Cancer Analysis Project (Weinstein et al.
2013). The dataset was taken from the UCI machine learning repository (Lichman 2013). An
Illumina HiSeq platform measured RNA-Seq gene expression levels. The subjects have different
types of tumor: BRCA (300 subjects), KIRC (146 subjects), COAD (78 subjects), LUAD (141
subjects), and PRAD (136 subjects).

Gene expressions which were zero for all subjects were disregarded. The dataset was
decorrelated and robust z-transformed. After preprocessing, the high-dimensional dataset had
18,617 dimensions of 801 cases.

The Breast Cancer dataset was taken from the CRAN package “mlbench” (https://CRAN.
R-project.org/package=mlbench). It consists of 9 nominal scaled features with 699 cases
having either benign or malignant tumor cells. The samples arrived periodically as Dr.
Wolberg reports his clinical cases (Wolberg and Mangasarian 1990). Each variable except
for the first was converted into 11 primitive numerical attributes with values ranging from 0
through 10. There are 16 missing attribute values which were KNN imputed with k = 7.
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Unique IDs were chosen as cases, and a small amount of uniform distributed noise was added
to prevent distances equal to zero. The robust normalization of Milligan and Cooper (1988)
was applied. The resulting dataset had 645 cases of which 413 are benign and 232 are
malignant.

“Anderson’s (1935) Iris dataset was made famous by Fisher (1936), who used it to
exemplify his linear discriminant analysis. It has since served to demonstrate the performance
of many clustering algorithms” (Ritter 2014, p. 220). The Iris dataset consists of data points
with prior classification and describes the geographic variation of Iris flowers. The dataset
consists of 50 samples from each of three species of Iris flowers, namely, Iris setosa, Iris
virginica, and Iris versicolor. Four features were measured for each sample: the lengths and
widths of the sepals and petals. The observations have “only two digits of precision preventing
general position of the data” (Ritter 2014, p. 220) and “observations 102 and 142 are even
equal” (Ritter 2014, p. 220). The I. setosa cluster is well separated, whereas the I. virginica and
I. versicolor clusters slightly overlap. This presents “a challenge for any sensitive classifier”
(Ritter 2014, p. 220).

“The idea is to produce bills at a cost substantially lower than the imprinted number. This
calls for a compromise and forgeries are not perfect” (Ritter 2014, pp. 223–224). “If a bank
note is suspect but refined, then it is sent to a money-printing company, where it is carefully
examined with regard to printing process, type of paper, water mark, colors, composition of
inks, and more. Flury and Riedwyl (1988) had the idea to replace the features obtained from
the sophisticated equipment needed for the analysis with simple linear dimensions” (Ritter
2014, p. 224). The Swiss Banknotes dataset consists of six variables measured on 100 genuine
and 100 counterfeit old Swiss 1000-franc bank notes. The variables are the length of the bank
note, the height of the bank note (measured on the left side), the height of the bank note
(measured on the right side), the distance from the inner frame to the lower border, the distance
from the inner frame to the upper border, and the length on the diagonal. The robust
normalization of Milligan and Cooper (1988) is applied to prevent a few features from
dominating the obtained distances.

The Wine dataset (Aeberhard et al. 1992) is a 13-dimensional, real-valued dataset. It
consists of chemical measurements of wines grown in the same region in Italy but derived
from three different cultivars. The robust normalization of Milligan and Cooper (1988) is
applied to prevent a few features from dominating the obtained distances.

All datasets besides Tetragonula have uniquely unambiguously defined class labels; the
Golf Ball dataset of FCPS only possesses one class.

3.5 Comparison Approaches

Typically, performance can be compared using box plots for the reason of simplicity if just the
range of results is relevant. However, the box plot is unable to visualize multimodalities
(Tukey 1977). Therefore, the mirrored density plot (MD plot; Thrun et al. 2020) is used in
Section 4.3 because a finer comparison is necessary. The MD plot visualizes a density
estimation in a similar way to the violin plot (Hintze and Nelson 1998) or the well-known
box plot (Tukey 1977). The MD plot uses for density estimation the Pareto density estimation
(PDE) approach (Ultsch 2005b). It was illustrated that comparable methods like ridgeline plots
or bean plots have difficulties in visualizing the probability density function in case of uniform,
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multimodal, skewed, and clipped data if density estimation parameters remain in a default
setting (Thrun et al. 2020). In contrast, the MD plot is particularly designed to discover
interesting structures in continuous features and can outperform conventional methods
(Thrun et al. 2020). The MD plot does not require any adjustments of parameters of density
estimation, which makes the usage compelling for nonexperts.

One hundred trials per algorithm and dataset are calculated. All datasets have uniquely
unambiguously defined class labels defined by domain experts or artificially. The adjusted
Rand index is used for comparison.

4 Results

The results consist of six sections. In the first three sections, the investigation of cluster
tendency (also called clusterability, cf. Adolfsson et al. 2019) as well as the derivation of
the number of clusters and the compact or connected parameter is presented. In the fourth
section, PBC using NerV projection is compared to other clustering approaches combined with
dimensionality reduction. In this section, the reference method is k-means used in the first
section as well as, additionally, k-means with the best initialization procedure (see Steinley and
Brusco 2007). In the fifth section, the performance based on the adjusted Rand index of
conventional clustering approaches like single linkage or Ward is compared to PBC using
various projection methods with either the compact or the connected approach. In the last
section, the overall performance of PBC is compared to 18 typically available clustering
methods.

4.1 Cluster Tendency

For a clustering algorithm, it is relevant to test for the absence of a cluster structure
(Everitt et al. 2001, p. 180), the so-called clustering tendency (Theodoridis and
Koutroumbas 2009, p. 896) or clusterability (Adolfsson et al. 2019). Usually, tests for
the clustering tendency rely on statistical tests (Theodoridis and Koutroumbas 2009, p.
896; Adolfsson et al. 2019). Unlike conventional clustering algorithms, the PBC is able
to inspect the cluster tendency visually.

One dataset is chosen exemplarily to illustrate this. The Golf Ball dataset does not
exhibit distance- or density-based clusters (Ultsch 2005a; Thrun and Ultsch 2020a).
Therefore, it is analyzed separately because, except hierarchical algorithms, the common
clustering algorithms do not indicate the existence of clusters. This “cluster tendency
problem has not received a great deal of attention but is certainly an important problem”
(Jain and Dubes 1988, p. 222). In Ultsch and Lötsch (2017), it was shown that the Ward
algorithm indicates six clusters, whereas SL indicates two clusters. However, the pres-
ence of cluster structures is not confirmed by the topographic map of Pswarm projection
method (Fig. 1). Both PBC approaches of Pswarm divide the data points lying in valleys
into different clusters and merge the data points into clusters through hills, resulting in
cluster borders that are not defined by mountains. Further tests for cluster tendency can
be found in Thrun (2018).
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4.2 Estimating the Number of Clusters

Generally, two approaches are possible to determine either the number of clusters or the
clustering quality. Covariance matrices can be calculated, or the intra- versus intercluster
distances can be compared to evaluate the homogeneity versus heterogeneity of the clusters.
In the literature, a sufficient overview of 15–30 indices has been provided (Dimitriadou et al.
2002; Charrad et al. 2012), and these indices will not be further discussed here. Instead, we
would like to point out a visualization approach for estimating the number of clusters by using
the topographic map.

Exemplarily, the Tetragonula dataset is chosen where the number of clusters varies
depending on the publication (cf. Franck et al. 2004 with Hennig 2014; see also Thrun
and Ultsch 2020a). Contrary to prior works, PBC is able to detect a meaningful structure
of this high-dimensional dataset by verifying the result with heatmap and silhouette plot
and external data of location not used in the cluster analysis (Thrun 2018).

For the PBC approach, we pick the NeRV projection with connected clustering, but the
same result can be achieved with the Pswarm projection method (Thrun 2018). The visuali-
zation is shown in Fig. 2. The colors of the BMUs depend on the result of the connected
clustering.

Fig. 1 The topographic map of the Pswarm projection and (compact) clustering of the Golf Ball dataset. The
colors of the best-matching units (BMUs) depend on the result of the clustering. The projection does not indicate
a cluster structure. The clustering generates clusters that are not separated by mountains
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4.3 Selecting the Appropriate PBC Approach

The projection of the high-dimensional data of leukemia was performed in the following
two figures. Figures 3 and 4 present the topographic map of the generalized U-matrix of
the NerV projection. In Fig. 3a left, the BMUs are colored by the clustering defined in
the connected clustering approach. In Fig. 4, the compact clustering approach colors the
BMUs. In the right of Figs. 3b and 4b, the dendrograms for each clustering approach are
visualized. The branches of each dendrogram have the same colors as the BMUs. Each figure uses
6 as the number of clusters. In Fig. 3a left, each cluster lies in a valley, and the outliers lie in a

Fig. 2 The topographic map of the NeRV projection of the Tetragonula dataset with PBC. The colors of the
points are defined by the clustering. The connected versus the compact structure parameter as well as the number
of clusters (13) for the algorithm is chosen by looking at the visualization
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volcano. Therefore, the clustering was performed appropriately with the connected clustering
approach. In Fig. 4a left, a cluster is either divided in separate valleys (blue) or several clusters lie
in the same valley (e.g., black green). Hence, the compact clustering approach is not appropriate
for the leukemia data.

Fig. 3 The topographic map of the NerV projection of the Leukemia dataset (left) and the dendrogram of the
connected PBC approach (right). Clustering labels are visualized as colors, and the colors on the branches are the
same as the colors of best-matching units (BMUs). BMUs with the same color are lying in the same valley. The
clustering was performed appropriately

Fig. 4 The topographic map of the NerV projection of the Leukemia dataset (left) and the dendrogram
of the compact PBC approach (right). Best-matching units (BMUs) with different colors are lying in
the same valley. Clustering labels are visualized as colors, and the colors on the branches are the
same as the colors of BMUs. The clustering was performed incorrectly w.r.t. to the high-dimensional
structures visible in the topographic map
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4.4 Comparison to Clustering Combined with Linear Projection

Figure 5 shows the MD plots (Thrun et al. 2020) for artificial datasets of PBC to several algorithms
that used dimensionality reduction for preprocessing.Mirrored density plots estimate the distribution
of the error rate in percent per compared algorithm allowing for a finer distinction than box plots.

The simple k-means and the best-performing k-means of initialization procedure 12
(I12; Steinley and Brusco 2007) are given as baseline. It is visible that the simple k-
means and sometimes the ProClus algorithm have different states of errors, whereas
the initialization procedure I12 converges to one state of simple k-means. Other
algorithms compared are based on either a combination of linear projections with k-
means, projection pursuit methods with more elaborate clustering methods described
in Hofmeyr and Pavlidis (2019), or subspace clustering algorithms (Aggarwal et al.
1999; Aggarwal and Yu 2000). The error rates of linear projection methods are high

Fig. 5 Artificial datasets: MD plots for nine methods in comparison to projection-based clustering (PBC) are
shown. The methods KM and KM-ID12 differ in the initialization procedure. Projection-based clustering (PBC)
always yields the best possible performance w.r.t. error rate. The performance of algorithms based projection
pursuit or PCA is unable to reproduce nonlinear structures and sensitive to outliers Abbreviations: KM (k-
means), KM-ID12 (12th Initialization procedure of Steinley and Brusco (2007)), RKM (Reduced k-means),
FKM (Factorial k-means), PPC (Projection Pursuit Clustering) with either MD (MinimumDensity),
MaximumClusterbility (MC), or NormalisedCut (NC)
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on connected structures or compact structures with noise. These methods perform
appropriately on compact structures without noise.

Figure 6 presents the MD plot for the six natural datasets. Projection-based
clustering (NerV based) is always one of the algorithms that perform best. For the
Leukemia and Cancer (Weinstein) datasets, the tandem clustering methods of factorial
k-means and reduced k-means and the Orclus algorithm could not be computed due to
the high dimensionality of the data.

4.5 Comparison to Conventional Clustering Algorithms

The adjusted Rand index (Hubert and Arabie 1985) of six common clustering algorithms
based on 100 trials is compared to the projection-based clustering approach. Due to the
high dimensionality, the datasets Leukemia und Cancer were calculated only ten times.
The performance is depicted using box plots. Aside from the number of clusters, which is
given for each of the artificial FCPS datasets, only the default parameter settings of the
clustering algorithms were used as described in the last section. In this comparison, the
simple k-means algorithm (LBG) was used, because the elaborate finalization approach

Fig. 6 Natural datasets: MD plots for nine methods in comparison to projection-based clustering (PBC) are
shown. The methods KM and KM-ID12 differ in the initialization procedure. If algorithms are missing, then a
clustering could not be computed due to the high dimensionality of the data. Abbreviations: KM (k-means), KM-
ID12 (12th Initialization procedure of Steinley and Brusco (2007)), RKM (Reduced k-means), FKM (Factorial k-
means), PPC (Projection Pursuit Clustering) with either MD (MinimumDensity), MaximumClusterbility (MC) or
NormalisedCut (NC)
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I12 (Steinley and Brusco 2007) was not computable in the case of the high-dimensional
datasets of Leukemia and Cancer.

It is visible that all clustering algorithms except Ward and single linkage have a variance of
results depending on the trial. In Fig. 7, the simple k-means algorithm has the lowest overall
adjusted Rand index, and spectral clustering shows the highest variance. On the Hepta and
Tetra dataset, PAM and MoG outperform it, and on the Lsun3D dataset, no conventional
clustering algorithm is able to find the structures.

Fig. 7 Artificial datasets: Box plots for the six common clustering algorithms in comparison to projection-based
clustering are shown. The notch in the box plot shows the mean; if mean and median do not overlap, the values
are not normally distributed. Projection-based clustering always yields the best possible performance. The
performance of other algorithms changes depending on the dataset. Spectral clustering and K-means sometimes
show a high variance of results. Pam is able to find the clusters in 4 out of 6 datasets. Abbreviations: MoG,
mixture of Gaussians, for model-based clustering; SL, single linkage
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On the artificial datasets, only PBC is able to reproduce the clusters in all datasets. Model-
based clustering (MoG) is second best by reproducing the clusters of five datasets.

For the high-dimensional datasets, the k-means and SL algorithms have the lowest
adjusted Rand index consistently (Fig. 8). If the SL box plot is missing, then the adjusted
Rand index equals zero which happens for all compact cases besides Iris where the SL
Rand index is still the (with spectral clustering) lowest. The model-based clustering
algorithm (MoG) (Fraley and Raftery 2002) cannot be applied on the Leukemia or
Cancer datasets without first using dimensionality reduction methods because the

Fig. 8 Natural datasets: Box plots for the six common clustering algorithms in comparison to projection-based
clustering are shown. The notch in the box plot shows the mean; if mean and median do not overlap, the values
are not normally distributed. Due to the high dimensionality of the Leukemia and Cancer dataset, the MoG
approach could not be computed. The performance of conventional clustering algorithms changes depending on
the dataset. PBCpossess (NerV based) has the possibility to outperform the best conventional clustering
algorithm for Breast Cancer, Cancer, Swiss Banknotes, Iris, and Wine. For Leukemia, it slightly outperforms
SL. Abbreviations: MoG, mixture of Gaussians, for model-based clustering; SL, single linkage
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dimensionality of the datasets is too high. It has high values with low variance on Swiss
Banknotes and Wine but fails for Iris and Breast Cancer. Spectral clustering has very
high values with a low variance for Breast Cancer but fails on Iris, Swiss Banknotes,
Cancer, and Leukemia. Ward has a high and stable adjusted Rand index values for Iris,
Cancer, and Swiss Banknotes and is outperformed by at least one algorithm in the case
of Breast Cancer and Wine. It fails for Leukemia as well as PAM. PAM has a low
variance of results but has low adjusted Rand index values on Leukemia and Wine and is
outperformed in every dataset by at least one clustering algorithm.

In comparison to the six conventional algorithms, PBC has the best overall perfor-
mance but has a high variance of results for Breast Cancer, Iris, Cancer, and Wine. For
the Iris dataset, it is the only algorithm with the ability to catch the predefined clusters
correctly. Its Rand index is slightly higher than SL in the case of Leukemia. Table 1
provides an overview of the large variety of cluster structures alongside the algorithms
with the best results regarding the highest Rand index and error rate with the lowest
variance for each dataset.

4.6 Benchmarking of 18 Clustering Algorithms

In Figs. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, and 23, the performance of
18 clustering algorithms and PBC is illustrated with box plots. The performance is
shown using the error rate, which is one minus accuracy of the clustering compared to
the prior classification. The abbreviations for the used clustering algorithms are in
brackets as follows: self-organizing map clustering (SOM) (Wehrens and Buydens
2007), clustering by fast search and find of density peaks (ADP) (Rodriguez and
Laio 2014), affinity propagation clustering (AP) (Frey and Dueck 2007), projection-
based clustering (PBC), DBscan (Ester et al. 1996), fuzzy clustering (Fanny)
(Rousseeuw and Kaufman 1990), Markov clustering (Van Dongen 2000), model-
based clustering (mixture of Gaussians—MoG) (Fraley and Raftery 2002, 2006),

Table 1 Cluster structures in the artificial benchmark sets of the FCPS (Thrun and Ultsch 2020a) and the
summary of the best-performing algorithms

Structure
type

Detailed description of cluster
structure

Dataset Clustering algorithms that found this
structure with a small variance in the results

Connected Completely overlapping convex hulls Atom PBC (Pswarm based), MoG, Spectral, ProClus
Connected Linear nonseparable entanglements Chainlink PBC (NeRV based), SL, Spectral (MoG)
Compact Spherical, nonoverlapping convex

hulls with varying intracluster
distances

Hepta PBC (Sammons mapping based), MoG, SL,
Ward, k-means I12, PAM, PPC_MD,
PPC_MC, PPC_NC

Compact Varying geometric shapes with noise
defined by outliers

Lsun3D PBC (NerV based)

Connected Overlapping convex hulls combined
with noise defined by outliers

Target PBC (Pswarm based), SL, kernel PCA-based
clustering, Orclus

Compact Spherical, low intercluster distance Tetra Ward, k-means, PAM, MoG, spectral and
PBC (NeRV based) fail sometimes
depending on the trial. k-means I12,
PPC_MC
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quality clustering (QT) (Heyer et al. 1999; Scharl and Leisch 2006), self-organizing
tree algorithm (SOTA) (Herrero et al. 2001), large application clustering (CLARA)
(Rousseeuw and Kaufman 1990), neural gas clustering (Martinetz et al. 1993), on-line
update hard competitive learning (HCL) (Dimitriadou et al. 2002), partitioning around
medoids (PAM), hierarchical clusterings of complete linkage (Lance and Williams
1967; Defays 1977), average linkage (Sokol and Michener 1958), McQuitty (1966)

Fig. 10 Box plots show the performance of 18 clustering algorithms of the Chainlink dataset. Best-performing
algorithms are PBC and DBscan

Fig. 9 Box plots show the performance of 18 clustering algorithms of the Atom dataset. The abbreviations are
defined in section 3.3. Best-performing algorithms are PBC, DBscan, and FannyC
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linkage, median linkage (Lance and Williams 1966a; Everitt et al. 2011), centroid
linkage (Sokol and Michener 1958), and divisive analysis clustering (DIANA)
(Rousseeuw and Kaufman 1990). Projection-based clustering (Pswarm based) is the
only algorithm that is able to reproduce the cluster structure of all 12 datasets, although
in some of them, a variance of results is visible.

Fig. 12 Box plots show the performance of 18 clustering algorithms of the Hepta dataset. Algorithms being
unable to reproduce these structures are Diana and HCL

Fig. 11 Box plots show the performance of 18 clustering algorithms of the EngyTime dataset. Best-performing
algorithms are PBC, ADP, Diana, and Clara
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Fig. 14 Box plots show the performance of 18 clustering algorithms of the Target dataset. The best-performing
algorithm is PBC

Fig. 13 Box plots show the performance of 18 clustering algorithms of the Lsun3D dataset. Best-performing
algorithms are PBC and CentroidL
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Fig. 16 Box plots show the performance of 18 clustering algorithms of the TwoDiamonds dataset. Algorithms
unable to reproduce these cluster structures are AP, MedianL, QTC, and SOTA

Fig. 15 Box plots show the performance of 18 clustering algorithms of the Tetra dataset. Algorithms unable to
reproduce these cluster structures are AP, DBscan, Diana, FannyC, MedianL, QTC, and SOTA
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Fig. 18 Box plots show the performance of 18 clustering algorithms of the Breast Cancer dataset. Algorithms
unable to reproduce these cluster structures are AP, CentroidL, CompleteL, DBscan, MarkovC, MCquittyL,
Median, and QTC

Fig. 17 Box plots show the performance of 18 clustering algorithms of the WingNut dataset. Algorithms unable
to reproduce these cluster structures are ADP, AP, CompleteL, DBscan, and QTC
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Fig. 19 Box plots show the performance of 18 clustering algorithms of the Iris dataset. The best-performing
algorithm is PBC

Fig. 20 Box plots show the performance of 18 clustering algorithms of the Leukemia dataset. Best-performing
algorithms are PBC, ADP, AverageL, CompleteL, Diana, and MCquittyL
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Fig. 21 Box plots show the performance of 18 clustering algorithms of the Swiss Banknotes dataset. Algorithms
unable to reproduce these cluster structures are AP, AverageL, CentroidL, CompleL, DBscan, MarkovC, and
QTC

Fig. 22 Box plots show the performance of 18 clustering algorithms of the Cancer dataset. Best-performing
algorithms are PBC, Clara, NeuralGas, and SOTA
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5 Discussion

This work compared 32 clustering algorithms on a benchmark system of artificial datasets and
natural datasets. The prior classification of every dataset was based on distance- and density-
based cluster structures. It is clearly visible that by defining an objective function or so-called
criterion for clustering, the algorithms implicitly assume a structure type, and if distance- and
density-based clusters are sought, different clustering methods tend to implicitly assume
different structures (Duda et al. 2001, pp. 537, 542, 551; Everitt et al. 2001, pp. 61, 177;
Handl et al. 2005; Theodoridis and Koutroumbas 2009, pp. 862, 896; Ultsch and Lötsch
2017). Therefore, besides PBC, none of the investigated clustering algorithms was able to
reproduce every prior classification in every trial.

5.1 Discussion of Cluster Structures

PBC is able to reproduce the large variety of cluster structures listed in Table 1 by using the
definition of compact versus connected cluster structures with one Boolean parameter to be set.
It is apparently visible that the result of other clustering algorithm depends on the structures of
the low-dimensional dataset if the compact or connected clusters are sought. It seems that
clustering algorithms that search for compact structures have difficulties with outliers
(Lsun3D), whereas clustering algorithms that search for connected structures may catch
outliers (SL on the target dataset).

If the structures are predefined as it is the case for artificial datasets, the duality of compact
versus connected clustering is visible for conventional clustering algorithms except for Hepta
and Tetra datasets. In the case of Hepta, clustering methods (e.g., SL) that search for clusters
with connected structures can find the compact clusters because the distance between clusters
is vast and the density between clusters is very low. Contrary to expectation (Duda et al. 2001;
Ng et al. 2002, p. 5), spectral clustering is often but not always able to find the structures of the
Tetra dataset. However, PAM or even k-means remain the better choice which was expected

Fig. 23 Box plots show the performance of 18 clustering algorithms for the Wine dataset. Best-performing
algorithms are PBC, ADP, CompeteL, and NeuralGas
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(Duda et al. 2001, p. 542; Handl et al. 2005, p. 3202; Kaufman and Rousseeuw 2005; Mirkin
2005, p. 108; Theodoridis and Koutroumbas 2009, p. 742; Hennig 2015, p. 61). A summary of
such an assumption found in the literature can be found in Thrun (2018). Besides Tetra, simple
k-means is consistently the worst-performing algorithm, and spectral clustering fails if outliers
are present in a dataset. K-means with the initialization procedure I12 (Steinley and Brusco
2007) performs better on compact spherical structures with nonoverlapping hulls than simple
k-means. However, in the case of connected structures or noise defined by outliers, only the
variance is reduced, but the overall performance is not improved. Combining k-means with
linear projections (RKM, FKM) resulted in worse performance compared to simple k-means.
Other clustering methods based on linear projection methods like projection pursuit (e.g.,
Hofmeyr and Pavlidis 2015; Hofmeyr 2016; Pavlidis et al. 2016; Hofmeyr and Pavlidis 2019)
were unable to reproduce connected structures or compact structures with noise and varying
geometric shapes. The exception was clustering based on kernel PCA, which was able to
reproduce the cluster structure of overlapping convex hulls in the case of the 2D dataset
(because no DR was performed) but not in the case of the 3D dataset and failed on all other
cluster structures. Specific subspace clustering performed well for specific connected struc-
tures of the artificial datasets. However, subspace clustering was most often not able to
reproduce the given cluster structures for the natural datasets investigated. PBC outperformed
k-means, Tandem Clustering, and projection pursuit clustering on Iris, Leukemia, Weinstein,
and Wine but had a small variance depending on the dataset. In praxis, this variance has to be
accounted for using the topographic map. Even though PBC was able to reproduce the cluster
structures of the datasets Swiss Banknotes and Breast Cancer, k-means and several approaches
of projection pursuit clustering reproduced these structures without a variance. Kernel PCA-
based clustering and FKM performed worst in the high-dimensional setting. Overall, it seems
that projection pursuit clustering has the smallest variance but is able to reproduce only
specific cluster structures that fit their underlying clustering criteria. In contrast, projection-
based clustering always has an excellent chance to reproduce the high-dimensional cluster
structures entirely but sometimes has a small variance in its results.

The question arises if one can predict if methods that are well investigated in the
literature can reproduce specific cluster structures based on the artificial datasets select-
ed. Based on the selection, it can be assumed that either k-means I12, PAM, PBC, or
MoG performs well on compact spherical cluster structures. On connected structures, SL
and PBC are preferable if outliers are present. If no outliers exist, then spectral clustering
or MoG can be considered.

To provide a more general answer in case of higher dimensions is challenging because
model-based clustering (MoG) cannot be applied in two cases due to high dimensionality of
the data and spectral clustering does not work well for the Leukemia dataset. It seems that
besides the cluster structure type, the dimensionality of the data could influence the perfor-
mance of some algorithms like spectral clustering or kernel PCA-based clustering. In the case
of the Leukemia dataset, the reason could also be the occurrence of small clusters, which are
essential from the topical perspective (cf. Thrun and Ultsch 2020a). In the case of connected
cluster structures with noise defined by outliers or small clusters again, single linkage and PBC
performed well.

Interestingly, the variance of results for spectral clustering was very high on several
datasets which to the knowledge of the authors was not reported before. Also, the
variance of clustering of simple k-means was extremely high although the structures
were compact. It seems that the choice of centroids is a crucial factor and that either
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elaborate but computation-intensive initialization procedure is required or the faster PAM
algorithm is the preferable approach if compact spherical structures are sought. The
topographic map verifies the existence or absence of distance- and density-based struc-
tures of the connected or compact PBC approach. Contrary to Ultsch et al. (2016), the
PBC is not based on density information coded in the P-matrix and various parameters of
the ESOM algorithm because by choosing the right projection method the connected
clustering itself is already able to find density-based structures. Moreover, the combina-
tion of the topographic map and a projection method can be used as an unsupervised
index to verify the result of a conventional clustering algorithm. If prior knowledge of
the dataset to be analyzed is available, then a projection method can be appropriately
chosen with regard to the structures. However, the choice of the projection method is
critical for the result of PBC because of the used objective function of the projection
method uses. Additionally, there can be a variance of results depending on the method. It
is still difficult to evaluate if the clusters are disrupted in the visualization. If the
projection method is nontoroidal, it could disrupt the clusters, then the PBC approach
will fail. This work showed that these problems also exist in most other conventional
algorithms. If no prior knowledge of the high-dimensional structures are known before-
hand to choose the right objective function, the toroidal Pswarm projection method
(Thrun and Ultsch 2020b) seems to be a right choice, because it does not possess an
objective function and is, therefore, able, through the concept of emergence (Kim 2006;
Ultsch 2007), to find structures.

5.2 Discussion of Overall Performance

This work showed that by keeping in mind the two main types of cluster structures sought,
Projection-based clustering (PBC) always performs and is the best conventional clustering
algorithm and, in some cases, can even outperform conventional algorithms. The best con-
ventional clustering algorithm varies depending on the dataset. The reason for the reliable
performance of PBC is the prior selection of the Boolean parameter of either compact or
connected using the topographic map. In comparison to the conventional algorithms, further
enhancement is the ability to investigate the cluster tendency or so-called clusterability and the
possibility to derive the number of clusters by counting the number of valleys in the
topographic map.

There are several clustering algorithms that have an inferior performance on most of the
datasets investigated. For example, quality clustering and subspace clustering was not able to
reproduce structure for most artificial datasets and not often computable for datasets with high
dimensionality (e.g., Leukemia, Cancer). Affinity propagation performed only well on low-
dimensional spherical compact cluster structures. Additionally, it seems that the usage of box
plots presents the performance of algorithms very coarse in comparison to the Mirrored-
density plot, which reveals subtle effects.

In sum, all comparisons indicate that algorithms have either a small variance of results but
specialize on specific cluster structures or have a significant variance and sometimes can
reproduce a variety of cluster structures. PBC reproduces all given cluster structures through
the coexistence of projection and clustering. However, it is strongly suggested to manually
investigate the topographic map instead of using the fully automatic PBC compared in this
work in order to account for the variance of results depending on the trial and projection
method.
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6 Conclusion

In concordance with literature, this work illustrated that the common clustering algorithm
implicitly assumes different types of structures, if distance- and density-based clusters are
sought. The types of clusters can be described as compact and connected structure types.
Compact structures are mainly defined by inter- versus intracluster distances, whereas con-
nected clusters are defined by neighborhood and density of the data.

In projection-based clustering, the structure types and the number of clusters can be
estimated by counting the valleys in a topographic map as well as from a dendrogram. If the
number of clusters and the projection method are chosen correctly, then the clusters will be
well separated by mountains in the visualization. Outliers are represented as volcanoes and can
be also interactively marked in the visualization after the automated clustering process.

In sum, projection-based clustering, is a flexible and robust clustering framework which
always performs and is the best conventional clustering algorithm which varies depending on
the dataset. Its main advantage is the human-understandable visualization by a topographic
map which internally enables the user to evaluate the cluster tendency and even interactively
improve the cluster quality of a dataset. The method is implemented in the R package
“ProjectionBasedClustering” on CRAN.
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