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Abstract
In many applications there is ambiguity about which (if any) of a finite number N of hypothe-
ses that best fits an observation. It is of interest then to possibly output awhole set of categories,
that is, a scenario where the size of the classified set of categories ranges from 0 to N . Empty
sets correspond to anoutlier, sets of size 1 represent a firmdecision that singles out one hypoth-
esis, sets of size N correspond to a rejection to classify, whereas sets of sizes 2, . . . , N − 1
represent a partial rejection to classify, where some hypotheses are excluded from further
analysis. In this paper, we review and unify several proposed methods of Bayesian set-valued
classification, where the objective is to find the optimal Bayesian classifier that maximizes
the expected reward. We study a large class of reward functions with rewards for sets that
include the true category, whereas additive or multiplicative penalties are incurred for sets
depending on their size. For models with one homogeneous block of hypotheses, we pro-
vide general expressions for the accompanying Bayesian classifier, several of which extend
previous results in the literature. Then, we derive novel results for the more general setting
when hypotheses are partitioned into blocks, where ambiguity within and between blocks
are of different severity. We also discuss how well-known methods of classification, such as
conformal prediction, indifference zones, and hierarchical classification, fit into our frame-
work. Finally, set-valued classification is illustrated using an ornithological data set, with
taxa partitioned into blocks and parameters estimated using MCMC. The associated reward
function’s tuning parameters are chosen through cross-validation.

Keywords Blockwise cross-validation · Bayesian classification · Conformal prediction ·
Classes of hypotheses · Indifference zones · Markov Chain Monte Carlo · Reward functions
with set-valued inputs · Set-valued classifiers

1 Introduction

Classification of observations among a finite number N of hypotheses or categories is a well-
studied problem in statistics, and also a central concept of modern machine learning (Bishop,
2006; Hastie et al., 2009). For the most widely used approach, Bayesian decision theory, it is
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well known that the maximum a posteriori classifier maximizes the probability of a correct
classification (Bishop, 2006; Berger, 2013). This is a precise classifier, in the sense that it
always outputs one single category. For some problems, when there is much ambiguity about
the category that fits data the best, it is sensible though to add a reject option to Bayesian
classification, where no classification is made (Chow, 1970; Hellman, 1970; Zaffalon, 2002;
Freund et al., 2004; Herbei & Wegkamp, 2006; Ripley, 2007), and if such a reject option
is followed by additional data collection, this leads to Bayesian sequential analysis (Arrow
et al., 1949). These types of classifiers have been generalized and formulated in the context
of Bayesian decision theory, where the object is to maximize the posterior expected reward,
using reward functions with a set-valued argument (Ha, 1997; del Coz et al., 2009; Zaffalon
et al., 2012; Mortier et al., 2021). Each such reward function leads to a classifier that outputs
a subset of categories, also referred to as a set-valued classifier (Grycko, 1993), a credal
classifier (Zaffalon et al., 2012) a nondeterministic classifier (del Coz et al., 2009) or a partial
classifier (Ma & Denoeux, 2021). A number of consistency properties for reward functions
with a set-valued input argument have been defined by Yang et al. (2017).

A second frequentistic approach is to regard set-valued classifiers as generalizations
of confidence intervals. This includes conformal prediction (Vovk et al., 2005; Shafer &
Vovk, 2008; Vovk et al., 2017; Angelopoulos & Bates, 2022), classifiers that guarantee user-
specified levels of coverage while minimizing the expected size of the classified set (Sadinle
et al., 2019) and classifiers that conversely maximize the expected coverage subject to an
upper bound on the expected size of the classified set (Denis&Hebiri, 2017).A third approach
is to make use of Dempster-Shafer’s theory of belief functions in order to define set-valued
classifiers (Ma & Denoeux, 2021).

Regardless of which of these three approaches is used to define the set-valued classifier,
the size of the classified set of categories is 0 if the classifier rejects all hypotheses, 1 for a
firm decision that singles out one category, between 1 and N for a partial reject option, where
ambiguity remains between some but not all categories, and N for a rejection to classify,
i.e, when none of the categories are singled out. In any case, the classified set is determinate
in the sense that the classifier only outputs one single set of size 0, 1, . . . , N . Indeterminate
classifiers, with several possible classified sets, are obtained within a Bayesian framework
when the posterior distribution is not known exactly but rather belongs to a convex credal set
of distributions (Levi, 1983; Walley, 1991; Zaffalon, 2002; Yang et al., 2017).

In a previous article (Karlsson & Hössjer, 2023) we introduced a novel type of outlier
detection and automatic choice of tuning parameters for Bayesian set-valued classification
between a homogeneous set of categories. Much of our focus in Karlsson and Hössjer (2023)
was devoted to computing the posterior probabilities of categories, for data that involve
obfuscation and mixtures of different types of measurements. Here we present a theoretical
follow-up paper were Bayesian determinate classifiers are studied more generally. In contrast
to our previous article, we mostly assume that the posterior probabilities of the categories are
given, and we pay less attention to the model for how data were generated. As in the previous
paper, we use a decision-theoretic approach, based on reward functions with a set-valued
argument. But in this article, we consider a much larger class of reward functions and unify
much of previous work on set-valued classification, with general and explicit formulas for the
Bayes classifiers that maximize expected rewards. We start by considering a homogeneous
collection of categories of the same type and introduce reward functions with an additive
or multiplicative penalty for large classified sets. In this context, we find explicit formulas
for the Bayes classifier in terms of the ordered a posteriori probabilities of all hypotheses
and the penalty terms for the sizes of the classified sets. It is shown that certain instances
of conformal prediction, with posterior probabilities used as nonconformity measure, as
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well as the minimum coverage approach of Sadinle et al. (2019), are related to a Bayesian
classifier whose reward function has an additive and linear penalty for large sets. This close
connection between Bayesian and frequentistic set-valued classifiers, when the penalty is a
linear function of set size, has also been noted in the review article by Chzhen et al. (2021).

Then, we consider a setting where the categories to choose between are divided into a
number of blocks, such that categories (typically) are more similar within than between
blocks. It is shown that for reward functions adapted to blocks of categories, the associated
Bayes classifiers involve the ordered a posteriori probabilitieswithin each block. In particular,
we study reward functions where either the reward of including the correct class in the
classified set, or the penalty for large classified sets, is block dependent. In the latter case
penaltiesa andb are incurredwhen categories from the correct andwrongblocks are classified
respectively. We also demonstrate that classification with indifference zones (Bechhofer,
1954; Goldsman, 1986) can be represented as an instance of set-valued classification with
two blocks of categories, and that hierarchical classification (Mortier et al., 2022), with three
hierarchical levels, is an instance block-based classification as well.

Our framework of set-valued classification, with the set of categories partitioned into
blocks, is applied to an ornithological data set. Each observation in data consists of three
observed traits for a bird and which taxon the bird belongs to. Based on these data we want
to train a classifier of future birds to taxon. The taxa are partitioned into blocks with regard
to cross-taxon similarities. The parameters of the underlying statistical model are estimated
through aMarkov Chain Monte Carlo procedure, and the tuning parameters of the set-valued
reward function are estimated through cross-validation.

The article is organized as follows: In Section2 we introduce the statistical model with N
hypotheses, and define the optimal (Bayes) set-valued classifier, with a motivating example
in Section3. Then, we introduce a large class of reward functions for models with one block
of categories (Section4) and several blocks of categories (Section5) respectively, and give
explicit expressions for the corresponding Bayes classifiers. The ornithological data set is
analyzed in Section6, and a discussion in Section7 concludes the paper.

2 Statistical Model and Optimal Classifiers

Consider a random variable Z ∈ Z, whose distribution follows one of N possible hypotheses
(or categories)

Hi : Z ∼ fi , i = 1, . . . , N , (1)

where fi is the density or probability function of Z under Hi . We will assume a Bayesian
framework, and thus the true but unknown hypothesis I ∈ N = {1, . . . , N } is a random
variable. It is assigned a categorical prior distribution with parameter vector πi = P(I = i),
for i = 1, . . . , N , and the corresponding posterior distribution of I , given an observed value
z of Z , is

pi = pi (z) = P(I = i |Z = z) = πi fi (z)
∑N

j=1 π j f j (z)
. (2)

Our objective is to classify z. To this end, a classifier Î = Î (z) ⊂ N with partial reject options
is defined as a subset of categories. We will assume that Î is a deterministic function of z,
and thus we exclude classifiers that involve a randomization procedure on top of data Z . For
instance, the random classifier P( Î = {i}|Z = z) = 1/N , which randomly and uniformly
assigns a category, regardless of data (Zaffalon et al., 2012) is not included in our framework.
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When Î = {i}, a firm decision of category i is made, also referred to as a determinate
prediction (Yang et al., 2017). A precise classifier is one for which

P(| Î | = 1) = 1, (3)

so that a firm decision is made with probability 1 with respect to variations in Z . The case
Î = N corresponds to a reject option, where no decision is made about which categories that
conform with z the most. Note that it is the action “to classify” that is rejected when Î = N .
In particular, a vacuous classifier is one that rejects to classify with probability 1 with respect
to variations in Z (Zaffalon et al., 2012). The intermediate case 2 ≤ | Î | = m ≤ N − 1
corresponds to a partial reject option, where the classifier excludes N − m hypotheses but
rejects discrimination among the remainingm = m(z) categories. Another possibility, Î = ∅,
corresponds to a scenario where none of the N categories fit observed data z well, and all
hypotheses are excluded. This can be regarded as a safeguard against outliers or otherwise
faulty data (Ripley, 2007; Karlsson & Hössjer, 2023).

Let
p(1) = p(1)(z) ≤ · · · ≤ p(N ) = p(N )(z) (4)

refer to the ordered posterior category probabilities. For simplicity, we assume that the vector

p(Z) = (p1(Z), . . . , pN (Z)) (5)

has an absolutely continuous distribution with respect to Lebesgue measure on the standard
(N − 1)-dimensional simplex, so that ties in Eq.4 occur with probability 0 and hence can be
ignored.

The well-known Maximum A Posteriori (MAP) classifier (Berger, 2013)

Î = Î (z) = {(N )} (6)

always makes a firm decision, according to Eq.3. It also maximizes the probability P( Î =
{i}) of a correct classification, but has a higher probability of misclassification than correct
classification, when p(N ) < 1/2. The MAP classifier can be formulated as the classifier Î
that maximizes the expected value

V̄ = E[R( Î , I )] (7)

of the reward function

R(I, i) =
{
1, I = {i},
0, I �= {i} (8)

assigned to a classified subset I ⊂ N of categories when the true category is i . Since
Î = Î (Z), the expectation in Eq.7 is with respect to Z and I . Let the value function

V (z; I) = E [R(I, I ) | Z = z] (9)

refer to the conditional expected reward given Z = z. It is clear that the optimal Bayes
classifier, that maximizes the expected reward, or equivalently maximizes the expected value
function V̄ = E[V (Z; Î (Z))] is obtained as

Î (z) = arg maxI⊂N V (z; I)

= arg maxI⊂NE [R(I, I ) | Z = z]

= arg maxI⊂N
N∑

i=1

R(I, i)pi (z) (10)
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for each z ∈ Z. Since the reward function Eq.8 only takes non-zero values for singleton
choices of I ⊂ N , we only need to consider I = {i} for i = 1, . . . , N , in order to find Î . For
each choice I = {i}, V (z; {i}) = pi . Thus, we choose i = (N ), since p(N ) for each fixed z is
the largest value V (z, I) can return. This shows that the MAP classifier Eq.6 is the optimal
classifier under Eq.8.

In this paper, we will consider optimal classifiers Eq.10 for reward functions other than
Eq.8; those that allow not only for single classified categories but also for outliers and (partial)
reject options.

3 Motivating Example

Before proceeding with the general theory of set-valued classification, in this section, we will
first provide a motivating example. Suppose the participants of a Scandinavian quiz program
are asked to classify houses to one of the following N = 6 cities,

1 = Stockholm,

2 = Gothenburg,
3 = Malm

..
o,

4 = Oslo,
5 = Trondheim,

6 = Bergen,

that naturally divide into two blocks of Swedish (1–3) and Norwegian (4–6) cities. The
contestants are exposed to the same data z (a picture of a particular house), but they possibly
have different priors πi as well as different likelihoods fi for how data was generated. The
posterior probabilities Eq.4 are therefore individual specific. Suppose one contestant comes
up with the following posterior probabilities:

Country Posterior probabilities Total

Sweden p1 = 0.23 p2 = 0.10 p3 = 0.07 P1 = 0.40
Norway p4 = 0.22 p5 = 0.20 p6 = 0.18 P2 = 0.60

These posterior probabilities correspond to an ordering

(6) = 1 = Stockholm,

(5) = 4 = Oslo,
(4) = 5 = Trondheim,

(3) = 6 = Bergen,
(2) = 2 = Gothenburg,
(1) = 1 = Malm

..
o,

so that theMAP-classifier Î = {1} outputs the most likely city Stockholm. On the other hand,
the three Norwegian cities have posterior probabilities quite close to that of Stockholm, and
the overall posterior probability for the three Norwegian cities is larger (0.6) than for the
Swedish ones (0.4). Which type of classifier is more preferable? To answer this question we
must define how severe it is to output a large set of cities, and also whether cities from the
wrong country should incur a smaller reward than cities from the correct country. We will
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consider three reward functions I-III that address these questions differently. All of them
add a reward of 1 to sets I ⊂ {1, . . . , 6} that includes the true city i , but then they add the
following types of penalties (which are subtracted from the reward function):

I : Add a penalty c ≥ 0 for each extra city (on top of the first one),
II : Add a penalty c ≥ 0 for each extra city from the correct country

and the same penalty c ≥ 0 for all cities from the wrong country,
III : Add no penalty for any of the cities from the correct country

but add a penalty c ≥ 0 for all cities from the wrong country.

The Bayes classifier Eq.10 for the three reward functions I-III are displayed in the following
table, for various choices of c:

Reward function I Reward function II Reward function III
c Î c Î c Î

(0.220,∞) {1} (0.550,∞) ∅ (0.550,∞) ∅
(0.200, 0.220] {1, 4} (0.383, 0.550] {4} (0.500, 0.550] {4}
(0.180, 0.200] {1, 4, 5} (0.200, 0.383] {1, 4} (0.450, 0.500] {4, 5}
(0.100, 0.180] {1, 4, 5, 6} (0.180, 0.200] {1, 4, 5} (0.383, 0.450] {4, 5, 6}
(0.070, 0.010] {1, 2, 4, 5, 6} (0.100, 0.180] {1, 4, 5, 6} (0.167, 0.383] {1, 4, 5, 6}
[0.000, 0.070] {1, 2, 3, 4, 5, 6} (0.070, 0.010] {1, 2, 4, 5, 6} (0.117, 0.167] {1, 2, 4, 5, 6}

[0.000, 0.070] {1, 2, 3, 4, 5, 6} [0.000, 0.117] {1, 2, 3, 4, 5, 6}

For all three classifiers, the size of the classified set is a non-decreasing function of the cost
parameter c, with all six cities included for c = 0. The classifier Î based on reward function I
always includes Stockholm, regardless of c, since it is only extra cities, on top of the first one,
that is penalized. On the other hand, the classifiers for reward functions II and III output the
empty set for large c. Since the correct country is not known, and all cities from the wrong
country are penalized by an amount c for II and III, the best option is to discard all cities for
large enough c. Notice also that the classifier based on III tends to include more Norwegian
cities than the one based on II, since Norway is the most likely country a posteriori, and only
cities from the wrong country are penalized by III.

In the next two sections, we will derive Bayes classifiers for a more general class of reward
functions. In Section4 we consider reward functions that treat all categories homogeneously,
with reward function I treated in Example 1. Then, in Section5 we study reward functions
that divide all hypotheses into disjoint blocks, with reward functions II and III treated in
Example 7. Finally, in Section6 we discuss data-driven choices of cost parameters for a class
of block-based reward functions that include II and III as special cases.

4 Partial Rejection, One Block of Categories

When N represents one homogeneous block of categories, the following class of reward
functions is natural to use:

Definition 1 Given a set of categories N = {1, . . . , N }, with i ∈ N the true category of an
observation and I ⊂ N the classified subset of categories, a reward function

R(I, i) = R(τ (I), τ (i)) (11)
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invariant w.r.t. permutations τ : N → N of the labels is called an invariant reward function.

In this section, we will find the optimal Bayes classifier for various invariant reward
functions. As we will see, these Bayes classifiers will formulated in terms of the following
classifiers:

Definition 2 A classifier containing the m ∈ {0, . . . , N } categories with the largest posterior
probabilities, where

Îm =
{

{(N + 1 − m), . . . , (N )}, m ≥ 1,

∅, m = 0,
(12)

is called an m most probable classifier, abbreviated as an m-MP classifier.

Them-MP classifier is referred to as the pointwise top-m classifier in Chzhen et al. (2021).
Obviously, the 1-MP classifier is theMAP classifier, whereas the 0-MP classifier corresponds
to the empty set since in this case none of the categories is chosen. Thus, the MAP classifier
is a special case of the more general class of m-MP classifiers.

4.1 Additive Penalties for the Sizes of Classified Sets

It is easily seen that
R(I, i) = 1(i ∈ I) − g(|I|) (13)

is an invariant reward function. The first term of Eq. 13 corresponds to a reward of 1 for
a classified set I that includes the true category i , whereas the second term is an additive
penalty g(|I|) ≥ 0 for the size |I| of the classified set. Proposition 1 links Bayes classifiers
of invariant reward functions with additive penalties of set size, to m-MP classifiers with
m = m(z) depending on data z.

Proposition 1 The optimal classifier for an invariant reward function of type Eq.13, with an
additive penalty term g(|I|) for the size of a classified set, is an m-MP classifier Î (z) = Îm(z)

with
m(z) = arg max0≤m≤N [v(m; z) − g(m)] , (14)

where v(0; z) = v(0) = 0 and

v(m; z) = v(m) =
m∑

j=1

p(N+1− j), m = 1, . . . , N . (15)

Proof Recall that the optimal classifier Î (z) maximizes, for each z ∈ Z, the value function
V (z; I) among all nonempty subsets I ofN . For the reward function of Eq.13 we have that

V (z; I) = E [R(I, I ) | Z = z]
= ∑N

i=1 (1(i ∈ I) − g(|I|)) pi (z)
= ∑N

i=1 1(i ∈ I)pi (z) − ∑N
i=1 g(|I|)pi (z)

= ∑
i∈I pi − g(|I|)

≤ ∑|I|
j=1 p(N+1− j) − g(|I|)

= v(|I|; z) − g(|I|).

(16)

Note that the inequality occurs since we go from considering a subset I ⊆ N of categories to
considering another subsetwith equallymanybut themost probable categories.Consequently,
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among all I ⊂ N of size |I| = m, the value function V (z; I) is maximized by Îm in Eq.12,
for some m ∈ {0, . . . , N }. Among these subsets, the optimal classifier is Î = Îm(z), where
m(z) is the value of |I| that maximizes the right-hand side of Eq.16. Since this value ofm(z)
is identical to the one in Eq.14, this finishes the proof. �

Proposition 1 provides an efficient algorithm for computing the Bayesian classifier Eq.10
for reward functions Eq.13. Indeed, in order to find the optimal classifier Îm(z), it follows from
theproof ofProposition1 that after having sorted all posterior probabilities {pi (z)}Ni=1} (which
requires O(N log(N )) operations), we only need to compute the value function V (z; I) in
Eq.10 for the N + 1 sets I ∈ { Î0, . . . , ÎN } rather than for all 2N subsets of N . The next
result is a corollary of Proposition 1, and it treats an important class of reward functions with
a convex additive penalty function:

Corollary 1 Consider a classifier Î (z) based on a reward function Eq.13, for which the
additive penalty term g(m) is a convex function of m, with g(0) = 0. Then, Eq.14 simplifies
to Î (z) = Îm(z), with

m(z) = max{m′(z),m′′(z)}, (17)

where
m′(z) = 0,
m′′(z) = max{1 ≤ m ≤ N ; p(N+1−m) ≥ g(m) − g(m − 1)}, (18)

and max ∅ = −∞ in the definition of m′′(z).

Proof In order to prove Eq.18, we first deduce from Eq.4 that v(m; z) = v(m) is a concave
function of m (indeed, the differences �v(m + 1) = v(m + 1) − v(m) are decreasing as
m increases and thus v(m) is concave). Consequently, if g(m) is a convex function of m it
follows that v(m) − g(m) is a concave function of m, and it is therefore maximized by

m(z) = max

{

0, max
1≤m≤N

{ v(m) − g(m) ≥ v(m − 1) − g(m − 1)}
}

, (19)

where max ∅ = −∞ in the inner maximization. By the definition of v(m) in Eqs. 15, 19 is
equivalent to the expression for m(z) given in Eq.18. �
Remark 1 Note that in the second line of Eq.18, the inequality constitutes an inclusion
criterion that the posterior probability of category (N +1−m) needs to fulfill to be included
in the classifier. As can be seen from the left and right-hand sides of the inequality, the
category with the largest posterior probability p(N+1−m) not yet included, will be included
if this posterior probability is larger than the added penalty g(m) − g(m − 1) associated
with enlarging the size of the classifier from m − 1 to m. Since p(N+1−m) is a non-increasing
function of m, whereas g(m) − g(m − 1) is a non-decreasing function of m, it follows that
only the sets I ∈ { Î0, Î1, . . . , Îmin(m(z)+1,N )} need to be considered. This is a computational
improvement compared to the N + 1 sets listed below Proposition 1.

Example 1 (Proportion-based and linear reward functions.) In order to illustrate Corollary 1
we introduce two closely related reward functions. They both have an additive penalty term
g(m) that involves a cost parameter c per classified category, but they differ as to whether
singleton sets are penalized or not:

Definition 3 An invariant reward function of the form

R(I, i) = 1(i ∈ I) − cmax(0, |I| − 1), (20)
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with c ≥ 0, is referred to as a proportion-based reward function, whereas a reward function

R(I, i) = 1(i ∈ I) − c|I] (21)

with an additive linear penalty term is named a linear reward function.

Notice that the proportion-based reward function corresponds to reward function I of
Section3. The framework of penalizing each included category by an amount c > 0 is also
referred to as class-selective rejection (Ha, 1996) or class-selection (Le Capitaine, 2014).
Note that a proportion-based reward function has an additive penalty term that is almost
linear in |I|. It is only the maximum operator that distinguishes Eq.20 from the linear reward
function Eq.21. For a proportion-based reward function, we may interpret c as a cost per
extra classified category, on top of the first one, whereas the linear reward function has a
penalty c for the first classified category as well. For proportion-based and linear reward
functions, Corollary 1 simplifies as follows:

Corollary 2 A proportion-based reward function Eq.20 gives rise to an m-MP classifier
Eq.12 with

m(z) = max{1,max{2 ≤ m ≤ N ; p(N+1−m) ≥ c}}
= max(1, |{i; pi ≥ c}|) (22)

in Eq. 17, whereas a linear reward function Eq.21 gives rise to an m-MP classifier with

m(z) = max{0,max{1 ≤ m ≤ N ; p(N+1−m) ≥ c}}
= |{i; pi ≥ c}|. (23)

Proof Since a proportion-based reward function Eq.20 has an additive penalty term g(m) =
cmax(0,m − 1), it follows that

g(m) − g(m − 1) =
{
0, m = 1,
c, m = 2, . . . , N .

(24)

Inserting Eq.24 into Eqs. 17-18, Eq.22 follows. The proof of Eq.23 is analogous. �
The Bayes classifier Îm(z) of a proportion-based reward function is always non-empty,

but this need not be the case for a linear reward function. Ha (1997) considers linear reward
functions Eq.21, but he restricts the first argument of R to the 2N − 1 nonempty subsets I
of N . In our context, where the first argument I of R ranges over all 2N subsets of N , this
is equivalent to using a proportion-based reward function Eq.20. Ha (1997) proved that the
Bayesian classifier Î (z) = Îm(z) is given by Eq.22. Note in particular that the MAP classifier
Eq.6 is obtained for a proportion-based reward function with c > p(N ). For this reason,
Karlsson and Hössjer (2023) restricted the cost parameter of Eq.20 to a range 0 ≤ c ≤ p(N )

and reparametrized it as
c = ρ p(N ), (25)

with 0 ≤ ρ ≤ 1. The m-MP classifier Îm(z), with m(z) as in Eq.22, then takes the form

Î = {i; pi ≥ c} = {i; pi ≥ ρ p(N )}. (26)

On the other hand, choosing a linear penalty term g(|I|) = c|I|, as in Eq.21, and then
applying Corollary 2, we find that Eq.26 is the Bayesian classifier for any value c ≥ 0 of the
cost parameter, whereas Eq.26 is optimal for a proportion-based reward function, only when
0 ≤ c ≤ p(N ) (or equivalently, for 0 ≤ ρ ≤ 1). In Chzhen et al. (2021), Eq.26 is referred to
as a classifier based on thresholding.
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Example 2 (Frequentist classifiers and linear reward functions) It turns out several frequentist
methods of set-valued classification are given by Eq.26, the optimal Bayes classifier for a
linear reward function Eq.21. The associated cost parameter c = cn depends on the method
used, and possibly also on the size n of training data.

Conformal prediction (Vovk et al., 2005; Shafer & Vovk, 2008; Angelopoulos & Bates,
2022) is a general method for creating a prediction region �δ = �δ(z) for an observation z
with a marginal coverage (1−δ)%, where δ ∈ (0, 1) is chosen freely, typically close to 0. For
the special case of classification or categorical prediction, the conformal algorithm (Shafer
& Vovk, 2008, Section 4.3) uses as input the new observation z that we want to classify,
a labeled training (or calibration) data set of independent and identically distributed (i.i.d.)
observations D = {(z j , i j )}nj=1 of size n, drawn from the distribution

P[(Z , I ) = (z, i)] = πi fi (z). (27)

In order to define �δ we need a nonconformity score A = A(z, i), which is larger the more
consistent z is with category i . Then, for each possible label i ∈ N of z a decision is made
as to whether i should be included in the prediction region �δ or not, based on how large the
non-conformity score of the new observation is compared to test data.

It turns out that the prediction region �δ is closely related to a Bayesian classifier with
an additive and linear reward function Eq.21, when posterior probabilities A(z, i) = pi (z)
are used as nonconformity measure. We can apply the theory of Shafer and Vovk (2008)
and Angelopoulos and Bates (2022) in order to demonstrate this. To this end, let z be the
observationwewant to classify. For each possible label (or category) i ∈ N of z, provisionally
set (z, i) as a future observation that is part of training data (although in practice z is rather
a future observation that we want to classify). That is, under these assumptions we have

�δ(z) = {i; 1 ≤ i ≤ N , pi (z) ≥ cn(δ)} , (28)

where cn(δ) = F̂−1
n (1 − δ) is the (1 − δ)-quantile of the empirical distribution function

F̂n(p) = 1

n

n∑

j=1

1(A(z j , i j ) ≤ p) = 1

n

n∑

j=1

1(pi j (z j ) ≤ p)

of the nonconformity scores (the posterior probabilities) of test data. If Fi refers to the
distribution function of pi (Z) when Z ∼ fi , it follows that each nonconformity score pI (Z)

of test data is drawn from the mixture distribution

F =
N∑

i=1

πi Fi . (29)

Since D is an i.i.d. sample from Eq.27, it follows that {pi j (z j )}nj=1 is an i.i.d. sample from
F . If the size n of test data tends to infinity, the Glivenko-Cantelli Theorem implies that

Fn
L−→ F converges weakly as n → ∞. Consequently, the threshold of the prediction

region Eq.28 converges as
cn → c = F−1(δ) (30)

when n → ∞. Sadinle et al. (2019) found that Eq.26, with a cost parameter c = c(δ) as
in Eq.30, is also the optimal classifier when minimizing the expected size E(| Î (Z)|) of the
classified set subject to a lower bound 1−δ on the average coverage probability P(I ∈ Î (Z)).

It was proved in Denis and Hebiri (2017) that Eq.26 is the optimal classifier when maxi-
mizing the expected coverage P(I ∈ Î ), subject to an upper bound k on expected size E(| Î |)
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on the size of the classified set. In more detail, they found that the cost parameter of Eq.26
should be chosen as

c = F−1(1 − k/N ), (31)

where F is the distribution function inEq.29,with a uniformpriorπi = 1/N on all categories.

4.2 Multiplicative Penalties for the Sizes of Classified Sets

In this section, we consider reward functions

R(I, i) = 1(i ∈ I)g(|I|) (32)

with a multiplicative penalty term g(|I) ≥ 0 for the size |I| of a classified set I. Mortier et al.
(2021) provide general results for Bayesian set-valued classifiers based on a multiplicative
reward functionEq.32. Theorem1 of their paper (cf. in particular (5) of its proof) is equivalent
to the following result:

Proposition 2 The optimal classifier for an invariant reward function of type Eq.32, with
a multiplicative penalty term g(|I|) for the size of a classified set, is an m-MP classifier
Î (z) = Îm(z) with

m(z) = arg max0≤m≤N [v(m; z)g(m)]
= arg max1≤m≤N [v(m; z)g(m)] ,

(33)

where v(m; z) is defined in Proposition 1.

Proof The first equality of Eq.33 is proved in the same way as Proposition 1. The second
equality follows from the fact that v(0; z) = v(0; z)g(0) = 0 regardless of the value of g(0),
whereas v(m; z)g(m) ≥ 0 for m = 1, . . . , N . �

Proposition 2 provides a computationally efficient algorithm for finding the Bayesian
classifier Îm(z), in that the value function V (z; I) in Eq.10 only need to be computed for the
N sets I ∈ { Î1, . . . , ÎN } rather than for all 2N subsets of N .

Remark 2 Proposition 2 implies that the Bayesian classifier Îm(z) of a multiplicative reward
function Eq.32 is non-empty with probability 1, regardless of the value of g(0). This is not
surprising, since R(∅, i) = 0 for such a reward function, whatever the value of g(0) is.
Consequently, there is no need to specify g(0) for a multiplicative reward function.

Example 3 (Classification with reject options.) Ripley (2007) introduced a reward function
with a reject option. In our notation, it corresponds to

R(I, i) =
⎧
⎨

⎩

1(i = j), I = { j},
0, |I| ∈ {0, 2, 3, . . . , N − 1},
r , I = N ,

(34)

with a reward of 1/N < r < 1 assigned to the reject option. The special case of Eq.34
for N = 2 categories was treated by Chow (1970); Herbei and Wegkamp (2006). Note that
Eq.34 is equivalent to a reward function Eq.13, with a multiplicative penalty term

g(m) =
⎧
⎨

⎩

1, m = 1,
0, m = 2, . . . , N − 1,
r , m = N .

(35)
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The corresponding classifier

Î =
{

(N ), p(N ) > r ,
N , p(N ) ≤ r

(36)

is deduced from Proposition 2. This classifier is of interest for Bayesian sequential analysis
(Arrow et al., 1949; Berger, 2013) and sequential clinical trials (Carlin et al., 1998), where
the reject option Î = N corresponds to delaying the decision and collecting more data before
the sequential procedure is stopped and a specific category is chosen.

Classification with a reject option can also be viewed as the Bayes classifier for a reward
function Eq.13 with an additive penalty

gadd =
⎧
⎨

⎩

0, m = 0, 1,
1, m = 2, . . . , N − 1,
1 − r , m = N .

Indeed, it follows from Proposition 1 that the optimal classifier for such an additive reward
function is Eq.36.

Example 4 (Classifiers with a fixed or maximal size.) It has been suggested to fix the size
of the classified set in advance (Russakovsky et al, 2015). Choosing m0 ∈ {1, . . . , N } as
the apriori size of the classified set corresponds to using a reward function Eq.32 with a
multiplicative penalty function

g(m) =
{
1, m = m0,

0, m �= m0.
(37)

It follows from Eq.33 that m(z) = m0, so that the m0-MP classifier Îm0 is optimal for such a
reward function. In particular, the reward function Eq.8, which only gives a positive reward
to firm decisions (| Î | = 1), corresponds to using a multiplicative penalty Eq.37 withm0 = 1.

Note that the pointwise size strategy of Chzhen et al. (2021), where the probability P(i ∈
Î ) of not committing a classification error, is maximized subject to a constraint | Î | ≤ m0,
corresponds to using a multiplicative penalty

g(m) =
{
1, m = 1, . . . ,m0,

0, m = m0 + 1, . . . , N ,
(38)

and it also leads to a Bayesian classifier Îm0 .
The formula for the Bayes classifier simplifies when the argmax of v(m; z)g(m) is a con-

nected subset of {1, . . . , N }. This is summarized in the following corollary of Proposition 2:

Corollary 3 Consider a reward function Eq.32, with a multiplicative penalty function g, for
which

w(m) = w(m; z)
= v(m; z)g(m) is maximized over a connected

set with upper bound m(z).
(39)

The Bayes classifier is then given by Î (z) = Îm(z), with

m(z) = max{1,max{1 ≤ m ≤ N ; g(m)p(N+1−m)

≥ v(m − 1; z)[g(m − 1) − g(m)]}}. (40)
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Proof For ease of notation, put w(m) = w(m; z) and v(m) = v(m; z). Since the argmax of
w(m) = v(m)g(m), according toEq.39, is a connected subset of {0, 1, . . . , N }, Proposition 2
implies that the Bayes classifier for a multiplicative reward function Eq.32 is an m(z)-MAP
classifier Îm(z) with

m(z) = max
{
1,max1≤m≤N {w(m) ≥ w(m − 1)}}

= max
{
1,max1≤m≤N { v(m)g(m) ≥ v(m − 1)g(m − 1)}} .

(41)

But v(m)g(m) ≥ v(m − 1)g(m − 1) is equivalent to g(m)p(N+1−m) ≥ v(m − 1)[g(m −
1) − g(m)], and therefore m(z) is given by Eq.40. �

Corollary 3provides a computationally efficient algorithm forfinding theoptimalBayesian
classifier Îm(z) that is faster than the one in Proposition 2. In order to find Îm(z) it suf-
fices to compute the value function V (I; z) in Eq.10 for the min(m(z) + 1, N ) sets
I ∈ { Î1, . . . , Îmin(m(z)+1,N )}, rather than for all 2N − 1 non-empty subsets of N .

Corollary 4 provides a sufficient condition for Corollary 3 to hold.

Corollary 4 Consider amultiplicative reward function Eq.32, with a penalty function g(m) >

0 such that 1/g(m) is a convex function of m = 1, . . . , N. Then, Eq.39 holds, so that the
Bayes classifier Îm(z) is given by Eq.40.

Proof In order to prove Eq.39, it suffices to verify that w(m) is non-decreasing in m for
m = 1, . . . ,m(z) and strictly decreasing in m for m = m(z) + 1, . . . , N . This is equivalent
to showing that �w(m) = w(m) − w(m − 1) satisfies

�w(m) < 0 �⇒ �w(m + 1) < 0, m = 2, . . . , N − 1. (42)

It is convenient to introduce the function s(m) = 1/g(m). Since

�w(m) = s(m − 1)v(m) − s(m)v(m − 1)

s(m − 1)s(m)
,

it follows that �w(m) < 0 is equivalent to

l(m) := v(m) − v(m − 1)

v(m − 1)
<

s(m) − s(m − 1)

s(m − 1)
=: u(m).

Recall that v is increasing and concave, because of Eq.4, whereas s is convex, by assumption.
In addition, if �w(m) < 0, then necessarily s(m) > s(m − 1) and because of the convexity
of s(·), this functionmust be strictly increasing on {m−1, . . . , N }. After some computations,
it can be seen that the concavity of v and the convexity of s lead to

l(m + 1) ≤ l(m)/[1 + l(m)],
u(m + 1) ≥ u(m)/[1 + u(m)].

Since x → x/(1 + x) is strictly increasing it follows that l(m) < u(m) implies l(m + 1) <

u(m + 1), which is equivalent to Eq.42. �
Remark 3 Corollary 4 is a generalization of Theorem 2 of Mortier et al. (2021), where the
authors prove that theBayes classifier Îm(z) is given byEq.40,whenever 1/g(m) is convex and
non-decreasing. In Corollary 4 we dropped the assumption that 1/g(m) is non-decreasing.

Wewill now present examples of reward functions, with a multiplicative reward function,
for which Corollary 4 applies:
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Example 5 (Reward functions with a multiplicative, rational penalty.) Suppose the reward
function Eq.32 has a multiplicative penalty that is a rational function

g(m) = a

b + m
(43)

ofm = 1, . . . , N for some constants a > 0 and b ≥ 0. This type of reward function has been
studied by del Coz et al. (2009). They viewed set-valued classifiers Î (z) as a way of solving
an information retrieval task for each input z. A multiplicative reward function with penalty
Eq.43 and a = 1 + β2, b = β2 was referred to as an Fβ -metric. At one extreme, the case
β = 0 (a = 1, b = 0) gives rise to

R(I, i) =
{
0, I = ∅,

1(i ∈ I)/|I|, |I| = 1, . . . , N ,
(44)

which was named a discounted accuracy reward by Zaffalon et al. (2012) and a precision
reward by del Coz et al. (2009). It can be shown that the MAP classifier Eq.6 is optimal for
Eq.44 (cf. Proposition 2 of Mortier et al. (2021)). At the other extreme, the limit β2 → ∞
of the Fβ -metric corresponds to a reward function

R(I, i) = 1(i ∈ I), (45)

referred to as recall reward by del Coz et al. (2009). It does not penalize the size of I, and
therefore it leads to an optimal vacuous classifier (I(z) = N , regardless of z). Note that the
Fβ -reward is a weighted harmonic average of the two reward functions Eqs. 44 and 45, and
the larger β2 is the less it penalizes large sets. del Coz et al. (2009) showed that the Bayes
classifier Îm(z) of a multiplicative reward function with penalty Eq.43 is given by Eq.40.
This result is a special case of Corollary 4, since 1/g(m) = (b +m)/a is a linear and hence
a convex function of m. Zaffalon et al. (2012) studied a multiplicative reward function with
a penalty

g(m) = a

m
− b

m2 (46)

for m = 1, . . . , N and some conveniently chosen parameters a > b ≥ 0 (with particular
focus on a = 1.6, b = 0.6). In order to show that Eq.46 satisfies Corollary 4, we notice that

s(m) = 1

g(m)
= m2

a(m − c)
,

with 0 ≤ c = b/a < 1. Viewing m > c as a real-valued argument of s it can be seen that the
second derivative

s′′(m) = 2c2

a(m − c)3

of s is strictly positive for all m > c. This implies that s is convex on {1, . . . ,m}, since the
second-order difference of s satisfies

�2s(m) = s(m) − 2s(m − 1) + s(m − 2)
= ∫ m

m−2 (1 − |x − m + 1|)+ s′′(x)dx > 0
(47)

for m = 3, . . . , N , with y+ = max(0, y) the positive part of y. Corollary 4 thus applies to
the penalty function Eq.46, in spite of the fact that s(m) need not be increasing.

Corollary 5 provides another sufficient condition for Corollary 3 to hold.
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Corollary 5 Consider amultiplicative reward function Eq.32, with a penalty function g(m) =
h(1/m) such that h is a concave increasing function on [0, 1] with h(0) = 0 and h(1) > 0.
Then, Eq.39 holds, so that the Bayes classifier Îm(z) is given by Eq.40.

Proof Our proof of Corollary 5 parallels that of Corollary 4. Define w(m) = v(m)g(m) =
v(m)h(1/m) for m = 1, . . . , N . As in the proof of Corollary 4 it suffices to establish

�w(m) < 0 �⇒ �w(m + 1) < 0 (48)

for m = 2, . . . , N − 1, where

�w(m) = w(m) − w(m − 1) = �v(m)h(
1

m
) + v(m − 1)

[

h(
1

m − 1
) − h(

1

m
)

]

.

The left hand side of Eq.48, �w(m) < 0, is equivalent to

l(m) := �v(m)

v(m − 1)
<

h( 1
m−1 ) − h( 1

m )

h( 1
m )

=: u(m).

It follows from Eq.4 that v(m) is a concave and non-decreasing function ofm with v(0) = 0
and v(m) > 0 for m > 0. From this, it follows that

l(m + 1) ≤ l(m)

1 + l(m)
. (49)

Using the fact that x → x/(1 + x) is a strictly increasing function of x , Eq. 48 will follow
from Eq.49 if we establish that

u(m + 1) ≥ u(m)

1 + u(m)
. (50)

Since h is increasing and concave, with h(0) = 0, we have that

u(m) ≤
m+1
m−1 [h( 1

m ) − h( 1
m+1 )]

h( 1
m+1 ) + [h( 1

m ) − h( 1
m+1 )]

= m + 1

m − 1
· u(m + 1)

1 + u(m + 1)
,

which is equivalent to

u(m + 1) ≥
m−1
m+1u(m)

1 − m−1
m+1u(m)

. (51)

Thus, Eq.50 follows if we can prove that the right-hand side of Eq.51 is at least as large as
the right-hand side of Eq.50. With x = u(m) and a = (m − 1)/(m + 1), this is equivalent
to establishing that

a

1 − ax
≥ x

1 + x
⇐⇒ x2 + a − 1

a
x + 1 ≥ 0.

But the last inequality follows from the fact that −2 ≤ (a − 1)/a = −2/(m − 1) < 0 for
m = 2, . . . , N − 1. This finishes the proof of Eq.50, and hence of Eq.48. �
Example 6 (Reward functions with a multiplicative, rational penalty, contd.) Zaffalon et al.
(2012) have studied multiplicative reward functions, with a penalty function g(m) = h(1/m)

such that h is increasing and concave on [0, 1] with h(0) = 0 and h(1) > 0. It follows from
Corollary 5 that the Bayes classifier Îm(z) for such reward functions can be obtained as
in Corollary 3. In particular, the penalty function Eq.46 corresponds to choosing h(x) =
ax − bx2, and it satisfies the requirements of Corollary 5 if a > b > 0. In Example 5 we
found that a reward functionwith such a penalty also satisfies the requirements of Corollary 4.

123



Journal of Classification (2024) 41:2–37 17

Proposition 3 shows that none of the conditions on the penalty function g, in
Corollaries 4 and 5, are contained in one another.

Proposition 3 It is possible to find a penalty function g, of a multiplicative reward function
Eq.32, that satisfies the conditions of Corollary 5 but not the conditions of Corollary 4, or
the other way around.

Proof Put x = 1/m, for real-valued arguments m ∈ [1,∞) and x ∈ [0, 1]. Assume further
that the multiplicative reward function has a penalty function g(m) = 1/s(m) = h(x).

Suppose h satisfies the conditions of Corollary 5. That is, h is non-decreasing and concave
with h(0) = 0 and h(x) > 0 for x ∈ (0, 1]. Differentiating the relation s(m) = 1/h(1/m)

twice with respect to m we find that

s′′(m) = h′( 1
m )

h2( 1
m )m3

[
2h′( 1

m )

h( 1
m )m

− h′′( 1
m )

h′( 1
m )m

− 2

]

. (52)

Consider in particular the function

h(x) =
{
3x/2, 0 ≤ x ≤ 1/3,
1/2 + 3(x − 1/3)/4, 1/3 ≤ x ≤ 1.

(53)

Since h ≥ 0 is concave with h(0) = 0 it follows that h(x) ≥ xh′(x). In particular, for h in
Eq.53 we have strict inequality, i.e., h(x) > xh′(x), for 1/3 < x ≤ 1. Moreover, for this
choice of h we also have h′′(x) = 0 for x > 1/3 or 1 ≤ m < 3. Insertion into Eq.52 yields
s′′(m) < 0 for 1 ≤ m < 3. It follows from Eq.47 that �2s(3) < 0. Consequently, s does not
satisfy the conditions of Corollary 4.

Suppose conversely that s satisfies the conditions of Corollary 4. That is, s(m) > 0 is
convex on m = 1, . . . , N . We will additionally assume that s′(m) > 0 and s′′(m) ≥ 0 for
the real-valued argument m ∈ [1,∞). Differentiating the relation h(x) = 1/s(1/x) twice
with respect to x , we find, in analogy with Eq.52, that

h′′(x) = s′( 1x )

s2( 1x )x3

[
2s′( 1x )

s( 1x )x
− s′′( 1x )

s′( 1x )x
− 2

]

. (54)

Putting s(m) = e f (m), we have that s′(m) = f ′(m)s(m) and s′′(m) = [ f ′(m)2 +
f ′′(m)]s(m). Inserting these relations into Eq.54 we find that

h′′(x) = s′(m)m3

s2(m)

[

m( f ′(m) − f ′′(m)

f ′(m)
) − 2

]

. (55)

For instance, with s(m) = em and f (m) = m, formula Eq.55 simplifies to

h′′(x) = m3

s(m)
(m − 2). (56)

This implies h′′(x) > 0 for 0 < x < 1/2, proving that h is not concave and hence does not
satisfy the conditions of Corollary 5. �

5 Several Blocks of Categories

This sectionwill cover an extensionof the classical classificationproblem,where observations
belong to a category and categories belong to supercategories, or blocks, as we will call them.
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Thus, we partition the N categories into K blocks of sizes N1, . . . , NK , with
∑K

k=1 Nk = N .
Without loss of generality, the labels i are defined so that each block

Nk =
{

i;
k−1∑

l=1

Nl + 1 ≤ i ≤
k∑

l=1

Nl

}

(57)

consists of adjacent categories. The different scenarios when it is worse to misclassify within
a block than between blocks, and vice versa, will be a subject of study later on in this section.
In order to define classifiers that take this into account, we introduce a new type of reward
functions.

Definition 4 For a set of N categories, partitioned into blocks Nk , k = 1, . . . , K with
Nk categories in each block, block invariant reward functions satisfy Eq.11 only for block
preserving permutations τ(Nk) = Nk , k = 1, . . . , K.

In this section, we will find Bayes classifiers of block invariant reward functions. To this
end, it will be helpful to order the posterior probabilities pi , i ∈ Nk within each block as

p(k1) ≤ · · · ≤ p(kNk ).

Definition 5 For an integer vector

m = (m1, . . . ,mK ) ∈
K⊗

k=1

{0, . . . , Nk} (58)

let
Îm = {(ki); 1 ≤ k ≤ K , Nk + 1 − mk ≤ i ≤ Nk} (59)

be a classifier that includes the mk categories with the largest posterior probabilities from
block k. We call this an m-MP classifier.

Note that the m-MP classifier is a subset of N of size

m =
K∑

k=1

mk . (60)

In particular, the two extreme scenarios with no categories classified or a rejection to classify,
correspond to Î(0,...,0) = ∅ and Î(N1,...,NK ) = N respectively. Moreover, Eq.60 reduces to an
mk-MP classifier Eq.12 for a particular block k if m has only one non-zero element mk .

5.1 Block-Dependent Rewards of Including the True Category

A class of block-invariant reward functions, with an additive penalty, is

R(I, i) = dk(i)1(i ∈ I) − g(|I|), (61)

with k(i) the block to which i belongs, and dk the reward of including category i ∈ Nk in
I, when i is true. The corresponding block invariant reward function, with multiplicative
penalties, is

R(I, i) = dk(i)1(i ∈ I)g(|I|). (62)
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Ha (1997) studied a reward function Eq.61 with an additive proportion-based penalty term
Eq.20, in the special case when all categories belong to different blocks, i.e., K = N and
Nk = {k}. Introduce the reward weighted posterior probabilities qi = dk(i) pi = qi (z), and
notice that the value function Eq.9 simplifies to

V (z; I) =
{∑

i∈I qi − g(|I|), for reward function Eq.61,
g(|I|)∑i∈I qi , for reward function Eq.62.

(63)

In conjunction with Eq.10, this implies that the value functions, for rewards Eqs. 61 and 62,
are obtained by replacing pi with qi for the value functions of Sects. 4.1 and 4.2 respectively.
Consequently, all results of Sects. 4.1 and 4.2 remain valid for reward functions Eqs. 61 and
62 respectively, if p(1) ≤ · · · p(N ) are replaced q[1] ≤ · · · ≤ q[N ], the ordered {qi ; i =
1, . . . , N }. Therefore, the Bayes classifier of a reward function Eqs. 61 or 62, is of the form

Î (d)
m = {[N + m − 1], . . . , [N ]} (64)

for some m = m(z), with subscript (d) indicating that this classifier involves the vector
d = (d1, . . . , dK ) of multiplicative rewards of including the true category in each block. It
follows that Eq.64 is the analog of the m-MP classifier Eq.12, with pi replaced by qi . It is
also an m-MP classifier Eq.59, since

Î (d)
m = Îm,

with m = m(z) = (m1, . . . ,mN ) defined by mk = |{i ∈ Nk; qi ≥ q[N−m+1]}| for k =
1, . . . , N .

5.2 Additive Penalties of Sizes of Classified Sets

In this section,we consider block-invariant reward functions forwhich the reward of including
the true category in I is the same regardless of the block to which this category belongs. On
the other hand, the penalty for the size of classified sets is block-dependent. A class of such
block invariant reward functions, with additive penalty, is

R(I, i) = 1(i ∈ I) − gk(i)(|Ik(i)|, |I| − |Ik(i)|), (65)

where
Ik = I ∩ Nk (66)

contains the categories of the classified set I that belong to block k, whereas k(i) is the block
to which i belongs, i.e., i ∈ Nk(i). Moreover, gk is a penalty term for misclassification, when
the true category i belongs to Nk . This term is a function of the number of categories |Ik(i)|
in the classified set I that belong to the correct block as well as the number of classified
categories |I| − |Ik(i)| that belong to any of the wrong blocks.

Proposition 4 links m-MP-classifiers to Bayes classifiers of block invariant reward func-
tions of type Eq.65.

Proposition 4 The optimal classifier, for an additive reward function Eq.65, is an m(z)-MP
classifier Î (z) = Îm(z) in Eq.59, with

m(z) = arg maxm=(m1,...,mK )

K∑

k=1

[vk(mk; z) − Pkgk(mk,m − mk)] , (67)
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where

Pk = Pk(z) =
∑

i∈Nk

pi ,

m =
K∑

k=1

mk, (68)

vk(mk; z) =
mk∑

j=1

p(k,Nk+1− j)

when mk > 0 and vk(0; z) = 0 for k = 1, . . . , K.

Proof The proof mimics that of Proposition 1. We start by finding the value function V (z; I)

in Eq.10 for the block invariant reward function Eq.65. It is given by

V (z; I) =
K∑

k=1

∑

i∈Ik

pi −
K∑

k=1

Pkgk(|Ik |, |I| − |Ik |)

≤
K∑

k=1

⎡

⎣
|Ik |∑

j=1

p(k,Nk+1− j) − Pkgk(|Ik |, |I| − |Ik |)
⎤

⎦

=
K∑

k=1

[vk(|Ik |; z) − Pkgk(|Ik |, |I| − |Ik |)] . (69)

From this it follows that V (z; I) is maximized, among all I with |Ik | = mk for k =
1, . . . , K , by Î(m1,...,mK ) in Eq.59. The optimal classifier is therefore Î = Îm(z), where
m(z) = (m1(z), . . . ,mK (z)) is the value of (|I1|, . . . , |IK |) that maximizes the right hand
side of Eq.69. Hence m(z) is given by Eq.67. �
Example 7 (Composite proportion-based reward functions.) We will consider a class of
reward functions that are special cases Eq.65. These reward functions involve two cost
parameters a and b:

Definition 6 A block invariant reward function of the form

R(I, i) = 1(i ∈ I) − amax
(|Ik(i)| − 1, 0

) − b
(|I| − |Ik(i)|

)
, (70)

where 0 ≤ a ≤ b are fixed constants, is called a composite proportion-based reward function.

Notice that reward functions II and III of Section3 correspond to a composite proportion-
based reward function with a = b = c and a = 0, b = c respectively. It follows from
Proposition 4 that composite proportion-based reward functions have very explicit optimal
classifiers:

Corollary 6 A composite proportion-based reward function (70), gives rise to an optimal
classifier that is an m(z)-MP classifier Î (z) = Îm(z) in Eq.59 with

mk(z) = arg max0≤mk≤Nk
[vk(mk, z) − aPk max(mk − 1, 0) − b(1 − Pk)mk]

= max{m′
k(z),m

′′
k (z)}, (71)
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for k = 1, . . . , K, where

m′
k(z) = 1

(
p(kNk ) ≥ (1 − Pk)b

)
,

m′′
k (z) = max{2 ≤ mk ≤ Nk; p(k,Nk+1−mk ) ≥ Pka + (1 − Pk)b}, (72)

and with max ∅ = −∞ used in the definition of m′′
k (z).

Proof In view of Proposition 4, it suffices to prove that for a composite proportion-based
reward function Eq.70, the optimal classifier is of type Î (z) = Îm(z), where m(z) =
(m1(z), . . . , nK (z)) is given by Eq.71. To this end, we first notice, from the right-hand
side of Eq.69, that the value function of a classified set Îm is

V (z; Îm) =
K∑

k=1

⎡

⎣vk(mk; z) − Pk

⎛

⎝amax{mk − 1, 0} + b
∑

l;l �=k

ml

⎞

⎠

⎤

⎦

=
K∑

k=1

[vk(mk; z) − (Pkamax{mk − 1, 0} + (1 − Pk)bmk)] . (73)

Since V (z; Îm) splits into a sum of K terms that are functions ofm1, . . . ,mK respectively, it
follows that V (z; Îm) is maximized, as a function of m, by maximizing each term separately
with respect to mk . The maximum for term k, on the right hand side of Eq.73, is attained for

mk(z) = arg max0≤mk≤Nk
[vk(mk; z) − (Pkamax{mk − 1, 0} + (1 − Pk)bmk)] , (74)

in accordance with the first identity of Eq.71. The second identity of Eq.71 follows from the
fact that the function being maximized in Eq.74 is concave in mk .

To give some more intuition to the choice of a and b for the reward function Eq.70, we
will look at the penalty term

gk(mk,m − mk) = amax(mk − 1, 0) + b(m − mk)

and the optimal classifier Î (z) = Îm(z) defined in Eqs. 71-72 of Corollary 6. Note that a cost
of a is incurred per extra category from the correct block in the classified set Î , whereas a
cost of b is added for each category in the classified set originating from the wrong block.
These costs are chosen and can be interpreted as threshold values for including categories
in the classifier, especially when looking at Eq.72. From the first row of this equation, we
notice that a low value on b means that we are more prone to include the most probable
category from each block, whereas the second row implies that with a low value of a we are
more prone to include several categories from the same block. However, since b occurs in
the second row of Eq.72 as well, a small a might not have any effect if b is large. On the
other hand, by combining a small b with a large a, we get a classifier that is composed of
categories frommany blocks, but few categories from each block. Such a classifier might not
include the correct category, but will to a large extent include some category from the correct
block, and might be suitable when we want to safeguard in particular against erroneous
superclassification. Finally, if we want to ensure that Î �= ∅ in composite classification, we
have to choose

b ≤ max

(
p(1N1)

1 − P1
, . . . ,

p(K NK )

1 − PK

)

. (75)

Let us end Example 7 by considering two special cases of the proportion-based reward
function Eq.70. The first one occurs when a = b = c, and it corresponds to a reward function

R(I, i) = 1(i ∈ I) − c
[|I| − 1(|Ik(i)| > 0)

]
(76)
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that differs slightly from Eq.20 in that all categories in the classified set I are penalized by
c when none of them belong to the correct block k(i), that is, when Ik(i) = ∅.

The second special case of Eq.70 occurs when it is known that observation z belongs to
block k, i.e., Pk(z) = 1. The classifier Îm(z) in Eq.59, with m(z) = (m1(z), . . . ,mK (z)) as
in Eq.71, then simplifies to

mk(z) = max
{
1,max{2 ≤ mk ≤ Nk; p(k,Nk+1−mk ) ≥ a}} ,

ml(z) = 0, l �= k.

This corresponds to an m-MP classifier Eq.12, with m = m(z) as in Eqs. 17 and 22, when
classification is restricted to categories within class k, and a penalty c = a is incurred per
extra classified category.

5.3 Multiplicative Penalties of Sizes of Classified Sets

We will now consider block-invariant reward functions

R(I, i) = 1(i ∈ I)gk(i)(|Ik(i)|, |I| − |Ik(i)|) (77)

for which the penalty gk(i)(·, ·) ≥ 0 for the size of the classified set is multiplicative, non-
negative, and block-dependent. Since R(∅, i) = 0 for all i = 1, . . . , N , it clearly suffices
to consider nonempty sets I �= ∅. Proposition 5 links Bayes classifiers of reward functions
Eq.77 to m-MP-classifiers. It is proved in the same way as Proposition 4.

Proposition 5 The optimal classifier, for a multiplicative reward function Eq.77, is an m(z)-
MP classifier Î (z) = Îm(z) in Eq.59, with

m(z) = arg maxm=(m1,...,mK )

K∑

k=1

vk(mk; z)gk(mk,m − mk), (78)

where m = ∑K
k=1 mk, vk(mk; z) = ∑mk

j=1 p(k,Nk+1− j) for mk > 0 and vk(0; z) = 0.

Example 8 (Indifference zones.) Suppose we want to know which of N − 1 normally dis-
tributed populations with unit variances and expected values θ1, . . . , θN−1 has the largest
expected value. Let

Z = (Zi j ; 1 ≤ i ≤ N − 1, 1 ≤ j ≤ ni )

be a sample of independent random variables, with Zi j ∼ N (θi , 1). Letting φ be the density
function of a standard normal distribution, this gives a likelihood

f (z; θ) =
N−1∏

i=1

ni∏

j=1

φ(zi j − θi )

with a parameter vector θ = (θ1, . . . , θN−1) that is assumed to have a prior density P(θ).
Divide the parameter space � = R

N−1 into a disjoint union

� = �1 ∪ . . . ∪ �N (79)

of N regions, where

�i = {θ; θi = θ ′ ≥ θ ′′ + ε}, i = 1, . . . , N − 1,
�N = � \ (�1 ∪ . . . ∪ �N−1),

(80)
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θ ′ and θ ′′ are the largest and second-largest expected values respectively, with ε > 0 a small
number. Whereas �1, . . . , �N−1 correspond to all hypotheses where some parameter θi is
largest by a margin of at least ε, �N is the indifference zone, where none of the populations
has an expected value that is at least ε units larger than all the others (Bechhofer, 1954;
Goldsman, 1986).

It is possible to put this model into the framework of Section2, with

πi = ∫
�i

P(θ)dθ,

fi (z) = ∫
�i

f (z; θ)P(θ)dθ/
∫
�i

P(θ)dθ,
(81)

for i = 1, . . . , N , where the first N − 1 categories represent a population, whereas category
N represents the indifference zone. We will consider reward functions

R(I, i) =
{
1(I = {i}), i = 1, . . . , N − 1,
r1(I = {N }), i = N ,

(82)

where r > 0 is the reward of not selecting any population as having the largest mean when
the parameter vector belongs to the indifference zone. This corresponds to a block invariant
reward function with the two blocks

N1 = {1, . . . , N − 1},
N2 = {N } (83)

of categories, although misclassification in this example is more serious within than between
blocks. Note that Eq.82, with blocks as in Eq.83, is an instance of a multiplicative reward
functions in Eq.77, with penalty

gk(mk,m − mk) =
⎧
⎨

⎩

1, k = 1,m1 = m = 1,
r , k = 2,m2 = m = 1,
0, otherwise.

(84)

It follows from Proposition 4 that the optimal classifier is

Î =
{ {(1, N − 1)}, p(1,N−1) ≥ rpN ,

{N }, p(1,N−1) < rpN .

Note that Eq.82 is also an instance of Eq.62, with amultiplicative penalty g(m) = 1(m = 1),
and block dependent rewards d1 = 1 and d2 = r .

Example 9 (Hierarchical classification.) Suppose the N categories have a hierarchical struc-
ture, as leaves of a treewith L levels. The inner nodes of this tree consist ofmultiple categories,
and the levels of the tree are ordered so that the leaves are at level l = 0 and the inner nodes
at levels l = 1, . . . , L − 1. Each inner node has a number of child nodes that contain disjoint
sets of categories, with a union that equals the categories of the parent node. The level of a
node is the longest ancestral path directed from this node to a leaf descendant. In particular,
the root of the tree, at level L−1, corresponds to all nodesN . A recent review of hierarchical
classification is provided in Mortier et al. (2022). A typical hierarchical classifier enforces
Î to be a node of the tree. With this restriction, classification with a reject option (Example
3) corresponds to a hierarchical classifier with L = 2 levels, where Î either equals N (the
root of the tree) or a single category (the leaves). Set-valued classification with blocks of
categories corresponds to hierarchical classification with L = 3 levels, where the K nodes of
the intermediate level 1 correspond to the blocks N1, . . . ,NK of categories. A hierarchical
classifier with L = 3 levels, where each block is penalized in the same way, is obtained
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from a reward function that assigns a reward of 1 to the true category {i}, a reward of r1 to
the true block Nk(i) of categories, and a reward of r2 to the whole set N of categories, for
some numbers 0 < r2 < r1 < 1, whereas all other sets are assigned a reward of 0. This
corresponds to a multiplicative reward function Eq.77 with penalty

gk(mk,m − mk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1; if mk = m = 1,
0, if mk = m ∈ {0, 2, 3, . . . , Nk − 1},
r1, if mk = m = Nk,

0, if mk < m < N ,

r2, if m = N .

(85)

Let k(z) refer to the block that maximizes Pk(z) in Eq.68. It follows from Proposition 5 that
the Bayes estimator for a reward function with multiplicative penalty Eq.85 equals

Î (z) =
⎧
⎨

⎩

(N ), p(N ) > max(r1Pk(z), r2),
Nk(z), r1Pk(z) > max(p(N ), r2),
N , r2 > max(p(N ), r1Pk(z)).

Mortier et al. (2022) consider more general hierarchical classifiers that are not restricted to
output any of the nodes of the hierarchical tree. In particular, they propose a classifier Î that
maximizes the expectation of the recall reward in Eq.45, subject to upper bounds on its size
| Î | and representation complexity n( Î ) (the minimal number of nodes, of the hierarchical
tree, sufficient for describing Î ). A closely related classifier can also be obtain bymaximizing
the expectation of the multiplicative reward

R(I, i) = 1(i ∈ I)a|I|−1bn(I)−1, (86)

for some constants 0 < a < 1 and 0 ≤ b ≤ 1, with 00 = 1 when b = 0. Note that the
penalty term g(I) = a|I|−1bn(I)−1 does not conform with Eq.65, since it is not a function
of |Ik(i)| and |I| − |Ik(i)|. The case b = 1 treats all categories as one single block, and
the resulting multiplicative reward function is a special case of Eq.32, and consequently it
belongs to the framework of Section4.2. At the other extreme, b = 0 gives zero reward to
any set that comprises more than one node of the tree. Hence it gives rise to a hierarchical
classifier that enforces single nodes of the tree as outputs. In particular, when all block sizes
are equal (Nk = N/k), the reward function Eq.86 is a special case of Eq.85 with b = 0,
r1 = aN/k−1 and r2 = aN−1.

6 Illustration for An Ornithological Data Set

In this section taxon identification will be used as a case study in order to illustrate the use of
the composite proportion-based reward function Eq.70 for classification, with a data-driven
choice of the cost parameters a and b. To this end, we will look at four bird species that are
morphologically similar, but share three measurable traits. In Karlsson and Hössjer (2023)
we treat the underlying fitting problem in detail for the same four bird species, assuming that
they form one homogeneous block of categories, with covariates, heteroscedasticity, missing
values, and imperfect observations. Since this paper has a stronger emphasis on developing
a theory of classification, we use a subset of data from Karlsson and Hössjer (2023) for
the purpose of illustration, and moreover we divide the four species into three blocks. The
reduced data set that we focus on here includes complete observations only from a certain
stratum of the population, eliminating the need for covariates. To a large extent, our data is
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the same as in Malmhagen et al. (2013), where the same classification problem is treated
with mostly descriptive statistics.

6.1 Data Set

The four species considered areReed warbler,Marsh warbler, Blyth’s reed warbler andPad-
dyfield warbler, and the three shared traits are wing length, notch length and notch position.
For details on the measurements of the traits, see for instance Svensson (1992); Malmhagen
et al. (2013) and Karlsson and Hössjer (2023). In total, we have 882 complete observations
of juvenile birds, with the number ni of birds of each species given in Table 1. This gives
rise to a training data set

Di = {zi j ; j = 1, . . . , ni }
for each species i = 1, . . . , 4.

The species were partitioned as follows: Reed warbler andMarsh Warbler constitute the
block “common breeders”, Blyth’s reed warbler constitutes the block “rare breeder” and
Paddyfield warbler constitutes the block “rare vagrant”. We acknowledge that the grouping
is quite arbitrary and that the block names are inaccurate in most places of the world, but
here it will mainly illustrate classification with a partitioned label space.

6.2 Model

We assume that the parameters associated with each category are independent. If θi ∈ �i

is the parameter vector associated with category i , with a prior distribution P(θi ), and if
f (Di ; θi ) refers to the likelihood of training data for taxon i , the posterior distribution of θi
is

P(θi |Di ) = P(θi ) f (Di |θi )
P(Di )

. (87)

Let z be an observed new data point that wewish to classify, based on training data. If f (z; θi )

is the likelihood of the test data point for taxon i , we integrate over the posterior distribution
Eq.87 in order to obtain the corresponding likelihood

fi (z) =
∫

�i

f (z; θi )P(θi |Di )dθi (88)

of z for the hypothesis Hi that corresponds to this taxon. Then, we insert Eq. 88 into Eq.2 in
order to obtain the posterior probabilities pi (z) of all categories. In our example we assume
that zi j ∼ MVN (μi , i ) has a multivariate normal distribution f (·; θi ), with θi = (μi , i ).

Table 1 The number of
observations of each species

Species ni

Reed warbler 409

Blyth’s reed warbler 41

Paddyfield warbler 18

Marsh warbler 414
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We estimate Eq.88 using Monte Carlo simulation, i.e., we simulate L realizations of θil =
(μil , il) from P(θi | Di ) for each i , compute

f̂i (z) = 1

L

L∑

l=1

f (z; θil) (89)

and then plug Eq.89 into Eq.2. For a more detailed model setup, see Section 3.1 and
Appendix A of Karlsson and Hössjer (2023). All implementation was done in R (R Core
Team, 2021), using the package mvtnorm (Genz et al., 2021).

6.3 Classifiers Based on Composite Proportion-Based Re-ward Functions

As mentioned above, will derive Bayesian classifiers from the composite proportion-based
reward function Eq.70. This reward function involves the two constants a ≥ 0 and b > 0,
and the corresponding classifier of z is denoted Î(a,b)(z). We will regard 0 ≤ ε = a/b as a
fixed parameter that quantifies howmuch more severe it is to misclassify a category outside a
block than inside it, with severity inversely proportional to ε. If 0 ≤ ε < 1, it is more severe
to misclassify between blocks than within, whereas the opposite is true when ε > 1. Note in
particular the reward functions II and III of Section3 are composite-based reward functions
with ε = 1 and ε = 0 respectively.

The parameter b will be chosen through leave-one-out cross-validation. To this end, let
R̃(I, i) be a binary-valued reward function (to be chosen below) without any penalty term,
and let

Rcv
ab(R̃) =

N∑

i=1

wi

ni

ni∑

j=1

R̃( Î(a,b)(zi j ), i) (90)

refer to the fraction of observations zi j in the training data setD = D1∪ . . .∪DN that return a
reward in the cross-validation procedure. That is, Rcv

ab(R̃) equals the fraction of observations

zi j with R̃( Î(a,b)(zi j ), i) = 1, where Î(a,b)(zi j ) is the classifier of zi j based on the rest of the
data. It is further assumed that wi are non-negative weights that sum to 1, such as wi = 1/N
or wi = ni/

∑N
j=1 n j .

The choice of b will depend on which reward function R̃ that is used in Eq.90. Some
possible choices of the binary-valued reward function are given in Table 2. For two of them
(R̃3 and R̃4) the reward R̃(I, i) is a non-decreasing function of I, and therefore the non-
reward rate 1−Rcv

εb,b, obtained from the cross validation procedure Eq.90, is a non-decreasing
function of b. We will therefore choose b as the largest cost parameter for which the non-
reward rate is at most δ > 0, i.e.,

bεδ = max{b ≥ 0; 1 − Rcv
εb,b ≤ δ}. (91)

In particular, it can be seen that when reward functions R̃3 is used in Eq.91, bεδ corresponds
to the largest choice of b such that the sets Î(εb,b)(zi j ) are still large enough for a fraction 1−δ

of them to cover the true categories of the training dataset. Consequently, this generalizes an
instance of the conformal algorithm (Shafer & Vovk, 2008, Section 4.3) from the case of one
block (K = 1) to several blocks (K > 1), although we use cross-validation from training
data rather than a prediction of new observations, as in Shafer and Vovk (2008).
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Table 2 The four binary reward functions used in the case study

Binary reward function Reward criteria

R̃1(I, i) = 1(I = {i}) Correct (point) classification

R̃2(I, i) = 1(i ∈ I ∧ I ⊆ Nk(i)) Correct category is in the classifier, and no category from an
incorrect block is in the classifier. The analogy of R̃1 for block
prediction.

R̃3(I, i) = 1(i ∈ I) Correct category in classifier

R̃4(I, i) = 1(I ∩ Nk(i) �= ∅) Some category from the correct block in the classifier. The anal-
ogy of R̃3 for block prediction.

Since R̃1(I, i) ≤ R̃2(I, i) ≤ R̃3(I, i) ≤ R̃4(I, i), it follows that R̃1 is the least generous reward function
and R̃4 the most generous one. Note that Rcv

εb,b(R̃3) and Rcv
εb,b(R̃4) are both decreasing functions of b, so that

Eq.91 makes sense for choosing b for any of these two choices of R̃, whereas Eq.92 is more appropriate for
choosing b for the other two reward functions

For the other two reward functions R̃1 or R̃2 of Table 2, it is no longer the case that
estimated non-reward rate 1− Rcv

εb,b in Eq.90 is monotonic in b. For these two choices of R̃
we rather choose the cost parameter

bε = argmin
b≥0

(1 − Rcv
εb,b) (92)

in order to minimize the estimated non-reward rate. The rationale for Eq.92 is that more
classified sets Î(εb,b)(zi j ) of training data will be empty for larger b, whereas more of them
will include several species/groups of species for smaller b. And both of these features will
increase the non-reward rate 1 − Rcv

εb,b when R̃1 or R̃2 is used to quantify rewards.

We will look at three different prior distributions, namely a uniform prior (π(flat)), a prior
proportional to the number of observations ni from each category in training data (π(prop)),
and a prior proportional to the number of registered birds of each species at the Falsterbo Bird
observatory throughout its operational history (π(real)). The purpose of π(flat) is to represent
a situation of no prior knowledge of how likely any of the categories is to occur. The prior
π(real) is supposed to exemplify a real-world situation of having some commonly occurring
species and some very rare ones, whereas π(prop) is a middle ground between these two
extremes that fits the data set D very well. As weights we choose

w
(bird)
i = ni/

4∑

j=1

n j ,

w
(spec)
i = 1/4,

w
(rare)
i = 1/

4∑

j=1

(π
(real)
i /π

(real)
j ), (93)

for i = 1, 2, 3, 4. We weight each observation equally with w(bird), each species equally
with w(spec), whereas the species are weighted higher the less expected they are with w(rare).
Since the number of observations is not balanced across species, w(bird) will weight species
higher the more common they are, i.e., the more observations we have of them. Usingw(spec),
birds will be weighted unequally due to the same imbalance (the less birds of a given species
there are, the higher weights are assigned to these birds). Finally, as mentioned above,w(rare)
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weights less frequently observed species more heavily; the rationale is that we value obser-
vations of rarely occurring species, as data on these are scarce.

6.4 Results

We will analyze the estimated reward rate Eq.90 for the four choices of R̃ that are listed
in Table 2. In Tables 3 and 4, we present the automatic choice of the cost parameter b (cf.
Eqs. 91 and 92) for two ratios ε = 1/2 and ε = 2 of a and b, and for all nine combinations
priors and weights. As can be seen from Table 4, the same optimal b-values are found for R̃1

and R̃2, with the same non-reward rates. This is mostly due to the small block sizes, meaning
that it sometimes is equivalent to picking the correct species, as to pick the correct block.
Comparing the three prior distributions, we see from Table 4 that π(prop) overall has the
smallest non-reward rates for R̃1 and R̃2 from training data, followed by π(flat) and π(real).
This is consistent with Table 3 where π(prop) overall gives the largest values of b, and hence
the smallest classified sets Î(εb,b)(zi j ), that are sufficient to guarantee a reward rate of at least
1 − δ. Note also that the non-reward rates of R̃1 and R̃2 are very large when rare species
are assigned high weights apriori (π(real)), more so the higher weights these rare species are
given in the cross-validation scheme. This is expected, because of a lack of data to classify
and validate the rare species well.

In Figs. 1 and 2, we plot the value of estimated non-reward rate 1 − Rcv
εb,b for a grid of

b-values, for ε = 1/2 and ε = 2 respectively. Note the monotone decrease of R̃3 and R̃4 as
b decreases. Also, notice the minimums of R̃1 and R̃2 in the graphs.

Finally we refer to Appendix A for further visualizations of R̃1 and R̃2, evaluated over a
lattice of a and b-values. It can seen that for R̃2 the optimal non-reward rate is achieved by
choosing a = 0. This is straightforward to explain, as R̃2 does not punish the inclusion of
several categories from the correct block. For this reason the classifier Î(a,b) with minimal

Table 3 The table specifies the
estimated values of the cost
parameter b, using Eq. (91) with
δ = 0.05

ε Prior R̃ bε,0.05
w(bird) w(spec) w(rare)

1/2 π(flat) R̃3 ≥ 20.00 2.29 2.11

R̃4 ≥ 20.00 3.05 2.11

π(prop) R̃3 ≥ 20.00 5.23 4.81

R̃4 ≥ 20.00 6.96 4.81

π(real) R̃3 1.07 0.43 0.18

R̃4 ≥ 20.00 0.52 0.18

2 π(flat) R̃3 ≥ 20.00 2.29 2.11

R̃4 ≥ 20.00 3.05 2.11

π(prop) R̃3 ≥ 20.00 5.23 4.81

R̃4 ≥ 20.00 6.96 4.81

π(real) R̃3 1.07 0.21 0.18

R̃4 ≥ 20.00 0.52 0.18

These estimates of b are computed for each combination of ε, prior
πi , and weights wi . We evaluated Eq. (90) for 0.01 ≤ b ≤ 20 with a
resolution of 0.01
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Table 4 The table specifies the estimated values of the cost parameter b, using Eq.92. These estimates of b are
computed for each combination of ε, priorπi , andweightswi . Theywere found using theoptimise-function
in R

ε Prior R̃ w(bird) w(spec) w(rare)

bε non-reward rate bε non-reward rate bε non-reward rate

1
2 π(flat) R̃1 1.24 1.59% 17.16 9.12% 1.16 4.06 %

R̃2 1.24 1.59% 17.16 9.12% 1.16 4.06%

π(prop) R̃1 2.63 1.59% 2.24 4.06% 2.63 4.06%

R̃2 2.63 1.59% 2.24 4.06% 2.63 4.06%

π(real) R̃1 10.28 6.69% 10.28 19.41% 10.28 49.62%

R̃2 10.28 6.69% 10.28 19.41% 10.28 49.62%

2 π(flat) R̃1 1.24 1.59% 17.16 9.12% 1.16 4.06%

R̃2 1.24 1.59% 17.16 9.12% 1.16 4.06%

π(prop) R̃1 2.63 1.59% 2.24 4.06% 2.63 4.06%

R̃2 2.63 1.59% 2.24 4.06% 2.63 4.06%

π(real) R̃1 10.28 6.69% 10.28 19.41% 10.28 49.62%

R̃2 10.28 6.69% 10.28 19.41% 10.28 49.62%

non-reward rate includes as many categories as possible from each block with at least one
classified member, corresponding to a = 0. Notice also that there are large regions of values
of a and b that attain the minimum non-reward rate.

7 Discussion

In this article, we introduce a general framework of set-valued classification of data that
originates from one of a finite number of possible hypotheses. Using reward functions with
a set-valued input argument, we investigate the properties of the optimal (Bayes) classifier
by maximizing the expected reward. Explicit formulas for the Bayes classifier are derived
for a large class of reward functions, many of which either extend or unify previous work on
set-valued classification. Our work includes scenarios where hypotheses either constitute one
homogeneous block or can be divided into several blocks, such that ambiguity within blocks
of hypotheses is (typically) less serious than ambiguity between these blocks. We illustrate
the latter type of model with an ornithological data set, where taxa (hypotheses) are divided
into blocks. In particular, a cross-validation-based algorithm is introduced for estimating a
cost parameter of the reward function from training data, in order to guarantee a minimal
fraction of observations from training data that are included in the corresponding classified
sets.

As mentioned in Ripley (2007), a possible reason for including reject options is to obtain
classifiers that are more reliable but also less expensive to use than a precise classifier Eq.3
that always outputs singleton sets. In our case study of Section6, for instance, a possible
option when | Î | > 1 is to consult an expert who would be able to identify the bird species
morphologically, without using themeasured traits. Although expertise does not come cheap,
this could still be an alternative when the expected cost of precise classification exceeds the
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Fig. 1 This figure represents the case ε = 1/2. The prior is specified in the title of each graph, whereas the
weights are explained in the subcaptions. Each color of the functions in the graphs corresponds to one of the
four reward functions R̃1, R̃2, R̃3, R̃4, given by the legends above each subfigure. For all priors and weights
observe that the non-reward rates of R̃3 and R̃4 decrease monotonically as b decreases, whereas those of R̃1
and R̃2 have a global minimum

cost of consulting an expert. The latter cost might be independent or a function of the number
of hypotheses she needs to consider. In the former case, the reject option of Ripley (2007)
would suffice, and in the latter case a partial rejection to classify could be beneficial.

A number of generalizations of our work are possible, which we divide into four subsec-
tions.
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Fig. 2 This figure represents the case ε = 2. The prior is specified in the title of each graph, whereas the
weights are explained in the subcaptions. Each color of the functions in the graphs corresponds to one of the
four reward functions R̃1, R̃2, R̃3, R̃4, given by the legends above each subfigure. For all priors and weights
we observe that the non-reward rates of R̃3 and R̃4 decrease monotonically as b decreases, whereas those of
R̃1 and R̃2 have a global minimum

7.1 Reward Functions Generated from Single Set Costs

Suppose the reward function satisfies 0 ≤ R(I, i) = 1 − C(I, i) ≤ 1, with C(I, i) the cost
of classifying I when i is true. Yang et al. (2017) started with a cost function C({ j}, i) for
singleton sets, and then defined p-discounted costs

1 − R(I, i) = C(I, i) =
⎡

⎣ 1

|I|
∑

j∈I
C({ j}, i)p

⎤

⎦

1/p

(94)

for all I �= ∅, with 0 < p ≤ 1 a fixed parameter. When all categories belong to one
homogeneous block (Section4), it is natural tomake use of the 0–1 lossC({ j}, i) = 1( j �= i).
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Then, Eq.94 simplifies to a reward function

R(I, i) = 1 −
⎡

⎣ 1

|I|
∑

j∈I
1( j �= i)

⎤

⎦

1/p

= 1 −
[

1 − I (i ∈ I)

|I|
]1/p

(95)

that is multiplicative Eq.32, with a penalty

g(m) = 1 − (1 − 1

m
)1/p.

Note that p = 1 corresponds to the discounted accuracy reward Eq.44, and that g(m) =
h(1/m) satisfies the properties of Corollary 5 for any value of p, since h(x) = 1− (1− x)1/p

is concave on [0, 1]. It is of interest to study properties of Bayesian classifiers based on
p-discounted reward functions Eq.94 more generally, for other choices of C({ j}, i) that
correspond to blocks of categories.

7.2 Conditional Reward Functions

7.2.1 Regression Models

Suppose for instance that the new observation z that we want to classify, by means of the
optimal classifier Î = Î (z) in Eq.10, involves a covariate vector x and a response variable
y. Following Karlsson and Hössjer (2023), the most straightforward approach is to include
covariates into the observation z = (x, y) that is to be classified. The covariate information
will then be included in the category distributions fi , in the posterior probabilities pi of all
categories i = 1, . . . , N , and in the resulting Bayes classifiers. However, if we also want
the ambiguity of the classifier to depend on covariate information, it is possible to consider
a class of reward functions R(I, i, x) that not only depend on the classified set I and the
true category i , but also on the covariate x of a new observation that is to be classified. For
instance, in the case of one homogeneous block of categories (Section4),

R(I, i, x) = 1(i ∈ I) − c(x)|I|

is a version of the linear reward function Eq.21 where the cost parameter c = c(x) is
covariate dependent. The conformal prediction algorithm of Example 2 involves choosing
the cost c(δ) = F−1(δ) = Q(δ) of including more labels in the classifier, as a quantile Q(δ)

of the distribution F of posterior probabilities (cf. Eq.30). In this context, it is possible to use
quantile regression (Koenker, 2005; Bottai et al., 2010) and rather choose the cost parameter

c(δ; x) = F−1(δ|x) = Q(δ|x) = g−1[x�β(δ)]

as a conditional quantile function corresponding to F(t |x) = P(pI (x, Y ) ≤ t). This is a
regressionmodelwhere the parameter vectorβ(δ) is a function of the quantile δ, whereas g is a
link function. This approachmight be particularly helpful for models with heteroscedasticity,
or if the cost of imprecise classification is covariate dependent.
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7.2.2 Conditional Coverage

Another possibility is to consider reward functions R(I, p(z)) that involve the classified set
I and the vector p(z) of a posteriori probabilities in Eq.5. For instance, a reward function

R(I, p(z)) = 1

(
∑

i∈I
pi (z) ≥ 1 − δ

)

/|I| (96)

is defined for all non-empty subsets I of N . The objective of this reward function is to
guarantee a lower bound 1 − δ on the conditional coverage probability P(I ∈ Î |z), and
subject to this constraint minimize the size |I| of the classified set. Chzhen et al. (2021)
prove that the optimal Bayes classifier is Î (z) = Îm(z), with

m(z) = min{m; 1 ≤ m ≤ N , v(m; z) ≥ 1 − δ}.
Note that Eq.96 can be viewed as a conditional version of the precision reward in Eq.44.

7.3 Other Reward Functions for Models with Blocks of Categories

When the N categories can be divided into blocks, it is possible to consider reward functions
with other additive penalty terms than those of Section5.2. Instead of penalizing the number
of classified categories within the correct and wrong blocks respectively, as in Eq.65, one
penalizes the number of wrongly classified categories within the correct and wrong blocks.
This corresponds to a reward function

R(I, i) = 1(i ∈ I) − gk(i)(|Ik(i),(−i)|, |I| − |Ik(i)|, |I|), (97)

where Ik(i),(−i) = Ik(i) \ {i} is the number of wrong categories of I that belong to block k(i)
when category i is true.

For instance, the reward functionEq.82 for indifference zones (Example 8)was formulated
in terms of a multiplicative reward function with penalty term Eq.84. However, it can also
be formulated in accordance with a reward function Eq.97 with an additive penalty. In order
to see this letm1 and m2 refer to the number of wrongly classified categories of blocks 1 and
2, whereas m is the size of the classified set (hence m − (m1 +m2) equals 1 or 0 depending
on whether i ∈ I or not). Then, Eq.82 corresponds to having penalty terms

g1(m1,m2,m) = 1(m = m1 + m2 + 1 and (m1,m2) �= (0, 0)),
g2(0,m1,m) = 1(m = m1 + 1) − r1(m = 1 and m1 = 0)

in Eq.97 when the true category belongs to blocks 1 and 2, respectively.

7.4 Multi-Label Classification

Suppose an observation z belongs to several categories I ⊂ N , such as when I represents the
properties associated with z. The task of predicting I from data is referred to as multi-label
classification (Lewis, 1995; Tsoumakas & Katakis, 2007; Dembczyński et al., 2012; Zhang
& Zhou, 2013; Nguyen & Hullermeier, 2020). It is appropriate, in the context of multi-label
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classification, to represent a classified set I ⊂ N as a binary vector ι = (ι1, . . . , ιN ) of
length N , where ι j = 1 if j ∈ I and ι j = 0 if j /∈ I. Likewise, we let i = (i1, . . . , iN )

represent an assumed value of I , with i j = 1 if j ∈ I and i j = 0 if j /∈ I . Denote by
R(ι, i) the reward for a classified set ι when i is the true set of categories. The MAP classi-
fier Eq.8, for instance, corresponds, in the context of multi-label classification, to a reward
function

R(ι, i) = 1(ι = i). (98)

A frequently used reward function, which in contrast to Eq.98 allows for some misclassified
categories, is

R(ι, i) = 1 − g(ι, i) = 1 − |ι − i |
N

= 1 − 1

N

N∑

j=1

|ι j − i j |. (99)

Its additive penalty g(ι, i) is the normalized Hamming distance between ι and i . This is an
instance of a decomposable loss/penalty, with g(ι, i) = ∑

j g j (ι j , i j ) a sum of component-
wise losses. It is known (Dembczyński et al., 2012) that such penalties make it tractable to
compute the Bayes classifier

Î (z) = arg max
ι

E[R(ι, I )|z].

The F-measure (Lewis, 1995)

R(ι, i) = 2
∑N

j=1 ι j i j
∑N

j=1(ι j + i j )
(100)

simplifies to Eq.43, with a = 2 and b = 1, when there is only one true category (|i | = 1).
As a complement to Eqs. 99 and 100, it would be of interest to consider reward functions that
penalize type I errors (I \ I �= ∅) and type II errors (I \I �= ∅) differently. For instance, if all
categories belong to one homogeneous block and type II errors are regarded as more serious
than type I errors, a natural extension of an additive penalty reward Eq.13, to the multilabel
classification context, is a function

R(ι, i) = 1(i ≤ ι) − g(|ι|), (101)

where the first term gives a unit reward if all true categories are included in the classifier (no
type II errors), whereas the second term penalizes the size |I| = |ι| of the classified set I.
Analogously, it is possible to combine a reward for no type II errors with a multiplicative
penalty. The resulting reward function

R(ι, i) = 1(i ≤ ι)g(|ι|), (102)

naturally extends Eq.32 to a setting of multi-label classification. Another option is to gen-
eralize reward functions Eqs. 101 and 102 in order to include abstention to classify some
categories (Nguyen & Hullermeier, 2020).

Appendix A: Optimizing R̃1 and R̃2

In Fig. 3, the non-reward rate 1− Rcv
ab(R̃) (cf. Eq. 90) is plotted as a function of the two cost

parameters a and b of the classifier Î(a,b) for the two reward functions R̃1 and R̃2 of Table 2.
The objective function is not smooth and thus it can be hard to optimize.However,we obtained
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Fig. 3 The figure contains filled contour plots of the estimated non-reward rate 1 − Rcvab(R̃) (cf. Eq.90), as a

function of the two cost parameters a and b of the classifier Î(a,b). These estimated non-reward rates make use

of weights w
(bird)
i (cf. Eq.93), the reward function R̃1 (top row) and R̃2 (bottom row). The columns, from left

to right, correspond to the priors π(flat), π(prop) and π(real) (cf. Section6.3). The levels of the contour plots
are crudely drawn, but it can still seen that R̃1 attains a low non-reward rate for a large set of (a, b), whereas
R̃2 attains its lowest non-reward rates over a small region where a is close to 0

good results with Nelder-Mead optimization (Nelder & Mead, 1965), as implemented in the
optim-function in R, with a starting value of (a, b) that corresponds to a small non-reward
rate.
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