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Abstract A new method, different from common
eigenvalue extraction methods, was proposed by Li and
Kikuchi (in 8th ARC conference, 2002). It consists of
explicit finite-element method and eigenvalue-extraction
method in time domain. Even though the new method
performs well in extracting eigenvalues, it is difficult to
identify global modeshape of the given structure due to
large size of time history data. Only some eigenvectors of
a few nodal points can be extracted. In this paper, we
apply computer animation technique to identify the
global modeshape from a few nodal eigenvectors. Free-
form deformation (FFD) technique is simply modi-
fied—simple FFD—and applied to the identification of
global modeshapes. The basic concepts that consist of
simple FFD algorithm are Delaunay triangulation and
barycentric coordinate. Some numerical examples show
good performance for the identification of global
modeshape of a given structure.

Keywords Eigenvalue - Modeshape - Computer
animation - Delaunay triangulation - Barycentric
coordinate - Free-form deformation

1 Introduction

There are various analytical eigenvalue extraction
methods that are used in industrial and academic fields.
Broadly, they are classified into two categories; one is
the direct method and the other is the iteration method.
Householder method and Jacobi method are good
examples of the direct method [2]. The direct method is
good to deal with small degrees of freedom. The itera-
tion method is suitable for the models with large degrees
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of freedom. One of the common iteration methods is the
Lanczos method [3]. Compared with other methods, the
Lanczos method has certain advantages of fast conver-
gence and simple multiplication. The Lanczos method is
currently used as a standard eigenvalue solver of com-
mercial engineering software.

However, the experimental method to extract eigen-
value is different from the analytical extraction method
explained above. The analytical method is not employed
in the experimental test because it is impossible to make
a mass and stiffness matrix for the entire structure. In
order to get eigenvalues experimentally, the object,
attached with many sensors, is hit by the impact ham-
mer. Using fast fourier transform (FFT), eigenvalues
can be extracted from the time history data, which is
obtained from the sensors. The time history data
includes one of displacement, velocity and acceleration
history data.

We can use the FFT or Ibrahim time domain method
[4] to extract the eigenvalues from common small
mechanical components in the experimental test because
the output is just the transfer function in the impact test.
However, for big objects, such as bridge and building, it
is almost impossible to perform impact test due to noise
generated from the environment. The special time
domain extraction method—Stochastic Subspace Iden-
tification method [5]—is used to deal with such a big
structure.

Similar to the experimental eigenvalue extraction
procedure, a new numerical method to identify eigen-
values and eigenvectors of large-scale structure, which
was based on the image-based finite element model, was
proposed by Li and Kikuchi [1]. Using the special
properties of image-based finite element model, the
proposed method has an advantage in calculating the
global mass and stiffness matrix. The same dimension of
each element in the image-based model admits only a
single calculation for one element to calculate the mass
and global stiffness matrix.

The procedure of the new method proposed by Li
and Kikuchi [1] is shown in Fig. 1. First, from the im-
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Fig. 1 Graphical procedure for
the proposed eigenvalue
extraction method

Time Response from Explicit FEN

Imayge-Based FEN Model

age-based finite element model, impact test is performed
using explicit time integration method. Among various
time integration methods, the modified Euler time inte-
gration method was chosen [6, 8]. For a consistent
diagonal mass matrix, special element similar to Sauer’s
[7] was developed [8]. After obtaining the time response
result, eigenvalues and eigenvectors can be obtained
using Ibrahim time domain method [4] or FFT. How-
ever, due to the large-scale of the model and large
storage size of history results, only some eigenvectors of
a few nodal points can be obtained. It is hard to identify
the global modeshape of the object using this proposed
extraction method even though eigenvalues can be
identified successfully.

In order to get the global modeshape of the object, we
have to interpolate or extrapolate the given eigenvector

Voronoi Diagram

Delaunay Tessellation

Fig. 2 Voronoi diagram and Delaunay tessellation

results from the proposed method. Interpolation or
extrapolation technique can be found in computer ani-
mation field. In this research, free-form deformation
(FFD) [9] and Dirichlet free-form deformation (DFFD)
[10] are considered. From the basic concept of each
computer animation technique, we developed a simple
FFD—we call this method “simple FFD”. Actually
simple FFD is an already-known method and used for a
long time in computer animation field; but, in this paper,
we developed our own simple FFD that is suitable for
our application.

Simple FFD consists of two processes; one is to make
Delaunay triangulation for selected control nodes and
the other is to set barycentric coordinate for all nodes
except control nodes. Moreover, the concept of ghost
control point is added for good performance. Using the
simple FFD, global modeshape can be obtained suc-
cessfully. Some examples show that the proposed
method is proper for identifying the global modeshape.
Even though the motion is not smooth, we can identify
clearly which modeshape the object has.

2 Basic mathematical terminology

Before considering the computer animation techniques,
some mathematical terminologies should be reviewed.
These mathematical terminologies are widely used and
useful in science and engineering fields.

2.1 Voronoi diagram

Figure 2 shows Voronoi diagram in 2-dimension. For n
given points in plane, Voronoi diagram can be defined as



Fig. 3 Sibson coordinate

the polygons that have exactly one point. Each polygon
is constructed by the lines are at the same distance from
two adjacent points. Each polygon in Voronoi diagram
is called a Voronoi cell. This 2-dimensional concept can
be directly extended to n-dimensional case. This is one of
the most important mathematical concepts in various
fields because Voronoi diagram arises in many science
and engineering fields [11].

2.2 Delaunay tessellation

Delaunay tessellation is the dual of Voronoi diagram. As
shown in Fig. 2, Delaunay tessellation in 2-dimension is
defined as triangles that consist of points inside of which
the triangles are empty. It is also called Delaunay
triangulation. This concept can also be extended to
n-dimensional domain directly.

There are many methods to calculate Delaunay
tessellation, for example, divide-and-conquer, sweepline
algorithm, incremental algorithm, and convex hull-
based algorithm [12]. For convenience, MATLAB is
used in this research for calculation of Delaunay tes-
sellation.

Alpha = Area(P,B,C) / Area(A,B,C)
Beta = Area(P,A,C) / Area(A,B,C)

Gamma = Area(P,A,B)/
Area(A,B,C)

B

P = Alpha* A+Beta*B+Gamma*C

A

Fig. 4 Barycentric coordinate
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2.3 Sibson coordinate

Sibson coordinate was introduced by Sibson in 1980
[13]. Sibson coordinate is shown in the Fig. 3; Voronoi
diagram can be obtained from four points that already
exist. If we insert another point, another Voronoi dia-
gram for five points can be obtained. From two different
Voronoi diagrams, the contribution factor of Voronoi
diagram areas can be calculated. Using these contribu-
tion factors, Sibson coordinate system can be set. This
concept can be extended to n-dimensional case.

Sibson coordinate is also called natural neighbor
coordinate. Area-based coordinate, such as Sibson and
barycentric coordinate, is more powerful than distance-
based coordinate for multivariate data system [14].

2.4 Barycentric coordinate

This coordinate system is one of the oldest but still
broadly used. This is a powerful coordinate system in the
engineering field and easy to understand as shown in
Fig. 4. Similar to the Sibson coordinate, the ratio of the
lebesgue measure of two triangulations is used for
the contribution factor. In the 2-dimensional case, the
lebesgue measure of triangulation is the area of the
triangle. In the 3-dimensional case, it is the volume of
the tetrahedron.

3 Computer animation technique

Even though there are various computer animation
methods [15], in this research, we focused on FFD which
is one of the common computer animation techniques.

Free-form deformation was introduced by Sederberg
and Parry in 1986 [9]. FFD starts to impose a local
coordinate system on a parallelopiped region that con-
sists of several control points. These control points can
move to deform the object. Once the local coordinate is
set to the object, each point in the object can be defined
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Fig. 5 Graphical procedure of the proposed method for identification of global modeshape from a few eigenvectors

using the control points as the coefficients of trivariate
Bernstein polynomial. If new positions of control points
are assigned, the coordinate values of the points in the
object can be changed. However, FFD has the drawback
that control points must be in a box shape to set local
coordinate. This causes the limitation to control the
detailed animation.

Fig. 6 The calculation of the
volume of the tetrahedron

Many other animation techniques have tried to
overcome the limitation of FFD. DFFD is one of the
methods that are applied to overcome the limitation of
FFD. DFFD was proposed by Moccozet and Thalmann
[10] in 1997. Instead of trivariate Bernstein polynomial
and rectangular coordinate, DFFD uses Sibson coordi-
nate and Beizer surface. DFFD makes it possible to

A:(X ak, Y _akK, Z ak)
B:(X_bk, Y _bK,Z bK)
C: (X _ck Y ¢k, Z_ck)

V_K = (-X_ck*Y_bKk*Z_ak+

X bk*Y_ck*Z_ak+X ck*Y_ak
*Z bk-X ak*Y_ck*Z bk-X bk
*Y_ak*Z ck+X ak*Y_bK*Z ¢
K)/6

V = sum(V_Kk)
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Fig. 7 The object that could not be detected by triangulation
consisted of current control points

overcome the limitation of FFD. Moccozet applied this
method to hand simulation in his paper [10].

The DFFD procedure starts to make a Voronoi
diagram for the given control points. After inserting
another data point, a new Voronoi diagram can also be
made. Using the ratio of the lebesgue measure of two
different Voronoi diagrams for given control points and
data points, Sibson coordinate can be obtained. Once
Sibson coordinate is set, we can calculate new positions
of points in an object using the coordinate values of the
deformed control points. Finally, the Beizer surface can
be constructed using the coordinate values of the new
data points [10]. However, the calculation of the lebes-
gue measure of Voronoi diagram is very complicated.

fConirol Point

Ghost control Point

Fig. 8 The object that could be detected by triangulation consisted
of current control points and ghost control points
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4 Proposed technique

It is difficult to apply FFD or DFFD to identify the
global modeshape from the given eigenvectors of a few
nodes. There are two reasons. One is that the control
points are not box shaped. There is no guarantee that
control points are set in the parallelopiped shape,
because the control points are arbitrarily selected. The
other is that we have to deal with numerous nodes.
Usually, the image-based finite element model has lots of
nodes and elements. In this paper, we target the model
of one million nodes and elements. Due to many nodes
to deal with, a simple algorithm is needed.

In order to overcome the above problems, simple
FFD is proposed. The proposed technique is the
following as shown in Fig. 5:

Fig. 9 Model and control points for simple beam model
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Fig. 10 The first modeshape a
from a few eigenvectors using
simple FFD and b from all
eigenvectors

(a) A FE model and control points are constructed. The
control points are output nodes from the new
method [1]. Each control point has the eigenvector
result from the finite element simulation. Other
control points that are called “ghost control points”
are also considered. Ghost control points are
explained in the next section.

(b) For the given control points, tetrahedron can be
constructed. For uniqueness, Delaunay triangula-
tion is used.

(c) For each node that is not a control point in the FE
model, it can be found out which tetrahedron con-
tains that node.

(d) Barycentric coordinate can be set for each node.

(¢) When the new coordinate value is assigned for
control points, the new coordinate value can be
obtained for each node.

(f) Repeating the process (e), we can get all eigenvectors
of all nodes—global modeshape.

Figure 5 shows simple rectangular beam shape, but
this procedure can be applied to any shape.

5 Implementation issues

There are two other issues for practical implementaion
of this technique: one is to simplify the calculation
process of the volume of the tetrahedron. The other is to
set ““ghost control points”.

For the simplification of the volume calculation of
the tetrahedron, the formula in Fig. 6 was used [16] in
this research. It is simple to calculate and can be
extended to n-polyhedron case. In Fig. 6, k indicates the
index of the triangles that consists of polyhedrons.

Shown in Fig. 7, there are some parts in an object
that cannot be detected through triangulation. To pre-
vent this, the additional control points in Fig. 8 are
considered. Extra four control points are defined outside
the object. These additional control points do not exist



Fig. 11 Model for a arbitrary a
shape solid model and b the
control points on the model

in real. Using those extra points—which we call “ghost
control points’ in this paper—all points in the object can
be detected as shown in Fig. 8.

6 Numerical examples

In order to verify the performance of the proposed
method, the following seven examples are considered
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in this paper. The models of small degrees of freedom
are used in the first four examples. In these examples,
only first global modeshape was extracted, because
other global modeshapes can be extracted in the same
procedure. All simulation results were obtained by
NASTRAN and post-processed by HyperMesh. Fifth
example model has large degrees of freedom. In this
paper, we chose the simple beam model that has about
one million nodes and elements. The picture of the
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Fig. 12 The first modeshape

a from a few eigenvectors using
simple FFD and (b) from all
eigenvectors

original model and control points for the fifth example
are omitted because it is similar to the Example 1.
This example is simulated by the new identification
method that was proposed by Hong Li and Noboru
Kikuchi [1] and post-processed by HyperMesh. The
models of the last two examples are real mechanical
components. One is automotive engine block and the
other is Xerox shell panel. Both these models are
image-based models. These examples are also per-
formed by the new method [1] and post-processed by
HyperMesh.

6.1 Example 1: simple beam

Figure 9 shows the simple beam model and control
points. Each control point has its own eigenvector. This

is the simple model for identification of global mode-
shape. Figure 10 shows the first global modeshape that
comes from a few eigenvectors using simple FFD and
from all eigenvectors. Comparing with the results in
Fig. 10, we can identify that the first global modeshape
is bending modes. Even though it is not smooth in
Fig. 10a, we can recognize the same modeshape as
shown in Fig. 10b.

6.2 Example 2: arbitrary shape solid model

Figure 11 shows the arbitrary shape of solid model and
control points. Each control point has its own
eigenvector. Figure 12 shows the first global modeshape
from a few eigenvectors using simple FFD and from all
eigenvectors. It is hard to identify the difference between



Fig. 13 Model and control
points for automotive bumper
half model

the two results in Fig. 12, due to the large number of
control points.

6.3 Example 3: half model of automotive
bumper—shell structure

Shell structure instead of solid structure is considered
in this example. Figure 13 shows the half model of the
automotive bumper and control points. Each control
point has its own eigenvector. Four rigid elements are
used to constrain the end motion in order to identify
the modeshape clearly. Figure 14 show the first global
modeshape from a few eigenvectors using simple
FFD and from all eigenvectors. Similar to the
previous examples, the modeshape can be identified
successfully.

6.4 Example 4: wire-type solid model

This model of arbitrary curved solid wire-type structure
is a good example for testing the proposed method in
this paper. Figure 15 shows the model and control
points. Each control point has its own eigenvector. In
Fig. 15, there are many parts that cannot be detected by
the tetrahedrons constructed by the control points.
Using ‘“‘ghost control point”, they can be detected.
Figure 16 shows the first global modeshape from a few
eigenvectors and from all eigenvectors. In Fig. 16a, we
can find out some strange deformations. But these
deformations are caused by a small number of control
points around that part. In the part that has many
control points—middle part of the object—we can see
the smooth deformation. Even though there are some
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strange deformations, we can identify the global mode-
shape successfully.

6.5 Example 5: large degree-of-freedom
model—simple beam

The large model was tested and shown in Fig. 17. The
model has about one million nodes and elements. It
takes about 10 min to calculate the new positions of
other nodal points from the 16 control points. Even
though the shape is not smooth, the global modeshapes
can be identified easily.

6.6 Examples 6 and 7: engine block model
and xerox shell panel

The actual mechanical component models were tested.
In Fig. 18, the results of the engine block and the Xerox
panel model are shown. All results in Fig. 18 are first
modeshape—torsional mode. Two models have about
200,000 to 300,000 nodes and elements.

7 Conclusion

A new eigenvalue extraction method was proposed by
Hong Li and Kikuchi. The new method had a drawback
that it was hard to identify the global modeshape due to
the large number of mode size. In order to identify the
global modeshape, two computer animation techniques
are reviewed—FFD and DFFD. Considering computing
cost, FFD technique is modified with barycentric coor-
dinate and Delaunay triangulation-simple FFD. Several
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Fig. 14 The first modeshape a
from a few eigenvectors using
simple FFD and b from all
eigenvectors

examples are tested for verification. For simple beam
with one million nodal points, it takes approximately
10 min to get all eigenvectors of other nodes. We also
applied simple FFD to real problems such as the engine
block model and the Xerox panel model. Even though

the deformation was not smooth, identification could be
done successfully.

Acknowledgements The support of the Automotive Research
Center is gratefully acknowledged.
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Fig. 15 Model and control
points wire-type solid model (a
front view, b iso view)
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Fig. 16 The first modeshape a
from a few eigenvectors using
simple FFD and b from all
eigenvectors




Fig. 17 Global modeshapes of
the simple beam from a few
eigenvectors [a first global
modeshape (bending mode), b
second global modeshape
(torsion mode)]

127




128

Fig. 18 First global modeshape
of a engine block and b xerox
shell panel, which are the result
of a few eigenvectors
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