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Abstract

Recent developments in shape-based modeling and data acquisition have brought
three-dimensional models to the forefront of computer graphics and visualization re-
search. New data acquisition methods are producing large numbers of models in
a variety of fields. Three-dimensional shape-based matching and registration (align-
ment) are key to the useful application of such models in areas from automated surface
inspection to cancer detection and surgery. The three-dimensional models in these
applications are typically huge. State-of-the-art simulations in computational fluid
dynamics produce upward of four terabytes of data per second of flow. Research-level
magnetic resonance imaging (MRI) resolutions can reach 1 cubic micro-meter. As a
result, object registration and matching algorithms must handle very large amounts
of data.

The algorithms developed in this thesis accomplish automatic registration and
matching of three-dimensional voxelized models. We employ features in a wavelet
transform domain to accomplish registration. The features are extracted in a multi-
resolutional format, thus delineating features at various scales for robust and rapid
matching. Registration is achieved through seeking peaks in sets of rotation quater-
nions using a voting scheme, then separately identifying translation. The method is
robust to occlusion, clutter and noise. The efficacy of the algorithm is demonstrated
through examples from solid modeling and medical imaging applications.

Thesis Supervisor: Nicholas M. Patrikalakis
Title: Kawasaki Professor of Engineering
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Chapter 1

Introduction

1.1 Background and Motivation

Recent developments in shape-based modeling and data acquisition have brought

three-dimensional models to the forefront of computational research. New data ac-

quisition methods are producing large numbers of models, leading to the proliferation

of three-dimensional models available on the Internet and used in applications from

manufacturing to medicine to gaming. Three-dimensional shape-based matching is

key in such activities as inspection, computer-enhanced surgery, and computer vision.

Data collection and storage techniques have advanced to the point that researchers

today generate overwhelmingly large sets of data. Research-level magnetic resonance

imaging (MRI) resolutions have reached 80 nanometers [66]. Model data for testing

3D algorithms range up to 69 million triangles [76]. Experimental techniques used for

fluid dynamics can collect upwards of 4Gb of data per second of flow. State-of-the-

art numerical simulations are producing 3 orders of magnitude more than that [103].

Object matching methods must be designed to handle the plethora of data provided.

A current area of very active research involves shape-based matching of 3D medi-

cal images obtained through methods such as MRI or Computed Tomography (CT),

which produce voxelized three-dimensional models. Advances in speed and accuracy

of such matching, especially given the large size of the data sets, could lead to further

advances in areas such as computer-aided surgery, cancer detection, disease diagnosis,



and prosthesis fitting. While specifically developed with the medical imaging applica-

tion in mind, the methods developed in this work are equally applicable to voxelized

models in areas such as manufacturing, in which inspection procedures may include

CT scanning. Indeed, any voxelized model or even a polyhedral model which has

been voxelized can be addressed using these methods.

This research builds upon work by members of the MIT Ocean Engineering Design

Laboratory who developed a procedure for shape-based matching using shape intrinsic

fingerprints of 3D models in NURBS representation [39]. However, the algorithms and

methods developed in [39] depend upon the NURBS format of the data and cannot

be applied to polyhedral or voxelized models, which do not have the mathematical

representation required for the classification of umbilics.

For rapid object matching, a reduction in the amount of data is extremely help-

ful. Transforms of scanned data from a three-dimensional object into an auxiliary

space, e.g. via the wavelet transform, have high potential. Features in wavelet space

can provide appropriate landmarks for registration, or alignment, and for similarity

evaluation.

A major drawback to using the wavelet transform in object registration is its

lack of invariance to rotation or translation. A newly developed transform, called the

dual-tree complex wavelet transform (DTCWT) [37], is nearly invariant to translation

and much less sensitive to rotation than the traditional discrete wavelet transform.

We employ the DTCWT to accomplish matching of three-dimensional objects by

extracting features in a multi-resolutional format, thus rapidly detecting and matching

feature points.

1.2 Research Objectives

The objective of this thesis is to develop a shape-based registration technique for

voxelized representations of solids using the wavelet transform. The key idea is to

extract features in a multi-resolutional format for rapid matching of 3D models.



1.3 Thesis Organization

Chapter 2 provides an introduction to object matching and reviews research in the

area. Chapter 3 introduces basic wavelet theory, describes recent research in wavelets,

and describes the dual-tree complex wavelet transform. The object matching algo-

rithms developed by this research are described in Chapter 4. The algorithms are

applied to several examples in Chapter 5. Chapter 6 draws conclusions and makes

recommendations for future work.



Chapter 2

Review of Previous Work

2.1 Object Registration

Object registration is the process of aligning images or objects to a common coordinate

system. The sample objects may have undergone transformation such as translation,

rotation or scaling, and the representation may suffer from occlusion, clutter, or noise,

or may be only a part of the full model.

* Rigid registration describes the alignment of objects that have undergone trans-

lation and rotation only.

* Non-rigid registration includes scaling (uniform and non-uniform), affine mo-

tion, or morphing type transformations caused by such changes as growth,

surgery or disease. It does not include articulation.

Registration can also be applied to such challenges as identification of objects in a

scene and alignment of different views of an object to make a whole. Registration can

be accomplished on a few objects for comparison to one another, or it can be used

on a large number of objects to establish an atlas, or average, version which is then

used to determine normal and abnormal differentiation among a population.

2.1.1 Applications.

Applications for object matching can be found in myriad fields. Examples include:



* Medicine: Registration of data from different modalities (e.g. MRI, CT, Ul-

trasound), from different patients, or from the same patient at different times,

can assist in research, diagnosis and therapy. Specific applications include can-

cer detection, surgery planning, image guided and enhanced surgery, patient

positioning for radiotherapy, research into effects of disease on the brain, and

disease monitoring [13, 24, 81].

* Molecular Biology: Finding geometrically-possible combinations of molecule

docking sites is the first step in the protein docking problem, which has appli-

cations in drug design, brain chemistry interactions, and disease methodology

research [22, 7, 861. In addition, partial matching can aid in detection of specific

amino acids within a protein sequence [3].

* Computer vision: Object recognition from a scene including occlusion and clut-

ter assists in robot task planning or pose estimation [82].

* Computer Aided Design: Data fusion of different views of an object into a single

entity assists in reverse engineering either from actual parts or from physical

models [4].

* Manufacturing: Automated surface inspection requires registration and match-

ing as a key step [4].

* Cultural Heritage: Detection of man-made objects in shallow sub-surface radar

or sonar data can aid in mapping archaeological sites on land and under wa-

ter [83].

* Security: Some applications include reconstructing surfaces from separate views

and automatic detection of items in aerial photographs or satellite data [3], and

recognition of faces or other personnel features in video data.

* Military: Identification of land mines from shallow sub-surface radar data [108]

and identification of underwater mines from sonar data [65] can lead to auto-

matic detection.



* Meteorology: Tracking changing shapes over time is applicable for study of

cloud formations in atmospheric data [29].

2.2 Methodologies

Object registration is the subject of a huge body of previous work. In the follow-

ing, we will concentrate on methodologies for volumetric models and 3D free-form

surfaces, represented as clouds of points, voxels, or triangulated models, including

"polygon soups" in which the triangles do not necessarily align properly, leaving sin-

gularities, overlaps, or holes. Some 2D methods and parametric surface methods that

are applicable to the problem statement will be described as well.

Major methodologies used in object registration can be classified as follows:

1. Moment theory involves pose estimation by matching center of mass and mo-

ments of inertia. While this is simple and fast, small variations in shape can

cause similar items to have quite different orientation of principal axes. In ad-

dition, this method requires a complete model and cannot accommodate partial

matching or polygon soup models. Moment theory is often used to initially pose

two objects for further refinement using another method.

2. Registration using geometric features is the alignment and comparison of objects

based on geometric features such as points, curvatures, ridges, segments, etc.

Objects may have undergone rigid transformations (rotation and translation),

scaling, skew affine motions, or even significant transformations such as lesions

or growth. In general, these methods are accurate but time consuming. Some

require initial correspondence information to avoid local minima.

Although the term registration actually describes the alignment of objects to

the same coordinate axis system, it is also used to describe the class of object

matching methods that include registration as a first step.

3. Registration using voxel similarity is the alignment and comparison of objects

based on comparisons of voxel representations including intensity, color, illumi-



nation and reflectance. The primary method used is mutual information, which

is a statistical measure of similarity. These methods do not require initial seg-

mentation, but may reach a local minimum. In addition, the global minimum

may not be the best alignment. These methods are used often to compare data

from different medical imaging modalities.

4. Deformable models are used in the search of a known object in a scene. A

model is grossly fit to data then deformed using physically-based rules for closer

alignment. This method requires feature detection to initially match the model

to the image. It is used extensively in face recognition and medical imaging

[59, 61].

The following sections review registration using geometric features and registration

using voxel similarity in more detail.

2.2.1 Registration Using Geometric Features

Registration using geometric features methods align and compare objects using fea-

tures ranging from single points to large segmented sections of the object. The gold

standard of these methods is the Iterative Closest Point (ICP) algorithm presented

by Besl and McKay in 1992 [5], which compares each point in the sample to the clos-

est point in the model and finds a registration by minimizing the average Euclidean

distance between points. Since this method iterates to a solution, it will find a local

minimum, and therefore requires some initial correspondence information or a huge

number of sample cases (essentially matching all possible rotations and translations)

to find the correct solution. Numerous modifications to this method incorporate

factors such as local shape [9], outliers and occlusion [107], and partial matching [58].

Hausdorff distance, which measures the greatest Euclidean distance instead of the

average Euclidean distance between two sets of points, can be used similarly. Agar-

wal et al. [2] apply Hausdorff distance to the protein docking problem, but address

only translation, not rotation or scaling. Guerra and Pascucci [20] use a modified



Hausdorff distance on line segments to match models to range data of objects that

have undergone rigid transformations.

Geometric feature registration methods in general expand on this idea by extract-

ing and matching like features. Many of these methods find a coarse registration

which is then refined using a fine registration method such as ICP.

Augmented Points

Augmented point methods still match points in one set to points in another set.

However, they reduce the number of points compared and increase the amount of

information known about each point.

Chua and Jarvis [10] present an algorithm which determines full and partial

matches of surfaces represented by point cloud data. They determine principal curva-

tures and directions to form a Darboux frame. Seed points are then matched to model

points with curvature, distance and direction constraints and the optimal transfor-

mation is found. This method avoids local minima, but is slow and depends on a

polynomial fit to determine principal curvatures.

Wang et al. [93] developed a non-rigid registration method using a feature point

mesh to compare triangulated models of human brains. The algorithm finds points on

the study brain corresponding to the atlas brain's selected and labeled points using

an objective function measuring Euclidean distance, surface normal, and a curvature

measure. This method is useful in the comparison of many similar objects, but

requires initial manual processing including labeling points and triangulation, plus

initial alignment.

Barequet and Sharir [3] present a method involving "footprints" tailored to the

data type and computed at each point in the two surfaces. The footprints repre-

sent "amount of material" for volumetric models and surface curvature for surface

models. Registration is achieved through a voting scheme that separates translation

and rotation. This method is resistant to noise and does not depend upon surface

derivatives. However, the method requires a descriptive footprint customized for each

class of data, and may settle to a local optimum.



Feature Extraction

Sun et al. [82] present a method that computes a projection of geodesic rings onto

the tangent plane at each point, called a "point fingerprint." Candidate points on

the sample and model are selected using an irregularity measure, which is the ratio

of largest to smallest radius in the tangent plane of a projected geodesic circle. This

method uses geodesic distance and can incorporate additional information such as

color, but may generate false correspondences.

Ko et al. [38] developed a method of full and partial matching of NURBS surfaces

that uses the intersections of iso-curvature lines of Gaussian and mean curvature to

establish correspondence between surfaces. This method solves a non-linear polyno-

mial equation system using the Interval Projected Polyhedron (IPP) algorithm, which

robustly determines a global minimum. The KH method can accommodate transla-

tion, rotation, scaling and partial matching, but requires a NURBS representation of

the model.

Krsek et al. [40] developed an algorithm that uses the endpoints of connectors

between lines of zero mean curvature as the points of interest to form a first level

hypothesis, which is tested by performing ICP on all connector points in the two

surfaces, then on all points in the objects. This method provides a good initial guess

for ICP so a global minimum can be found, but it cannot register objects without

prominent features and it is slow.

Stein and Medioni [77] developed a method that uses small surface patches and

lines of discontinuities to compare surfaces. The surface patches are represented

with a ring of surface normals called a splash, and the 3D curves are represented

with polygonal approximations called super segments. Angles between normals for

splashes and angles between sequential segments for super segments are collated in

a hash table and candidate hypotheses are retrieved and verified by computing the

transformation from model coordinates to sample coordinates and applying a least

squares calculation on all matching features.

Ko et al. [39] presented a method that uses umbilics to match full and partial sur-



faces represented in NURBS form. Since umbilics are resistant to small perturbations

of a surface, they will persist even with variations in the surface. There are generally

few umbilics in a surface, so they are compared one by one to find the optimum trans-

formation. This process requires umbilics, which are not always present, and which

can be difficult to find in point cloud or polyhedral representations of surfaces.

Segmentation

Segmentation methods divide an object into segments, then compare the objects

using the segments as feature points. Thus, the number of feature "points" is greatly

reduced.

Dey et al. [16] developed a method that segments an object through the use of

critical points of a height function. Registration is then carried out by matching every

translation and every rotation, but the set of points is small (on the order of 10 per

model). This method is invariant to translation, rotation, mirroring and scaling and

robust against small variations in shape, but cannot accommodate partial matching.

Srinark et al. [75] use progressively simpler meshes as multiresolution surfaces,

then divide those surfaces into patches which are used for matching. Rigid motion

to match patches is used; some non-rigid motion between patches is allowed, as is

occlusion and noise.

Dorai and Jain [18] proposed the segmentation of objects into Constant Shape

Maximal Patches (CSMPs), or regions of like shape index, based on principal curva-

tures, whose average normal is mapped to a Gaussian sphere. A surface connectivity

list records connectivity information about the segmented object. A shape spectrum

is formed of shape index versus surface area. The shape spectrum can be used to

quickly eliminate poor matches, then the connectivity list and Gaussian sphere map

can be used for detailed object matching. One drawback is that full recoverability of

the original shape is not guaranteed.

Mori et al. [51] propose the use of a cluster of invariant features called a Shapeme,

in histogram form, for 2D object recognition. It is useful only for global matching.

Shan et al. [69] extend this work to three dimensions and partial matching through



splitting models into sections and comparing all sections. This method is dependent

on the selection of sections, and provides no registration information.

Full Object

Full object methods provide a 2D representation of the entire object at each single

point. Theoretically a single point could be used to match two surfaces; however, the

methods are generally used to produce point pairs which are then used for registration.

Johnson and Hebert [33] describe the position of all points on a surface relative

to an oriented point by two parameters: distance from a line through the normal,

and distance from the tangent plane. These parameters are collected in a 2D his-

togram, called a spin image. Spin images are computed in advance for every point in

a model and stored in a database. Sample data is then correlated with the model data

and point correspondences are established, then confirmed using ICP. This method re-

quires no feature extraction or segmentation, but cannot accommodate partial match-

ing or scaling and has a long registration time. Yamany and Farag [99] modified this

to use simplex angle and Euclidean distance as the two parameters.

Spectral Methods

Spectral methods use a spectral transform such as Fourier or Wavelet, and measure

distance between objects in spectral space. Several wavelet methods are used in

classification, but few achieve registration.

Xue et al. [98] use a wavelet-based attribute vector (WAV) at each voxel in 3D

MR images of brains to accomplish registration given an initial correspondence. The

discrete wavelet transform (DWT) is used for object registration with initial corre-

spondence information. This method is used to compare like objects and accomplishes

object registration with warping, but will settle to a local minimum.

Yeom et al. [102, 31] use Gabor filtering on voxelized objects. The resulting

features are matched using a dynamic link association which is composed of rigid

motion of a graph followed by elastic deformation. Objects are classified into groups;

however, no registration information is provided. In another application, Yeom and



Javidi [101] use principal component analysis and Fisher linear discriminant analysis

to classify objects that have undergone Gabor filtering.

Wang and Chua [92] use rotation-invariant spherical 3D Gabor filters to correlate

faces from 3D range data to 2D images. The matching is accomplished using the

Hausdorff distance for comparison. This method is tailored to faces only.

Nelleri et al. [55] accomplish very preliminary three dimensional object recognition

using the Mexican Hat wavelet, a rotationally symmetric 2D continuous wavelet, on

complex 2D hologram representations of 3D objects. They are able to recognize

squares and triangles. This method achieves rough classification, but no registration.

Laga et al. [41] use the L 2 distance between spherical wavelet coefficients as a

similarity measure for database searching. They also use the spherical wavelet energy

signatures as a 1D comparison; this is faster but less discriminating. Objects are first

aligned using centers of mass and principal axes, and scaled using maximum distance

from center of mass. This method does not achieve registration.

Numerous examples of the use of wavelets in 2D image matching exist as well,

including database search [30, 91], object recognition [67, 54, 90, 21], registration [56,

11, 105, 104], iris recognition [50, 45, 73], and texture classification [8, 28, 106, 100, 63].

Combination Methods

Lowe [43] developed the Scale Invariant Feature Transform, or SIFT, which matches

multiple types of features from one image to another, then draws lines between the

correlated features. Although this is only applied in two dimensions, it is extremely

fast, robust, and accurate.

Urschler et al. [85] combine corner detection, local (SIFT), and global (shape

context) 3D descriptors to achieve non-rigid registration of medical images. They

implement a 3D version of the SIFT algorithm described above that is not rotation

invariant.



2.2.2 Registration Using Voxel Similarity Measures

Voxel similarity methods compare the overall similarity of voxel intensity between two

objects. They often use probability density functions to minimize overall difference

in order to achieve registration.

Partitioned intensity uniformity. Woods et al. [96] proposed a voxel similarity

method for intermodality comparison of images. The basic assumption is that all

pixels with a particular intensity in the first modality, A, represent the same tissue

type; therefore, values of corresponding pixels in the second modality, B, should also

be similar to each other. Thus, one parcels the voxels of A into bins of common

intensity. The mean and standard deviation values of the corresponding voxels in B

are then calculated and minimized for registration.

Joint entropy. Joint entropy methods minimize the entropy in a combined image.

Since the entropy of two unrelated images will be the sum of the entropies of the two

individual images, but the entropy of two aligned images will be less than the sum of

the individual entropies, minimizing the joint entropy should achieve registration [24].

The global minimum may not be the best match; for example, alignment of most of

the air or blank space in the images may reach a minimum without properly aligning

the objects of interest. In addition, interpolation required for rotation of the image

will change the PDF values, also possibly leading to incorrect registration. Partially

overlapping datasets also create great difficulties.

Mutual information (MI). Much current research in medical imaging uses some

form of MI [24]. MI methods overcome the problems of joint entropy by using the

information contributed by each individual image along with the combined image

information. Mutual information was simultaneously introduced for the assessment of

medical images by Collignon [12] and Viola [88]. The method forms a 2D histogram of

mutual information, which is maximized when the dispersion of significant correlation

is minimized [23]. Usually one image is maintained static while the second image is



rotated and translated, then interpolated to determine values that correspond to

nodes in the static image.

Normalized mutual information (NMI) methods overcome the dependence of mu-

tual information on the volume of image overlap by normalizing. If the images have

identical fields of view, MI and NMI perform equivalently. If the fields of view differ,

normalizing with respect to the joint entropy of the overlap volume is considerably

more robust than standard mutual information, according to Studholme et al. [80].

Numerous methods based on mutual information exist. Hastreiter and Ertl [23]

worked to improve the speed of optimization by using hardware accelerated imaging

operations. Wang et al. [89] used a cumulative distribution instead of a probability

density function. Xu and Chen [97] attempt to overcome the lack of spatial informa-

tion problem by including a gradient-based term in the mutual information analysis.

Shekhar et al. [70] accomplish fully automatic elastic registration of PET and CT

scans through an initial global rigid registration followed by elastic sub-volume reg-

istration.

Other methods. Many other voxel comparison methods exist, including cross-

correlation, Fourier domain based cross-correlation, minimization of variance of grey

values, histogram clustering, minimization of intensity differences, and maximization

of zero crossings, as described in the review by Maintz and Viergever [46]. All share

the advantage of using all available information throughout the registration process

instead of selecting discrete features, but share the disadvantage of considerable com-

putational costs.

Luan et al. [44] state that MI methods use only the quantity of pixels of any certain

intensity, while the quality of those pixels has a great effect on registration as well.

They add a qualitative analysis of pixel use to the MI methodology to achieve rigid

registration. This method can accommodate large angles of initial misalignment.

Xu and Chen [97] combine wavelet decomposition with voxel similarity measures

in that mutual information methods are applied to the approximation coefficients and

spatial information methods are applied to the detail coefficients. They register 3D



voxelized objects that have been rotated about a single axis.

Malsch et al. [47] perform fully automatic non-rigid registration of voxelized ob-

jects by identifying anatomical landmarks in both images and matching them elas-

tically. All points in the object are first classified as to tissue type using rough

thresholds. Feature points are then selected as those points which have high vari-

ation around them in that many of the surrounding voxels are of a different tissue

type. Initial rigid registration to a second image is accomplished using a voxel inten-

sity method such as mutual information or cross correlation. Elastic registration is

achieved using thin plate spline interpolation.

2.2.3 Summary Critique of 3D Object Matching Methods

Object registration and matching is an area of active research, with many new meth-

ods to improve speed and quality being developed. Tables 2.1 and 2.2 compare the

capabilities of the methods described above.

In the matching of voxelized objects, such as required in medical imaging ap-

plications, the primary methods employed are voxel intensity methods. Most voxel

comparison techniques are iterative, and can therefore settle in a local minimum. To

avoid this, some methods use another approach such as moment theory for initial

alignment, then use mutual information for fine registration [24].

A second problem is that the global minimum of voxel intensity methods can

actually be incorrect. For example, by aligning only the air around an object, mutual

information and joint entropy methods will give very high probabilities for all the air

and zero probabilities for the remaining pixels, thus giving a very low entropy value

- the global minimum, but obviously incorrect. Therefore, it is necessary to establish

a comparison window within which a local minimum is sought [24].

In addition, the voxel intensity matching process is extremely slow, ranging from

several minutes to hours, depending upon the size of the objects being registered.

Geometric feature methods solve many of these problems; they are somewhat

faster and many do not settle into a local minimum; however, most are formulated

for point cloud data or meshed objects.



Surface Registration Partial Scaling Local
Type Type Match Min

Geometric Feature Methods
ICP [5] PCD, Mesh Rigid No No Yes
ICRP [58] PCD, Mesh Rigid Yes No Yes
Hausdorff Distance [2, 20] PCD Rigid No No Yes
Darboux Frames [10] PCD Rigid Yes No No
Feature Point Mesh [93] PCD Non-Rigid Yes Yes Yes
Footprints [3] PCD, Mesh Rigid Yes No No
Point Fingerprint [82] Mesh Rigid Yes No No
KH Method [38] B-Spline Rigid Yes No No
Lines of 0 H [40] PCD Rigid Yes No No
Splash [77] Mesh Rigid Yes No No
Umbilics [39] B-Spline Rigid Yes Yes No
Dynamical Systems [16] PCD Rigid No Yes No
Hierarchical Patches [75] Mesh Semi-Rigid Yes No No
Spin Images [33] Mesh Rigid No No No
Surface Signatures [99] PCD Rigid Yes No No
WAV [98] Voxel Non-Rigid No No Yes
Combination [85] Voxel Non-Rigid No No Yes
Voxel Intensity Methods
Mutual Information [88, 95] Voxel Rigid Yes No Yes
Hardware Accelerated [23] Voxel Rigid No No Yes
Cumulative Distribution [89] Voxel Rigid No No Yes
Gradient Descent [6] Voxel Non-Rigid No No Yes
PET/CT Auto Elastic [70] Voxel Non-Rigid No No No
Block Match [47] Voxel Non-Rigid Yes No Yes

Table 2.1: Capabilities of various object
the name of the method and cited paper.

nnatching methods. The first column is
The second column is the surface type

addressed; PCD indicates point cloud data. The third and fourth columns state
whether the method can achieve partial matching and matching across different scales,
respectively. The fifth column indicates whether the method will settle into a local
minimum.



Year Time
Geometric Feature Methods
ICP [5] 1992 650 sec
Hausdorff Distance [2] 2003 NR
Darboux Frames [10] 1996 70-153 sec
Feature Point Mesh [93] 2003 NR
Footprints [3] 1997 73-340 sec
Point Fingerprint [82] 2003 NR
KH Method [38] 2002 225 sec
Lines of 0 H [40] 2002 NR
Splash [77] 1992 35-1800 sec
Umbilics [39] 2003 NR
Dynamical Systems [16] 2003 NR
Hierarchical Patches [75] 2006 NR
Spin Images [33] 1997 415 sec
Surface Signatures [99] 2002 120 sec
WAV [98] 2003 NR
Combination [85] 2006 1600-2200 sec
Voxel Intensity Methods
Mutual Information [88, 95] 1995 400 sec
Hardware Accelerated [23] 1998 400 sec
Cumulative Distribution [89] 2003 NR
Gradient Descent [6] 2000 150 sec
PET/CT Auto Elastic [70] 2005 2700-4500 sec
Q-MI [44] 2008 NR
Block Match [47] 2006 1000 sec

Table 2.2: Speed of registration methods. The times listed are those reported in
the literature; NR indicates that computation time was not reported. Note that the
times cannot be compared one-for-one; they are greatly affected by object size and
computer platform. Years of publication are included to assist in comparison; older
methods are likely to have been run on slower computers but with smaller models.



A method which accomplishes registration of voxelized objects, without initial

correspondence, despite occlusion and clutter, and especially one that reduces the

impact of large data sets, is needed.

Wavelet transforms provide a potential method to accomplish this. Wavelet meth-

ods to date have used data-intensive forms such as Gabor wavelets, continuous wavelet

transforms, or steerable pyramids. A less data-intensive method such as the discrete

wavelet transform would be ideal, provided that invariance to rotation and translation

could be accomplished.



Chapter 3

Theoretical Background

3.1 Review of the Wavelet Transform

The wavelet transform is a multiresolution method of analyzing data which decom-

poses an image according to scale while maintaining localized information. Basic

wavelet theory is well established and has been implemented in many commercially

available products such as the MATLAB Wavelet Toolbox. Current research in

wavelet theory is expanding areas such as translation and rotation invariance, ir-

regular grids, stability, non-separable 2D wavelets, and wavelets tailored to specific

shapes, such as spherical wavelets. A discussion of current research into invariant

forms is included in Section 3.2.

A basic introduction to the wavelet transform is included here; more details can

be found in texts such as those by Addison [1], Daubechies [14], Stollnitz, DeRose

and Salesin [78] or Strang and Nguyen [79]. Those already familiar with the wavelet

transform may want to proceed to Section 3.3 for a description of the Dual-Tree

Complex Wavelet Transform.

3.1.1 Continuous Wavelet Transform (CWT)

Mother Wavelet. A mother wavelet, O(t), is a function that can be used as a

wavelet; i.e., it meets the admissibility conditions of zero mean, finite energy, and



finite admissibility coefficient:

Zero mean (no DC compon(

Finite energy (localized)

Finite admissibility coefficient

(inverse transform exists)

S(t) dt = 00OO

1,0 I (t)l 1dt < oo

o < C = d f < 007Idf < oo,

where #(f) is the Fourier transform of the wavelet function. The mother wavelet is

dilated and translated by various values a and b respectively:

Oa,b(t) = 4 ( -b)

Normalizing by a- 1/ 2 conserves energy (so that wavelets of different scales have the

same energy). Thus, for each scale a,

SI,býab( df = i b(t)l 2dt.

Wavelet transform. This translated and dilated wavelet is then convolved with a

signal, x(t), to produce the wavelet transform [1]:

Ta,b = x(t) a,b(t) dt
-00

(3.1)

where 0* is the complex conjugate of V), and Ta,b are the wavelet coefficients. The

inverse wavelet transform is [1]:

1
x(t) =

Cg
•00  o00 da db

Ta,bq , ,b(t) a2

where Cg is the finite admissibility coefficient defined above.



This implementation of the wavelet transform is known as the Continuous Wavelet

Transform (CWT), since it involves the integral of a continuous function over all scales

and locations. Figure 3-1 shows the CWT coefficients, Ta,b, of a signal, z(t), using

the Mexican Hat wavelet, V(t).

t t

Figure 3-1: The Mexican Hat wavelet 4(t) (shown center) is applied to the signal x(t)
(shown left), resulting in the CWT coefficients Ta,b (shown right) at various scales, a,
and locations, b.

Multi-Dimensional Wavelets. Two-dimensional wavelets can be constructed as

above, using a coordinate vector, t = (tl, t2). The two-dimensional wavelet transform

is then given by

Ta,b = - (t)(t dt,
a rc oo 000

where b = (bl, b2 ). This can be expanded to D dimensions through the use of D-

dimensional coordinate vectors and weighting factors of a-D/2

Practical Application. In theory, the CWT is applied continuously over the entire
signal and the entire range of scales. When used in practice, it is applied at discrete
locations and discrete scales, which are specifically selected to accentuate the features
being analyzed. The CWT can be computed using a Fourier transform of the wavelet
and of the signal, applying the convolution theorem. Even at discrete scales and
locations, the CWT is extremely data intensive, because, at each scale, it retains a
full set of data the same size as the original signal.

vtI~
r,
c,

v M



3.1.2 Discrete Wavelet Transform (DWT)

The Discrete Wavelet Transform (DWT) is a less data intensive method with a fast

implementation algorithm (O(n), where n is the number of data points in the signal)

[1].

The most common form of the DWT is discretized on a dyadic scale [1] where the

size of the steps between locations, (n2m ), is directly linked to the scale, (2m). Thus,

equation (3.1) becomes:

1 00 (t- n2m

Tmn = x(t) I 2* ) dt.72/ ;-oo 27
When an orthonormal wavelet basis is chosen, the original signal can be perfectly

reconstructed without redundancy, using the wavelet coefficients.

Dyadic discrete wavelets have associated scaling functions, ¢, of the same form as

the wavelets:

1 (t - n2m

Om,n(t) = I 2m ), (3.2)

but which have a mean equal to 1, instead of zero:

j 0$(t) dt = 1. (3.3)

Figure 3-2 shows several wavelet functions with the associated scaling functions.

The convolution of the scaling function with the signal produces a smoothed ver-

sion of the signal:

Sm,n = x 0(t) m,n(t) dt.

The scaling coefficients, Sm,n, are referred to as approximation coefficients, since

they provide a lower resolution approximation of the signal. The wavelet coefficients,

Tm,n, are known as detail coefficients, since they provide the detail required to obtain

the original signal from the smoothed signal. The original signal can be reconstructed
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Figure 3-2: Discrete wavelet functions (top row) and their associated scaling functions
(bottom row).

from the approximation coefficients at a scale mo plus all detail coefficients from mo

back to the original signal. This is represented as:

00

X(t) = Smo,n o,n(t) +
fl= -00

mo 00ooz E Tm,no m,n(t),
m=-oo n=-oo

and is represented graphically in Figure 3-3. Figure 3-4 shows a signal along with its

approximation and detail coefficients at several levels of decomposition.

Level 3

Level 2

Level 1

Figure 3-3: The
producing detail

wavelet decomposition of a signal, x. H1 is the wavelet function,
coefficients d after downsampling by 2. Ho is the scaling function,

producing approximation coefficients s. The signal x can be reconstructed by com-
bining s3 with d3 , d2 , and di, by combining s2 with d2 and dl, or by combining si
with dl. Adapted from [37].

-
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100 200 300 400 500

50 100 150 200 250
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Figure 3-4: A signal is shown in the top row. Each subsequent row is composed of
the wavelet decomposition of the signal into detail (left) and approximation (right)
coefficients. Note that the approximation at any one level is formed by removing the
detail at that level from the approximation at the next higher level.

3.1.3 Two-Dimensional DWT

The most common form of the two-dimensional DWT is composed of tensor products

of the one-dimensional DWT, resulting in the following four wavelets:

* 2D scaling function: q(tl, t2)= 1(tl)(t2)

* 2D horizontal wavelet: 4 h(tl, t 2) = ¢(tl) (t2)

* 2D vertical wavelet: v"(tl, t 2) = 0(tl)(t2)

* 2D diagonal wavelet: ?d(tl, t2) = (t 1)0(t 2)



These "separable" wavelets are termed horizontal, vertical and diagonal because they

accentuate features in the horizontal, vertical and diagonal directions, respectively.

An image and its wavelet decomposition using separable wavelets are shown in Figure

3-5.

Figure 3-5: Two-level, 2D DWT with separable wavelets. The left block contains
the original image [53]. The right block contains, clockwise from the top left: first-
level horizontal wavelet coefficients, first-level diagonal wavelet coefficients, first-level
vertical wavelet coefficients, and second-level coefficients (clockwise from top left:
horizontal, diagonal and vertical wavelet coefficients, then second-level approximation
coefficients).

It is also possible to construct non-separable wavelets which are designed in two

dimensions and use other grid forms. An example using a quincunx grid, which is

structured like the pattern of 5 spots on a die, is shown in Figure 3-6.

decomposition using non-separable wavelets is shown in Figure 3-7.

A wavelet

x o x
o x 0 ===>

x o x
o x o
x o x

0 0 0 0 0 0

0 0 0
0 0 0 0 o 0 0

0 0 0

0 0 0

0 0 0

Figure 3-6: A demonstration of downsampling by two, alternating between rectan-
gular and quincunx grids. This sample begins as a rectangular grid. Removing all
the x's leaves a quincunx grid of o's. Removing alternate rows of o's returns to a
rectangular grid.

0 0 0



Figure 3-7: Two-level, 2D DWT with non-separable wavelets on quincunx grid. The
left block contains the original image. The right block contains, clockwise from the
top right: first-level wavelet coefficients, second-level wavelet coefficients, second-level
approximation coefficients.

3.2 Invariance

One major drawback of the DWT is that it varies with both translation and rotation;

a small shift in location of the signal can result in a large change in the corresponding

wavelet coefficient values. Since the signal is downsampled at each level of wavelet

decomposition, the data points to which the wavelet is applied are different when

the signal is shifted by other than the coarsest scale used in the transform. This can

produce quite different wavelet coefficients for signals that differ only by translation;

see Figure 3-8.

Tensor product wavelets are strongly oriented with the axes, and are therefore not

rotation invariant. In 2D, the horizontal wavelets accentuate horizontal features in an

image, the vertical wavelets accentuate vertical features in an image, and the diagonal

wavelets accentuate diagonal features in an image, for both diagonals. See Figure 3-9.

Even non-separable wavelets are not rotation invariant because non-separable discrete

wavelets are not isotropic.

The continuous wavelet transform (CWT), since it does not include downsampling,

is translation invariant if the signal is shifted by an integer multiple of the grid spacing,

and is rotation invariant if an isotropic wavelet is used; however, the CWT is very

memory intensive: a full set of coefficients with the same number of data points as the

original signal or object is generated at each scale. Since we will be operating on data



Input

Figure 3-8: Translation

Level 1

variance of the DWT. The left column shows a step function,
shifted to the right by one sample in each row. The next three columns show the
wavelet coefficients at the first, second and third levels of decomposition. Note that
the wavelet coefficients do not show a corresponding shift to the right; instead, the
shape of the plots changes radically with a one step shift in the input. Adapted from

[37].

sets that can be very large, we desire to use the efficiencies of the discrete wavelet

transform. Much current research into wavelets addresses the issues of rotation and

translation invariance.

3.2.1 Invariance; Review of Previous Work

The DWT can be made translation or 'shift' invariant to a single grid spacing by

omitting downsampling, and can be made nearly shift invariant by averaging sev-

eral DWTs over a range of signal time origins; however, these methods result in the

same data intensity problem found with the CWT. In order to achieve some degree

of rotation invariance, some methods use averages of the three bands to achieve fea-

Level 2 Level 3



Figure 3-9: Rotation variance of the DWT. Note that the top right hand image
accentuates the horizontal lines of the mill, the bottom right hand image accentuates
the diagonal lines (both +450 and -450), and the bottom left hand image accentuates

the vertical lines. If the mill were rotated, then the coefficient values in each subsection
would be quite different.

ture vectors, and other methods attempt to design relatively isotropic non-separable

wavelets.

Pun and Lee [421 developed a non-redundant, shift-invariant wavelet transform

by averaging four redundant wavelet transforms at each level of resolution. The

computational complexity of this method is O(n log n). However, it is not rotation

invariant.

Simoncelli et al. [35, 72] developed steerable pyramids, a redundant frame repre-

sentation which is rotation and translation invariant, but which is data intensive.

Mrazek and Weickert [52] presented a translation and rotation invariant method

that combines wavelet transforms with nonlinear diffusion filters. The iterated filter is

not completely rotation invariant, but the asymmetry decreases with a higher number

of iterations.



Hill et al. [25] presented a rotation-invariant feature vector based on Kingsbury's

DTCWT. They used the six oriented sub-bands of the complex wavelet output and

summed energies to produce isotropic, rotationally-invariant feature vectors. This is

only applicable to an entire image or large sections of an image.

Do and Vetterli [17] presented contourlets, which are non-separable 2D wavelets

designed on a discrete basis. However, they are specifically designed to be anisotropic

in order to capture directionality in images.

Van De Ville et al. [87] designed quasi-isotropic polyharmonic B-splines which are

non-separable, multi-dimensional basis functions on a quincunx grid. The functions

become more isotropic with increased order. They are not shift invariant.

Tymczak et al. [84] designed a set of non-separable multi-wavelets which are nearly

isotropic. This format is based on the lifting scheme and thus works well for image

processing. They are not shift invariant.

Kingsbury [36, 37] proposed the Dual-Tree Complex Wavelet Transform (DTCWT)

which downsamples only after the second level of wavelet decomposition, thus produc-

ing two similar trees, offset by one grid spacing. This method produces twice the data

of the dyadic DWT in one dimension, but is still much less data intensive than the

CWT. In addition, it is much more resistant to variance with rotation than the DWT.

This transform meets our requirements of reduced sensitivity to both translation and

rotation. It is described in more detail below.

3.3 Dual-Tree Complex Wavelet Transform

Kingsbury [36, 37] proposed the Dual-Tree Complex Wavelet Transform (DTCWT)

which downsamples only after the second level of wavelet decomposition, thus pro-

ducing two parallel trees. Subsequent decompositions evenly interleave data in the

two redundant trees. Advantages of the DTCWT include [37]:

* Approximate shift invariance

* Reduced sensitivity to rotation



* Limited redundancy, independent of the number of levels of resolution

* Efficient computation

Approximate shift invariance can be achieved using a real DWT by retaining the

samples that would be removed during downsampling at the first level. These samples

are placed in a separate, parallel tree. In subsequent levels of decomposition, retained

samples in the two trees are evenly interleaved. The samples of the two trees do not

interleave evenly if the same wavelet is used on each tree; the samples must be offset

by using different wavelets on each tree. See Figure 3-10.

Kingsbury [37] suggests two methods of achieving approximate shift invariance

at lower levels: odd/even filters and q-shift filters. The odd/even method uses odd-

length wavelets on one tree and even-length wavelets on the other tree, alternating at

each level to promote greater symmetry. This method works, but creates a somewhat

asymmetric sub-sampling structure, produces different frequency responses in the two

trees, and must use biorthogonal wavelets.

The q-shift method fixes all three of these problems. Kingsbury designed a wavelet

which is even length but not strictly linear phase, thus allowing perfect reconstruction

using orthonormal wavelets where the reconstruction wavelets are the exact reverse

of the analysis wavelets. These wavelet filters are designed to have a group delay of

one-quarter sample. The time reverse has a group delay of three-quarters sample,

thus producing a half-sample difference between the two trees when used as shown

in Figure 3-11. Details of the design of the q-shift filter can be found in [37]. An

example q-shift wavelet and scaling function are shown in Figure 3-12.

Kingsbury stores the outputs of the two trees as the real and imaginary parts

of complex wavelet coefficients; thus, he labels his method the Dual-Tree Complex

Wavelet Transform.

An example of the near shift invariance of the DTCWT, contrasted with the shift

variance of the DWT, can be seen in Figure 3-13.

The DTCWT is extended to d dimensions by separably applying the wavelets in

each direction. This requires an additional redundancy in each dimension; 2 d redun-
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Figure 3-10: An example of the sampling location for a real DWT with sampling rate
doubled and an odd/even DTCWT, creating trees a and b. 'a' and 'b' indicate the
location of the sample used in the wavelet decomposition in tree a and b respectively.
Note that the samples are evenly spaced at all levels of decomposition in the DTCWT
but not in the DWT beyond the first level. Adapted from [36].

Level 3

Tree a

X(z)

Tree b

Figure 3-11: DTCWT using q-shift wavelets. H 1 and Ho are the first-level discrete
wavelet and scaling function filters respectively. Hol and Hoo are the q-shift wavelet
and scaling function filters; (1) indicates a one-quarter shift and (3) indicates a three-
quarter shift. Adapted from [37].



Scaling Function Wavelet

Figure 3-12: Q-shift wavelet and scaling function. Blue lines are tree a, red lines are
tree b, and black lines are la + jb I.

dant trees are retained, where d is the dimensionality [36]. Note that the redundancy

depends only on the dimensionality, not on the size of the dataset or the number of

levels of decomposition.

The shift invariance of the one-dimensional DTCWT continues in higher dimen-

sions; Figure 3-14 demonstrates this in two dimensions. A white circular disk is

shifted one pixel to the right in each of three subsequent images, as shown in the left

column of Figure 3-14. The level three DWT wavelet coefficients for each of these

shifted images are shown in the second column. The third column shows each set of

wavelet coefficients subtracted from the one in the previous row; if the DWT were

shift invariant, the resulting image would be blank. The fourth and fifth columns show

the corresponding DTCWT wavelet coefficients and the subtracted, shifted wavelet

coefficients. Note that the DTCWT is not completely shift invariant; at a higher level

of resolution, artifacts can be seen.

A quantitative analysis of shift invariance is provided in [37] and is summarized in

Appendix A. The quantitative analysis indicates that the DTCWT is approximately

10 to 30 dB more invariant to translation, depending on the q-shift wavelet selected.

Although not rotation invariant, the DTCWT provides good directional selectivity

in higher dimensions. In two dimensions, the DTCWT produces twelve sub-images

strongly oriented in six directions: ±15 deg, ±45 deg, and ±75 deg [37], as compared

to real wavelets which produce three sub-images: two strongly oriented horizontally

and vertically, and the third including components from both diagonals. Higher

dimensional DTCWTs produce (4 d - 2 d)/ 2 directional sub-bands at each level [37],
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(a) Dual Tree CWT (b) Real DWT

Figure 3-13: The left column is the DTCWT; the right column is the DWT. The top
row is the input: eight step functions, each shifted one sample to the right. The next
four rows contain the wavelet coefficients at four levels. The bottom row contains the
scaling coefficients at the fourth level of decomposition. Note that the DTCWT is
nearly shift invariant while the real DWT is not. Adapted from [37].

where d is the dimension. This directional selectivity can be seen in Figure 3-15,

where the 2D reconstructed wavelets for the DWT (bottom row) and DTCWT (top

row) can be seen. Note that the DWT has significantly greater incidence of artifacts.

The approximate shift invariance and reduced sensitivity to rotation make the

Kingsbury DTCWT an excellent candidate for use in object matching.



DTCWT

Figure 3-14: Shift variance of the 2D DWT and DTCWT. The left column is the

input; three white disks on black backgrounds, each shifted one pixel to the right

from the preceding row. The second column is the reconstruction of level three DWT

wavelet coefficients for the corresponding input. The third column shows the wavelet

coefficients shifted back to the original location and subtracted from the previous

row; if the DWT was shift invariant, the resulting image would be blank. The fourth

and fifth columns show the wavelet coefficients and the subtracted, shifted wavelet

coefficients for the DTCWT.

Figure 3-15: Rotation invariance of the DTCWT (top) and DWT (bottom). Adapted
from [37].

DWT



Chapter 4

Object Registration

In this section we present an algorithm that employs the wavelet transform to accom-

plish global, rigid, shape-based registration of three-dimensional voxelized objects

which have undergone translation and rotation. The method accommodates noise,

which can be induced in models through events such as the sensing process, trans-

formation and voxelization. Occlusion and clutter are accommodated as well. We do

not include scaling, shearing, warping, or other motions that distort the appearance

or functionality of an object.

Given two voxelized models, A and B, we determine the rotation and translation

such that:

A = RB + T (4.1)

where R is the orthogonal rotation matrix and T is the translation vector.

An overview of the algorithm is as follows:

1. Apply a wavelet transform to both objects.

2. Select large magnitude wavelet coefficients in A and B as feature points.

3. Search within the lists of feature points for matching triplets of points.

4. For each matching set of triplets, determine the rotation.



5. Use a voting scheme to select the best rotation.

6. Using the selected rotation, determine the translation.

At the completion of the algorithm, the quality of the resulting match between A and

the rotated and translated B can be assessed.

The steps of the algorithm and the design choices developed therein are described

in the following sections.

4.1 Wavelet Transform

As discussed in Section 3.2, a transformation that is invariant to rotation and trans-

lation (or nearly so) is desired for object registration. If the transformation results

vary greatly with rotation and/or translation of the object, then corresponding fea-

ture points in each model will have completely different signatures and will be useless

for registration purposes.

At the same time, a transformation that is computationally simple with minimal

data requirements is desired, especially when working on the very large data sets

that are common today. For example, the Mexican Hat Wavelet is a symmetric,

2D wavelet which is thus invariant to rotation; however, it is a continuous wavelet

transform with the corresponding huge data sets and slow computation, which greatly

reduces its utility.

Kingsbury's Dual-Tree Complex Wavelet Transform (DTCWT) [37], described in

detail in Section 3.3, is nearly invariant to translation and is much more resistant

to rotation than the discrete wavelet transform (DWT), while maintaining the O(n)

computation of the DWT with only a 2 d increase in data size, where d is the dimen-

sionality. The increase in date size can be eliminated by not retaining the first level

wavelet coefficients. For these reasons, we use the DTCWT as the wavelet transform

in this algorithm.

Within the DTCWT family, there are a number of filters which we can choose

from. For the first level discrete wavelet filter, we select the nearly symmetric fil-



ter with the shortest length. For the second- and greater-level filter, we select the

shortest-length q-shift filter. The short-length filters were selected so that abrupt

changes in the composition of the object would be identified. Longer filters bring in

voxels over a greater range, giving weight to areas beyond edges and thus blurring the

distinct change. This affects feature point selection. Further effects of filter selection

is an area recommended for future research.

4.2 Feature Points

Applying the three-dimensional DTCWT to each model produces, at each level of

resolution, an approximation (scaling function coefficients) and detail (wavelet coef-

ficients). There are several possibilities for sources of feature points, listed below and

shown in Figure 4-1:

* The original object, with no wavelet transform applied.

* The scaling function coefficients at some specific level of resolution.

* The wavelet coefficients at a single or at multiple levels of resolution.

* The gradient of the wavelet coefficients.

From the two-dimensional example shown in Figure 4-1, it can be seen that the

scaling coefficients can contain large swaths with extreme values; note the large con-

tiguous areas of black or white shown. This is especially true for surface models with

a constant value for the entire interior. In contrast, the wavelet coefficients highlight

changes in intensity and therefore produce more discrete extrema, making them a

good choice for feature points.

Heuristic tests upon many three-dimensional models at many different orientations

confirm this. The wavelet coefficients produced the highest percentage of feature

points that matched in location from one model to another and were thus the most

useful for object registration. Therefore, we use the extrema of the wavelet coefficients

as feature points.



The three-dimensional DTCWT produces 28 complex sub-bands of wavelet coef-

ficient information; instead of using 28 separate data sets, we reconstruct one level

of wavelet coefficients, excluding the average coefficients, in order to produce a single

set of real wavelet coefficient data.

Figure 4-2 is a two-dimensional example of feature point selection using the re-

constructed wavelet coefficients. Note that obvious points such as the intersections

of lines are automatically selected as features.

Another consideration is whether to select features based on magnitude only or

whether to include the sign. As the maxima highlight points where the shape of

the wavelet corresponds well with the shape of the object, and the minima highlight

points where the shape of the wavelet corresponds extremely poorly with the shape of

the object, we match only maxima with maxima and minima with minima. Therefore,

at each level of decomposition, we retain two lists of feature points: those with large

magnitude and positive sign, and those with large magnitude and negative sign.

This has the added advantage of providing two separate, shorter lists of points for

comparison, thus reducing the computation time of the algorithm.

4.2.1 Invariance

Although the DTCWT is nearly shift-invariant and much less affected by rotation

than other methods, it is not completely invariant to either rotation or translation.

Therefore, even though many of the DTCWT wavelet coefficient extrema identify

the same features in each object, not all features are identified in both objects. This

results in a set of feature points with many outliers.

As an example, we separately apply the DTCWT and the the discrete wavelet

transform (DWT) to a two-dimensional image that has been translated by 42 pixels

in the x and y direction, and to another that has been rotated by 30 degrees coun-

terclockwise. We then compare the number of corresponding maxima of the wavelet

coefficients at the third level of decomposition; 73-80% of the DTCWT feature points

correspond, while only 40-47% of the DWT feature points correspond. See Figures

4-3 and 4-4 for a visual comparison and Table 4.1 for a numerical comparison.



Figure 4-1: A two-dimensional example of the DTCWT. The top figure is the original
image. The three subsequent rows are the level one, two and three decompositions
in that order, with average (scaling function) coefficients on the left, detail (wavelet)
coefficients in the center, and the gradient of the wavelet coefficients on the right.
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Figure 4-2: A two-dimensional example of extrema in the DTCWT. The figure on
the left shows the level three reconstructed wavelet coefficients of the original image.
The right-hand figure shows the the level three reconstructed wavelet coefficients of
the rotated and translated image. Extrema are denoted by red dots.

It is unlikely that the feature points correspond by chance. Appendix B derives

the method for calculating the probability that k of m points correspond in position

in an object of size n, given a size p pixel (or voxel) ring. Table 4.1 includes the

probability of randomly selected feature points matching by chance given the size

of the objects and the number of feature points selected in the examples shown in

Figures 4-3 and 4-4.

Table 4.1: Comparison of feature point correspondence for DWT and DTCWT in
translation and rotation. Number of corresponding feature points, percent of total
feature points, and probability of matching that number of points by chance are
shown for the third level DWT or DTCWT decomposition of two translated or rotated
versions of the Lena image, shown in Figures 4-3 and 4-4. Fifteen total maxima were
selected in each image for comparison.

DWT DTCWT
Translation

number 6 12
percent 40 80
probability 1.52x10 -4  1.85x10 - 14

Rotation
number 7 11
percent 47 73
probability 9.45x10 - 6 2.66x10 - 12



Figure 4-3: Comparison of DWT and DTCWT extrema in translation. The right-
hand image was translated -42 pixels in the x and y directions prior to application
of the transform. The top row is the DWT; the bottom row is the DTCWT. The 15
wavelet coefficients with the greatest value (positive only) in each image are marked.
Corresponding feature points are denoted by red circles; extrema which do not cor-
respond in location are denoted by yellow triangles.



Figure 4-4: Comparison of DWT and DTCWT extrema in rotation. The right-hand
image was rotated 30 degrees counterclockwise prior to application of the transform.
The top row is the DWT; the bottom row is the DTCWT. The 15 wavelet coefficients
with the greatest value (positive only) in each image are marked. Corresponding
feature points are denoted by red circles; extrema which do not correspond in location
are denoted by yellow triangles.



4.2.2 Wavelet Coefficient Magnitude

A one-to-one correspondence of wavelet coefficients based on coefficient value cannot

be used to pinpoint the location of a feature. The magnitude of the wavelet coefficient

is different at corresponding points in two objects, and the order of the points differs

when listed by magnitude, i.e., the feature with the greatest coefficient magnitude

may not coincide with the feature of the greatest coefficient magnitude in the rotated

and translated object. However, both of the features denoted with greatest magnitude

in each object are likely to be represented in a group of points of large magnitude for

each object.

As an example, in Figure 4-5, the six wavelet coefficients with the largest mag-

nitudes are marked with colored dots on the level three reconstructed wavelet coeffi-

cients of two versions of the Lena picture, one translated from the other. The location

and coefficient value are shown in Table 4.2. Note that although five of the six points

match in location, only one matching pair holds the same ranking in each list, and

points which seem to be very close in value do not necessarily correspond in position.

Therefore, the values of the wavelet coefficients are used to screen the image

for feature points, but the particular value at each point is not used for locating

matching points. Instead, a representation is used in which the top maxima are

equally weighted, the bottom minima are equally weighted, and no other points are

considered.

4.2.3 Quantity of Feature Points

The proper quantity of feature points must also be determined. Too few points will

not achieve registration, but too many points slow the algorithm and increase the

number of false positives by increasing the likelihood of random correspondence.

The upper limit on the number of feature points is introduced by the potential

of saturating the object with so many feature points that randomly matching feature

points cause false positive rotations. This is discussed more in the discussion on levels

of resolution in Section 4.2.4.



Figure 4-5: The third level DTCWT decomposition of two translated versions of the

Lena image. The six points with highest magnitude of coefficients are marked with

colored dots. In order of descending magnitude, the colors are: green, red, yellow,

blue, cyan and magenta. The coefficient magnitudes and correspondence is listed in

Table 4.2.

A B

Coefficient Coefficient

Order Color Magnitude Order Color Magnitude

1 green 224.7 1 green 206.3

2 red 177.3 5 cyan 164.7

3 yellow 170.2 2 red 180.7

4 blue 159.8 n/a
5 cyan 159.7 6 magenta 159.3

6 magenta 151.1 3 yellow 173.1

n/a 4 blue 171.2

Table 4.2: Coefficient values of corresponding points in the third level DTCWT de-

composition of two translated versions of the Lena image shown in Figure 4-5. The

points from the left-hand image, denoted A, are listed in descending order of magni-

tude in the left-hand column. The points that correspond in location in the right-hand

image are listed in the right-hand column. Note that the order of magnitude is dif-

ferent, and that for the most part, the magnitudes are quite different.



Another consideration in the upper limit on the number of feature points is the

computational complexity of the algorithm, which depends both upon the size of the

model and the number of feature points. The computational complexity is the greater

of O(n), where n is the number of voxels in the model, and 0(()2 ), where m is the

number of feature points. This is described in more detail in Section 4.5.1. Choosing

30 feature points yields 2 = 16 million as a worst case. In actuality, a quarter

or less of these become viable triangles for testing. Depending upon the number of

outliers, the speed of the regitration portion of the algorithm runs from 18 to 56

seconds. Increasing the number of feature points greatly slows the algorithm.

The lower limit on the number of feature points was determined using the following

line of reasoning and was confirmed heuristically. The total number of potentially

matching triangles is (7'), where m is the number of feature points. Assuming three

quarters of the feature points are outliers (an assumption on the high end), this

becomes (~/4). Of those, some will be eliminated because they are collinear or too

small; we assume this is 20% (a number that is not extreme based on heuristics).

There are four sets of feature points: positive and negative coefficients at both the

second and third levels of resolution. This calculation yields 4 matching triplets for

10 feature points, 32 matching triplets for 20 points, 180 matching triplets for 30

points, and 384 matching triplets for 40 points. The many examples that were run in

the process of generating and verifying this algorithm support this line of reasoning.

Ten to fifteen feature points often produced a correct rotation but occasionally did

not. Twenty-five to thirty-five points reliably produced the correct rotation.

4.2.4 Levels of Resolution

Another variable is the number of levels of resolution that is used in the matching

algorithm. The first factor in this is that the number of points from which feature

points are selected reduces by 2d at each level of resolution, where d is the dimen-

sionality. Therefore, at some point there are too few points and the object becomes

saturated with feature points. On the examples we are running, we reach saturation

at the fourth or fifth level of resolution, so we select our lowest level of resolution to



be three. See Table 4.3.

Model Level

Brain
MRI

1 and 2
3
4

Knee 1 and 2
3
4

Gooch 1 and 2
3
4
5

Shrek 1 and 2
3
4

Table 4.3: The saturation level of resolution for
level of resolution (note that levels 1 and 2 have
therefore listed together). Column n indicates t
resolution. Column p indicates the probability o
points with a 4-voxel ring. For the rows with no
close to 1. Column f indicates the percentage o:

various models. Level indicates the
the same number of points and are

he number of voxels in each level of
f randomly matching 7 of 20 feature
probability listed, the probability is
f voxels in the entire image that fall

within a 4-voxel ring of 20 feature points, assuming no voxel rings overlap each other
or the edges of the model. Note that each model becomes saturated at the fourth to
fifth level of resolution.

Through testing on a number of models, it was also determined that very few of

the successfully matching triangles were produced by the first level of resolution. By

eliminating the first level wavelet coefficients, we save time and memory space in the

algorithm with no penalty in the quality of the registration.

4.3 Feature Point Matching

Beginning with all possible combinations of three feature points in models A and B,

we reduce the number used by selecting only corresponding triplets with essentially

the same distances and angles between the three points.

n2

2,457,600
307,200
38,400

7,077,888
884,736
110,592

11,534,336
1,441,792
180,224
22,528

1,741,916
217,739
27,217

p

3.52e-09
0.0020

2.41e-12
3.24e-06

0.14

8.10e-14
1.29e-07

.0273

3.63e-08
.0116

f

0.89
7.12

56.95

0.31
2.47
19.78

0.19
1.52

12.13
97.08

1.26
10.04
80.35



We first eliminate collinear triplets and very small triangles. At various places in

the algorithm we use a tolerance, designated maxr, for a range of pixels within which

we seek a match; for example, when matching feature points, or when determining

final quality of a match. We define a small triangle as one with a perimeter less than

six times maxr.

We separate the rotation and translation, calculating the rotation first. For po-

tentially matching triplets, we calculate a rotation using the unit quaternion method

of Horn [26], who found a closed form solution to the absolute orientation problem.

Quaternions are described in more detail in Appendix C. The quaternion representa-

tion has an ambiguity in that q and -q describe the same rotation; we eliminate this

by restricting one quaternion coefficient, ql, to be greater than zero.

4.4 Voting Scheme

Potentially corresponding triplets that are correctly paired will generate transforma-

tions that are close in value to one another, differing only by noise and error in the

calculation of the rotation. The outliers, which generate incorrectly corresponding

triplets, will produce widely varying transformations that are unlikely to correspond.

Therefore calculating rotations for each set of potentially corresponding triplets gen-

erates a set of potential rotations with a cluster at the desired rotation and noise

elsewhere. We use a histogram voting scheme to locate the cluster and thus the

desired rotation.

4.4.1 Rotation Representation

The voting scheme could be based on any of the possible representations of rotation,

such as the orthogonal rotation matrix, Euler angles, unit quaternions, or the axis-

angle representation; details are presented in Appendix C. Using the rotation matrix

would require searching for a peak in 9-space, which is more cumbersome than other

choices. Euler angles suffer from gimbal lock problems and are therefore not a stable

representation upon which to base the voting scheme. Two solid choices, both of



which would require searching for a peak in 4-space, are quaternions and the axis-

angle representation. As shown in Appendix C, the conversion from one format to

the other is:

q0 = cos(a/2)

ql = sin(a/2)cos(3,)

q2 = sin(a/2) cos(/y)

q3 = sin(a/2) cos(oz),

where [qo ql q2 q3] are the coefficients of the quaternion, and a, 03 , ,y and 0z are the

rotation angle and direction cosines of the axis-angle representation. Note that this

conversion is nonlinear; evenly spaced bins in one representation do not correspond

to evenly spaced bins in the other. Also note that the degrees of freedom in each

representation are reduced by one: /32 + / 2 + /3 = 1, and q2 + q2 + q2 + q2 = 1.

If we use equally spaced histogram bins for voting based on quaternions, then a

bin for a single quaternion coefficient will correspond to a greater arc length in the

bins near -1 and 1 than in the bins near zero. However, the bins of the remaining

coefficients will correspond to much shorter arc lengths; if one quaternion value is close

to one, the remaining values must be close to zero to maintain the unit magnitude

requirement. Thus the overall size of the 4-space bin does not vary greatly.

As an alternative, one could base the voting scheme on the axis-angle representa-

tion. This has the seeming advantage that equally spaced bins correspond to a linear

division of degrees in real space. However, bins of equal numbers of degrees at the

equator of a sphere are much larger than those at the poles.

The voting scheme based on quaternions is the most viable of the alternatives and

has the added advantage that we calculate our rotation in the quaternion format and

therefore require no conversion before voting.

During the voting process, the quaternion coefficient bins are equally spaced from

-1 to 1 for each coefficient, except ql which runs from 0 to 1 to prevent redundancy.

This means that many of the bins will be empty since only unit quaternions are used.



The magnitude of all possible quaternions along with a band corresponding to those

bins likely to hold unit quaternions is shown in Figure 4-6.

1.

1.

1.

0.

O.O.

Figure 4-6: Unit quaternion bin magnitude. The magnitude of each possible quater-

nion bin based on a bin size of 0.1 is graphed. Only those with magnitudes close to

1, between the red lines, have the potential to be filled.

4.4.2 Histogram Bin Size and Origin

A proper bin size is required for determining the peak. If the bins are too large, then

there may be sufficient outliers in an incorrect bin to obscure the desired result. In the

extreme, a single bin would be of no assistance at all. Conversely, bins that are too

small may split the correct transformation peak into separate bins, again obscuring

the peak. In this extreme, each bin would have one or zero items in the bin and no

peak would be found.

Many treatises on correct bin size for a histogram [32, 68, 71] discuss matching

the underlying statistics of the data. In our application, we should have a single large

peak and much surrounding noise. We are interested only in finding the peak and not

in any analysis of items not in the peak; therefore, statistical analysis of non-peak

bins is not required, and the number of samples in non-peak bins is not relevant. See

Figure 4-7.

The goal bin size is one that allows us to quickly identify the peak in the data,

and to pinpoint it with sufficient accuracy for our desired application. Our algorithm

achieves global registration of voxelized objects explicitly enough to provide an initial
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Figure 4-7: A histogram of each coefficient in the rotation quaternion voting scheme.
A significant peak occurs at the proper rotation with noise elsewhere. Note that this
is a one-dimensional histogram of each coefficient and does not show the interrelation
between coefficients; the actual histogram performed is four dimensional.
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estimate for fine registration systems such as ICP or voxel intensity measures to be

successfully applied without settling into local minima. We define sufficient accuracy

as less than two degrees error in each Euler angle. Within this defined goal, a bin

size that is too small increases computational time, and a bin size that is too large

includes outliers which can mask the proper result.

We use the quaternion coefficients in our histogram, while our definition of suffi-

cient accuracy is based on Euler angles. The nonlinear conversion is as follows (see

Appendix C):

¢ = arcsin(-2(q2q4 +qlq3))

0 = arctan -2(q 3q4- qlq2)
0 = -arctan •q22 2 2)

ql - q2 - q3 + q4j
•= arctan -2(q2q 3 - qlq4)

=arctan -
q2 + q2 - q2 - q2

A bin size of 0.1 for the quaternion coefficients corresponds to an Euler angle bin

size ranging from approximately 2 to 10 degrees, with some ranging up to 15 degrees,

depending upon which quaternion coefficient and where in the range from -1 to 1 the

bin occurs. For example, Table 4.4 shows quaternion bin edge values, corresponding

Euler angle bin edges, and Euler angle bin sizes at various quaternion values.

Using a histogram to identify a peak in data leads to the problem of properly

placing the origin in order to avoid splitting the peak. If the bin edge occurs exactly

upon the peak, the peak will be split with only half the number of samples appearing

in two adjacent bins. This may obscure the peak from detection.

Scott [68] developed a method called an Averaged Shifted Histogram (ASH) which

eliminates this problem by taking multiple histograms of equal bin widths but shifted

bin locations and averaging the results. The method is statistically comparable to

kernel estimators with much reduced computational complexity. The method is im-

plemented by selecting a bin size, h, and a number of histograms to be averaged, m.

Next, a histogram is performed on the set of data using a small bin size, 6 = h/m.

Adjacent bins are then averaged. In three dimensions, the histogram value at sample



Table 4.4: Quaternion values, corresponding Euler angles, and resulting Euler angle
bin sizes. In each section, consecutive rows indicate adjacent bins in an equally
spaced bin scheme for quaternions. Only one quaternion changes value. The closest
corresponding Euler angles based on an xyz rotation are calculated for each bin edge
and the resulting bin sizes based on Euler angle are shown. Note that all angles are
rounded, occasionally resulting in a bin size of zero. In addition, the bin edges are
first normalized to unit quaternions, so the calculated Euler angles do not correspond
exactly with the quaternion bin edge. The quaternion bins selected for this example
all had magnitudes between 0.95 and 1.05 to minimize the variation in bin edge
location.

Quaternion Euler Angle Bin Size

q0 q1 q2 q3 0 0 L 0
-0.4 0.3 -0.6 -0.7 -80 -3 123 3 6 8
-0.3 0.3 -0.6 -0.7 -83 3 131 2 8 7
-0.2 0.3 -0.6 -0.7 -85 11 138 2 7 8
-0.1 0.3 -0.6 -0.7 -87 18 146 - -
-0.9 0.0 -0.3 -0.1 -5 -36 14 13 2 4
-0.9 0.1 -0.3 -0.1 -18 -34 18 13 2 4
-0.9 0.2 -0.3 -0.1 -31 -32 22 12 3 2
-0.9 0.3 -0.3 -0.1 -43 -29 24 - -
-0.3 0.9 -0.2 -0.1 -142 4 26 0 3 11
-0.3 0.9 -0.1 -0.1 -142 7 15 1 4 11
-0.3 0.9 0.0 -0.1 -143 11 4 1 4 12
-0.3 0.9 0.1 -0.1 -144 15 -8



x is [68]:

f(X) = hh3 (m - 111)(m - 1i21)(m - li3 1)nkI+il,k2+i2,k3+i3 ,
h ilh2h3  i2 i3

where ij runs from 1 - mj to mj - 1, and x is in bin Iki,k2,k3 which contains nki,k2,k,

values.

Through testing it was verified that the identification of the peak is fairly robust

to variations in bin size. Bin width options from 0.001 to 0.2 and numbers of averaged

histograms from 1 to 20 were tested; a range of bin widths from 0.001 to 0.05 with

2 to 10 histograms averaged produced acceptable results. We selected a bin width of

0.02 and two averaged histograms.

4.4.3 Locating the Peak Quaternion

By using the Average Shifted Histogram method, we identify a small histogram bin

at the center of the peak. We use the values for q from this small bin instead of

some combination of the averaged values in the larger shifted bin. This has the effect

of pinpointing samples in the center of the peak, thus reducing the variation of the

samples used to determine the final rotation quaternion. To further reduce the impact

of outliers within our bin, we take the mean of the available values then normalize

the resulting quaternion.

4.4.4 Translation

We then take the top few rotations (those with the greatest number of votes), and

calculate a translation. We multiply the list of points from model B by the selected

rotation, then determine the single translation that aligns the greatest number of

points from B with A. Note that the translations determined by lower levels of

resolution are half the length of the next higher level.



4.4.5 Matching Feature Point Count

At this point, for the top few rotations (those with the greatest number of votes), we

apply the rotation and translation to the list of feature points from model B, and

determine proximity to points from model A. This is a confirmation of the quality

of our rotation. A proper rotation and translation will produce a larger number of

correspondences between the two lists of feature points than an improper rotation

and translation.

4.5 Analysis

4.5.1 Computational Complexity

The computational complexity of the algorithm depends upon the size of the objects

and the number of feature points. There are three main parts of the algorithm which

make significant contributions to computational complexity.

The first is the application of the wavelet transform and reconstruction of the

wavelet coefficients. Per Kingsbury [37], the computational complexity of the DTCWT

is O(n), where n is the number of voxels in the object.

The second major contributor is the screening of all possible triplets of feature

points, which is O( .

These triplets of feature points are pared down by eliminating collinear points,

small triangles, and triplets without matching triplets in the other model. In the

worst case, if no triplets were eliminated and the perimeter and angles of all triplets

in one model matched those of all triplets in the second model, the complexity of the

algorithm would be 0 (() 2)

4.5.2 Speed

As stated above, the speed of the algorithm depends both upon the size of the object

and the number of feature points selected. Table 4.5 shows speed of the algorithm

in two sections; the first is the wavelet transform and feature point selection which



depends upon the size of the object. The second is the point matching, voting, and

registration which depends upon the number of feature points. The algorithm is run

on a Core 2 Duo processor. Times are elapsed time.

The first time, which measures the part of the algorithm that is of complexity

O(n), is very consistent. The second time, which measures the part of the algorithm

that is of worst case complexity O () 2), varies greatly depending upon the orien-

tation of the model, as would be expected. As the rotation and translation from one

model to the other changes, the number of outliers changes, and thus the number of

matching triangles changes.

Model n Time 1 m (m) Time 2

Knee MRI 7,077,888 14.4 30 16,483,600 18.2
Shrek Solid Model 3,932,160 12.8 30 16,483,600 33.1
Large Brain MRI 25,186,304 108.9 30 16,483,600 42.1

Brain MRI 7,614,464 7.0 15 207,025 1.9
Brain MRI 7,614,464 7.0 20 1,299,600 4.9
Brain MRI 7,614,464 7.0 25 5,290,000 13.6
Brain MRI 7,614,464 7.0 30 16,483,600 56.5
Brain MRI 7,614,464 7.0 35 42,837,025 374.2

Table 4.5: Speed of the wavelet registration algorithm. n is the number of voxels in
the object. m is the number of feature points. The algorithm is divided into two
parts. Time 1, with complexity O(n), includes the wavelet transform and feature

point selection. Time 2, with complexity 0 (() 2), includes point matching, voting,
and registration. Times are elapsed time.

The algorithm compares favorably with other algorithms of its type. As discussed

in section 2.2.3, state of the art geometric feature registration algorithms run in the

neighborhood of 70 to 300 seconds. This algorithm runs in the neighborhood of 20

to 150 seconds, depending upon the size of the object.

One intended use of the algorithm is as a pre-processing step for voxel inten-

sity methods which accomplish very fine elastic registration but which require initial

coarse registration in order to avoid incorrect local minima. State of the art elas-

tic registration methods run many minutes up to hours; the speed of this algorithm



indicates its suitability for such an application.



Chapter 5

Examples and Applications

In this section we show examples from a variety of applications. Both non-homogeneous

models with continuously changing intensities throughout such as MRI scans and ho-

mogeneous models with a constant value in the interior such as voxelized surface

models are included. We show two examples with artificially added Gaussian noise,

one application of temporal matching, and one application with occlusion and clutter.

An important note is that the algorthm is not tuned to specific types of models.

All examples were run using the second and third resolution wavelet coefficients with

30 feature points selected. The voting scheme is a four dimensional averaged shifted

histogram with bin size of 0.02 for each quaternion coefficient and two bins averaged.

A 4-voxel ring is used for comparison of points and objects. Examples were run on a

Core 2 Duo machine.

Results format. The results for each registration are presented in tabular format

showing the transformations with the eight highest votes in descending order. Angles

are the pitch, roll and yaw Euler angles, 0, 5 and 0, required for registration as

determined by the algorithm. Ar is a pseudo-Manhattan distance which is the sum

of the magnitude of the distance between each recommended angle and the inverse

of the induced rotation. Vote is the number of votes received in the averaged shifted

histogram voting scheme. Similarly, the translation is the number of voxels in the

i, j and k directions required for registration as determined by the algorithm, and



At is the Manhattan distance between the recommended translation and the inverse

of the induced translation. The level 2 and level 3 columns indicate the number of

positive and negative feature points that align within 4 voxels given the recommended

rotation and translation. Results are rounded to the nearest degree or voxel.

The top eight vote receiving results are presented. The top result is the recom-

mended answer; the rest are provided for comparison and discussion.

5.1 Non-Homogeneous Objects

These objects are fully three dimensional, varying in intensity throughout the object.

Both examples shown here are Magnetic Resonance Imaging (MRI) data. However,

this description fits many types of data such as Computed Tomography (CT), Ultra-

sound (US), and functional MRI (fMRI).

These examples were formed by taking an object, then randomly selecting and

applying a three-dimensional Euler angle rotation and three-dimensional translation

to produce a second object. These two objects were registered using the wavelet

extrema algorithm and the resulting registration is compared to the induced rotation

and translation.

Brain MRI. The first example is an MRI scan of a brain [48]; see Figure 5-1. The

original model was rotated 28, 37 and -34 degrees in a pitch-roll-yaw Euler angle

scheme, then translated -14, 12 and -3 voxels to create the second model. Total

elapsed time was 63 seconds. Results are displayed in Table 5.1. All of the top eight

results are close in value.

Knee MRI. The second example is an MRI scan of Paul Debevec's knee, which

is available online courtesy of a torn ligament [15]; see Figure 5-2. The original

object was rotated by pitch-roll-yaw Euler angles of -20, 4, and 41 degrees, then

translated 13, 8 and 11 voxels in the i, j and k directions respectively. Registration

was performed; the top 8 results are displayed in Table 5.2. The total elapsed time



Table 5.1: Registration results for Brain MRI in descending order of vote. The correct

rotation in pitch-roll-yaw Euler angles is -28, -37 and 34 degrees, with a translation

of 14, -12 and 3 voxels.

Figure 5-1: Brain MRI scan [48]. The left column is a single slice of the original
object. The middle and right columns are single slices of the reconstructed wavelet
coefficients at the second and third levels of resolution respectively. The top row is
model A. The bottom row is model B, which has been rotated and translated.

Angles A Vote Translation Level 2 Level 3

0 0 i j k + - + -

-27 -36 33 4 297 14 -13 2 2 10 14 13 20

-25 -37 32 5 259 14 -13 3 1 10 14 13 20

-26 -36 30 7 248 15 -12 3 1 9 14 13 20

-26 -34 31 8 228 15 -13 1 3 10 12 12 20

-28 -35 35 3 227 13 -14 0 5 10 14 13 19

-24 -37 29 9 219 15 -12 3 1 9 12 12 20

-29 -35 33 4 210 13 -13 4 3 10 12 12 19

-26 -36 35 3 208 13 -13 1 4 10 14 13 19



was 44 seconds. Note that the top 7 results are very close to one another. The eighth,

which is incorrect, received significantly fewer votes.

Table 5.2: Registration results for Knee MRI in descending order of vote. The correct
rotation in pitch-roll-yaw Euler angles is 20, -4, and -41 degrees, with a translation
of -13, -8 and -11 voxels.

5.2 Homogeneous Objects

The objects in this section are solid models which do not vary in the interior. If not

already in voxelized form, mesh or other surface model types can be voxelized. We

used Binvox [49], a binary voxelization tool produced by Patrick Min based on the

work of Nooruddin and Turk [57].

Shrek. The 3D mesh model of Shrek, produced by Pocci [62], was voxelized using

Binvox [49]. Two tests were run. The first was a registration of the full model and

the second a cropped portion of the model.

The first test, using the full Shrek model with an induced rotation in pitch-roll-

yaw Euler angles of 12, 15 and -14 degrees and an induced translation of 11, -3 and

11 voxels, had an elapsed time of 262 seconds. Results are shown in Table 5.3. The

second test using the cropped model had an elapsed registration time of 67 seconds.

See Table 5.4 and Figures 5-3 and 5-4.

Angles A Vote Translation At Level 2 Level 3
0 i i j k + - +

20 -4 -40 1 5582 -12 -9 -10 2 15 4 22 22
20 -4 -42 1 4513 -12 -9 -10 2 14 4 22 22
21 -3 -40 3 4012 -12 -8 -10 2 16 4 22 22
18 -5 -40 3 3082 -13 -8 -10 1 14 4 23 22
20 -3 -43 2 2859 -12 -9 -10 3 13 4 21 22
18 -4 -42 3 2743 -13 -9 -10 2 14 4 23 22
20 -4 -38 3 2609 -12 -4 -11 5 13 4 22 24
22 5 -31 20 591 -14 3 -2 20 14 2 19 16



Figure 5-2: Knee MRI scan. The left column is a single slice of the original object.

The middle and right columns are single slices of the reconstructed wavelet coefficients

at the second and third levels of resolution respectively. The top row is model A. The

bottom row is model B, which has been rotated and translated.

Table 5.3: Registration results for the full Shrek solid model in descending order of
vote. The correct rotation in pitch-roll-yaw Euler angles is -12,
with a translation of -11, 3 and -11 voxels.

-15 and 14 degrees,

Angles Translation Level 2 Level 3
zt Vote k_

0 i j k + - + -

-12 -14 14 1 802 -12 3 -10 2 10 5 22 24

-13 -15 15 2 761 -11 3 -10 1 11 4 23 24

-13 -14 15 2 724 -11 3 -10 2 10 4 23 24

-13 -15 17 4 639 -8 2 -10 5 3 4 22 24

-13 -14 17 4 622 -8 3 -9 5 4 5 23 24

-12 -14 12 3 615 -11 2 -9 3 10 5 22 24

-12 -16 12 2 580 -12 2 -10 2 9 5 23 24

-15 -15 17 6 496 -7 2 -7 8 2 4 22 24



Table 5.4: Registration results for a cropped version of the Shrek solid model in

descending order of vote. The correct rotation in pitch-roll-yaw Euler angles is -10,

-20, and -30 degrees, with a translation of -14, 6 and -3 voxels.

Figure 5-3: Shrek model produced by Pocci [62] and voxelized using Binvox [49].

Angles Translation Level 2 Level 3
0V A, Vote At

0 q 4 i j k + - + -

-10 -21 -30 1 820 13 -7 4 4 11 9 22 26

-10 -19 -30 2 704 12 -8 3 3 11 9 22 26

-11 -18 -28 5 614 15 -7 3 3 10 9 22 26

-9 -15 -28 7 475 15 -8 -3 9 10 5 22 26

-10 -23 -31 4 473 15 -5 6 4 10 10 22 26

-11 -26 -32 8 350 12 -5 10 10 7 7 22 26

-10 -13 -28 9 329 15 -8 -3 9 11 5 22 26

-8 -8 -26 17 255 14 -12 -8 17 4 5 21 26



Figure 5-4: Cropped Shrek solid model. The left column is a single slice of the original
object. The middle and right columns are single slices of the reconstructed wavelet
coefficients at the second and third levels of resolution respectively. The top row is
model A. The bottom row is model B, which has been rotated and translated.



5.3 Noise

Noise can be induced in 3D models in many ways. In medical imaging, noise is

induced by the patient, either through movement or over time through growth and

change. All sensing methods induce some type of noise. Manipulating the objects in

their electronic form also induces noise. To test our method for noise sensitivity in

a controlled manner, we added Gaussian noise to the object to obtain varying signal

to noise ratios, then applied the algorithm to attempt registration.

Gaussian noise was added only to the rotated and translated object, which was

then registered to the original object without noise. The Gaussian noise was generated

using a normally distributed set of random numbers with a mean of zero, variance of

one, and standard deviation of one. This set of randomly generated numbers was then

multiplied by some greater standard deviation to achieve the desired signal to noise

ratio (SNR). The SNR was calculated using the ratio of root mean square amplitudes

of the signal and the noise [64]:

SNTR Asigna2 i=l
noise i= i

where A is the root mean square amplitude, xi is the voxel intensity at each point in

the object, and ki is the intensity of the noise added at each point in the object. The

SNR can also be expressed in decibels:

SNR = 10 logl10 (_ = )

As the test model, we used the knee MRI object with a rotation of 10, 20 and 30

degrees and a translation of -3, 7 and 0 voxels. The first test used a variance of 100

to achieve a SNR of 4.74, or 13.50 dB. Successful registration occurred in an elapsed

time of 34 seconds. The second test used a variance of 5000 to achieve a SNR of 0.67,

or -3.48 dB. Successful registration occurred in an elapsed time of 46 seconds.

Note that there is noise induced in each of these tests through the initial rotation

process in addition to the Gaussian noise induced.



This algorithm uses the second- and third-level resolution wavelet coefficients for

registration. The first-level resolution wavelet coefficients contain information relating

to the smallest scale details; much of the noise is contained in this level. This makes

the algorithm quite robust to noise, as demonstrated by the examples herein.

Figure 5-5: Knee MRI scan with Gaussian noise added. Left image without noise,

center image with SNR 4.74, right image with SNR 0.67.

Table 5.5: Registration results for Knee MRI with Gaussian noise in descending order

of vote. SNR = 3.32. The correct rotation in pitch-roll-yaw Euler angles is -10, -20,
and -30 degrees, with a translation of -3, 7 and 0 voxels.

5.4 Occlusion and Clutter

This example was constructed using Paul Debevec's knee MRI. A full model of the

knee was rotated and translated in three dimensions, then the original and rotated

versions were cropped so the majority of the object was the same but the edges

contained different parts of the knee; some portions were rotated out of the box while

Angles Translation Level 2 Level 37A Vote Ato ¢ ij k + - + -

-10 -21 -30 1 2059 -3 8 0 2 10 5 16 17

-11 -20 -28 3 1568 -3 9 0 2 10 5 14 18

-8 -20 -31 2 1549 -4 9 -1 3 10 5 14 17

-11 -19 -30 2 1446 -4 8 2 3 10 5 16 17

-12 -21 -29 4 1174 -3 8 0 1 10 5 16 17

-8 -18 -30 4 1150 -3 7 2 3 11 5 15 17

-11 -19 -28 4 1085 -1 9 3 6 10 5 15 18

-12 -22 -30 4 897 -2 6 0 2 10 5 16 17



Table 5.6: Registration results for Knee MRI with Gaussian noise of in descending
order of vote. SNR = 0.67. The correct rotation in pitch-roll-yaw Euler angles is -10,
-20, and -30 degrees, with a translation of -3, 7 and 0 voxels.

others were rotated in. You can see in Figure 5-6, for example, that the top right edge

of the knee is visible in the top row slice but not in the bottom row slice. Similarly,

variations in the tibia are visible at the bottom edge of the slice in the bottom row

but not in the top row. Successful registration was achieved in 18 seconds; results are

shown in Table 5.7.

Table 5.7: Registration results for Knee MRI containing occlusion and clutter. The
correct rotation in pitch-roll-yaw Euler angles is -6, -8 and 7 degrees, with a translation
of -5, 3 and -2 voxels.

Angles Translation Level 2 Level 3

0 0 A i j k + - +
-10 -20 -30 1 2131 -3 8 0 1 6 2 15 16
-11 -20 -28 3 1848 -3 8 0 2 6 2 15 17
-10 -19 -30 2 1768 -4 7 2 3 6 2 16 16
-11 -19 -28 4 1431 -1 9 3 7 7 2 14 16

-8 -20 -30 2 1417 -3 8 -1 2 6 2 14 16
-9 -18 -30 4 1373 -3 7 2 2 7 2 15 16
-12 -21 -28 5 1036 0 10 1 7 5 2 14 16
65 -15 -22 89 174 14 11 -38 59 9 1 2 0

Angles Translation Level 2 Level 3
0 0 A i j k + - + -

-6 -6 6 3 924 5 -3 1 2 9 15 4 17
-6 -7 6 1 857 5 -3 1 1 9 15 4 17
-4 -6 6 5 768 5 -3 1 1 9 15 4 16
-4 -8 6 3 706 5 -3 2 1 9 15 4 17
-6 -3 6 5 506 4 -3 0 3 7 15 4 17
-4 -3 6 8 458 5 -3 1 1 7 13 4 17
-8 -10 7 4 280 5 -3 2 1 8 14 3 17
1 -1 5 16 141 2 -3 2 3 5 13 1 17



Figure 5-6: Occlusion and clutter. The left column is a single slice of the original
object. The middle and right columns are single slices of the reconstructed wavelet
coefficients at the second and third levels of resolution respectively. The top row is
model A which has been cropped. The bottom row is model B, which was rotated
before cropping.



5.5 Temporal

The final example consists of two MRI scans taken of Bruce Gooch at different times,

one on June 5 and one on July 13 [19]. The other examples in this section are con-

cocted by rotating and translating an object then comparing to a copy of its original

self; therefore, the rotation and translation are known exactly. In this example, we

are comparing two different objects of unknown initial orientation.

For the first test, we rotate the June 5 scan through a large rotation, then attempt

registration with the July 13 scan. Results are shown in Table 5.8. The resulting

rotation and translation are not exactly equal to the induced ones. It can be seen in

Figure 5-7 that the post-alignment registration is improved over the initial slightly

unaligned version.

For the second test, the June 5 and July 13 scans are registered as is, with no

induced rotation or translation. Results are shown in Table 5.9. Note that the

recommended rotation and translation are very close to the difference between the

induced and recommended rotation and translation in the first test.

Figure 5-7: Temporal brain MRI scan comparison. The left image was taken on July

13. The center image was taken on June 5. The right hand image is the June 5 image

after a large rotation is induced then removed through registration with the July 13

image; note that the alignment is improved after registration despite the large initially

induced angle. For example, the top of the eye is no longer visible after registration.



Table 5.8: Registration results for temporal Brain MRI in descending order of vote.
The induced rotation in pitch-roll-yaw Euler
translation.

angles is -5, -5, and -70 degrees, with no

Table 5.9: Registration results for temporal Brain MRI in descending order of vote.
There was no initial induced rotation or translation.

Angles Ar Votre ranslation Level 2 Level 3
0 p i j k + - + -

1 -3 -73 10 3700 8 4 -2 14 17 16 25 9
0 -5 -72 7 3453 7 4 -2 13 18 15 25 9

-1 -4 -75 10 3257 7 5 -1 13 19 17 25 13
0 -2 -73 10 3143 7 3 -2 12 19 16 25 9
1 -3 -75 12 3065 7 4 -1 13 19 17 24 13
-1 -3 -75 11 2988 6 5 -1 12 19 17 24 11
0 -2 -75 12 2718 6 4 -1 11 19 17 24 11
0 -7 -72 9 2432 9 7 2 18 19 3 25 9

Angles Translation Level 2 Level 3
A, Vote k At

0 _ i j k + - + -
3 2 -3 8 2879 7 -4 0 11 21 14 25 13
6 1 -3 10 2530 7 -6 -1 13 21 14 25 13
4 1 -2 7 2353 7 -4 0 12 21 13 25 12
5 1 -1 8 2322 7 -6 0 13 21 14 25 12
3 3 -3 9 2290 4 -4 -1 9 21 14 25 13
3 1 -5 10 2137 7 -4 -1 12 21 13 25 12
5 3 -3 12 1984 4 -6 -1 11 21 13 25 13
1 1 -4 6 1937 5 0 0 5 21 14 25 13



Chapter 6

Conclusions and Recommendations

6.1 Conclusions

We have demonstrated an algorithm to conduct rigid registration of voxelized three-

dimensional objects using the wavelet transform. The method performs registration

of objects that are grossly misaligned and brings them closely into alignment. Global

registration is successfully achieved without need of initial alignment information.

Further fine registration may be conducted at this point using elastic registration

methods or other fine alignment methods such as ICP.

We explored the effects of variations in the algorithm such as choice of feature

point type and quantity, rotation representation, and voting scheme. Choices are

explained and quantified.

We presented several applications and demonstrate efficacy on both fully three

dimensional models in which the intensity varies throughout and on surface models

in which the interior is a constant value. The algorithm is robust to noise, occlusion

and clutter, and can operate on models that vary in time.

The method compares favorably in speed to other geometric feature registration

methods and is signifiantly faster than voxel intensity registration methods, thus

making its use as a pre-processing step for voxel intensity methods feasible. It operates

on voxelized objects, which many geometric feature registration methods do not,

and solves the problem of most voxel intensity methods in that it achieves global



registration without settling into a local minimum.

6.2 Recommendations for Future Work

The directions in which this research could go next are numerous and interesting. A

partial matching application could allow the alignment of smaller data sets to larger

ones. Adding scale variation could allow the alignment of higher resolution data sets

in areas of interest.

Within the algorithm itself, the exploration of different size filters or different

shape wavelets that still meet the DTCWT criteria is possible and may lead to im-

provements in precisely locating feature points.

Cross modal registration would allow the comparison of objects from different

types of scans, such as MRI and CT data for medical applications or acoustical and

optical data for security applications such as mine detection.



Appendix A

DTCWT Shift Invariance-

Aliasing Energy Ratio

A quantitative analysis of the shift-invariance of Kingsbury's Dual-Tree Complex

Wavelet Transform (DTCWT) is provided in [37], and is summarized here.

Figure A-i graphically represents the decomposition of a signal using the DTCWT.

The level one decomposition uses a discrete wavelet; subsequent levels use a q-shift

wavelet and its reverse to achieve the proper interleaving of samples between the trees.

A decomposition and recomposition of a signal using the DTCWT is graphically rep-

resented by Figure A-1, feeding into a reverse of the graph in Figure A-1. If only one

level of wavelets were retained, e.g. d3a and d3b, the decomposition and recomposition

could be represented by Figure A-2, where, e.g., A(z) = Ho0 (z)Hooa(z 2)Hool0 (Z4 ) and

M = 8.

Downsampling and upsampling a signal by some number of samples, M, is shown

in the bottom leg of Figure A-2. Using multi-rate analysis, this results in [37]:

1 M-1
D(z) = B(Wkz)

k=0

where WV = ej 2 / MI.



Therefore, the mathematical representation of Figure A-2 is:

Y(z) = Ya(Z) + Yb(Z)
1 M-1

= EM X(Wkz)[A(Wkz)C(z) + B(Wkz)D(z)].
k=0

Aliasing terms occur when k =- 0. In order to avoid aliasing, one must design filters

such that A(Wkz)C(z) and B(Wkz)D(z) are small or cancel one another.

An indication of the degree of shift invariance is the aliasing energy ratio [37]:

kM-1 £{A(Wk(z)C(z) + B(Wkz)D(z)}
Ra - {A(z)C(z) + B(z)D(z)}

where E = E, lurI2 and U(z) = E, u z -'. This is the ratio of the total energy of the

unwanted aliasing transfer functions to the energy of the wanted transfer function.

Aliasing energy ratios, listed in dB, are compared in Table A.1 for various versions

of the DTCWT and for the DWT at several levels of decomposition. Note that the

aliasing energy ratio for the DWT is many orders of magnitude greater than that of

any of the DTCWTs.

Filters A B C DWT
Wavelet
Level 1 -oo -00oo -oo -9.40
Level 2 -31.40 -29.06 -14.11 -3.54
Level 3 -27.93 -25.10 -11.00 -3.53

Scaling fn.
Level 1 -00 -00 -00 -9.40
Level 2 -32.50 -30.17 -15.93 -9.38
Level 3 -35.88 -29.21 -20.63 -9.37

Table A.1: Aliasing Energy Ratios in dB (10 log,,0 Ra), where A indicates (13,19)-tap
near-orthogonal filters at level 1 with 18-tap Q-shift filters at levels > 2, B indicates
(13,19)-tap near-orthogonal filters at level 1 with 14-tap Q-shift filters at levels > 2,
C indicates (5,3)-tap LeGall filters at level 1 with 6-tap Q-shift filters at levels > 2,
and DWT indicates a (13,19)-tap DWT. Adapted from [37].



Level 3

Tree a

X(z)

Tree b

Figure A-1: DTCWT using q-shift wavelets. H1 and Ho are the first level discrete
wavelet and scaling function filters respectively. Hol and Hoo are the q-shift wavelet
and scaling function filters; (1) indicates a one-quarter shift and (3) indicates a three-
quarter shift. Adapted from [37].

Tree

X(z)

Tree

Y(z)

Figure A-2: Decomposition and recomposition of a single level of detail coefficients,
using the DTCWT. If the third level of wavelets were retained, i.e. d3a and d3b, then
A(z) = Hoa(z)Hooa(z 2 )Hoola(z 4 ) and M = 8. B(z), C(z), and D(z) can similarly be
determined from Figure A-1.



Appendix B

Probability of a Random Match

When using the wavelet transform to select feature points in an image, the ques-

tion arises whether the wavelet transform extrema actually select feature points, or

whether randomly selected points could achieve similar results. It is shown below that

the probability of randomly selecting matching points, even with noise considered, is

quite low.

B.1 Basic Probability

First, we begin with some basic probability concepts.

1. The probability of randomly selecting one specific item from a set of n items is

1/n [74]. For example, given a bowl of 10 marbles numbered 1 through 10, the

probability of selecting marble number 3 in one draw is 1/10.

2. The probability of randomly selecting one of m specific items from an set of n

items is m/n [74]. For example, given a bowl of 10 marbles, 6 blue and 4 red,

the probability of selecting a red marble in one draw is 4/10.

3. The probability of an event is the number of combinations that produce the

event divided by the total number of combinations [74].



4. Given a set of n items, the number of possible combinations of m items within

that set, if order does not matter, is [74]

(n) _n!
C=' mi (n - m)!'

which is known as "n choose m." For example, given 6 marbles, 4 of which are

red, there are (6) = 15 possible combinations of the marbles, assuming there is

no differentiation among red marbles or among blue marbles; i.e., order of the

marbles other than color does not matter so the sequence Redl-Red2-Bluel is

the same as Red2-Redl-Bluel.

B.2 Probability of a Random Match

Based on these ideas of basic probability, the following points applicable to our re-

search have been developed.

B.2.1 Choosing less than the full amount

Assume you have a set of n items, m of which are desired. If you draw d items from

the total, what is the probability that k of those d will be the desired items?

From item 3 above, the probability of such an event is the number of correct

combinations divided by the total number of possible combinations. From item 4

above, the total number of possible combinations is (n).

The number of correct combinations is the number of combinations of m items in

k chances times the number of combinations of the incorrect/undesired items (n - m)

in the remaining positions (d - k):

(m) (n - mn)
s= 

d -k

For example, six marbles, numbered 1 through 6, drawn 3 at a time, produce

3() = 20 possible combinations. If the desired marbles are numbered 1, 2 and 3, then



the number of combinations which produce two desired marbles is:

S= () (-) = () ( = () () = 3 .3 = 9.k d -k 2 3-2 2 1

Thus, the probability of drawing exactly two desired marbles in three draws is s/c =

9/20 = 45%. See Figure B-1.

Correct Combinations Incorrect Combinations
1 1 1 1 1 1 2 2 2 1 1 1 1 2 2 2 3 3 3 4
2 2 2 3 3 3 3 3 3 2 4 4 5 4 4 5 4 4 5 5
4 5 6 4 5 6 4 5 6 3 5 6 6 5 6 6 5 6 6 6

2 3 1 0

Figure B-1: Possible combinations of 3 marbles drawn from a set of 6 marbles num-
bered 1 through 6. The desired marbles are numbered 1, 2, and 3. The bottom row
shows the number 'of desired marbles in each combination. Of 20 possible combina-
tions, 1 has three desired marbles, 9 have two desired marbles, 9 have one desired
marble, and 1 has zero desired marbles. For our example, the 'correct' combinations
are those that have exactly two desired marbles.

B.2.2 Pixel Rings

To compensate for noise, we allow a choice that is 'close' to the specific desired item

to meet our requirements. We define close as within a p-pixel ring in 2D or a p-voxel

ring in 3D, where p is the number of concentric sets of points included. We define q

as the number of points contained in the sets of rings. For a 2-pixel ring, q = 25. See

Figure B-2.

The pixel ring concept introduces the difficulty that q varies with the location of

the chosen sample. For example, randomly selecting a voxel within one pixel of the

correct one in a 2D array results in q = 9 for all interior points, q = 6 for edges, and

q = 4 for corners. See Figure B-3. In this assessment, we assume that q is the largest

possible value, thus overestimating the probability of a random match.

In addition, we assume that the pixel rings do not overlap, thus again overesti-

mating the probability of a random match.



X------Xx x x x x x x
X 0 0 0 X

X 0 X 0 X
X - 0 0 0 X

X .-. X

Figure B-2: Pixel rings. The desired point is the red x. The one-pixel ring includes
all blue o's. The two-pixel ring includes all magenta -'s. A voxel ring is similarly
constructed in 3D; the one-voxel ring would include the blue o's shown plus those
adjacent one plane in and out of the page, for a total of 26 blue o's.

x x x x x o X 0 x

B.2.3 Probability of choosing with noise

x x x x X x x o 0

x x x x x x x 0 X

Figure B-3: Number of samples in a pixel ring. Note that for a centered item, the
number of points in the 1-pixel ring is q = 9; for an edge point, q = 6, and for a
corner, q = 4.

B.2.3 Probability of choosing with noise

Given the formulation of Section B.2.1, assume that for each good point, m, there are

q possible options. The number of correct combinations is still the number of com-

binations of desired items in k chances times the number combinations of undesired

items in the remaining positions, d - k.

The number of combinations of desired items in k positions is qk k For example,

assume two options (q = 2) for each of three correct marbles (m = 3), numbered la,

ib, 2a, 2b, 3a, 3b. The number of combinations of these marbles in three positions

(k = 3) is qk) • 2: ) = 8, as shown below:

la la la la lb lb lb lb

2a 2a 2b 2b 2a 2a 2b 2b

3a 3b 3a 3b 3a 3b 3a 3b

The number of undesired items to be possibly placed in the remaining positions

is the total number of items that are not in any pixel rings (n - qm) plus the number



of items that are in the pixel rings that have already been chosen that are not higher

priority ((q - 1)k/2). This results in the following number of correct combinations:

k(m n - qm + (q - 1)

To ensure we have an integer within the choose statement we will round k/2 up,

which again maximizes the probability of a random match.

As an example, using the marbles listed above (la, ib, 2a, 2b, 3a, and 3b), assume

there is a fourth set of desirable marbles (4a and 4b), plus several non-desired marbles

(5, 6, 7, etc.). If four draws are allowed (d = 4), but only three desired marbles are

drawn (k = 3), then there are qk (7) = 2 3() = 32 combinations of desired items

(those shown above plus several more using marbles 4a and 4b).

Take one of the possible combinations: la, 2b, 3b. The marble in the fourth

position must meet the following requirements:

* It cannot be either 4a or 4b, or k would equal 4 (there would be four desired

items in four draws).

* It can be any of the non-desired marbles (5, 6, 7, etc.); there are n - qm of

these.

* It can be lb since drawing both la and lb counts as choosing only one desired

item (both are from the same pixel ring).

* It could be 2a for the same reason as it can be ib, except that the combination

falls under "la, 2a, 3b, x" instead of "la, 2b, 3b, x" in our listing scheme.

Similarly, 3a is listed earlier.

B.3 Examples

As examples we present a 2D image that is 128 pixels on a side, for a total of n

16,384 pixels. Probabilities for matching k of m points are shown in Table B.1.



m k Probability
20 20 1.87 x 10- 28

20 15 5.94 x 10-15

20 10 5.03 x 10- 7

20 5 0.022
20 1 1.288
6 5 1.25 x 10- s

6 3 2.71 x 10- 4

6 1 0.155

Table B.1: Probabilities for choosing k of m correct items out of 16,384 possible
points.



Figure B-4: Translation Variance. The image size is 128 x 128. The top row is the
normal DWT: 6 of the top 15 extrema correspond in location. Circles denote match-
ing extrema; triangles denote non-matching extrema. The probability of randomly
matching 6 of 20 points within a 4-pixel ring is 1.52 x 10- 4 . The bottom row is
the DTCWT: 12 of the top 15 extrema correspond in location. The probability of
randomly matching 12 of 15 points within a 4-pixel ring is 1.85 x 10-14
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Figure B-5: Rotation Variance. The image size is 128 x 128. The top row is the
normal DWT: 7 of the top 15 extrema correspond in location. Circles denote match-
ing extrema; triangles denote non-matching extrema. The probability of randomly
matching 7 of 15 points within a 4-pixel ring is 9.45 x 10-6. The bottom row is
the DTCWT: 11 of the top 15 extrema correspond in location. The probability of
randomly matching 11 of 15 points within a 4-pixel ring is 2.66 x 10-12
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Appendix C

Rotation Representations

This appendix provides details of several representations of rotation, along with con-

version methods between representations.

C.1 Orthonormal Rotation Matrix

The rotation of a point, p, through an angle, 0, can be represented using an orthonor-

mal rotation matrix [60]:

R 11 R 12 R 13  x

p' Rp = R 21 R 22 R23  Y (C.1)

R 31 R 32 R33  z

An orthogonal rotation matrix produces a rigid rotation. If the determinant of R is

equal to one, this is a proper rotation. If the determinant of R is equal to -1, equation

(C.1) produces an inversion with a rotation [94].

The following rotation matrix produces a counterclockwise rotation of an object

in two dimensions about the origin through an angle, 0, while the axes remain fixed

[94]:

cos - sino 1
Ro =

sin 0 cos 0



Note that, although there are four terms in this rotation matrix, the terms are not

independent; there is only one degree of freedom. Similarly, a three-dimensional

rotation matrix has nine terms and three degrees of freedom.

C.2 Euler Angles

One convention of representing three dimensional rotations is the use of Euler angles,

in which a three dimensional rotation may be represented as a sequential rotation

about each of three different axes. We will use the pitch, roll, yaw convention, which

rotates an object about the z, y, and z axes by angles 0, q and ýi respectively, and

in that order. Thus, the rotation matrix becomes [27]:

- sin <

cos V)

0

0

0

1

cos 0

0

- sin

sin q

0

cos

sin 0 sin k cos p - cos 0 sin V)

sin 0 sin 5 sin V + cos 0 cos ýb

sin 0 cos 0

1 0 0

0 cos0 - sin 0

0 sin 0 cos 0

cos 0 sin ¢ cos V + sin 0 sin b

cos 0 sin q sin b - sin 0 cos b

cos 0 cos 0

The pitch, roll and yaw angles,

matrix above as follows:

taken in that order, can be extracted from the rotation

0 = arctan(R32/R 33)

S= - arcsin(R 31)

= arctan(R 1 2/R 1 1)

Note that the order of rotation matters. For example, if the object is rotated

cos V)

sin b

0

cos cos
cos sin V)

- sin 0

(C.2)

R =



about the z axis first, then the y axis and then the x axis, the rotation matrix is:

1 0 0 cos 4 0 sin 4 cos4' -sinp 0

R = 0 cos0 - sin 0 0 1 0 sin < cos · 0

0 sin cos O -sin4 0 cos 4 0 0 1
(C.3)

cos 4 cos p - cos 0 sin ' sin 4

= sin 0 sin cos b + cos 0 sin # - sin 0 sin 4 sin 1 + cos 8 cos o - sin 8 cos 0

- cos 0 sin 4 cos V + sin 0 sin 4 cos 0 sin 4 sin b + sin 0 cos V) cos 0 cos 4

and the yaw, roll and pitch angles, taken in that order, are then:

ý = arctan(-R 12/R 11)

0 = arcsin(R 13)

0 = arctan(-R 23/R 33). (C.4)

Note that the inverse sine and inverse tangent functions are ambiguous; for a given

value there are two possible corresponding rotation angles in the region -r to r; either

may be possible and the entire rotation matrix must be verified to ensure the correct

value has been chosen.

C.2.1 Gimbal Lock

Using Euler angles has the complication that rotations of 900 can cause the once-

unique axes to coincide, reducing the degrees of freedom described by the system from

three to two. This is called gimbal lock. When using an Euler angle representation,

care must be taken to avoid such situations.

During the first moon landing, a three-gimbal system was used to control the

lunar lander. The following conversation was recorded between Command Module

Pilot Mike Collins and CapCom Owen Garriott during the landing [34]:

Garriott: Columbia, Houston. We noticed you are maneuvering very close to

gimbal lock. I suggest you move back away. Over.



Collins: Yeah. I am going around it, doing a CMC Auto maneuver to the Pad

values of roll 270, pitch 101, yaw 45.

Garriott: Roger, Columbia. (Long Pause)

Collins: (Faint, joking) How about sending me a fourth gimbal for Christmas.

C.3 Axis-Angle

A fairly intuitive representation of rotation is the axis-angle representation, which

consists of rotation of an angle, a, about a unit vector n.

There are several difficulties in applying this method. Note that if a is zero,

the axis vector is arbitrary. Also, there is an ambiguity in that the same rotation

can be represented in two manners: if R(n, a) is a rotation of angle a about unit

vector n, then R(n, a) = R(-n, -a). If this is restricted by limiting a to rotation

angles between zero and 180 degrees, then there is a singularity near zero and 180

degrees where the axis can jump significantly with a small change in rotation. A

third difficulty is that two subsequent rotations cannot be combined to find a total

rotation without converting to matrices or quaternions.

C.4 Quaternions

Quaternions are vectors with the representation [26]

q = qo + q1 e, + q2e2 q3e 3, qi E ,

where the basis vectors, ei, observe the following convention:

e = e2 = e = -1,

ele 2 = e3, e2e 3 = e, e3e1 = e 2,

e2e1 = -e 3 , e3e 2 = -el, and e1 e3 = -e 2.



This has a simple correlation with the axis-angle representation as follows [27]:

q0 =cos(a/2)

qi = sin(a/2) cos(o3)

q2 = sin(a/2)cos(O.)

q3 = sin(a/2) cos(oz),

where /3, 03, and 3z are the direction cosines of the unit vector n described above.

Rotation using a quaternion is formulated as follows [27]:

p' = qpq*

where 4* = go - q1e - q2e2 - q3e3 is the quaternion conjugate. From this, one can

derive the orthogonal rotation matrix [26]:

1 - 2(q2 + q ) 2(qlq 2 - qoq3) 2(qq 2 + qlq 3 )

R = 2(qlq2 + qoq 3) 1- 2(q + q ) 2(q2q3 - qoq1) (C.5)

2(qiq3 - qoq 2) 2(qoql + q2q3) 1 - 2(q + q2)

From this equation it becomes obvious that q and -q produce the same rotation.

It follows from equations (C.2) and (C.5) that pitch-roll-yaw Euler angles to rotate

about the z, then y, then x axes respectively are thus:

0 arctan R3  = arctan 2(q + q2qR3,3 1 - 2(ql + q )
= arcsin (-R3,1 ) = arcsin (2(qoq 2 - qlq 3))

R2,1  2(qiq 2 + qoq3)= arctan ,= arctan -2(q+q)
RI ~ k 1 - 2(q, + q)

Quaternions have several advantages over other methods. They avoid the gimbal

lock problem of Euler angles. They can be combined easily as can rotation matrices,

but it is easier to find a unit quaternion close to an un-normed quaternion than it is

to find an orthogonal matrix near a non-orthogonal one.
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