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Abstract This paper presents a new algorithm to generate

hexahedral meshes in extrusion geometries. Several algo-

rithms have been devised to generate hexahedral meshes by

projecting the cap surfaces along a sweep path. In all of

these algorithms the crucial step is the placement of the

inner layer of nodes. That is, the projection of the source

surface mesh along the sweep path. From the computa-

tional point of view, sweep methods based on a least-

squares approximation of an affine mapping are the fastest

alternative to compute these projections. Several func-

tionals have been introduced to perform the least-squares

approximation. However, for very simple and typical

geometrical configurations they may generate low-quality

projected meshes. For instance, they may induce skewness

and flattening effects on the projected discretizations. In

addition, for these configurations the minimization of these

functionals may lead to a set of normal equations with

singular system matrix. In this work we analyze previously

defined functionals. Based on this analysis we propose a

new functional and show that its minimization overcomes

these drawbacks. Finally, we present several examples to

assess the properties of the proposed functional.

Keywords Finite element method � Mesh generation �
Hexahedral elements � Sweep � Node projection �
Affine mapping

1 Introduction

The finite element method is currently used to simulate and

analyze a wide range of problems in applied sciences and

engineering. There are several 3D applications where

hexahedral elements are preferred. Hence, the general

interest in unstructured hexahedral discretizations has

increased. Since an all-hexahedral mesh generation algo-

rithm for any arbitrary geometry is still an unattained goal,

research efforts are focused on algorithms that decompose

the entire geometry into several simpler volumes. In par-

ticular, during the past decade significant progress has been

made in developing fast and robust sweeping algorithms

[1 4]. Nowadays, the original sweep methods have been

modified in order to mesh more complicated geometries

allowing multiple source and target geometries [5, 6], and

multiple axis geometries [7].

Given an extrusion volume, the common task of all

sweeping algorithms is to identify the source surfaces, the

corresponding target surfaces, and the set of surfaces that

join them, called linking sides. The source surfaces can be

meshed using any structured or unstructured quadrilateral

surface mesh generator [8 11]. However, the linking sides

must be meshed using a structured quadrilateral algorithm,

for instance, transfinite interpolation [12]. Then, the source

surface meshes are extruded along the sweep direction until
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use the term hyperplanar to denote a linear variety of

dimension n - 1 (a plane for n = 3 and a straight line for

n = 2). From the practical point of view, two cases are

important: n = 2 used to project sets of points between

parametric spaces [4], and n = 3 used to project sets of

points in the physical space [1, 4].

Definition 1 (Hyperplanar set) A set of points X ¼
fxigi¼1;...;m is hyperplanar if there exists only one hyper-

plane through all the points in X.

Remark 3 The definition of hyperplanar set has an

interesting geometrical interpretation. It states that there

exist n points in X that are linearly independent as affine

points. In other words, if we take any point of X, the dif-

ferences between the rest of points of X and the selected

point determine a vectorial subspace of dimension n - 1.

Definition 2 (Unitary normal vector) Let X be a set of

points. A unitary normal vector to X is a vector nX 2 R
n

with knXk ¼ 1 such that

hnX ; xii ¼ c; i ¼ 1; . . .;m; ð7Þ

for some c 2 R:

Definition 3 (Homogeneous hyperplane) Let X be a hy-

perplanar set of points. The homogeneous hyperplane of X

is the subspace of vectors

H ¼ fv 2 R
njhnX; vi ¼ 0g;

where nX 2 R
n is a normal vector to X.

Lemma 1 If X is a hyperplanar set, then cX is such that

hnX ; cXi ¼ c;

where nX and c are introduced in Definition 2.

Proof Since X is a hyperplanar set, Eqs. (7) hold. Adding

these m equations, and taking into account that h �, � i is

bilinear, then

nX ;
Xm

i¼1

xi

* +
¼ mc:

Proof The minimization of functional F is equivalent to

imposing the following m constraints:

Aðxi � cXÞ ¼ yi; i ¼ 1; . . .;m: ð8Þ

Our unknowns are the coefficients of the n 9 n matrix A

which we denote as

A ¼
a1;1 . . . a1;n

..

. ..
.

an;1 . . . an;n

0
B@

1
CA:

Defining

X :¼
x1

1 � cX
1 . . . xm

1 � cX
1

..

. ..
.

x1
n � cX

n . . . xm
n � cX

n

0
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1
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and

Y :¼
y1

1 � cY
1 . . . ym

1 � cY
1

..

. ..
.

y1
n � cY

n . . . ym
n � cY

n

0

B@

1
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we can write the m constrainsts (8) as

AX ¼ Y:

Hence, the minimization of F is equivalent to solving

XTAT ¼ YT :

This equation is equivalent to solving the following n

(m 9 n)-overdetermined linear systems:

XTak ¼ yk; k ¼ 1; . . .; n;

where ak: = (ak,j) for j ¼ 1; . . .; n and yk ¼ ðyl
k � cY

k Þ; for

l ¼ 1; . . .;m: To conclude, we have to prove that XT has

rank n - 1. By Lemma 2, and taking into account that

dim H ¼ n� 1

rank XT ¼ dim spanðx1 � cX; . . .; xm � cXÞ
¼ dim H ¼ n� 1:

h

Remark 4 It is well known that solving a rank-deficient

overdetermined linear system is equivalent to solving a set

of normal equations with singular system matrix [15, 16].

When X is hyperplanar, we have seen that the minimi-

zation of F amounts to solving n uncoupled overdeter-

mined linear systems of rank n - 1. Thus, we have n extra

degrees of freedom which allow us to find a solution of the

minimization of F such that it has cY - cX as a fixed

vector. This idea leads to the change of coordinates x ¼
x� cX þ cY � cX and y ¼ y� cX (see [1] for details).

These new coordinates have a clear geometric interpreta-

tion: the sets of points X and Y are translated to cY - cX

Dividing both terms of the last equation by m, and using 
the definition of the geometric center cX we finally obtain 
h nX, cX i = c. h

Lemma 2 If X is a hyperplanar set, then

H ¼ spanðx1 � cX; . . .; xm � cXÞ:

Proof The proof of this Lemma is straightforward from 
Definition 1, Remark 3, and Lemma 1.

Proposition 1 If X is hyperplanar, then the minimization 
of functional F is equivalent to solving n uncoupled over-

determined linear systems of rank n - 1.
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(see Fig. 4). According to [1], these new coordinates sug-

gest the definition of the following functional:

GðAÞ : ¼
Xm

i¼1

yi � cX � Aðxi � cX þ cY � cXÞ
�� ��2

¼
Xm

i¼1

y
i � Ax

i
���

���
2

: ð9Þ

Therefore, we are looking for a linear mapping A such that

it approximately transforms, in the least-squares sense, X ¼
fxigi¼1;...;m into Y ¼ fyigi¼1;...;m:

However, functional (9) also leads to normal equations

with singular matrix if the vector cY - cX lies in the

hyperplane determined by the source points (see Fig. 5).

Note that this situation is usual in several practical 3D

applications if the inner layers are obtained by means of a

direct projection from the source surface mesh [4]. On the

other hand, this is typically not the case if the position of

the new layer is computed from the previous one in an

advancing front manner [1].

Proposition 2 If X is hyperplanar and cY � cX 2 H; then

the minimization of functional G is equivalent to solving n

uncoupled overdetermined linear systems of rank n - 1.

Proof This proof only differs from the proof of Proposi-

tion 1 on the definitions of matrices X and Y. In this case,

the correspondent matrices are

X :¼
x1

1 � cX
1 þ cY

1 � cX
1 . . . xm

1 � cX
1 þ cY

1 � cX
1

..

. ..
.

x1
n � cX

n þ cY
n � cX

n . . . xm
n � cX

n þ cY
n � cX

n

0
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1
CA

and

Y :¼
y1

1 � cX
1 . . . ym

1 � cX
1

..

. ..
.

y1
n � cX

n . . . ym
n � cX

n

0
B@

1
CA:

To conclude, we have to show that XT has rank n - 1. By

assumption cY � cX 2 H; hence

spanðx1 � cX þ cY � cX; . . .; xm � cX þ cY � cXÞ
¼ spanðx1 � cX; . . .; xm � cXÞ:

Finally, using this equation, Lemma 2, and taking into

account that dim H ¼ n� 1; we obtain

rank XT

¼ dim spanðx1 � cX þ cY � cX ; . . .; xm � cX þ cY � cXÞ
¼ dim H ¼ n� 1:

h

Remark 5 It is also possible to prove that if X is hyper-

planar and cY � cX 62 H; then the minimization of G is

equivalent to solving n uncoupled overdetermined linear

systems of rank n.

Remark 6 The minimization of functional G has an

additional shortcoming when it is applied to planar sets of

points, even in the case of cY � cX 62 H: Consider the

source surface with a planar boundary and non-planar

interior shown in Fig. 6a. Assume that we want to project

a source surface mesh to an inner layer (of a sweep

volume) defined by a planar boundary, but non-parallel to

the source surface. Figure 6b shows a cross-section of the

source surface, the correspondent cross-section of the

computed projection minimizing functional G, and the

desired solution. We know that the optimum affine

transformation, AG, has cY - cX as fixed vector. Thus, we

can observe that the cross-section obtained with AG (gray

line in Fig. 6b) does not preserve the shape of the original

surface.

4 The new formulation

In order to overcome the drawbacks arising from the

minimization of functionals F and G, in this work we

propose the following new functional:

X

Y

O

X

Y

cx

cy

cy - cx

cy - cx

Fig. 4 Geometric representation of the translation of sets X and Y to

cY cX

Fig. 5 Example of a geometry where cY cX lies in the same plane

as the source surface and the boundary of the inner layer
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Y :¼
y1

1 � cY
1 . . . ym

1 � cY
1 uY

1

..

. ..
. ..

.

y1
n � cY

n . . . ym
n � cY

n uY
n

0

B@

1

CA:

By hypothesis X generates a linear variety of dimension n.

Thus, rank XT = rank X = n. h

Remark 7 From Propositions 3 and 4, we can conclude

the minimization of H has one and only one solution. Note

that we do not consider sets of points X that generate linear

varieties of dimension less than n - 1. For instance, in R
3

we do not consider source surfaces which degenerate to

lines or points, because it does not make sense to sweep

them in practical applications.

Remark 8 Vectors uX and uY are parameters of functional

H. In our implementation we have selected them as

• X hyperplanar and Y hyperplanar: uX = nX and

uY = nY.

• X hyperplanar and Y non-hyperplanar: uX = nX and

uY = ~nY .

• X non-hyperplanar and Y hyperplanar: uX = 0 and

uY = 0.

• X non-hyperplanar and Y non-hyperplanar: uX = 0 and

uY = 0,

where ~nY is a measure of the normal vector to Y. However,

further research has to be developed in order to prove the

proper selection of vectors uX and uY.

Remark 9 In several applications the source and the target

boundaries are not affine. Therefore, it is not possible to

obtain an affine transformation that exactly maps X to Y. In

these situations an additional smoothing step is required in

order to improve the quality of the final mesh. Hence, our

goal is also to obtain a good initial inner node location in

order to decrease the number of iterations in the smoothing

step. We claim that the minimization of functional H

provides better node location than the minimization of

functionals F and G. Moreover, this projection algorithm

may provide an excellent initial guess for morphing pro-

cedures [2].

5 Numerical examples

In order to assess the advantages and drawbacks of the

proposed functionals used to obtain affine transformations,

four examples are presented. These examples are obtained

with a sweeping tool that implements the minimizations of

functionals F, G, and H. To highlight the behavior of the

three functionals, in these examples the inner meshes are

obtained projecting directly from the source surface to the

inner layers. That is, we have neither used a weighted

projection algorithm from both cap surfaces (which we use

in practical applications [4]) nor an additional smoothing

step to improve the quality of the final mesh. To solve the

overdetermined linear systems that do not have full rank,

we use a singular value decomposition which supplies the

solution with the smallest norm. The set of points X cor-

responds to the boundary nodes of the source mesh, and the

set of points Y corresponds to the boundary nodes of the

current inner layer. In all examples, the source surface has

a planar boundary, with non-planar interior. Observe that

we have selected source surfaces with planar boundaries in

order to force a minimization of functional F that leads to a

set of normal equations with singular system matrix.

Moreover, the minimization of functional G is only used

for source surfaces with planar boundaries. However, the

target surface may be planar or not. Also, in all the

examples, the boundary of the source surface is not parallel

to the loops of the inner layers. Note that if they were

parallel, the minimization of functional G will not produce

the skewness effect presented in Remark 6.

In the first example (see Fig. 8), a C-shaped geometry

with circular cross sections is presented. The boundary

nodes of the source surface, X, and the boundary nodes of

the inner layers, Y, are planar. However, the inner part of

the source mesh has curvature. For the minimization of

each functional, two views of nine hexahedra layers are

provided. The left column is a general view, and the right

column is a detail of the fourth, fifth, and sixth layers of

hexahedra. When we minimize functional F, by Proposi-

tion 1, we know that the overdetermined linear system

matrix does not have full rank. This implies that the

obtained inner layers become flat, despite the source sur-

face has curvature (see Fig. 8a). The minimization of G

generates inner layers that present curvature on the inner

part. However, due to the shape of the geometry the

skewness effect also appears (see Remark 6). Note that as

cY - cX tends to the plane defined by X, the skewness

effect is more pronounced (see Fig. 8b). In the limit, when

the inner layer is on the same plane that the boundary of the

source surface, a degenerated projection is obtained (the

minimization of G leads to a overdetermined linear system

with rank deficient matrix, see Proposition 2). Finally, if we

minimize functional H, then the nodes of the inner layers of

hexahedra have the desired location and curvature (see

Fig. 8c). In this example, we see that the minimization of H

provides the best location for inner nodes.

The goal of the second example (see Fig. 9) is to show

that the minimization of H provides a better initial inner

node location when an additional smoothing step is

required. To this end, a square is swept along a semi-circle.

The source surface is a planar square with curvature in the

inner part, whereas the target surface has a curved

boundary. Thus, the inner layers are defined by non-planar
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surface is planar. For the minimization of each functional, a

view of four inner layers of hexahedra elements are pre-

sented. Figure 10b shows that the minimization of F leads

to flat inner layer of elements since the boundary of the

source surface is planar. As expected, the minimization of

G generates non-planar inner layers of hexahedra. How-

ever, the shape of the source surface is not well preserved

(see the skewness effect in the inner layers presented in

Fig. 10c). Note that this effect is more pronounced close to

the target surface. As in the previous examples, the mini-

mization of H leads to the desired solution (see Fig. 10d).

The goal of the last example (see Fig. 11a) is to show that

if the source and the target surfaces are not affine, the min-

imization of H provides a better node location than the one

obtained with the minimization of F and G (even in the case

of geometries simpler than the volume presented in the

second example). In this example we discretize an extrusion

volume defined by varying cross-sections along a straight

and skewed sweep path. The source surface is a planar square

with curvature in the inner part. The target surface is planar

and its boundary is defined by four arcs. Hence, both surfaces

have planar boundaries but not mutually affine. Moreover,

the inner layers are defined by planar loops of nodes that

become more curved close to the target surface. Note that

source surface boundary is not affine to the inner loops of

nodes. Since the source surface is planar, and similar to the

previous examples, the minimization of F generates planar

inner layers of hexahedral elements (see Fig. 11b). The

minimization of G produces skewed layers of elements (see

Fig. 11c). Finally, the minimization of H preserves the ori-

ginal shape of the source surface and provides the best initial

configuration for the smoothing algorithm (see Fig. 11d).

6 Concluding remarks

In this paper we have presented a comparative analysis of

several functionals that have been extensively used to

project meshes in sweeping procedures. We first stated that

the minimization of functional F leads to a set of normal

Fig. 9 Projection of a non

planar source surface mesh with

planar boundary onto

non planar inner layers.

a Minimizing F; b minimizing

G; and c minimizing H
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Finally, in order to overcome the previous drawbacks we

have proposed the functional H. We have also proved that

the minimization of H has one and only one solution. Thus,

sets of normal equations with singular system matrix are

avoided. Furthermore, if uX and uY are properly selected,

the minimization of functional H is preferable since it is

not affected by the skewness introduced by the minimiza-

tion of functional G and tends to preserve the shape of the

original source surface. Therefore, it provides suitable node

location for the inner layers. In addition, it supplies an

excellent initial guess for the position of the inner nodes if

an additional smoothing step is required.
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