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Data Driven Surrogate Based Optimization in the

Problem Solving Environment WBCSim

by

Shubhangi Deshpande

(ABSTRACT)

Large scale, multidisciplinary, engineering designs are always difficult due to the com-

plexity and dimensionality of these problems. Direct coupling between the analysis codes

and the optimization routines can be prohibitively time consuming. One way of tackling

this problem is by constructing computationally cheap(er) approximations of the expensive

simulations, that mimic the behavior of the simulation model as closely as possible. This

paper presents a data driven, surrogate based optimization algorithm that uses a trust re-

gion based sequential approximate optimization (SAO) framework and a statistical sampling

approach based on design of experiment (DOE) arrays. The algorithm is implemented using

techniques from the two packages SURFPACK and SHEPPACK that provide a collection

of approximation algorithms to build the surrogates and three different DOE techniques:

full factorial (FF), Latin hypercube sampling (LHS), and central composite design (CCD)

are used to train the surrogates. The biggest concern in using the proposed methodology is

the generation of the required database. This thesis proposes a data driven approach where

an expensive simulation run is required if and only if a nearby data point does not exist

in the cumulatively growing database. Over time the database matures and is enriched

as more and more optimizations are performed. Results show that the response surface

approximations constructed using design of experiments can be effectively managed by a

SAO framework based on a trust region strategy. An interesting result is the significant

reduction in the number of simulations for the subsequent runs of the optimization algorithm

with a cumulatively growing simulation database.
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Chapter 1: INTRODUCTION

Large scale, multidisciplinary, engineering design problems require physical experiments

and/or simulations to evaluate a design objective as a function of design parameters. For

many real world problems, however, a single simulation can take several minutes, hours,

or even days to complete. As a result, routine tasks such as design optimization, design

space exploration, and sensitivity analysis could become almost impossible since they might

require hundreds or even thousands of simulations. One way of tackling this problem is by

constructing computationally cheap(er) approximations of the expensive simulations, that

mimic the behavior of the simulation model as closely as possible. These approximations are

known as surrogates, response surface approximations (RSAs), metamodels, or emulators.

This thesis discusses a data driven, surrogate based optimization algorithm illustrated

by a scientific problem solving environment (PSE), WBCSim, which increases the produc-

tivity of wood scientists conducting research on wood-based composite (WBC) materials.

WBCSim integrates legacy FORTRAN 77 and new Fortran 90 simulation codes with a Web-

based graphical front end, an optimization tool, an experiment management component,

a computational steering capability, and various visualization tools. As discussed in [31],

WBCSim has evolved steadily from a prototype PSE, intended as a research tool and a Web

interface for legacy Fortran programs, to a commercial quality PSE. The current version of

WBCSim has enhanced visualization and simulation capabilities, more realistically modeling

manufacture. The more advanced models in WBCSim, such as the hot pressing Fortran

90 code or its visualization/optimization tools, can take hours to run on a fast (DEC AXP

21064 or SUN Sparc) workstation. Nonlinear optimization algorithms cannot be applied

directly to these complex simulation models, as it can be prohibitively time consuming and

cost ineffective. The solution discussed here is to provide a computationally inexpensive

representation of the underlying system. A strong motivation behind the implementation of

a data driven, surrogate based optimization algorithm for WBCSim is the availability of a

sophisticated experiment management component, which efficiently manages the simulation

execution and experiment data, providing a systematic way to automatically store and

retrieve the simulation data [29]. The existing simulation run data can be retrieved to

construct a surrogate function for the entire simulation or parts of it, thereby replacing

costly simulation executions with cheap(er) surrogate function evaluations.

As discussed in [20,21] the surrogate models can be integrated within optimization tools

in two ways: 1) using global approximations, where a RSA is developed over the entire design

space, or 2) using local approximations, where RSAs are built within a local region around

the current design. The global approximations require a more complex model to mimic the

underlying system, consequently, the cost of developing a global surrogate model is higher

than for local approximations. In general, a single optimization is performed while employing
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global approximations, whereas local approximations require a series of optimizations, each

one performed within a local region around the current design. When using local RSAs, a

sequential approximate optimization (SAO) methodology can be used. The basic concept of

the SAO framework is to apply nonlinear optimization to an approximation at the current

design point subject to local move limits. The design space is sampled around the current

design point at the beginning of each SAO iteration to generate the dataset required for

constructing a surrogate model using regression analysis.

The implementation here is based on the second approach using the SAO framework

and a statistical sampling approach based on design of experiment (DOE) arrays as reported

by Rodŕıgues et al. in [25, 24]. At each SAO iteration, a DOE array is used to select a

set of design points for sampling. Each design point is evaluated either by retrieving a

previously stored simulation run or by running the simulation code at the design point, if it

does not exist in the database. The resulting dataset is used to build a surrogate model. An

optimization is performed using this approximation model within local move limits. The

surrogate and move limits are updated after every iteration using a trust region strategy

until convergence is achieved.

The organization of the thesis is as follows: Chapter 2 reviews related work in PSEs

and WBCSim in particular, Chapter 3 describes the surrogate based optimization and

SAO framework, and discusses database support within the context of PSEs. Chapter 4

describes the proposed surrogate based optimization methodology in detail, and presents

a pseudocode for the optimization algorithm. The experimental results are discussed in

Chapter 5, and Chapter 6 offers concluding remarks.
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Chapter 2: LITERATURE REVIEW

A problem solving environment (PSE) is a system that provides a complete, usable, and

integrated set of high level facilities for solving problems from a prescribed domain [9, 15].

A PSE commonly addresses various issues: Internet accessibility to legacy codes, visual-

ization, experiment management (EM), multidisciplinary support, recommender systems,

collaboration support, optimization, high performance computing, preservation of expert

knowledge, design extensibility, and pedagogical uses [40]. PSEs were first introduced in

the simpler problem domains such as partial differential equations (ELLPACK [10] and its

descendants [5], for solving two and three-dimensional elliptic partial differential equations)

and linear algebra (Linear System Analyzer [4] for manipulating and solving large-scale

sparse linear systems of equations). Since then, many PSEs have been introduced to address

problems in diverse domains, such as: Gismo [3], created at Washington University, for

modeling all aspects of a satellite’s design and performance; a PSE developed by Chen et

al. [6], to simulate physically realistic, complex dust behaviors useful in interactive graphics

applications for education, entertainment, or training; Expresso [32], a microarray experi-

ment management PSE, designed to assist biologists in planning, executing, and interpreting

microarray experiments; L2W [7], a PSE for land use change analysis; JigCell model builder

[1, 38, 39], a PSE to define chemical kinetic models as a set of reaction equations, and many

more. Watson et al. [40] provide a thorough summary of the key attributes of a PSE, and

also a comparative study of a PSE with other similar computing environments: a decision

support system (DSS) and a geographical information system (GIS).

The review here is focused on the work regarding multidisciplinary optimization support

provided by PSEs. A number of PSEs have been introduced that combine analysis codes

with optimization methods in a flexible manner, along with a visualization tool for viewing

the optimization results. iSIGHT [35] is a PSE that provides a generic shell environment for

multidisciplinary optimization. LMS optimus [11] is a system that provides a front end to set

up a problem, select a method suitable to the problem, and analyze the results. DAKOTA

[8] is a framework that provides a flexible, object-oriented, and extensible PSE with an

integrated interface for a variety of optimization methods. S4W [33, 19] is a collaborative

PSE for the design and analysis of wideband wireless communication systems. VizCraft

[12] is a PSE that provides a graphical user interface to a widely used suite of analysis

and optimization codes to aid aircraft designers during conceptual design of a high-speed

civil transport. WBCSim (discussed next) is a prototype PSE for wood based composites

manufacturing that provides support for a sophisticated optimization component along

with various visualization tools. Among these PSEs, S4W uses surrogate functions for its

WCDMA simulator to estimate the bit error rates [19].

WBCSim is a prototype PSE for wood based composites simulations that integrates a

set of high level components for making both legacy and new Fortran codes widely accessible.
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WBCSim qualifies as a PSE because it provides Internet access to Fortran codes via the

Web, is equipped with visualization and optimization tools, has a sophisticated experiment

management (EM) component, a computational steering capability, and has support for

collaboration and high performance computing being added. WBCSim currently supports

five simulation models:

1. Composite material analysis (CMA). The CMA model was developed to assess the

stress-strain behavior and strength properties of laminated fiber-reinforced materials

(e.g., plywood) [31].

2. Oriented strand board mat formation (OSB). The mat formation model [44] creates

a three-dimensional spatial structure of a layered wood-based composite (e.g., ori-

ented strand board and waferboard) and also calculates certain mat properties by

superimposing a mesh on the mat structure.

3. Hot compression (HC). The hot compression model simulates the hot pressing of a

flake mat, created by the mat formation model, in a batch press, using two-dimensional

heat and mass transfer theory. It calculates the internal environmental conditions such

as the temperature, moisture content, and pressure changes, as well as adhesive cure

during the mat consolidation process [44, 45].

4. Radio-frequency pressing (RFP). This model simulates heat and mass transfer in wood,

resulting in the consolidation of wood veneer into a laminated composite, when subject

to power input by an alternating electric field [26].

5. Rotary dryer simulation (RDS). The RDS model was developed as a tool that assists

in the design and operation of a rotary drying system for wood particles [16, 17].

Goel et al. first described the three tiered software architecture for WBCSim in [10].

The current implementation of WBCSim follows the same architecture with the addition

of an EM component and support for XML datasheets [30], and a computational steering

capability. The three tiers in the architecture correspond to (1) the client layer—user front

end, (2) the server layer—a Web server and a PHP module, and (3) the developer layer—the

Fortran code and various visualization and optimization tools running on the server.

The current implementation of WBCSim supports the optimization package DOT

(Design Optimization Tool) 37 based on sequential quadratic programming and the method

of feasible directions. WBCSim supports two models, RDS and RFP, that are linked to DOT.

This thesis describes a computationally inexpensive surrogate based optimization method

that intends to improve the underlying system performance while applying optimization

algorithms to the computationally expensive more advanced models (e.g., hot compression)

in WBCSim. Note that while the optimization results here are for the RDS and RFP models

(since the HC model is not yet linked to DOT), the motivation for and ultimate application
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of this surrogate based optimization work is using DOT with the expensive HC model. A

typical RDS simulation takes 545 ms vs. 2 hours for a HOT simulation.

The various visualization tools that are integrated in WBCSim include Virtual Reality

Modeling Language [2], Wolfram’s Mathematica [41], and the UNIX utility WhirlGif. Shu

et al. present a detailed treatment of these tools in [31].

WBCSim has an efficient experiment management component that integrates a Web

based graphical front end, server scripts, and a database management system to allow

scientists to easily save, retrieve, and perform customized operations on experimental data

[29].

WBCSim has been enriched with a recent addition of XML datasheets to unify its

implementation layers [30]. An XML datasheet is tailored for each of the five models

mentioned above. The WBCSim interface layer, the server scripts, and the database

management system all use the same XML datasheet for a particular model. The use

of XML reduces redundancy and improves the usability and maintainability of the client,

server, and developer layers. A computational steering capability for the hot pressing

process simulation has also been added. Now the user can view temperature, pressure, and

moisture content profiles within the mat during the hot pressing simulation, and interactively

modify the press schedule or abort the simulation. Such steering significantly enhances user

productivity and insight into the manufacturing process.

WBCSim has evolved in various ways over many years, and has now become a so-

phisticated, mature PSE, equipped with a complete suite of high-level tools that make it

a uniquely valuable system for the wood-based composites industry. Yet, its original goals

remain the same: (1) to increase the productivity of WBC research and manufacturing

groups by improving their software environment, and (2) to continue serving as an example

for the design, construction, and evaluation of small-scale problem solving environments.

The surrogate based optimization algorithm presented in this thesis intends to contribute

towards these goals by significantly enhancing the system performance for optimization.
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Chapter 3: SURROGATE BASED OPTIMIZATION

3.1 Surrogate Based Optimization and SAO

The more advanced models in WBCSim such as the hot pressing model (a two-dimensional

nonlinear partial differential equation) are quite complex and can take hours to run on

a fast (DEC AXP 21064 or Sun Sparc) workstation. Applying a nonlinear optimization

algorithm directly to these complex models can be prohibitively time consuming due to the

complexity of the underlying simulation codes. One way of alleviating this burden is by

integrating response surface approximations or surrogate functions with nonlinear optimizers

to reduce the CPU time required for the optimization of complex multidisciplinary systems.

RSAs provide a computationally inexpensive lower-fidelity representation of the underlying

simulation. In large scale multidisciplinary engineering design the construction and use of

such surrogates has become a standard practice.

As discussed above, two trends have emerged to integrate surrogate functions with a

nonlinear optimizer: (1) using a global RSA, or (2) using local RSAs. One mechanism

for utilizing local RSAs is the SAO framework. In SAO, simple RSAs that are valid for

a local region are built for the objective function and the constraints. An optimization

algorithm is applied to this approximation within the local trust region defined by local

move limits. The surrogate functions and trust region (local move limits) are updated at

every iteration until convergence is achieved. Different SAO strategies have been developed

[20, 21, 42, 43, 25, 27, 24, 22, 23], depending on the sampling approaches used and move

limit methods implemented. This thesis presents an algorithm that implements a SAO

framework using DOE based sampling and a trust region method to adjust the move limits.

The only constraints for the WBCSim models being optimized are simple bound constraints

on the variables, hence RSAs are only required for the objective function.

The algorithm starts with iteration k = 0 at some feasible design point. The move limits

are defined around the design point and a database is generated for the local trust region

using a DOE array. A RSA that is valid near the current design point is built using the

generated database. A nonlinear optimization is then performed using this approximation.

When the optimization returns a new candidate point, a trust region test is applied to decide

the acceptance of the approximation and to define the next move limits. Based on the

trust region ratio, the new candidate point is either accepted or rejected, new move limits

are defined, and optimization proceeds until convergence is achieved. Figure 1 presents a

flowchart for a general SAO framework.

The main concept of a trust region method is to monitor how well the approximation

agrees with the true objective function using a trust region ratio ρ, the ratio of the actual

improvement in the objective function to the RSA predicted improvement. For a detailed
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Figure 1. Flowchart for a general SAO framework.

description of the trust region methodology, computation of the trust region ratio, and the

adjustment of move limits, see [20].

The most expensive step in the SAO framework is the generation of a database for a local

trust region at every iteration. The design points to be evaluated can be generated either

using some optimization based sampling as described in [28, 25, 42, 43], or using traditional

DOE arrays as described in [27, 24, 22, 23]. Each design point can be evaluated by running

the simulation code at that point. Several DOE strategies have been developed to generate

efficient surrogate models. Among the common techniques that have been used to generate

response surface approximations are traditional factorial designs (full and fractional factorial),

central composite designs (CCD), orthogonal arrays (OAs), and space filling techniques such

as Latin hypercube and its extensions. More complex experimental designs such as D-optimal

designs have been introduced to address the limitations of traditional DOE techniques. The

SAO framework generally eschews such complex experimental designs. This thesis presents

an optimization algorithm and a comparative study using various traditional DOE sampling

techniques.

Numerous algorithms exist to generate response surface approximations that interpolate

or fit data points. The SAO framework here uses techniques from two packages that provide a

collection of approximation algorithms—SURFPACK [13, 14] developed at Sandia National
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Laboratories, and SHEPPACK developed by Thacker et al. [36]. SHEPPACK is a Fortran

95 package containing five versions of the modified Shepard algorithm: quadratic (Fortran

95 translations of ACM Algorithms 660, 661,and 798), cubic (Fortran 95 translation of

ACM Algorithm 791), and linear variations of the original Shepard algorithm. SURFPACK

provides a library of surrogate modeling methods including low order polynomials, KRIG-

ING interpolation, multivariate adaptive regression splines (MARS), and artificial neural

networks.

3.2 Database

Experiment management is a crucial component of any PSE. It provides a systematic and

efficient way to store, retrieve, and manage experimental data. WBCSim is equipped with

a sophisticated EM tool, which consists of customized user interfaces, server scripts, and

an open source DBMS, Postgres. The EM tool not only supports all the features from

the previous file-based system, but also significantly improves WBCSim user productivity,

usability, and system maintenance in various ways by providing support for storing simulation

inputs and outputs, retrieval of existing simulation runs instead of running a brand new

simulation when inputs and/or outputs exist in the database, filtering the experiment

data, and comparing stored simulation outputs. See [29] for a detailed description of the

implementation of an EM component for WBCSim.

WBCSim has a full fledged working EM component for the simulation models OSB and

RDS, which has support for optimization as well and hence is a testbed for the surrogate based

optimization algorithm presented in this thesis. A strong motivation for the implementation

of a data driven surrogate based optimization algorithm in WBCSim is the availability of

the required infrastructure. In SAO, a database is generated for each iteration by evaluating

the objective function and constraints (called a “system analysis”) at each DOE sample

point. In the data driven approach, for each DOE point, the simulation database is searched

for a suitable replacement (within ∆/n where ∆ is the trust region radius and n is the

sample size for the DOE method chosen). If no data point exists in the close vicinity of

the current DOE point then a simulation is executed to evaluate the DOE point. An EM

component saves the cost of a simulation run when a nearby data point already exists in

the database (a simulation run is required if and only if a nearby data point does not

exist in the database). After running the simulation, the point and results are stored in

the database for future references. Thus, over time, the database matures and is enriched

as more and more optimizations are performed. This data-driven approach significantly

reduces the total number of expensive simulation runs required and improves the underlying

system performance. Based on the trust region test, if a candidate point is accepted, the

new move limits are decided based on the trust region ratio as described in [20]. This thesis

describes an algorithm that adjusts the new trust region such that it makes maximal use

8



of existing data points from previously generated trust regions, hence reducing the number

of new data point evaluations (simulation runs) required for generating a new trust region.

Thus, a data driven approach takes advantage of the fact that expensive simulations are

run only when data points do not exist in the cumulatively growing database.
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Chapter 4: OPTIMIZATION ALGORITHM

Move limits define a “local design space” around the current point Xk, taken as the

intersection of the trust region box
{

X | ‖X − Xk‖∞ ≤ ∆
}

with the box [L, U ] defined

by the variable bounds L ≤ X ≤ U . The user defined bounds L and U are used to scale

each design variable between −1 and 1 replacing Xk[i] by Xk[i]−((U [i]+L[i])/2)
(U [i]−L[i])/2 and making

[L, U ] = [−1, 1]. Assume henceforth that all the design variables are thusly scaled. A

precise description of the data driven surrogate based optimization algorithm described in

the previous section follows.

Algorithm DDSAO

Input: p (a user specified start point), minmax (min or max selection for the optimization),

∆ (trust region radius), l, u (local move limits), N (number of design variables), DB

(simulation database)

Output: optimum design point and objective

function value.

Initialize trust region radius ∆ to 20% of the diameter of the entire design space;

δ := 0.1 ∗ ∆;

ε := 1.0E − 8;

δ̃ := 1.0E − 5;

δ̂ := 1.0E − 5;

η := 1.0E − 1;

count := 0;

k := 0;

convergence := false;

if a point within ∆ of p does not exist in DB

OR DB contains no points in [−1, 1] then

begin

run simulation at p;

insert p and corresponding objective

function value f(p) for p into DB;

end

select a point Xk from DB as a start point,

where the point lies within the design space

bounds [−1, 1] and has optimum value f(Xk);

define the local design space move limits [l, u] on

all the design variables around Xk using ∆.

while not convergence do
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begin

generate DOE array A of size n for local

design space around Xk;

for i := 1 step 1 until n do

begin

if a point within ∆/n of A[i]

does not exist in DB then

begin

perform SA at A[i] to get f(A[i]);

insert A[i] and f(A[i]) into DB;

end

end

build a surrogate model f̃(X) using all DB points

within 2∆ of Xk;

call DOT to optimize f̃(X) in [l, u] yielding Xk+1;

ρ :=
f(Xk) − f(Xk+1)

f̃(Xk) − f̃(Xk+1)
;

if ρ ≤ 0 then

begin

if |f(Xk) − f(Xk+1)| ≤ ε then

convergence := true;

else

begin

reject Xk+1;

∆ := 0.25 ∗ ∆;

reset local move limits using ∆;

end

end

else

begin

accept Xk+1; k := k + 1;

if
|f̃(Xk)−f(Xk)|

|f(Xk)|+1 ≤ δ̃ then

for i := 1 step 1 until N do

if (Xk[i] = l[i] = −1) OR

(Xk[i] = u[i] = 1) OR

(l[i] < Xk[i] < u[i]) then

count := count + 1;

if (‖Xk−Xk−1‖∞

‖Xk−1‖∞+1 ≤ δ̂) OR
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(count = N) OR

(|f̃(Xk) − f̃(Xk−1)| ≤ ε) then

convergence := true;

else

begin

if ρ ≤ 0.25 then

begin

∆ := ∆ ∗ 0.25;

if ∆ ≤ η then

throw an error message and exit;

end

else if ρ > 0.75 then

∆ := ∆ ∗ 2;

end

end

for i := 1 step 1 until N do

begin

if Xk[i] is within δ of l[i] then

begin

u[i] := l[i] + δ;

l[i] := l[i] − ∆;

end

else if Xk[i] is within δ of u[i] then

begin

l[i] := u[i] − δ;

u[i] := u[i] + ∆;

end

else

begin

l[i] := (l[i] + u[i])/2 − ∆/2;

u[i] := (l[i] + u[i])/2 + ∆/2;

end

if l[i] < −1 then

l[i] := −1;

if u[i] > 1 then

u[i] := 1;

end

end

12



return Xk and f(Xk);

The constants δ, δ̂, δ̃, ε, and η defined at the beginning of the algorithm are used as

limits in the stopping conditions of the convergence criteria. Results in Section 5 show that

the values used for these constants work reasonably well.
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Chapter 5: RESULTS AND DISCUSSION

5.1 Design of Experiments

Design of experiments (DOE) is a statistical based approach for systematically and efficiently

designing and analyzing experiments to determine the relationship between different factors

affecting a process and the response of the process. A particular setting of design variables

describes a typical experimental run, and a particular combination of runs defines an

experimental design. The choice of the DOE methods is motivated by the six different

approximation methods used to build a surrogate and the testbed PSE rotary dryer simulation

(RDS) used for the optimization. The RDS model simulates drying behavior of the wood

particles in a rotary dryer as discussed in [16, 17]. The RDS optimization has thirteen

variables that define the inlet conditions of the hot gases and wet wood particles, as well as

the physical dimensions of the drum and lifting flanges, flow rates, and thermal loss factor

for the dryer. The model predicts the particle moisture content, temperature, cumulative

time, gas composition, and energy consumption. The experiments here used three of the

thirteen variables (temperature of drying gases, flow rate of inlet drying gases, and drum

rotation speed) as design variables, and cumulative time as the objective function to be

minimized. It was observed during the exploratory analysis that the objective function

for evaluating the cumulative time is more sensitive to the flow rate of inlet drying gases

than to the other variables. Hence the full factorial design is formulated to cater to this

specific case. The class of central composite designs (CCD) is the most popular class of

second-order designs, hence a face centered CCD was chosen. The KRIGING model used

to build surrogates is known to work better with the space-filling designs, and the Latin

hypercube design being one of the favorite space-filling designs, was chosen as the third

DOE method.

Figure 2 is a two-dimensional representation of the three DOE methods used. A full

factorial (FF) design array of sample size 12 is generated with three levels for the design

variable corresponding to the flow rate of the drying gases and two levels for the other two.

All the possible high/low combinations of all the three design variables form a FF design

of size 3 × 2 × 2 = 12 as shown in Figure 2. A Latin hypercube sampling (LHS) is a space

filling technique in which the design space is divided into n non overlapping intervals and

one value from each interval is then selected at random to generate an array of n k-tuplets.

A two dimensional representation of the LHS design on a 10× 10 grid is shown in Figure 2

where n = 10 and k = 3. The third DOE technique implemented is the face centered central

composite design (CCD) with 8 corner points, 6 points with a point at the center of each

face, and a point at the center of the local design space. Thus a DOE array of sample size

15 is generated as shown in Figure 2.
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LHS: Size 10 FF: Size 12

CCD: Size 15

Figure 2. A 2D projection of the DOE methods used. The FF points are

{−1, 0, 1} × {−1, 1} × {−1, 1}, and the CCD points are {−1, 0, 1}3
∖

{points with exactly

one 0 coordinate}.

5.2 A typical scenario

Figure 3 gives a graphical representation of a possible convergence scenario of the optimization

algorithm through a series of iterations. The algorithm starts at X0 with ∆ = D =

0.2 × (diameter of the entire design space) defining the bold outlined box (not drawn to

scale) in Figure 3. DOT is called to optimize f̃(x) within this local trust region, and returns

a new candidate point at X1 and ρ > 0.75. Hence X1 is accepted and as it is towards the

right boundary of the current local region, the new local design space is defined towards

the right of the current box using ∆ = 2D. DOT returns the point X2 and 0 < ρ ≤ 0.25.

Hence the trust region radius is reduced to ∆ = 2D/4 = D/2. As X2 is towards the center

of the boundary of the local trust region, the new local design space is defined around X2

as shown in Figure 3. The next candidate point is at X3, which is towards the left, and

ρ ≥ 0.75. Hence the new trust region is defined towards the left of the current box using

∆ = D. DOT returns a new candidate point at X4 again towards the left of the current

local trust region and with ρ > 0.75. Hence the new local design space is defined towards

the left of the current trust region using ∆ = 2D, and truncated to be within the feasible

set. The algorithm converges at X5, which is at the boundary of the entire design space

for the optimization problem.

The most expensive step in the SAO framework is the generation of the required

database at each iteration for each local trust region. A simulation run is required to

evaluate each data point in the DOE array. However, if a DOE point and the corresponding
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Figure 3. A possible convergence scenario.

objective function value already exist in the simulation database, there is no need to run

the expensive simulation, instead, the data point and the corresponding objective function

value are retrieved from the simulation database. Also, instead of replacing the DOE point

with an exact match, it could be replaced with a point in the close vicinity of the current

DOE point. The DDSAO algorithm discussed in Chapter 4 implements this data driven

approach, where a gradually maturing simulation database is searched first to find a DOE

point and the corresponding objective function value. Instead of searching for an exact

value, the simulation database is searched for a point in the close vicinity (∆/n where ∆ is

the trust region radius and n is the sample size for the DOE method used) of the current

DOE point. The convergence profiles in Figures 4, 5, and 6 show that the number of

true function evaluations for a DOE point reduces for the subsequent SAO iterations even

when the DDSAO algorithm is started with no data in the simulation database. After each

SAO iteration, the evaluated DOE points are stored in a cumulatively growing simulation

database for further use. For the subsequent SAO iterations of the DDSAO algorithm some

of the stored data points fall within the ∆/n radius of the new data points being evaluated,

and saves an expensive simulation run at the DOE point. eg., Consider a scenario using

FF design to construct database for LSHEP. For FF design the sample size is 12, and at

each SAO iteration 12 simulation runs are required to generate the required database for

constructing a surrogate and an additional run to evaluate the candidate point resulting in

13 runs in total. However, the convergence profiles for LSHEP using FF design in Figure

4 show that the number of simulation runs keep on reducing after a couple of initial SAO

iterations (see the X values for fourth diamond which should have been 13 × 4 = 52, but
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is approximately 47). It indicates that the radius of ∆/n used to search for a nearby data

point seems to give reasonably good results.

The DDSAO algorithm further exploits the simulation database while constructing a

surrogate by using all the points within 2∆ region of the current trust region. The use of

all the points within 2∆ allows the consequent trust regions to overlap and use data points

from previous regions while constructing a surrogate. The dotted outlined boxes around

each local trust region in Figure 3 gives a graphical representation of the overlapping trust

regions used for constructing a surrogate. For example, when sampling for the box labeled

2D, it overlaps both the previous trust region (solid lined box labeled D) and its 2∆ region

(dotted lined box with trust region radius 2D). This gives opportunities for re-using database

points that were generated when sampling for the previous trust region of radius D. This

opportunity for reuse grows as the algorithm progresses toward the upper-left corner, and

the database is built up. Results show that this data driven surrogate based optimization

methodology dramatically reduces the number of expensive simulation runs required in the

optimization process. Tables 3A, 3B, and 3C show that for the second run onwards the

number of simulation runs (#f(x)) reduces significantly. After every simulation run during

the optimization process, the results get stored in a cumulatively growing database for

further use. As more and more optimizations are performed the database gets enriched.

Thus, a matured database increases the probability of finding a nearby point further reducing

the optimization cost.

5.3 Results

The optimization algorithm DDSAO discussed in Chapter 4 was applied to the RDS model

using six different surrogate construction methods from the two packages SURFPACK

(POLY1, POLY2, KRIGING, and ANN) and SHEPPACK (QSHEP3D and LSHEP). Refer

to [14, 36] for a detailed treatment of these methods. Each of the surrogates was constructed

using three different DOEs: FF, LHS, and CCD. The optimization problem was to minimize

the objective function f(x) (cumulative time) using three design variables (temperature

of drying gases, flow rate of inlet gases, and drum rotation speed), subject to the bound

constraints L ≤ X ≤ U where L = (500, 1, 5) and U = (600, 2, 6), and a start point

X0 = (550, 1.5, 5.5). The optimization was performed first by linking the simulation code

directly to the DOT optimizer, and then using the optimization algorithm DDSAO of

Chapter 4. In both cases, all the control parameters to DOT were set to their default values

except for the relative finite difference step (FDCH). While performing the optimization by

having DOT directly call the simulation code, the finite difference step (FDCH) was set to

0.02. While using the optimization algorithm DDSAO, FDCH was set to its default value

of 0.001 for all approximation methods except QSHEP3D using the FF design and LSHEP

using the CCD for which it was set to 0.02. FDCH is the finite difference step size as a
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Table 3A

Full factorial (FF) results.

f(x) is true function value, f̃(x) is surrogate predicted value, #f(x) is number of true

function evaluations, and #f̃(x) is number of surrogate function evaluations.

FF f(x) f̃(x) #f(x) #f̃(x)

QSHEP3D 248.900 248.899 66 156
248.800 248.800 21 27

LSHEP 248.900 248.900 47 97
248.900 248.900 11 4
248.800 248.800 6 10

POLY1 248.900 249.713 46 41
248.800 250.398 11 12

POLY2 434.800 502.000 14 10
252.400 1230.880 97 138
248.800 247.755 37 38
248.800 247.631 3 38

KRIGING 434.800 434.800 13 10
410.000 410.000 12 15
391.500 391.500 24 51
368.300 368.300 10 10

ANN 248.900 249.474 59 67
248.800 248.120 32 54
248.800 248.178 9 35

fraction of the design variable being perturbed and is used for internal gradient calculations

by DOT. The values set for FDCH for the experiments here seem to exhibit reasonable

results. While using the optimization algorithm DDSAO, all the constants initialized in the

algorithm are set to their default values except for the trust region radius ∆, which was

changed to 10% of the diameter of the entire design space for the FF and CCD designs.

When directly coupled with the simulation code, DOT returned the point (550.413, 2,

6), the objective function value f(x) = 259.3, and required 22 simulation runs (#f(x)). The

same experiment was performed using the optimization algorithm DDSAO for comparison

with the aforementioned results. Executing the optimization algorithm DDSAO once defines

a single run. A very first run of the algorithm was carried out with no data in the simulation

database. Multiple runs of the algorithm were carried out using the gradually growing

simulation database in order to observe the change in the total number of simulation runs

required.

Tables 3A, 3B, and 3C report the experimental results for the optimization algorithm

DDSAO using the six surrogate types constructed from the FF, LHS, and CCD designs.

Each row in these tables corresponds to a single run of the optimization algorithm DDSAO,

and records the true function value f(x), the surrogate predicted value f̃(x), the number
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Table 3B

Latin hypercube sampling (LHS) results,

in the same format as Table 3A.

LHS f(x) f̃(x) #f(x) #f̃(x)

QSHEP3D 259.300 257.336 35 85
259.100 259.096 43 66
259.100 259.100 12 58

LSHEP 248.900 248.900 64 97
248.900 248.900 10 4

POLY1 248.900 253.449 32 30
248.900 253.050 10 4

POLY2 259.300 257.395 54 110
259.100 259.083 33 63
259.100 259.089 3 77

KRIGING 344.500 332.746 43 136
279.400 277.377 11 24
277.800 277.785 11 24
276.300 276.174 11 21
274.800 274.791 22 53
268.300 265.700 22 41
260.000 260.000 11 11

ANN 259.100 259.100 87 180
259.100 259.092 37 49
259.100 259.974 2 48

of true function evaluations #f(x), and the number of surrogate function evaluations

#f̃(x). Subsequent rows for an approximation method correspond to subsequent runs

of the optimization algorithm DDSAO using a cumulatively growing simulation database.

The cost of the optimization is measured by the total number of true function evaluations

(#f(x)) needed, and the approximation quality of a surrogate is measured by |f(x)− f̃(x)|.

The surrogate types and the DOEs used are compared in terms of both the approximation

accuracy and the optimization cost.

5.4 Discussion

A generally observed trend is that the very first run of the optimization algorithm DDSAO

is more expensive than having DOT directly call the simulation code. However, the results

also show that the optimization algorithm DDSAO returned a better point for a large subset

of runs. When directly coupled with the simulation code, DOT returned the point (550.413,

2, 6), and the objective function value f(x) = 259.3. The optimization algorithm DDSAO

returned a point near the boundary of the entire design space with the objective function

value of approximately 248 for more than 50% of the runs. This behavior is observed due to

the iterative sampling nature of the SAO framework that allows the DDSAO algorithm to
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Table 3C

Central composite design (CCD) results,

in the same format as Table 3A.

CCD f(x) f̃(x) #f(x) #f̃(x)

QSHEP3D 259.200 261.381 82 127
259.200 255.654 16 32
259.100 259.100 38 58
259.100 259.100 2 64

LSHEP 248.900 247.069 61 142
248.900 248.900 25 29
248.800 248.800 9 11

POLY1 248.900 249.753 57 41
248.800 250.211 49 34
248.800 250.167 9 24

POLY2 248.900 247.371 58 54
248.900 247.772 14 4
248.800 248.669 25 34
248.800 248.669 1 34

KRIGING 434.800 434.800 16 14
410.000 410.000 14 15
391.500 391.500 12 10
368.300 −2960.420 13 26

ANN 248.900 250.378 73 86
248.900 249.308 10 4

explore more of the design space than DOT. Consequently, DDSAO does more work but also

finds a better point. Another interesting result is the significant reduction in the number of

true function evaluations (simulations) for the subsequent runs with a cumulatively growing

simulation database. A gradually maturing database increases the probability of finding a

nearby data point, thereby reducing the number of expensive simulation runs. Whenever a

simulation is executed, the results are stored in the database and all the subsequent runs

use the previously stored simulation data. Over time, the database matures and is enriched

as more and more optimizations are performed, further reducing the optimization cost.

LSHEP from SHEPPACK appears to be closely imitating the true function behavior

and is the best choice overall. LSHEP outperforms all the other surrogate types in terms

of approximation accuracy and optimization cost. It works equally well with all the DOEs

in terms of the approximation accuracy and works best with the FF design in terms of the

optimization cost.

Among the other surrogates, QSHEP3D from SHEPPACK appears to be quite com-

petitive when constructed using the FF design. In general, QSHEP3D from SHEPPACK,

and POLY1, POLY2, and ANN from SURFPACK work well with some of the DOEs and

not so good with others. The response predictions obtained by using QSHEP3D, POLY2,
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and ANN with the LHS design, and QSHEP3D with the CCD design are as good as the

response prediction obtained by having DOT directly call the simulation code.

It is well known that a polynomial surface fit may be a poor choice for modeling

data trends over an entire parameter space, unless the true data trends are polynomial.

The response predictions using POLY1 and POLY2 with all three experimental designs

confirm this conclusion where the surrogates fail to adequately mimic the true function

behavior, resulting in a poor approximation for a large subset of runs. Results show that the

approximation quality is awful for the first two runs for POLY2 using the FF design. One

is reminded of the fact that with an interpolating polynomial, uniform convergence is not

even guaranteed for infinitely differentiable functions (recall Runge’s classical example of

the divergence of interpolating polynomials as the number of data points increases). Also,

for a second-order polynomial a two-level FF design may not be an appropriate choice. For

a second-order polynomial fit there must be at least 1 + 2k + k(k − 1)/2 distinct design

points, where k is the number of design variables. For subsequent runs, POLY2 appears to

work well as the simulation database matures providing enough design points for deriving

reasonable second-order polynomial coefficients.

Results show that the surrogate predicted responses for KRIGING are unpredictable

in general, and are worse when the surrogate is constructed with the FF and CCD designs.

However, differences between the predictions and the true function behavior for KRIGING

may be predominantly caused by the experimental design that is used. One of the designs

more commonly used with KRIGING is Latin hypercube sampling (LHS). The results

reported in Table 3B confirm these findings and show that the KRIGING method works

better with a space filling experimental design like LHS. However, results from Table 3 also

show that the predicted response using KRIGING always turned out to be a local optimum,

irrespective of the sampling approach used. In general, KRIGING (without tuning) does

not seem to be competitive at all.

An abnormal behavior is observed for some of the runs where the DDSAO algorithm

returns a point away from the previously found optimum (see all but the first run for

POLY1 with all three DOEs, POLY2 with the LHS design, and ANN with the LHS and

CCD designs). This behavior is not attributed to the surrogate type or the DOE method

used, but rather is a peculiarity of the DDSAO algorithm. For each new run (except for

the first run), the DDSAO algorithm starts at the previous run’s optimal point, and defines

an experimental design around that point. This experimental design may or may not be

the same as the previous run’s last experimental design, and hence, DOT might return a

different candidate point. Reducing the trust region radius for the second run onwards might

prevent this behavior, but this would negate the more global search nature of DDSAO.
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Figure 4. Convergence profiles (objective function value f(x) vs. cost #f(x)) for

LSHEP (diamond), POLY2 (star), and KRIGING (box) using FF design. The profiles for

QSHEP3D, POLY1, and ANN (not shown) are similar to that for LSHEP.

5.5 Convergence Histories

Convergence histories for the DDSAO algorithm for six different surrogates using the three

DOEs are shown in Figures 4, 5, and 6, where the true function value f(x) is plotted against

the optimization cost #f(x). Each curve exhibits the progress of a single run of the DDSAO

algorithm through a series of SAO iterations till convergence, and the x-y coordinates for each

intermediate point (shown as a geometric symbol—diamond, star, box, or circle) indicate

the number of simulations and the true function value at the end of the corresponding SAO

iteration. Convergence histories reveal some useful information about the performance of

the DDSAO algorithm during the optimization process in terms of the number of SAO

iterations required and the rate of convergence for a particular approximation method (e.g.,

POLY1 in Figure 5 converges rapidly to the true optimum in four SAO iterations).

It can be observed from all three plots that KRIGING is worse than all other surrogate

construction methods, and among the three DOEs it works better with LHS. The convergence

profiles for QSHEP3D, POLY1, and ANN in Figure 4, and POLY1, POLY2, and ANN in

Figure 6 are similar to those for LSHEP in the respective plots, however, a closer examination

of the Tables 3A and 3C shows that the approximation accuracy for some of these methods

is considerably worse than that for LSHEP.
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Figure 5. Convergence profiles (objective function value f(x) vs. cost #f(x)) for

LSHEP (diamond), POLY1 (star), POLY2 (Box), and KRIGING (triangle) using LHS

design. The profiles for QSHEP3D, and ANN (not shown) are similar to that for POLY2.

5.6 Other Issues

The computer based simulation models are deterministic in nature where the response values

are not random variables but are determined by the underlying mathematical models. The

RDS model under consideration here is one such deterministic model. An important issue

in the analysis of data from a deterministic computer experiment as discussed in [18] is

that many of the usual statistical techniques cannot be directly applied because of the lack

of a random error component. It is observed that the full factorial (FF) design is a more

appropriate choice of DOE for LSHEP, QSHEP3D, POLY1, and ANN; the Latin hypercube

sampling (LHS) for KRIGING, and the central composite design (CCD) for POLY2. Even

though these DOEs appear to be compatible with the approximation methodologies discussed,

there are many classes of experimental designs (orthogonal arrays, Box-Behnken design,

Koshal design, small composite design, etc.) in the literature that are worth trying. A

more sophisticated choice of the experimental design may provide more insight. Orthogonal

arrays are widely used for data sampling in many large multidisciplinary design optimization

(MDO) problems and might be useful for the implementation of the proposed approach for

more complex models in WBCSim. Another sampling approach known as optimization based

sampling has proved to be more efficient in driving the optimization in a SAO framework

[24].
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Figure 6. Convergence profiles (objective function value f(x) vs. cost #f(x)) for

LSHEP (star), QSHEP3D (diamond), and KRIGING (box) using CCD. The profiles for

POLY1, POLY2, and ANN (not shown) are similar to that for LSHEP.

Numerous sophisticated techniques are available to build response surface approxima-

tions such as radial basis functions (RBF), smoothing splines, etc., that are worth trying.

The RDS model that has been used as a testbed is one of the simplest models in WBCSim,

and although the proposed methodology appears to be competitive for the chosen model,

one must extend the current study to different MDO problems having large dimensionality

and complexity, e.g., the hot pressing model in WBCSim, in order to conclude much more.

There is a limitation to the optimization algorithm DDSAO. In general, a true optimum

value cannot be guaranteed when the algorithm converges. Methods like defining a final

trust region around the last candidate point to verify the true optimality do not work

without mathematical assumptions about the objective function and its gradient.
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Chapter 6: CONCLUSIONS

A data driven, surrogate based optimization algorithm DDSAO was applied to the simulation

code of the RDS model in WBCSim. Although a RDS simulation is relatively cheap (545 ms),

the DDSAO methodology extends to very expensive simulation models (e.g., the two hour

HC simulation in WBCSim), where exploiting an existing database of previous analyses can

be imperative. Six different approximation algorithms from the two packages SURFPACK

and SHEPPACK were used to build a surrogate using three DOEs: full factorial (FF), Latin

hypercube sampling (LHS), and central composite design (CCD). Results show that the

response surface approximations constructed using design of experiments can be effectively

managed by a SAO framework based on a trust region strategy. A generally observed

trend is that the very first run of the optimization algorithm DDSAO is more expensive

than having DOT directly call the simulation code. However, results also show that the

optimization algorithm DDSAO returned a better point for a large subset of runs. This

behavior derives from the iterative sampling nature of the SAO framework that allows the

DDSAO algorithm to explore more of the design space than DOT. Consequently, DDSAO

does more work but also finds a better point. Another interesting result is the significant

reduction in the number of simulations (exact function evaluations) for the subsequent runs

with a cumulatively growing simulation database. Whenever a simulation is executed, the

results are stored in the database and all the subsequent runs use the previously stored

simulation data. Over time, the database matures and is enriched as more and more

optimizations are performed, further reducing the optimization cost.

Of the six approximation types used to build a surrogate, LSHEP from SHEPPACK

appears to be the best choice in terms of approximation accuracy and optimization cost.

It is observed that the full factorial (FF) design is a more appropriate choice of DOE for

LSHEP, QSHEP3D, POLY1, and ANN; the Latin hypercube sampling (LHS) for KRIGING,

and the central composite design (CCD) for POLY2. Although the proposed methodology

appears to be competitive for the chosen RDS model, one must extend the current study to

different MDO problems having large dimensionality and complexity, e.g., the hot pressing

model in WBCSim, in order to conclude much more.

25



References

[1] Allen, N. A.; Shaffer, C. A.; Vass, M. T.; Ramakrishnan, N.; Watson, L. T. (2003), “Improving

the development process for eukaryotic cell cycle models with a modeling support environment,”

Simulation, 79, 674–688.

[2] Ames, A. L.; Nadeau, D. R.; Moreland, J. L. (1996), VRML 2.0 Sourcebook, pp. 241–295, 2nd ed.,

John Wiley & Sons, Inc.: New York.

[3] Burnett, T.; Chaput, C.; Arrighi, H.; Norris, J.; Suson, D.J. (2000), “Simulating the Glast satellite

with Gismo,” IEEE Computing in Science and Engineering, 2, 9-18.

[4] Bramley, R.; Gannon, D.; Stuckey, T.; Villacis, J.; Akman, E.; Balasubramanian, J.; Breg, F.;

Diwan, S.; Govindaraju, M. (1998), “The linear system analyzer, technical Report TR-511,” Dept.

of Computer Sci., Indiana University, Bloomington, IN.

[5] Boisvert, R. F.; Rice, J. R. (1985), Solving Elliptic Problems Using ELLPACK, Springer-Verlag:

New York, NY.

[6] Chen, J. X.; Fu, X. (1999), “Integrating physics-based computing and visualization: modeling dust

behavior,” IEEE Computing in Science and Engineering, 1, 12-16.

[7] Dymond, R.; Lohani, V.; Kibler, D.; Bosch, D.; Rubin, E. J.; Dietz, R.; Chanat, J.; Speir, C.;

Shaffer, C. A.; Ramakrishnan, N.; Watson, L. T. (2003), “From landscapes to waterscapes: a PSE

for landuse change analysis,” Engineering with Computers, 19, 9-25.

[8] Eldred, M. S.; Hart, W. E. (1998), “Design and implementation of multilevel parallel optimization

on the intel teraflops,” Multidisciplinary Analysis and Optimization, 98, 44-54.

[9] Gallopoulos, E.; Houstis, E.; Rice, J. R. (1994), “Computer as thinker/doer: Problem solving

environments for computational science,” IEEE Computational Sci and Eng, 1, 11–23.

[10] Goel, A.; Phanouriou, C.; Kamke, F. A.; Ribbens, C. J.; Shaffer, C. A.; Watson, L. T. (1999),

“WBCSim: a prototype problem solving environment for wood-based composites simulations,”

Engineering with Computers, 15, 198-210.

[11] Guisset, P.; Tzannetakis, N. (1997), “Numerical methods for modeling and optimization of noise

emission applications,” in Proceedings of the ASME International Mechanical Engineering Congress

and Exposition, ASME FAIRFIELD, NJ, (USA), vol. 24, pp. 315-322.

[12] Goel, A.; Baker, C. A.; Shaffer, C. A.; Grossman, B.; Mason, W. H.; Watson, L. T.; Haftka,

R. T. (2001), “VizCraft: a problem solving environment for aircraft configuration design,” IEEE

Computing in Science and Engineering, 3, 56-66.

[13] Giunta, A. A.; Richards, M. D.; Cyr, E. C.; Swiler, L. P.; Brown, S. L.; Eldred, M. S. (2006),

Surfpack Version 1.0 User’s Manual, Sandia National Laboratories, Albuquerque, NM, USA.

[14] Giunta, A. A.; Swiler, L. P.; Brown, S. L.; Eldred, M. S.; Richards, M. D.; Cyr, E. C. (2006), “The

Surfpack software library for surrogate modeling of sparse irregularly spaced multidimensional data,”

in 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA 1708-1736,

Portsmouth, VA.

[15] Houstis, E.; Gallopoulos, E.; Bramley, R.; Rice, J. R. (1997), “Problem solving environments for

computational science,” IEEE Computational Sci and Eng, 4, 18–21.

[16] Kamke, F. A.; Wilson, J. B. (1985), “Computer simulation of a rotary dryer: retention time,”

American Institute of Chemical Engineers Journal, 32, 263-268.

[17] Kamke, F. A.; Wilson, J. B. (1985), “Computer simulation of a rotary dryer: heat and mass transfer,”

American Institute of Chemical Engineers Journal, 32, 269-275.

[18] Myers, R. H.; Montgomery, D. C. (1995), Response Surface Methodology, Process and Product

Optimization Using Designed Experiments, Wiley, New York.

[19] Mishra, D.; Shaffer, C. A.; Ramakrishnan, N.; Watson, L. T.; Bae, K. K.; He, J.; Verstak, A.;

Tranter, W. H. (2007), “S4W: a problem solving environment for wireless system design,” Software:

Practice and Experience, 37, 1539-1558.
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[23] Pérez, V. M.; Renaud, J. E. (2000), “Decoupling the design sampling region from the trust region in

approximate optimization,” Proceedings of the International Mechanical Engineering Congress and

Exposition, American Society of Mechanical Engineers, 63, 205–214.
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