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Abstract Compressible Mooney-Rivlin theory has been us-
ed to model hyperelastic solids, such as rubber and porous
polymers, and more recently for the modeling of soft tis-
sues for biomedical tissues, undergoing large elastic defor-
mations. We propose a solution procedure for Lagrangian
finite element discretization of a static nonlinear compress-
ible Mooney-Rivlin hyperelastic solid. We consider the case
in which the boundary condition is a large prescribed de-
formation, so that mesh tangling becomes an obstacle for
straightforward algorithms. Our solution procedure involves
a largely geometric procedure to untangle the mesh: solu-
tion of a sequence of linear systems to obtain initial guesses
for interior nodal positions for which no element is inverted.
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After the mesh is untangled, we take Newton iterations to
converge to a mechanical equilibrium. The Newton itera-
tions are safeguarded by a line search similar to one used in
optimization. Our computational results indicate that theal-
gorithm is up to 70 times faster than a straightforward New-
ton continuation procedure and is also more robust (i.e., able
to tolerate much larger deformations). For a few extremely
large deformations, the deformed mesh could only be com-
puted through the use of an expensive Newton continuation
method while using a tight convergence tolerance and taking
very small steps.
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1 The problem under consideration

We consider the problem of solving for the deformed shape
of a hyperelastic solid body under static loads. The contin-
uum mechanical model under consideration has the follow-
ing description [1]. LetB0 ⊂ Rd be an undeformed solid
body whose boundary is∂B0. Hered, the space dimension,
is 2 or 3. Assume boundary conditions (either displacement
or traction, i.e., Dirichlet or Neumann) are given as follows.
The boundary∂B0 is partitioned into two subsetsΓD andΓN.
A function φ0:ΓD → Rd specifies new-position (Dirichlet)
boundary conditions. A second functiont0:ΓN → Rd speci-
fies traction (Neumann) boundary conditions. Everything in
this paper extends to the more general case that some co-
ordinate entries are Neumann while others are Dirichlet at
certain boundary points, but we limit the discussion to the
special case that each boundary point is Dirichlet or Neu-
mann in alld coordinates in order to simplify notation. Fi-
nally, the model requires a specification of the model’s body
forces, that is, a functionb:B0 → Rd that specifies the force
of gravity and other forces on the body.

The problem is to find a functionφ :B0 → Rd that speci-
fies the new position of the body. LetB denoteφ(B0). For a
pointX ∈ B0, let x = φ(X). Let F be the deformation gradi-
ent, i.e.,F = dφ/dX = dx/dX. It is assumed thatF(X) has
a positive determinant for allX. TheGreen-Lagrange strain
tensoris defined to beE = (FTF − I)/2. Let scalar func-
tion Ψ (F) be thestrain energy function, which is assumed
to be a property of the material. For this paper, we assume
thatΨ depends only on two scalar invariants of tensorE,
namelyJ = det(F) =

√

det(2E+ I) andI1 = trace(FTF) =

trace(2E+ I). Further specializing the model, the strain en-
ergy is then taken to have the following form suggested by
Ciarlet and Geymonat in [2] for compressible Mooney-Rivlin
materials

Ψ(F) =
λ
4
(J2−1)−

(

λ
2
+ µ

)

lnJ+
µ
2
(I1−3) (1)
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whereλ ,µ > 0 are material parameters. Compressible Moo-
ney-Rivlin theory has been used for analyzing large elastic
deformations of soft materials, including rubber [3]; porous
polymers, such as porous polyethylenes used as insulation
boards for construction, protective packaging materials,in-
sulated drinking cups, and flotation devices [4]; and biolog-
ical tissues [5]; as well as other applications.

For thed = 2 case, we assume thatB0 is 3D but that
the z-displacement is identically 0 and that thex- and y-
displacements depend only onx andy; these are calledplane
strainassumptions. Thus,E has a last row and column of all
zeros, and the Mooney-Rivlin formula in(1) is applied to
this E to come up with the strain energy function for the
d = 2 case. The condition for static equilibrium (written in
minimization form) is that
∫

B0

Ψ (F(X))dV−

∫

B0

ρb ·φ(X)dV−

∫

ΓN

t0 ·φ(X)dA (2)

is minimized among all choices ofφ that satisfy the Dirich-
let boundary condition, i.e., that satisfyφ(X) = φ0(X) for
all X ∈ ΓD.

This condition can be rewritten in variational form: for
all admissible variationsδu, that is, functions in the space
[H1(B0)]

d that vanish onΓD,

∫

B0

∂Ψ
∂F

:Gradδu dV−

∫

B0

ρb ·δudV−

∫

ΓN

t0 ·δudA= 0,

(3)

whereA:B= trace(ABT) is used to denote the inner product
of second-order tensorsA andB. This model also applies to
the case of linear elasticity with two changes in definitions.
First,E=((F− I)T +(F− I))/2 in the case of linear elastic-
ity. Second,Ψ = µ ∑i, j E(i, j)2 + λ

2 (∑i E(i, i))
2, which can

be written in terms of the two invariants ofE.
We should mention that our method does not appear to

depend so much on the specific details of the Mooney-Rivlin
model, except for the lnJ term, which is quite important for
our analysis. Sincedv= J dV, wheredv is the volume ele-
ment ofB anddV is the volume element ofB0, this loga-
rithmic term resists infinite compression of the material: if
a small positive volume of material inB0 shrinks to a 0-
volume set inB, then this term causes the strain energy at
those points to become infinite.

We next describe the Lagrangian discretization of the
problem under consideration [6]. We assume thatB0 is dis-
cretized with a mesh of triangles or tetrahedra. We assume
that the discretization ofφ , or alternatively the discretization
of the displacementu = φ(X)−X, is piecewise linear, with
the pieces of linearity being the mesh cells. (In Section 8, we
discuss extension of our method to piecewise quadratic dis-
placements.) Recall thatd is the space dimension, and letm
denote the number of non-Dirichlet nodes of the mesh. This

assumption implies thatu is determined bydm real num-
bers, namely, the values ofu at nodes. The finite element
method finds the displacementu such that(3) holds for all
test functionsδu in the test function space. Here, the test
function space is the set ofδu’s that are piecewise linear
and continuous and vanish onΓD. The integral in(3) is eval-
uated with a quadrature rule; we have used a 6-point formula
having degree 4 precision from [7] for our quadrature in 2D
and a 15-point formula having degree 5 precision from [8]
for 3D. It suffices to solve(3) for thedmchoices ofδu that
compose the standard basis for the test function space. This
yields a system ofdmnonlinear equations fordmunknowns.

The algorithmic question under consideration is how to
robustly solve these nonlinear equations. In the next section,
we give a summary of the mesh tangling issue and of our
proposal to overcome it. The individual steps of our algo-
rithm are then described in more detail in Sections 4 and 5.
In Section 3, we summarize the Newton continuation algo-
rithm which is a popular technique within the engineering
community for solving the nonlinear equations. Our com-
putational experiments, which compare the two algorithms,
are presented in Sections 6 and 7. Concluding remarks, in-
cluding some discussion of the incompressible case, are pre-
sented in Section 8.

The preceding formulation is called “Lagrangian” dis-
cretization because the nodes of the mesh remain fixed with
respect to material points throughout the solution procedure.
Alternatives to the Lagrangian approach include the Eule-
rian approach and arbitrary Lagrangian-Eulerian (ALE) meth-
ods. Pure Eulerian methods are not widely used in solid me-
chanics because of the difficulty in applying boundary con-
ditions. ALE methods are a more viable competitor to La-
grangian methods; in ALE methods the geometry is reme-
shed as part of the solution procedure. ALE remeshing at-
tempts to preserve a high-quality mesh as the solution evolv-
es. ALE methods are substantially more complicated than
Lagrangian methods because of the need to interpolate field
quantities to new mesh points on every remeshing step. In
addition, ALE remeshing is itself somewhat of an art in that
there is no foolproof universal procedure for updating the
mesh.

For these reasons, we focus on traditional Lagrangian
solution techniques in this paper. Nonetheless, the first part
of our algorithm (called “iterative stiffening” in Section4)
can be regarded as a particular ALE remeshing approach;
we return to this topic later.

2 Mesh tangling

The standard method for solving a system of nonlinear equa-
tions is Newton iteration. It is well-known, however, that if
the initial guess is far from the true solution, then Newton
iteration will often diverge.
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In the case of hyperelasticity with large deformation,
there is a specific obstacle that may cause divergence, namely,
mesh tangling. The definition of this term is that a mesh is
tangledif the value ofJ defined in the previous section is
0 or negative inB0. In the case of linear displacements,J
is piecewise constant, and hence this condition can be veri-
fied with a finite number of determinant computations. The
matter of checking for tangling in the piecewise quadratic
case is more complicated and is discussed in Section 8. A
solution with a tangled mesh is physically invalid. Indeed,
the strain energy function is undefined in this case because

of the presence of the term−
(

λ
2 + µ

)

lnJ. Note that al-

though the strain energy function is undefined whenJ is neg-
ative, the Galerkin form(3) is still well defined, which is an
anomaly that we return to below. We assume that the given
problem instance has a valid solution, i.e., there is a piece-
wise linear functionu satisfying the boundary conditions, as
well as(3) for all test functionsδu plus the condition that
J > 0 on every element.

Even with this assumption, Newton’s method will still
often run into problems because the mesh will become tan-
gled on intermediate steps. For example, the starting point
for Newton’s method is often taken to beu = 0 on every in-
terior node. If the deformation of the boundary is large, then
this starting point corresponds to a mesh which will have
tangling among most of the elements that are adjacent to the
boundary.

To understand a difficulty posed by a tangled mesh, sup-
pose that the strain energy has a single term

Ψ(J) =−

(

λ
2
+ µ

)

lnJ

(for λ
2 + µ > 0) on a single element and that there are no

boundary constraints. If we treatJ as the independent scalar
variable, then Newton’s method for minimizing this scalar
function is

J(i+1) = J(i)−Ψ ′(J(i))/Ψ ′′(J(i))

which simplifies in this case to

J(i+1) = 2J(i).

For positiveJ(0), this iteration produces a sequence ofJ’s
tending to+∞. This is to be expected since the minimum

of −
(

λ
2 + µ

)

lnJ is indeed at+∞. On the other hand, for a

negativeJ(0), this iteration tends to−∞, which is physically
invalid.

The preceding analysis, although naive, seems to point
to the following conclusion: Newton’s method on the Galer-
kin form, when applied to a tangled mesh, has a natural ten-
dency to make the tangling worse. We suspect that this fact
is probably already known to experts in the field, although
we have not been able to find it in the previous literature.

Given the conclusion in the previous paragraph, it seems
of paramount importance to avoid tangling. When Newton’s
method fails in computational mechanics, it is standard prac-
tice to try Newton continuation, that is, to apply the load
in incremental steps and use the converged solution for one
step as the Newton starting point for the next step. Contin-
uation is described in more detail in Section 3. Continua-
tion, however, addresses the tangling issue only in an indi-
rect fashion and therefore is likely to be very inefficient. Our
computational experiments confirm the inefficiency of con-
tinuation.

We propose a new algorithm for getting around the mesh
tangling obstacle. The basic idea is to first untangle the mesh
using a much simplified mechanical model. Once the mesh
is untangled, the true mechanical model is solved. “Untan-
gling the mesh” means finding aφ that satisfies the Dirichlet
boundary condition and also satisfiesJ > 0. Our new algo-
rithm, which we call UBN (for “untangling before Newton”)
consists of two steps.

1. First, we attempt to untangle the mesh with the iterative-
stiffening algorithm, described in Section 4. Iterative stiff-
ening builds on the FEMWARP algorithm from our pre-
vious work [9]. That paper, however, concerned itself
with a pure mesh generation problem (devoid of physics),
whereas, in this work, the topic is solving a classical
nonlinear boundary value problem in mechanics. If the
iterative stiffening algorithm cannot untangle the mesh,
then UBN reports failure to solve the problem.

2. Else if iterative stiffening succeeds, then we take New-
ton iterations to solve(3). The starting point for Newton
is an untangled mesh produced by step 1. No continu-
ation is used. On the other hand, Newton’s method is
safeguarded using a line search described in Section 5,
which prevents the introduction of new tangling. The
line search is based on a technique common in the in-
terior point literature (see e.g., [10]).

3 Newton continuation

In the case that direct use of Newton’s method to findφ
fails to converge, the standard alternative is Newton continu-
ation, also known as applying the load in steps. This section
briefly describes Newton continuation before we return to a
description of UBN.

The basic form of Newton continuation is quite straight-
forward: a sequence of parameters 0= τ0 < τ1 < · · ·< τN =

1 is chosen, and a sequence of displacement vectorsu0,u1,

. . . ,uN is computed, in which for eachk, uk is the solution
to the discretized(3) in the case that(φ0(X)−X,b, t0) are
replaced byτk · (φ0(X)−X,b, t0). Solutionu0 (correspond-
ing to absence of loads) is identically0. (In the case that
additional information is available about the final solution,
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one might be able to formulate a better initial guess foru;
however,u0 = 0 is the default value for most continuation
codes.) Solutionuk is found via Newton’s method, where
uk−1 is used as the initial guess. The final deformed config-
uration is given byuN sinceτN = 1. Note also that it is pos-
sible to accept a low-accuracy (not fully converged) solution
for uk whenk < N since it is presumably not necessary to
achieve high accuracy for intermediate results that are not
part of the ultimate answer.

In some cases, a straight linear parametrization of the
load path (as in the previous paragraph) is not feasible. In
this case, one must construct a nonlinear parametrization
(φNLP(X;τ),bNLP(X;τ), t0,NLP(X;τ)) with the property that
φNLP(X;0) = X while φNLP(X;1) = φ0(X) and similarly for
the other load terms. Examples of nonlinear parametriza-
tions are given later in the paper.

The only remaining issue is how to select the sequence
of τk’s. We use an adaptive rule defined as follows. Assume
that there are no body forces and that the traction boundary
conditions are all zero (i.e., “traction-free” surfaces).This
means that the only loading term is the Dirichlet boundary
condition. We form the deformed meshMk−1 after applying
the displacements given byuk−1 to non-Dirichlet nodes and
Dirichlet boundary conditions scaled byτk−1, (i.e., the de-
formed position is given byX+τk−1(φ0(X)−X) in the case
of linear parametrization) to Dirichlet nodes. Next, we com-
pute a value ofτk such that, if the boundary nodes inMk−1

are further deformed to positions given byX+ τk(φ0(X)−

X), then no tetrahedron altitude will decrease by more than
a factor ofη , whereη is a tuning parameter of the contin-
uation algorithm. Typicallyη ≤ 1. (In particular, the step is
sufficiently small that the mesh will not tangle after the new
boundary condition given byτk is applied toM.) We also in-
vestigate some more aggressive continuation strategies with
η > 1 in our experiments in Sections 6 and 7. This adap-
tive strategy appears to work reasonably well, although we
did encounter some robustness problems discussed in Sec-
tion 7. We also compare these adaptive step selection strate-
gies with a constant step-size strategy.

In this paper, we assume that the problem under con-
sideration is to determine a single final configuration. New-
ton continuation finds this final configuration, and, as a by-
product, also computes many intermediate configurations.
In some applications this “by-product” is in fact the princi-
pal application of continuation. For example, the entire load-
ing path is sometimes sought when the hyperelastic material
is, in and of itself, the object of study (e.g., a study of soft-
tissue deformation or damage due to an impact).

On the other hand, for problems in which the hypere-
lastic material is merely one component of a larger problem
(e.g., a vibration isolator in the model of a large structure),
the entire load path is usually not needed. Furthermore, even
in applications where the entire loading path is required, our

technique is applicable since UBN can be used in combina-
tion with Newton continuation to obtain an improved initial
guess and larger steps than is possible using Newton contin-
uation alone.

The description in the earlier paragraphs assumed the
special case of traction-free Neumann boundaries and ab-
sence of body forces. It is more difficult to use this adaptive
technique when there are nonzero body forces or tractions
since it is not obvious how to step these loads in a way that
prevents tangling on each step. Therefore, most of our test
cases focus on the traction-free case. Since the focus of the
paper is the UBN method, it represents a strengthening of
our contention that UBN is usually better than the compet-
ing algorithm (continuation) since we limit our testing only
to the case that seems well suited for continuation. Nonethe-
less, we have also tried examples with nonzero tractions; we
report on this experiment at the end of Section 7.

4 Iterative stiffening for mesh untangling

In this section, we describe our procedure called iterative
stiffening for untangling a mesh. We take the original me-
chanical problem given by(3), and using the same bound-
ary conditions and loads, we solve the equations of isotropic
linear elasticity using piecewise linear (constant-strain) fi-
nite elements [6]. Note that these equations have the same
material parameters (the Lamé constantsλ and µ) as the
Mooney-Rivlin model. Linear elasticity requires one linear
system solve. If the deformed mesh (i.e., the mesh that arises
from moving the nodes to their displaced positions) is un-
tangled, then iterative stiffening is finished. If not, thenour
iterative stiffening procedure locates all elements that are in-
verted in the deformed mesh and increases their stiffness by
50%. The linear elasticity model is now solved again. This
procedure is repeated indefinitely until the mesh is untan-
gled or an excessive number of iterations has passed.

We have not found this precise version of iterative stiff-
ening appearing in the previous literature, but it is related
to ideas already in the literature. It is closely related to “Ja-
cobian techniques” of Stein et al. [11]. It could be regarded
as an extension of FEMWARP, a finite element based mesh
warping approach developed by the authors within the lin-
ear weighted Laplacian smoothing (LWLS) framework [9,
12]. One difference is that FEMWARP does not easily en-
compass the mechanical concept of traction boundary con-
ditions. It is also related to a mesh warping method used for
ALE solvers and described in Chapter 7 of [6].

We remark that iterative stiffening, which we treat herein
as the first step of UBN, could be a standalone algorithm for
ALE remeshing. Indeed, this is the application for “Jacobian
techniques” mentioned above.

In our preliminary version of the UBN method [12], the
untangling was done using Opt-MS [13] rather than itera-
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tive stiffening. Opt-MS is an untangling algorithm that iter-
atively repositions interior nodes one at a time until the mesh
is untangled. It solves a small linear-programming problem
for each node to find the position for it that maximizes the
minimum area (volume) of an element in the local submesh
constructed from its neighboring triangles (tetrahedra).The
area (volume) of a triangle (tetrahedron) is computed via the
determinant of the Jacobian of the element. We found re-
cently that iterative stiffening is more effective for use in
UBN than Opt-MS. One possible reason is that it is difficult
to implement traction boundary conditions in a natural way
in Opt-MS.

Note that iterative stiffening can be made particularly
efficient by using matrix-updating. In particular, it is well-
known (see, e.g. [14]) how to update a Cholesky factoriza-
tion of a symmetric positive definite matrixA afterA has un-
dergone a low-rank update. If the iterative stiffening proce-
dure stiffens only a few elements per iteration (our test runs
confirm that indeed there are usually only a few updates per
step), then this can be implemented as a a low-rank update,
which is potentially much more efficient than solving a new
stiffness matrix from scratch. We did not implement matrix-
updating because the work for iterative stiffening was usu-
ally dominated by the solver part of the algorithm anyway.

5 Newton Line Search

Newton’s method is often employed for solving nonlinear
systems of continuously differentiable equations [15]. Let
f :Rdm → Rdm, continuously differentiable, be given. The
task at hand is to find au ∈ Rdm such thatf (u) = 0. Letu0 ∈

Rdm be given. Then, at each iterationk, Newton’s method
solves

J(uk)sk =− f (uk), (4)

whereJ denotes the Jacobian off , for the Newton step,sk,
and performs the following update

uk+1 = uk+ sk. (5)

If it becomes necessary to satisfy one or more additional
inequality constraints, it is possible to safeguard the Newton
step with the introduction of a line search. Letαk denote the
line search parameter. Thenαk is chosen to be as large as
possible such that 0< αk ≤ 1 anduk+1 = uk+αksk satisfies
the constraint.

It is often difficult to compute the value ofαk that mini-
mizes f (xk+αksk) and satisfies the constraint becausef is
often a highly nonlinear function. In addition, the optimal
value ofαk often produces steplengths that are too short in
practice. Thus, it is common practice in interior point meth-
ods to derive heuristics for computingαk that allow for both
ease of computation and larger steplengths [10]. One such

heuristic is to chooseαk so as to stay a fixed percentage
away from the boundary. We employ this heuristic in our
line search below.

As was pointed out in Section 2, the mesh is tangled
unlessJ = det(F)> 0. Thus, we introduce a line search that
enforces thatJ > 0 on each iteration of Newton’s method.
In particular, we begin withJ > 0 on the zeroth iteration
and choose the line search parameterαk such thatJ(uk+1)≥
0.1J(uk) on each element so as to stay a fixed percentage
away from the boundary for reasons discussed above.

The following pseudocode algorithm shows how the line
search parameter is determined. LetN denote the number
of elements in the mesh. Given a displacement vectoru, it
is straightforward for each elementi = 1, . . . ,N to compute
the deformation gradientF and its determinantJ determined
by this displacement on elementi; we denote the resulting
determinant byJ(u, i).

Let u0 be the value of the displacement (at non-Dirichlet
nodes) returned by the previous iteration of our Newton/line
search algorithm. Initially, the value ofu0 is the output of the
iterative stiffening algorithm. It is assumed that the meshde-
termined by the Dirichlet boundary conditions and byu0 on
non-Dirichlet nodes is untangled. Lets denote the Newton
step determined fromu0 via (4).

α = 1;
for i = 1:N

while true
if J(u0+αs, i)≥ J(u0, i)/10

break
end
α = α ·0.9;

end
end

6 2D Experiments

We designed a series of numerical experiments in order to
test the robustness of UBN and to compare it to the standard
Newton continuation algorithm. As explained in Section 3,
most of our test cases involve only traction-free, body-force-
free loading conditions. For all of the numerical experiments
in this paper, we set the parameters in(1) as follows:λ =

νE
(1+ν)(1−2ν) andµ = E

2(1+ν) , with E = 1 andν = 0.3.
The termination criteria for the Newton loop in UBN and

for the final step of Newton continuation was that‖F‖2 ≤
10−10‖F0‖2, whereF0 is the initial value (i.e., the value when
all interior displacements are set to 0) of the load vector.
For the Newton continuation steps prior to the final step,
the termination criteria was that‖F‖2 ≤ tol‖Fki‖2, where
Fki is the initial value of the load vector at the beginning of
major iterationk, andtol = 10−3 or 10−5. The looser toler-
ance was chosen because it was important to determine the



6

value of the stopping criterion which makes Newton con-
tinuation as efficient as possible (for the purposes of com-
parison with UBN). The tighter tolerance was chosen for
the purposes of improving the robustness of Newton con-
tinuation on highly deformed meshes. The algorithms were
implemented in Matlab.

The linear solution operation in Matlab is quite highly
optimized and is expected to compete well with a custom-
written C or C++ linear solver. On the other hand, the matrix
assembly process involves several nested Matlab loops and
is therefore expected to be much slower than a C or C++
version. For this reason, wall-clock times derived from the
Matlab code are not useful predictors of computational de-
mands that would be observed with a C or C++ code.

Instead, we measure the running time in terms of assem-
bly/linear solve steps. An assembly/linear solve (ALS) step
consists of one stiffness matrix and load vector assembly
operation followed by one sparse linear system solve. The
Newton continuation method involves a sequence of Newton
solve procedures, and each Newton solve is further subdi-
vided into several ALS steps. The UBN method involves it-
erative stiffening iterations followed by a safeguarded New-
ton method. We count each iteration of iterative stiffeningas
an ALS step. The assembly portion of the iterative stiffen-
ing ALS operation is not exactly the same as the assembly
portion of Newton, since the former involves linear elas-
ticity assembly whereas the latter involves nonlinear tan-
gent stiffness assembly. We ran both assembly codes on an
older Windows machine running Matlab 5.3, which has a
“flops” function built in that measures floating point opera-
tions. (Newer versions of Matlab lack this function.) From
this experiment we determined that the number of operations
for the two kinds of assembly are fairly close. Furthermore,
both assembly operations are much less costly than the lin-
ear system solve. Note that the iterations of iterative stiffen-
ing would be considerably cheaper than an ALS step had we
implemented low-rank corrections described in Section 4.

The solver portion of UBN involves additional opera-
tions connected with the line search. We determined (again
by running test cases in Matlab 5.3) that the line search re-
quires a tiny number of operations in comparison to the so-
lution of the linear equations.

Thus, it is sensible to compare the running time of UBN
to continuation by considering the total number of ALS steps
required for either.

In this section we describe our 2-dimensional test case,
which is an annular domain. The mesh was generated with
Shewchuk’s Triangle [16] and is illustrated in Fig. 1. It con-
tains 181 nodes and 284 triangles.

The boundary conditions used in this test case involve
a rotation of the exterior boundary circle byf radians com-
bined with moving the inner boundary by a factorf closer to
the outer boundary (wheref = 0 means no motion andf = 1

Fig. 1 The annulus mesh used for testing in this section.

means that the inner boundary would coincide with the outer
boundary). Values off tried were 0.1, 0.3, 0.6, and 0.7. The
resulting deformed meshes are illustrated in Fig. 2.

The number of ALS steps to compute these deformed
meshes is given in Table 1. The columns of this table are as
follows. The first columnf is the amount of boundary de-
formation as described in the previous paragraph. The sec-
ond column # inv is the number of inverted elements in the
deformed mesh prior to application of UBN. The third col-
umn UBN–IS is the number of iterations of iterative stiffen-
ing required by UBN. The fourth column UBN–NM is the
number of iterations of Newton’s method required by UBN.
The fifth column UBN-ALS is the number of ALS steps re-
quired by UBN (and hence is the sum of the second and third
columns).

The remaining columns of the table report on results
from the continuation algorithm. The sixth column is the
number of major iterations (i.e., updates to the continuation
parameterτ) required by the continuation algorithm when
constant-size steps are employed. The seventh column is the
number of ALS steps required by continuation. The eighth
and ninth columns are the same quantities required by the
continuation algorithm using the adaptive rule discussed in
Section 3 with parameterη = 1/3. The tenth and eleventh
columns are the same quantities whenη = 1.2. Note that
η = 1.2 is a quite aggressive choice of stepsize for contin-
uation, since any value ofη > 1 means that updating the
boundary could cause an inversion. For this 2D test case, an
aggressive choice ofη did not seem to hinder convergence,
but the results for a large value ofη in 3D described in the
next section are less favorable.

For f = 0.8, neither UBN nor Newton continuation was
able to find a solution. UBN’s iterative stiffening did not
untangle the mesh after the maximum number of iterations
(400) had been reached, and continuation stalled atτ = 0.93
when adaptive steps were used and terminated with an in-
verted element when constant steps were used.

It should be noted that a highly deformed mesh like the
solution whenf = 0.7 is probably not physically valid be-
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(a) (b)

(c) (d)

Fig. 2 Deformed annulus meshes resulting from rotating the exterior
boundary circle of the mesh shown in Fig. 1 byf radians and moving
the inner boundary circle by a factorf closer to the outer boundary.
The deformed meshes are for (a)f = 0.1, (b) f = 0.3, (c) f = 0.6, and
(d) f = 0.7.

cause the finite element discretization is no longer an accu-
rate approximation to the underlying PDE. Nonetheless, we
include extreme cases like this because it is interesting to
compare the two algorithms in limiting cases. The test re-
sults show that UBN is much faster than continuation for
both modest and extreme deformations.

Note that for continuation, the outer boundary motion
(i.e., the Dirichlet boundary condition) is parametrized in
polar coordinates byθ , the rotation angle. Linear parametriza-
tion with respect to the rectangular coordinates,(x,y), would
work poorly in this case because a linear deformation from
the initial position of the outer boundary to the final position
would cause the outer boundary to shrink in radius and then
expand.

Comparing the UBN–ALS and Contin–ALS columns of
this table indicates that UBN is approximately 9-27 times
more efficient than continuation when constant-size steps
are used, and is 15 to 30 times more efficient whenη = 1/3.
(Note that the most efficient results for the UBN and Newton
continuation methods are shown in bold face type.) Contin-
uation is 3 to 4 times faster when used with the larger value
of η but is still significantly slower than UBN. Other annu-
lus deformation tests not reported here confirm that UBN is
always far more efficient than continuation.

We also wished to check whether the iterative stiffening
step in UBN was essential. As evidenced in Column 2 of Ta-
ble 1, for smaller deformations, the deformed mesh does not
always result in inverted elements. However, for larger de-
formations, the deformation does result in inverted elements.
For deformed meshes with inverted elements, the iterative
stiffening step is essential to untangling the mesh before us-
ing it as a starting point to the line search. For all deformed
meshes, it is useful for determining a good starting point.

Similarly, we checked to determine whether the line sea-
rch procedure built into UBN was ever active in order to
determine whether it is an essential part of UBN. We found
that it was active on about 30%-50% of the iterations for the
larger values of deformation.

Motivated by the robustness issues experienced by the
Newton continuation method in 3D, we also wished to in-
vestigate the performance of the method when safeguarded
steps are taken (by employing the same line search described
in Section 5), a tighter convergence tolerance is used, and
constant-size steps are employed. The results of our exper-
iments are shown in Table 2. For ease of comparison, the
Newton continuation results shown in Table 1 are listed here
in columns 2-7. The eighth and ninth columns record the
results of adding a line search to the Newton continuation
method for the case whenη = 1/3. The tenth and eleventh
columns indicate the corresponding information when a line
search is used andη = 1.2.The twelfth and thirteenth columns
show the results when constant steps are employed with a
convergence tolerance of 10−5. The remaining columns spec-
ify the results for when the convergence tolerance is 10−5

andη = 1/3 or η = 1.2.

The results show that the addition of a line search to
safeguard the steps of the Newton continuation method is
unnecessary whenever the method is able to compute the de-
formed mesh without experiencing robustness issues. How-
ever, the continuation method was able to compute the de-
formed mesh forf = 0.8 when a convergence tolerance of
10−3 and a line search were employed. The use of a tighter
convergence tolerance slows down the convergence of the
continuation method on these test problems. Taking constant-
size steps generally produces convergence more quickly than
the use of the conservative adaptive stepping rule but more
slowly than the aggressive adaptive stepping rule. However,
it should be noted that the use of a convergence tolerance
of 10−5 when taking either constant-size steps or steps com-
puted using the aggressive adaptive step rule were also able
to compute a deformed mesh forf = 0.8. In addition, the
faster Newton continuation methods discussed above are up
to 4 times faster than the other continuation methods pre-
sented here. Thus, the use of a line search and a narrower
convergence tolerance should be performed only when the
deformation is extremely large, and UBN is not able to com-
pute the deformed mesh.
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Table 1 Results of comparison of UBN to the most efficient version of continuation for the 2D annular domain. See the corresponding text for
explanation of the column headers.

f UBN Contin., tol = 10−3

const. steps η = 1/3 η = 1.2
# inv IS NM ALS MajIt ALS MajIt ALS MajIt ALS

0.1 0 1 3 4 27 55 28 57 8 18
0.3 36 1 5 6 80 162 87 175 24 50
0.6 59 5 29 34 160 322 265 483 73 148
0.7 64 9 23 32 187 356 414 683 113 228

Table 2 Results of comparison of different versions of continuation for the 2D annular domain. See the corresponding text for explanation of the
column headers.

f Contin., tol = 10−3 Contin., tol = 10−5

const. steps η = 1/3 η = 1.2 η = 1/3 + LS η = 1.2 + LS const. steps η = 1/3 η = 1.2
MajIt ALS MajIt ALS MajIt ALS MajIt ALS MajIt ALS MajIt ALS Maj It ALS MajIt ALS

0.1 27 55 28 57 8 18 28 57 8 18 27 55 28 57 8 25
0.3 80 162 87 175 24 50 87 175 24 50 80 190 87 179 24 73
0.6 160 322 265 483 73 148 265 483 73 148 160 430 264 545 73 220
0.7 187 356 414 683 113 228 414 683 113 228 187 511 407 832 113 340

The use of a line search with a convergence tolerance of
10−5 was not explored since the use of constant-size steps
with the tighter convergence tolerance was the most effec-
tive (i.e., the method was even able to compute the deformed
mesh forf = 0.9).

7 3D Experiments

Our experiments in 3D consisted of two tetrahedral meshes
called “Hook” and “Foam5,” which were provided to us by
P. Knupp [17]. “Hook” is a geometry composed of three
main sections: its two end segments are composed of half
annuli (in 3D), and its middle section is an irregularly-shaped
solid which creates a sharp corner where it joins the bottom
section. “Foam5” is a prism whose cross-section is a half-
disk with three cavities cut on the top surface; two of the
cavities are cylinders and the third is two parallelpipeds ar-
ranged like stairs. The sizes of the meshes are as follows:
Hook contains 1190 nodes and 4675 tetrahedra, and Foam5
contains 1337 nodes and 4847 tetrahedra. Hook is contained
in a bounding box of size 54×40×95, while Foam5 is con-
tained in a bounding box of size 11.3×5.5×6.6.

In both cases, we applied Dirichlet boundary conditions
to two of the boundary surfaces, leaving the rest traction-
free. In both cases, the Dirichlet conditions are identically
zero on one boundary surface and displace the other surface
in a uniform direction. Three magnitudes for the displace-
ment were tested. For Hook, the displacement sizes were 10,
20, and 40, whereas for Foam5 they were 0.5, 2, and 5. Thus,

we see that the applied displacements are on the same order
as the size of the object, and therefore large deformations
will result. Figure 3 shows the deformed and undeformed
configurations of Hook for the maximum deformation of 5,
while Fig. 4 shows the corresponding illustration of Foam5.

The results of our tests of UBN versus Newton continua-
tion on Hook and Foam5 with a 10−3 convergence tolerance
are given in Table 3. (The relevant column headers are the
same as those given for Table 1.) As in the previous section,
the unit for measuring running time is ALS steps. For these
tests, straight linear parametrization was used for continua-
tion. As before, our results on Hook indicate that UBN is 15
to 50 times faster than continuation whenη = 1/3, and 5
to 15 times faster forη = 1.2. In addition, UBN is 15 to 50
times faster than continuation when constant-size steps are
taken.

The continuation algorithm terminates when the incre-
ment inτ becomes smaller than the prespecified minimum
(0.0005); this happened in two of the tests with Foam5 when
η = 1/3 (indicated by ‘—’ in the table). Apparently this
is due to an extremely flat tetrahedron which, although it
is does not become inverted, causes the heuristic used for
adaptively incrementingτ to take very conservative steps.
The continuation algorithm also terminates when inverted
elements remain after one major iteration. This happened in
one of the tests with Hook when constant-size steps were
taken as indicated by ’***’ in the table.

For the Foam5 tests, the continuation algorithm termi-
nated after one major iteration due to the presence of in-
verted elements for three of the meshes whenη = 1.2. This
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(a) (b)

(c) (d)

Fig. 4 The top row line diagrams(a) and(b) show the undeformed Foam5 body from two different viewpoints. Dirichlet boundary conditions
were applied to two of the boundary surfaces to yield deformed meshes. In particular, the asterisks mark the zero-displacement boundary, while
the×’s mark fixed displacement. The bottom row diagrams(c) and(d) show Foam5 after the maximum deformation of 5 is applied.

shows that, as expected, the aggressive choice ofη may be
more prone to inverting elements. Similar performance of
the continuation algorithm occurred for two of the meshes
when constant-size steps were used.

In order to attempt to improve the robustness of the New-
ton continuation algorithm for the 3D Hook and Foam5 mes-
hes, we also performed experiments which considered the
use of a line search to safeguard the steps, the use of constant
steps, and the use of a tighter convergence tolerance. The re-
sults of our experiments are shown in Table 4. Note that the
column headers are identical to those described above for
Table 2 (except that the results for taking constant-size steps
with a convergence tolerance of 10−3 has been omitted from
the table). The most efficient continuation method results are
shown in bold face type.

The results demonstrate that the addition of a line search
to the continuation method did not serve to resolve the ro-
bustness issues for the method when a convergence toler-
ance of 10−3 was employed. However, the use of a tighter
convergence tolerance, i.e., 10−5, (either in combination wi-
th adaptive steps or constant-size steps) served to resolve
the robustness problems seen when the looser convergence
tolerance was employed. The disadvantage is that the use

of a tighter convergence tolerance makes the Newton con-
tinuation method much more expensive. In particular, UBN
is up to 70 times faster than the slowest Newton continua-
tion method reported here. It should be noted that for one
of the Hook test cases, the continuation method terminated
after the maximum number of iterations (600) had been per-
formed; this was recorded as an ’xxx’ in the table. The most
efficient Newton continuation method is a function of the
test problem. For somewhat smaller deformations (as was
the case for the Hook mesh), the use of the aggressive adap-
tive step strategy and the looser convergence tolerance was
the most efficient. However, for larger deformations, the use
of the aggressive adaptive step strategy with the tighter con-
vergence tolerance was the most efficient. Finally, the UBN
method was much more efficient and more robust than the
Newton continuation method, in general.

All the preceding tests involved traction free boundaries
and prescribed displacements, not all zero, for Dirichlet bou-
ndary nodes. We conclude this section by reporting on ex-
periments with the following boundary conditions. Nonzero
tractions were specified on one facet of the Hook mesh,
while zero displacements were forced on a different facet.
(Tractions were implemented as normally directed point lo-
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Table 3 Results of comparison of UBN to continuation for 3D domains.See the corresponding text for explanation of the column headers.

mesh displ. UBN Contin., tol = 10−3

const. steps η = 1/3 η = 1.2
# inv IS NM ALS MajIt ALS MajIt ALS MajIt ALS

Hook 10.0 0 1 5 6 53 107 53 107 15 32
Hook 20.0 0 1 6 7 165 212 105 212 30 61
Hook 40.0 0 1 8 9 *** *** 210 421 59 119
Foam5 0.5 18 1 4 5 28 36 28 36 *** ***
Foam5 2.0 72 1 5 6 *** *** — — *** ***
Foam5 5.0 76 1 7 8 *** *** — — *** ***

Table 4 Results of comparison of different versions of continuation for 3D domains. See the corresponding text for explanationof the column
headers.

mesh displ. Contin., tol = 10−3 Contin., tol = 10−5

η = 1/3 η = 1.2 η = 1/3 + LS η = 1.2 + LS const. steps η = 1/3 η = 1.2
MajIt ALS MajIt ALS MajIt ALS MajIt ALS MajIt ALS MajIt ALS Maj it ALS

Hook 10.0 53 107 15 32 53 107 15 32 53 159 53 159 15 46
Hook 20.0 105 212 30 61 105 212 30 61 105 316 105 316 30 91
Hook 40.0 210 421 59 119 210 421 59 119 xxx xxx 59 177 xxx xxx
Foam5 0.5 28 36 *** *** 28 36 *** *** 28 57 8 25 28 57
Foam5 2.0 — — *** *** — — *** *** 110 221 109 219 31 93
Foam5 5.0 — — *** *** — — *** *** 274 549 269 539 75 226

ads on each node of the facet. For larger loads, this is not
a completely realistic approach since realistic forces would
change directions under very large deformation, but so-called
“follower” loads are beyond the scope of this work.) The re-
maining boundary nodes were traction-free. Different levels
of the traction load were used for different experiment.

These experiments required a modification of our step-
ping rule for continuation since the rule outlined in Section 3
is intended for nonzero boundary displacements and zero
tractions. The modified continuation routine determines a
fixed stepsize as follows. First, the same underlying problem
is solved using linear elasticity. (It may happen that some
elements are inverted in this solution; in this setting, we do
not care about element inversion.) From this linear solution,
we measure the maximum displacement among nodes. Then
the stepsize for continuation is taken to be the quotient of the
minimum altitude in the original mesh divided by the max-
imum displacement in the preliminary solve. The rationale
for this rule is so that the amount of deformation that occurs
per step of continuation should not exceed the sizes of the
elements in an effort to prevent inversions.

This stepsize rule appeared in our experiments to be ap-
propriate in the following sense. Most outer iterations of
continuation (i.e., stepping fromτk to τk+1) appeared to re-
quire 2 to 4 inner Newton iterations. If the usual number
required were 1, this would indicate a stepsize which is too
small (conservative). On the other hand, if the usual required
were much greater than 1, this would indicate that the step-
size is too large for straightforward continuation.

We found that UBN was 2 to 5 times faster than contin-
uation for these test cases. Both algorithms returned a con-
verged solution. In the case of the largest load, the two solu-
tions differed. Both were physically valid; one corresponded
to the base of the hook bending toward the hook end in the
direction on the inside of the hook, whereas the other cor-
responded to bending toward the outside of the hook. See
remarks on the possibility of multiple solutions in Section8.

Since all displacement boundary conditions in this ex-
ample are zero, the possibility of some additional experi-
ments to elucidate features of UBN were carried out. The
first experiment on this problem ran the safeguarded Newton
method of UBN but omitted the preliminary use of FEMW-
ARP to find a good starting point for the safeguarded New-
ton method. Instead, the safeguarded Newton method was
initialized with the original mesh, which is possible because
the prescribed displacement boundary conditions are all zero.
We found that the method did not always converge. This
shows that even the safeguarded Newton method should be
initialized close to the solution else divergence may result.
The second additional experiment looked at using unsafe-
guarded Newton’s method from the initial mesh to find the
final configuration. Again, this is possible because of the
zero displacement condition. Our experiment indicated that
this method did not always converge either. Thus, these ex-
periments provide evidence of the necessity of the iterative
stiffening and safeguarded line search.
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(a) (b)

(c) (d)

Fig. 3 The top row line diagrams(a) and (b) show the undeformed
Hook body from two different viewpoints. Dirichlet boundary condi-
tions were applied to two of the boundary surfaces to yield deformed
meshes. In particular, the asterisks mark the zero-displacement bound-
ary, while the×’s mark fixed displacement. The bottom row diagrams
(c) and(d) show Hook after the maximum deformation of 40 is ap-
plied.

8 Conclusions

In summary, we developed a robust solution method for solv-
ing nonlinear elasticity equations for hyperelastic solids with
large boundary deformations. The basic idea is to first un-
tangle the mesh using purely geometric methods and second
solve the mechanical model; thus, the algorithm was named
UBN (for “untangling before Newton”). The first step of
our algorithm is to attempt to untangle the mesh with itera-
tive stiffening. Assuming the mesh is untangled, UBN takes
safeguarded Newton steps to solve(3).

We tested the robustness of UBN and compared it to the
standard Newton continuation algorithm. We demonstrated
that UBN is significantly more robust that the Newton con-
tinuation algorithm, i.e., it is able to tolerate much larger
deformations, in general. For a couple of cases with ex-
tremely large deformations, the Newton continuation algo-
rithm with the use of a tight convergence tolerance and very
small constant-size steps was the only method which was
able to compute the deformed meshes. It is also likely that

UBN could compute the deformed meshes if the deforma-
tion were broken into smaller deformations (in a similar man-
ner to the small-step FEMWARP algorithm described in [9]).
We also showed that UBN is much faster (i.e., up to 70 times
faster) than the Newton continuation algorithm. It could be
argued that continuation would be more competitive with
UBN if only we had used a different strategy for increment-
ing τk. This may be true, but it seems to us that there is
no good universal fast method for choosing theτk. Our ex-
periments indicate, for example, that a more aggressive al-
gorithm for updatingτ is more prone to terminating early
due to inverted elements. Even selecting the continuation
path seems to be nontrivial (e.g., for the 2D annulus exam-
ple, it was necessary to parametrize the Dirichlet boundary
condition in polar rather than rectangular coordinates). In
contrast, the UBN method does not require any such analo-
gous problem-dependent decisions, and the only parameters
of the algorithm involve termination criteria.

As described so far, our method applies to finite ele-
ments in which the displacement field is piecewise linear
over tetrahedra, but UBN could be extended to piecewise
quadratic displacements. The challenge with piecewise quad-
ratic displacements is that checking for tangling is much
more complicated, asJ is not constant on the element. In
particular, it is a function of both the displacement and the
location on the element, which makes it difficult to deter-
mine whenJ > 0 analytically. There are some separate nec-
essary and sufficient conditions for element inversion in the
literature. LetG be the Jacobian ofF . Then one such neces-
sary condition is that det(G) has the same sign (strictly posi-
tive or strictly negative) at some finite list of test points [18].
In this case, we would test for inversion at the Gauss points
used for numerical quadrature; however, it is still possible
that folding could occur at the corners. A more complicated
sufficient condition for invertibility involving the Bernstein-
Bézier form of a polynomial is given in [19]. Checking that
the sufficient condition is met requires running a linear pro-
gramming algorithm. Salem, Canann, and Saigal have pro-
posed sufficient conditions for quadratic triangles and tetra-
hedra in [20], [21], [22], and [23].

Another issue for UBN is uniqueness. It should be noted
that some classes of boundary value problems may admit
multiple solutions. A somewhat complicated example of this
nonuniqueness occurred in Section 7. A conceptually sim-
pler example is as follows. Consider a long cylinder in which
one end is held at zero displacement, the other is rotated by
2π radians, the long side-surface is traction-free, and there
are no body forces. Since the rotated nodes at one end return
to their original positions after rotation by 2π radians, a valid
solution to the boundary value problem is all zero displace-
ments. A second valid solution is a twisted configuration of
the cylinder.
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In the case of continuation, it is possible to select a se-
quence of nonlinear boundary deformations to force the cor-
rect final configuration. This is not possible with UBN, how-
ever, at least not without further modification. To distinguish
one solution from another requires additional information
beyond boundary conditions. Determining what form the ad-
ditional information ought to take will be studied as future
work. We will also determine how UBN should be extended
in order to use such additional information.

Future work will also involve extending UBN to the in-
compressible or nearly incompressible case. In the incom-
pressible case, the requirement thatJ = 1 becomes a con-
straint rather than a term in the energy functional. For this
reason,J disappears from the functional. One minimizes
ψ(u) subject to the constraintg(u) = 0, where the latter ex-
presses theJ = 1 constraint for each Gauss point. The func-
tional ψ(u) typically involves the deviatoric strain at Gauss
points. A common method for handling a constraint like this
is an augmented Lagrangian optimization algorithm [24].
On each iteration of the augmented Lagrangian method, our
UBN method is applicable in the same way as in the uncon-
strained case considered here. In particular, the energy func-
tion ψ(u) is usually undefined or nondifferentiable when
J = 0, so Newton’s method is unlikely to work well whenJ
gets close to zero or, even worse, becomes negative. There-
fore, the preliminary untangling step and line search de-
scribed earlier are appropriate for the incompressible case
as well.
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