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Abstract Two of the most successful methods to generate
unstructured hexahedral meshes are the grid-based meth-
ods and the advancing front methods. On the one hand, the
grid-based methods generate high-quality hexahedra in the
inner part of the domain using an inside-outside approach.
On the other hand, advancing front methods generate high-
quality hexahedra near the boundary using an outside-inside
approach. To combine the advantages of both methodolo-
gies, we extend the receding front method: an inside-outside
mesh generation approach by means of a reversed advancing
front. We apply this approach to generate unstructured hex-
ahedral meshes of exterior domains. To reproduce the shape
of the boundaries, we first pre-compute the mesh fronts by
combining two solutions of the Eikonal equation on a tetra-
hedral reference mesh. Then, to generate high-quality ele-
ments, we expand the quadrilateral surface mesh of the in-
ner body towards the unmeshed external boundary using the
pre-computed fronts as a guide.

Keywords Mesh generation · unstructured hexahedra ·
eikonal equation

1 Introduction

During the last two decades several general-purpose algo-
rithms for fully automatic hexahedral mesh generation have
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been proposed, see [1–6] for a survey. However, none of the
existent algorithms is robust, automatic and generates high-
quality meshes for any initial geometry. There are two fami-
lies of methods that almost fulfill all these requirements, the
grid-based and the advancing front methods. In fact, these
approaches are the most successful methodologies to obtain
a general-purpose hex-meshing algorithm. Furthermore, the
grid-based and advancing front methods have advantages
and disadvantages that complement each other. Thus, we can
consider how to obtain a hexahedral meshing approach that
presents only the advantages, and avoids the disadvantages,
of these two methods.

On the one hand, the standard grid-based methods [7–
11] are the only family of hexahedral mesh generation algo-
rithms that are robust and fully automatic. In addition, they
generate high-quality meshes in the inner part of the mesh.
These advantages are possible because the mesh is gener-
ated from inside to outside. However, the grid-based meth-
ods generate low-quality hexahedra near the boundary and
the final mesh depends on the spatial orientation of the do-
main. These drawbacks appear because the inner mesh does
not have layers of hexahedra that progressively adapt to the
boundary shape of the domain.

On the other hand, the advancing front methods [12–15]
generate high-quality meshes near the boundary (boundary
sensitive) that do not depend on the orientation of the ob-
ject (orientation insensitive), see details on hex-meshing re-
quirements in [2]. This is possible because the elements are
generated layer by layer following the shape of the bound-
ary surface. However, the advancing front methods are less
robust and automatic. When the fronts are advanced, from
the boundary to the inner part, they collide and can delimit
complex voids. Specifically, if the advancing front method
starts with a prescribed quadrilateral mesh of the boundary
(constrained approach) [12] the resulting void is, in general
terms, over-constrained and cannot be meshed. On the con-
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trary, the versions of the advancing front method that start
without a prescribed mesh of the boundary (unconstrained
approach) [13–15] can always generate a hexahedral mesh
for the void. However, the quality of the mesh of the in-
ner void is not guaranteed because it results from splitting
each tetrahedron of a tetrahedral mesh into four hexahedra.
These disadvantages at the inner part are caused because
the elements are generated from outside to inside. Note that
there are also constrained methods that directly transform
a tetrahedral mesh into a hex-dominant mesh [16,17], and
other unconstrained methods that using a reference tetrahe-
dral mesh generate full-hex meshes [18–20].

In summary, by generating elements from inside to out-
side one can avoid the front collisions that lead to unmeshed
voids or low-quality inner meshes. Moreover, by generating
the elements using fronts (layers of elements) one can ob-
tain meshes that reproduce properly the shape of the domain
boundary. For this reason, our long-term goal is to combine
the advantages of these methods into a general-purpose hex-
ahedral mesh generation algorithm. In its general form the
proposed method is composed by the following four steps:

(i) Extract an approximation of the medial axis of the vol-
ume.

(ii) Generate an inner hexahedral mesh (seed) that follows
the medial axis approximation.

(iii) Generate level sets (fronts) between the hexahedral seed
and the boundary of the volume.

(iv) Generate layers of elements from the inside to outside
using the level sets as a guide.

We refer to this method as the receding front method.
That is, a reversed advancing front method. In this work
and in the previous ones [21,22] we apply the receding front
method to generate unstructured hexahedral elements for ex-
terior domain problems. Note that for these specific prob-
lems we do not need to obtain the medial axis and to gener-
ate hexahedral elements that follow it (first and second steps
of the receding front method). In fact, the initial seed is an
unstructured quadrilateral mesh over the surface of the inner
object. Therefore, the main contributions of this work are
focused on the third and fourth steps. That is:

(i) To pre-compute the fronts (or layers of hexahedra)
by solving a non-linear PDE. We combine two solu-
tions of the Eikonal equation to pre-compute the fronts.
One solution determines the distance from the inner
boundary and the other solution determines the dis-
tance from the outer boundary. The level sets of the
combined distance field smoothly adapt to both bound-
aries. For this reason, the final mesh smoothly adapts
from the inner boundary to the outer boundary.

(ii) To generate layers of elements from inside to out-
side. We expand a quadrilateral surface mesh defined
on the inner body towards the outer boundary using the

level sets as a guide. In this way, we avoid the collision
of meshing fronts in the inner part. In order to gener-
ate the hexahedral elements, we propose to use a set of
advancing templates that adapts the mesh front to the
geometry features. In order to maintain the prescribed
element size, we also propose to use a local refining
process.

Note that combining two solutions of the Eikonal equa-
tion we have: (i) a global description in the interior of the
geometry of its shape; and (ii) a not expensive procedure to
pre-compute an approximate location of the layers of hexa-
hedra (fronts). Using this information we insert a set of tem-
plates to advance from one level to the next one. The new
nodes lay on the pre-computed fronts.

2 Related work

This work is clearly related to the grid-based and advancing
front methods. However, the standard grid-based methods
do not generate layers of hexahedra from inside to outside
that smoothly adapt to the boundary of the domain. In ad-
dition, the advancing front methods do not start to gener-
ate layers of hexahedra from the inner part of the domain.
Hence, the proposed approach is different to both method-
ologies. Furthermore, we propose to pre-compute the fronts
by solving the Eikonal equation. It is important to point
out that there are other mesh generation works that use the
Eikonal equation. In his seminal work, Sethian proposes a
method to advance structured meshes by solving the Eikonal
equation [23]. Another front propagation method based on
the Eikonal equation is presented in [24]. In [25,26], the au-
thors show how to obtain the medial axis transform (MAT)
by means of the Eikonal equation. Nevertheless, this is the
first work where two solutions of the Eikonal equation are
combined to pre-compute the fronts and obtain an unstruc-
tured hexahedral mesh.

Other techniques to guide the layering and alignment of
the elements have been proposed in the literature. A geomet-
rical guide is provided by the medial axis, which is used to
align and layer the elements according to the shape of the
domain [27–32]. Instead of using the geometrical descrip-
tion of the medial axis as a guide, we propose to use the
level sets of a scalar field. Thus, we avoid to compute the
medial axis and we only need to obtain two rough approx-
imations of the solution of two Eikonal equation problems.
Note that using a field as a guide has been previously pro-
posed for mesh generation in [33,34]. Specifically, in these
works a tensor field is used to control the alignment of a
hex-dominant mesh in the three possible directions. Here we
propose to use a scalar field to control the alignment of an
all-hex mesh just in the advance direction. The alignment of
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the other two directions is determined by the seed mesh and
the proposed advancing templates.

The main drawback of the standard grid-based methods
is the quality of the elements near the boundary. To alleviate
it, the modified grid-based methods [35–38] insert a layer of
hexahedra that reproduce the shape of the boundary. In these
methods only the layers at the boundary can be unstructured
and adapted to the shape of the geometry, while in our ap-
proach all the layers can be unstructured and adapted to the
shape of the boundary.

Several approaches to advance from one constrained level
to the next one have been proposed in literature. For in-
stance, the plastering method [12] controls the number of
elements in the new layer by using seams (decrease) and
wedges (increase). In our approach this control is performed
by the proposed templates (composed by several hexahe-
dra). Specifically, we introduce a new set of templates that
allow to obtain quality meshes around semi-vertex and semi-
edge features. The whisker weaving approaches [39,40] also
proposes how to advance from one level to the next one.
However, in these approaches the advance is performed in
the mesh dual instead of the mesh primal.

In our advancing process, the new layer of unstructured
hexahedra only depends on the mesh of the previous level.
That is, according to the geometry and topology of the previ-
ous level the algorithm automatically selects the proper hex-
ahedral templates to generate the new layer. Then, if the new
elements do not respect the prescribed element size an addi-
tional refinement step is performed. The refining templates
are edge-based and several of them differ from the stan-
dard node-based templates [10]. Note that with the proposed
techniques, we do not modify the elements on the previous
level. In this sense, we could use general-purpose techniques
to modify the current hexahedral mesh [41–43]. However,
with our template based approach (specific-purpose) we ex-
plicitly determine the desired mesh. In addition, using these
templates it is straightforward to avoid to modify the ele-
ments of the previous level.

3 2D Motivation

To illustrate and clarify the basis of the receding front method
for a 3D geometry, we consider first a 2D example. Specif-
ically, we present a smooth domain that will be meshed us-
ing quadrilateral (hexahedral) elements. With the help of this
domain we first review the main advantages and disadvan-
tages of the grid-based and advancing front methods. Fi-
nally, we outline the proposed receding front method, which
combines the advantages of both methods.

Given a domain, the grid-based methods typically gener-
ate a quadrilateral (hexahedral) mesh in the inner part of the
domain, Figure 1(a). Then, the remaining void between the

(a) (b)

(c)

Fig. 1 Several steps of a grid-based method: (a) inner mesh; (b) void
between boundary and inner mesh; and (c) final mesh.

inner mesh and the boundary has to be meshed, Figure 1(b).
To this end, several new nodes are created on the boundary.
These nodes are connected with the quadrilateral elements
of the boundary of the inner mesh to form the last layer of
hexahedra, Figure 1(c). The boundary of the inner mesh is
not adapted to the boundary of the geometry and, for this
reason, low-quality hexahedra close to the boundary may
appear. However, this approach is robust and can be applied
to general geometries to obtain meshes with high-quality el-
ements in the interior of the geometry.

In summary, grid-based methods generate high-quality
elements in the interior of the volume and may generate low-
quality elements near the boundary. These behavior appears
because the mesh is generated from inside to outside.

Advancing front methods generate layers of elements
(fronts) that start at the domain boundary and, layer by layer,
advance towards the inner part of the domain. At the last
step, several elements that connect the fronts close the re-
maining void. There are two families of advancing front
methods: the constrained [12] and the unconstrained approaches
[13–15].

The constrained approach generates a first layer of el-
ements, Figure 2(a), that matches with a prescribed mesh
of the boundary. Then, several layers of elements are gen-
erated by merging and matching the elements that are in
front of the last layer, Figure 2(b). Inner voids defined by the
fronts can be complex to mesh. In addition, since the process
starts with a prescribed boundary mesh, the inner voids can
be over-constrained, which leads to low-quality elements or
inner voids that cannot be meshed, as illustrated in Figure
2(c).

The unconstrained approach relaxes the hex-meshing prob-
lem by considering that the domain boundary is not previ-
ously meshed. The meshing process starts at the boundary
and provides a decomposition of the domain in several lay-
ers, Figure 3(a). The process stops when the inner void can
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(a) (b)
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Fig. 2 Several steps of a constrained advancing front method: (a) first
front; (b) last front and contours of the previous fronts; and (c) un-
meshed void.

(a) (b)

(c)

Fig. 3 Several steps of an unconstrained advancing front method: (a)
fronts and final void; (b) simplicial mesh of the void; and (c) splitting
simplicial mesh.

be discretized with a hex-meshing primitive. Since the in-
ner void results from successive offsets of the boundary, it
can be as much difficult to hex-mesh as the initial domain.
Thus, there are configurations where the inner void cannot
be meshed with a high-quality hex-meshing primitive. How-
ever, it is possible to generate a hexahedral mesh from a
simplicial mesh of the unrecognized inner void, Figure 3(b).
The simplicial mesh is split in quadrilateral (hexahedral) el-
ements, Figure 3(c). Then, the boundary of this inner mesh
is propagated through the layers towards the boundary of the
domain. The quality of the inner elements is not guaranteed
because they are originated by a simplicial mesh. Moreover,
since the boundary of the inner mesh is propagated through
the domain towards its boundary, the inner mesh determines
the structure and the quality of the mesh at boundary curves
(surfaces). It is important to point out that the element qual-
ity close to the boundary features is ensured because it is
a front-based approach. As for all mesh generation algo-

(a) (b)

(c) (d)

Fig. 4 Pre-computing the fronts: (a) outer boundary and inner seed; (b)
level sets from inside to outside; (c) level sets from outside to inside;
and (d) combining inside-to-outside with outside-to-inside level sets.

(a) (b)

(c) (d)

Fig. 5 Layers of elements for the receding front method: (a) first layer;
(b) second layer; (c) third layer; and (d) final layer.

rithms, low-quality elements may appear close to very sharp
dihedral angles. In addition, this approach is fully automatic
and can provide high-quality meshes for a wide range of ge-
ometries.

In summary, advancing front methods generate high-quality
elements near the boundary of the volume and may generate
low-quality elements in the inner part. This behavior appears
because the mesh is generated from outside to inside.

To combine the advantages of both the grid-based and
the advancing front methods, herein we propose the reced-
ing front method. This methodology requires an initial mesh
(seed) of the inner part of the domain, Figure 4(a). Note
that for the specific case of meshing the exterior domain
of a given body, the initial mesh is a quadrilateral mesh
of the body surface. This allows to decouple the problem
of generating the inner seed from the front generation pro-
cess. The fronts that determine the layers of elements can
be pre-computed. Specifically, first we generate offset levels
of the shape of the inner seed towards the boundary, Figure
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4(b). Second, we compute the offset levels of the shape of
the outer boundary inwards, Figure 4(c). These offset lev-
els are obtained as the level sets of two solutions of the
Eikonal equation, see Section 4.1. One solution is related to
the boundary of the inner seed and the other one to the outer
boundary. To compute these solutions we use an edge-based
solver on a triangular (tetrahedral) mesh, see [44]. Third, we
combine both solutions to obtain a function that reproduces
the shape of the inner body in the inner part, and the shape of
the boundary close to the outer part, Figure 4(d). Finally, the
mesh fronts are obtained as the level sets of this function.
In Section 4.2 these fronts are used as a guide to generate
layers of elements starting from the inner seed and advanc-
ing towards the outer boundary, Figure 5. To this end, a set
of templates determines how to offset the previous layer of
elements to the new front. Moreover, we have to consider
a set of refinement rules that ensures that the element size
is not exceeded. The resulting procedure generates layers of
elements that progressively morph from the shape of the in-
ner boundary to the shape of the outer boundary. In addition,
starting from the inner part we can avoid over-constrained or
complex inner voids.

4 The Receding Front Method

The receding front method is decomposed into two steps.
First, we pre-compute a set of fronts between the inner and
the outer boundaries. Second, we generate layers of ele-
ments from inside to outside by expanding the quadrilat-
eral mesh of the inner boundary towards the unmeshed outer
boundary according to the pre-computed fronts.

4.1 Pre-Computing the Fronts

Given a domain Ω ⊂ Rn, the Eikonal equation is the fol-
lowing non-linear partial differential equation{

‖∇d‖ = f in Ω
d|U⊂{Ω∪∂Ω} = 0,

(1)

where f is a known function, ‖ ·‖ is the Euclidean norm and
U is a sub-set of the closure of Ω. For f = 1 the solution
d is the distance from U . For f = 1

h(x) the level sets of the
solution d follow the size field h(x) defined for x ∈ Ω. In
this work we consider f = 1. In our implementation, the
Eikonal equation is solved on a tetrahedral mesh by means
of an edge-based solver. This solver is a modification of the
solver presented in [44].

Algorithm 1 presents the proposed procedure to compute
the solution of the Eikonal equation (1). Given a mesh and
a set of nodes that belongs to U , initialize the values of the
solution at zero for these nodes and to infinity for all other

Algorithm 1 Solver for the Eikonal equation
1: function solveEikonal(Mesh mesh, NodeSet initialNodes)
2: NodeMinHeap N ← ∅
3: for all Node n ∈ mesh do
4: if belongs(n,initialNodes) then
5: setValue(n,0.0)
6: else
7: setValue(n,∞)
8: end if
9: insert(n,N )

10: end for
11: while heapSize(N ) > 0 do
12: Node n0 ← firstNode(N )
13: removeNode(n0,N )
14: Real v0 ← getValue(n0)
15: for all Edge e adjacent to n0 do
16: Real le ← length(e)
17: Node ne ← oppositeNode(e,n0)
18: Real ve ← getValue(ne)
19: Real v′e ← v0 + lef(n0) . Note that in our

implementation f ≡ 1

20: if v′e < ve then
21: setValue(ne,v′e)
22: updateHeap(ne,N ) . Since the value of the

node has changed
23: end if
24: end for
25: end while
26: end function

nodes. In addition, as the values of the solution are initial-
ized, the nodes are inserted in a min-heap, Lines 3–10. A
min-heap is a data structure in which the values are stored
in a descending order. The nodes are sorted in the min-heap
according to its current value of the solution. That is, the
nodes with the smaller values come before than the nodes
with greater values. The main idea of the algorithm is that
the node with the smaller value of the solution contains a
correct value. Note that the node with the smallest value is
the first node of the min-heap. Such node is removed from
the min-heap (Line 13) and the value of the solution of its
adjacent nodes is updated according to the Eikonal equa-
tion. Let n0 and ne be the node with smallest value and an
adjacent node through an edge e, respectively. According to
Lines 15–24, the new value of the solution for the node ne
is:

v′e = min{ve, v0 + lef(n0)},

where v0 and ve are the values of the solution corresponding
to n0 and ne nodes, and le is the length of edge e. Note
that if the value of the solution is changed for the adjacent
nodes, the position of those nodes in the min-heap has to be
updated, Line 22. This process is iterated until there are no
nodes in the min-heap.

In our applications we consider a domain bounded by
an inner object that defines the inner boundary of the do-
main, ∂Ωin, and a smooth outer boundary denoted by ∂Ωout.
In order to find a distance field that takes into account the
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(a) (b)

(c)

Fig. 6 Distance fields computed in the exterior domain of a five-
pointed star: (a) starting from the outer boundary (∂Ωout); (b) starting
from the inner boundary (∂Ωin); and (c) combined distance field.

distance from each inner point to both boundaries we first
consider the following problem:{
‖∇dout‖ = 1 in Ω
dout|∂Ωout = 0,

(2)

where dout > 0. The solution of Equation (2) provides the
distance to the outer boundary, see Figure 6(a). Second, we
consider the problem:{
‖∇din‖ = 1 in Ω
din|∂Ωin = 0,

(3)

where din > 0. The solution of Equation (3) provides the
distance to the inner boundary, see Figure 6(b). Note that
we use the same tetrahedral mesh to solve both Equations
(2) and (3) using Algorithm 1. The combined distance field,
u, is defined as:

u :=
dout

dout + din
. (4)

Note that the combined distance field verifies 0 6 u 6
1, and at the boundaries of the domain it also verifies that
u|∂Ωout = 0 and u|∂Ωin = 1. Moreover, the contours of u
close ∂Ωout are similar to dout whereas the contours of u
close ∂Ωin are similar to din. That is, the level sets of the
combined distance field reproduce the shapes of the inner
and outer boundaries close to them. Figure 6(c) presents the

Algorithm 2 Generate level sets ordered from inside to out-
side
Ensure: LevelSetContainer L
1: function ComputeLevelSets(Mesh mesh, Boundary ∂Ωin,

Boundary ∂Ωout,
Int nOfLevelSets)

2: ScalarField din ← solveEikonal(mesh, ∂Ωin)
3: ScalarField dout ← solveEikonal(mesh, ∂Ωout)
4: ScalarField u← combineDistanceFields(din, dout)
5: LevelSetContainer L← getLevelSets(u, nOfLevelSets)
6: end function

Algorithm 3 Generate hexahedra between level sets
Ensure: Mesh theMesh
1: function MeshLevels(LevelSetContainer L)
2: Mesh theMesh← ∅
3: Quad-Mesh Q` ← getQuadMesh(`0)
4: Features F` ← detectGeometricFeatures(Q`)
5: for all LevelSet ` in L do
6: LevelSet `next ← getNextLevelSet(`)
7: meshFront(theMesh, Q`, F`, `next)
8: smoothFront(theMesh, `next)
9: refineFront(theMesh, `next)

10: Quad-Mesh Q` ← getQuadMesh(`next)
11: Features F` ← classifyNewFeatures(Q`)
12: end for
13: end function

combined distance field for the exterior domain of a five-
pointed star.

Finally, we extractm level sets of the combined distance
field u. These level sets determine the fronts used to ad-
vance the mesh from the meshed inner boundary towards the
unmeshed outer boundary. In our implementation, the level
sets are represented by means of triangular meshes. Algo-
rithm 2 details the proposed procedure to generate the level
sets of the distance field.

4.2 Expanding the Fronts

The expanding process of a quadrilateral mesh defined on a
given level to the next one is performed in five steps. First,
we classify the entities of the quadrilateral mesh. Second,
we use a set of templates to generate an hexahedral mesh
between the two levels according to the previous classifi-
cation. Third, we smooth the hexahedral mesh to improve
its quality. Fourth, if needed, we apply a local refinement
process to preserve the prescribed element size. Fifth, we
classify the features of next level. Algorithm 3 details the
proposed procedure to expand the quadrilateral mesh on the
inner body to the outer boundary. The initial quadrilateral
mesh on the surface of the inner body is generated with the
method proposed in [45,46].
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corner

sideend

reversal

Fig. 7 Edge classification (the normal vectors point towards the ad-
vancing direction).

4.2.1 Feature Vertices and Feature Edges

Given an initial quadrilateral mesh on the surface of the in-
ner boundary, we have to detect its geometric features. These
geometric features define the topology of the mesh for the
current level. First, the edges of the quad-mesh are classi-
fied according to the angle, φ, defined by the outer normal
of its adjacent faces as (see Figure 7):

corner edge π/4 ≤ φ < 3π/4,

reversal edge 3π/4 ≤ φ < 5π/4,

end edge 5π/4 ≤ φ < 7π/4,

side edge otherwise.

(5)

We define a local feature edge as an edge that is not clas-
sified as side. That is, an edge that locally defines a geomet-
ric feature of the quadrilateral mesh.

The nodes of the quadrilateral mesh are classified ac-
cording to the number of adjacent local feature edges.

2D node 0 adjacent local feature edges,
1D node 1 or 2 adjacent local feature edges,
0D node 3 or more adjacent local feature edges.

The main idea is that 0D nodes represent a vertex, 1D nodes
belong to a curve and 2D nodes belong to a surface. Figure 8
presents a quadrilateral mesh with its feature edges marked
with thick line. In addition, 0D nodes are depicted with gray
circles and 1D nodes using white circles. All other nodes are
classified as 2D nodes and are marked with black circles.
For the special case where a node is adjacent to exactly one
local feature edge, node is classified as semi-vertex and the
adjacent local feature edge as a local semi-edge, see Figure
9.

The above classification of nodes and edges locally de-
termines the topology of the hexahedral mesh. That is, we
have obtained a local model of the features contained in the

0D node

1D node2D node

local
feature edge

Fig. 8 Detected local feature edges (thick line) and its corresponding
node classification: 0D nodes in gray circles; 1D nodes in white circles;
2D nodes in black circles.

Fig. 9 A semi-edge (thick line) and corresponding semi-vertices
(white circles) for a quadrilateral mesh.

feature
vertex

global
feature edge

Fig. 10 Feature edges (thick line) and feature vertices (white circles)
computed from the local feature edges.

mesh. However, to advance the fronts taking into account
the global organization of the features we have to generate a
global model. For this purpose, we define a feature vertex as
a node classified as 0D node. In addition, we define a global
feature edge as a continuous path of local feature edges that
connects two feature vertices. To illustrate these definitions,
Figure 10 shows a quadrilateral mesh and its corresponding
feature vertices and global feature edges. While Algorithm 4
presents the proposed procedure to compute the global fea-
ture edges of a quadrilateral mesh given the local feature
edges and the feature vertices. The idea of the algorithm is
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Algorithm 4 Compute global feature edges
Ensure: GlobalFeatureEdgeList E
1: function computeGlobalFeatureEdges(FeatureVertexList
V)

2: GlobalFeatureEdgeList E ← ∅
3: for all FeatureVertex ν ∈ V do
4: for all LocalFeatureEdge e adjacent to ν do
5: if not ispreviouslyUsed(e) then
6: FeatureEdge ε← ∅
7: Node n← getNode(ν)
8: repeat
9: insertEdge(e,ε)

10: Node n← oppositeNode(e,n)
11: e← getNextLocalFeatureEdge(n, e)
12: until isFeatureVertex(n)
13: insert(ε,E)
14: end if
15: end for
16: end for
17: end function

to loop on the feature vertices (Lines 3–15) and, for each
feature vertex, compute its adjacent global feature edges (5–
14). Once all the feature vertices are traversed, the global
feature edges are generated. In addition, if a local feature
edge is a semi-edge, the global feature edge is also classi-
fied as semi-edge. The main idea is that the local feature
model defines the topology of the mesh for the current level
while the global model will maintain the coherence of the
local model between two consecutive levels.

4.2.2 Meshing the Fronts

From a quadrilateral surface mesh of the inner boundary we
want to generate an unstructured hexahedral mesh of the do-
main without prescribing a quadrilateral surface mesh on the
outer boundary. Each level-set computed in the initial tetra-
hedral mesh of the volume will delimit a new front of hex-
ahedral elements. Therefore, we have to describe the proce-
dure to expand a quadrilateral mesh on level set ` to level set
`+ 1. This process is performed in three stages:

(i) Generation of new hexahedra adjacent to feature ver-
tices. The advancing template at each feature vertex
is determined by the number of adjacent local feature
edges classified as end, reversal and corner. The adja-
cent edges determine the topology of the mesh at each
particular feature vertex. Figure 11 illustrates the tem-
plates used to expand the feature nodes of the quadri-
lateral mesh. Note that there exist additional templates
that address other arrangements of feature edges. How-
ever, they are not considered in this work.

(ii) Generation of new hexahedra adjacent to local feature
edges. The classification of each local feature edge de-
termines the used template to expand the layer to the
next level. Figure 12 presents the templates used to ex-
pand feature edges. Note that local feature edges that

3 corner
2 corner
1 end

3 end

3 corner
3 end

2 corner
2 end

2 corner
1 reversal 2 end

1 reversal

1 corner
2 end

Fig. 11 Advancing vertex templates. Previous level mesh in shaded
gray, feature vertices in black circles, and local feature edges in thick
lines. Next level feature edges in thick black line and next level 0D
nodes in black circles and 1D nodes in white circles.

were used in the previous step do not have to be ex-
panded.

(iii) Generation of new hexahedra adjacent to quadrilat-
eral faces. For each face of the quadrilateral mesh that
has not been expanded, apply the extrusion template
presented in Figure 13. Note that some of the quadri-
lateral faces were used in the previous steps and, for
this reason, they do not have to be expanded.

Note that end and corner edge templates are advancing
templates that allow to increase (corner template) or reduce
(end template) the number of hexahedra from one level to
the next one. However, the templates introduced in Figures
11 and 12 do not deal with semi-edges and semi-vertices.
These templates cannot be applied around semi-edges and
semi-vertices, because they will lead to a non-conformal
mesh. For this reason, we introduce five new templates for
the semi-edge and semi-vertex features that allow to increase
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corner

end

rev ersa l

Fig. 12 Advancing edge templates. Previous level mesh in shaded
gray, feature vertices in black circles, and local feature edges in thick
lines. Next level feature edges in thick black line and 1D nodes in white
circles.

Fig. 13 Advancing face template. Previous level mesh in shaded gray.

the element quality around these geometric features. Three
of them are used to expand semi-edges and two of them
to advance semi-vertices. Figure 14 presents the advanc-
ing templates corresponding to semi-edges, where the pre-
vious quadrilaterals are shaded and the new hexahedra are
not shaded. Specifically, Figures 14(a) and 14(b) show the
advancing templates corresponding to a semi-edge classi-
fied as corner and a semi-edge classified as end, respec-
tively. These advancing templates introduce an additional
layer of elements around the semi-edges. For this reason,
the template presented in Figure 14(c) is introduced in order
to provide the transition between the edges with one level
and the edges with two levels. This template can be thought
as the advancing template defined for a special semi-edge.
This semi-edge is called side semi-edge.

The advancing templates for semi-vertices are presented
in Figure 15, where previous quadrilaterals are shaded and
new hexahedra are not shaded. Specifically, Figure 15(a)
presents the advancing template for a semi-vertex adjacent
to a semi-edge classified as corner, while Figure 15(b) shows
the advancing template for a semi-vertex adjacent to a semi-
edge classified as end. These templates allow to generate a
hexahedral mesh around semi-edges.

In order to generate the hexahedral mesh around these
features, we first have to detect the side semi-edges that de-
termine the transition from the area with two sub-levels and

(a)

(b)

(c)

Fig. 14 Advancing templates for semi-edges: (a) advancing template
for a semi-edge classified as corner; (b) advancing template for a semi-
edge classified as end; and (c) advancing template for a semi-edge clas-
sified as side.

the area with one level, see Figure 9. Two side semi-edges
are propagated from each of the semi-vertices, see Figure
16. The new semi-edges are propagated until they hit a fea-
ture edge. At this point, the appropriate templates are used in
order to generate the hexahedral mesh for the current level.

As the advancing templates are applied, the quadrilateral
mesh of the next level is generated. Hence, each advancing
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(a)

(b)

Fig. 15 Advancing templates for semi-vertices: (a) semi-vertex adja-
cent to a corner semi-edge; and (b) semi-vertex adjacent to an end
semi-edge.

Fig. 16 Process of side semi-edges creation (dotted line) from an ini-
tial end semi-edge (thick line) and its corresponding semi-vertices
(white circles).

front template defines the local feature edges and the feature
vertices of the next level. For this reason, at the same time
as the advancing front process is performed, it is possible to
classify the next level nodes and to identify the local feature

edges of the next level. Recall that if the nodes of a level
are classified, we have also identified the feature vertices
of that level since 0D nodes correspond to feature vertices.
Figures 11 to 15 present the classification of the nodes of
the next level for each type of advancing template. In these
figures, black circles represent 0D nodes of the next level,
white circles represent 1D nodes of the next level and the
remaining nodes are 2D nodes. In addition Figures 11 to
15 show the local feature edges of the next level in thick
lines. Further analysis is needed to classify them as corner,
reversal, end or side, see Section 4.2.4.

4.2.3 Smoothing the Fronts

When all the hexahedra of the current level are generated,
the position of the newly created nodes may not define high-
quality elements. For this reason, a smoothing technique is
applied to the current front of hexahedra. For each node, the
proposed smoothing process is performed in two steps.

1. Re-location of the node. The node is located to the posi-
tion determined by the untangling and smoothing proce-
dure detailed in [47,48]. The nodes of the previous levels
are fixed.

2. Projection of the node to the current level set surface.
The position computed in the first step is not located on
the surface defined by the level set. For this reason, the
node has to be projected to the level set. To this end,
we find the triangle of the level set that is the closest
to the node and project the node to that triangle. Note
that mid-level nodes introduced by semi-edge and semi-
vertex templates do not have to be projected onto next
level set.

Experience has shown that four or five iterations of this
process are sufficient to improve the quality of the mesh.
In addition, this process also increases the robustness of the
receding front method.

4.2.4 Refining the Fronts

Once the position of new nodes is improved, the size of the
new hexahedra may differ from the prescribed element size.
In particular, if the size of the new hexahedra is bigger than
the prescribed element size, a local refinement process is
performed at each level. This process is based on the edges
of the mesh. The main advantage of this algorithm is that
it provides anisotropic refinement on the hexahedral mesh.
That is, the mesh is only refined on the required directions.
In order to select the edges to be refined, let h and le be
the prescribed element size and the length of edge e, respec-
tively. This edge is marked to be refined if:∣∣∣∣ le3 − h

∣∣∣∣ ≤ |le − h| . (6)
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otherwise

Fig. 17 Classification of the templates used during the refining process according to the marked edges.

That is, an edge is refined if the refined edge length better ap-
proximates the prescribed element size than the current edge
length. Since the refining process is based on templates that
divide the selected edges in three parts (sub-edges), the re-
fined element size is le/3. When the edges to be refined are
selected, adjacent hexahedra are replaced by a given tem-
plate of hexahedra depending on the marked edges. To this
end, we use the method proposed in [49] where the tem-
plates introduced in [9] and [10] are adapted and extended
to marked edges. Given a set of marked edges to be refined,
the algorithm substitutes each hexahedron by a template of
hexahedra depending on the marked edges. The edge refine-
ment algorithm proceeds as follows:

1. Template expansion. Some combinations of marked edges
cannot be substituted by a given template. For this rea-
son, additional edges have to be marked in order to ap-
ply a valid template. For each hexahedron that contains
marked edges, we check if an appropriate template ex-
ists. If no template exists, we mark the additional edges
as presented in Figure 17. This process is iterated until
all hexahedra can be substituted by an existing template.
According to our experience, the number of additional
marked hexahedra is less than the 10% of the number of
initial marked hexahedra.

2. Template substitution. In this step, each hexahedron is
refined using a template of new hexahedra. Figure 18

shows the corresponding template substitution for each
combination of marked edges.

Note that when templates are applied in order to replace
an hexahedron, local feature edges and feature vertices have
to be replaced by the refined ones.

4.2.5 Classifying the new features

When the elements for the current level are refined, we still
have to compute the global feature edges of the next level.
To identify the global feature edges, we first apply Algo-
rithm 4 to the quadrilateral mesh generated on the next level.
We can apply it because the local feature edges have been
already identified. Recall that in Section 4.2.2 we have de-
tailed how to identify (not classify) the local feature edges
from the meshing templates. Second, we classify the global
feature edges. To this end, we compute the average angle of
the adjacent faces of its local feature edges, φ̄. Then, accord-
ing to the angle φ̄, global feature edges are classified as:

corner edge π/4 ≤ φ̄ < 3π/4,

reversal edge 3π/4 ≤ φ̄ < 5π/4,

end edge 5π/4 ≤ φ̄ < 1.85π,

side edge otherwise.

(7)

Note that the only value that has been modified from (5) cor-
responds to end global feature edges. In this way, we avoid
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Fig. 18 Substitution templates for each combination of marked edges.

that end global feature edges are classified as side too early
in the algorithm. Then, the local feature edges are classified
as the containing global feature edge.

The algorithm of front meshing is iterated until all the
fronts are discretized. That is, until the outer boundary is
reached.

5 Examples

In this section we present four examples where the reced-
ing front method is applied to the discretization of the exte-
rior domain of four simple geometries. In all the cases the
starting mesh is a quadrilateral mesh of the inner surface.
The user input is the element size of the quadrilateral mesh
and the number of levels of the mesh. In these examples,
we illustrate the process of the receding front method with
geometries that contain different types of feature edges. In
addition, we show the need of a refining process to avoid
bigger elements that the prescribed element size. Finally, we
sketch a procedure to generate stretched elements along the
advancing direction.

Long box. The goal of the first example is to illustrate
the steps of the method for a simple geometry. To this end,
we present the mesh for the exterior domain of a long box
located inside a smooth domain, see Figure 19. Note that the
inner boundary only contains global feature edges classified
as corner, see Section 4.1. Figure 19(a) presents the tetra-
hedral mesh used to compute the solution of both Eikonal
equations. Figure 19(b) presents four pre-computed fronts
as detailed in Section 4.1. Figure 19(c) shows a general view
of the hexahedral mesh, while Figure 19(d) illustrates a lon-
gitudinal cut of the mesh. Although the quadrilateral surface
mesh of the inner box is structured, the final mesh contains
unstructured nodes both in the interior and on the bound-
ary of the mesh. For instance, in Figure 19(c) we highlight a
node with three adjacent hexahedra that comes from a ver-
tex of the long box. In addition, Figure 19(d) shows an in-
ner node with six adjacent hexahedra that appears when the
global feature edge is classified from corner to side.

Five-pointed star. The second example presents the
mesh generated for a domain delimited by a star placed in-
side a sphere. In this case the definition of the domain con-
tains feature edges classified as corner and end. The final
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(a)

(b)

(c)

(d)

Fig. 19 Hexahedral mesh for the exterior domain of the long box: (a)
tetrahedral mesh used to solve the Eikonal equation; (b) level sets of
the combined distance field; (c) general view of the hexahedral mesh;
and (d) longitudinal cut of the hexahedral mesh.

(a)

(b)

(c)

Fig. 20 Hexahedral mesh for the exterior domain of the pentagonal
star: (a) general view; (b) vertical cut; and (c) detail of an end semi-
edge region.
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(a)

(b)

Fig. 21 Hexahedral mesh without local refinement for the exterior do-
main of the flat object with a reversal feature: (a) general view of the
outer boundary mesh; and (b) longitudinal cut.

mesh is composed by five fronts (Figure 20(b)): two of them
with a single layer of hexahedra, and three of them a double
layer of hexahedra (due to semi-edge advancing templates).
Figure 20(c) presents a detail of a region where an end semi-
edge template is used since the only global feature edges re-
maining are those classified as end. Note that the expansion
of the seed surface mesh generates unstructured elements
along the advancing direction. The change of topology al-
lows to generate high-quality elements that follow the pre-
computed fronts.

Flat object. The objective of the third example is to
show that using a refinement procedure we can respect the
prescribed element size in the final mesh. To this end, we
discretize a domain delimited by a flat object inside an el-
lipsoid, which only contains feature edges classified as re-
versal. First, we generate a hexahedral mesh without using
the local refinement process described in Section 4.2.4, see
Figure 21. Note that the obtained element size near the outer

(a)

(b)

(c)

Fig. 22 Hexahedral mesh with local refinement for the exterior domain
of the flat object with a reversal feature: (a) general view of the outer
boundary mesh; (b) longitudinal cut; and (c) detail of the inner levels.
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boundary is greater than the obtained element size near the
inner boundary. In order to preserve the prescribed element
size, in each level we perform a local refinement, see Fig-
ure 22. The result shows that the final mesh reproduces with
more fidelity the prescribed element size. Note that in both
cases an unstructured mesh is obtained.

Space capsule. One of the advantages of the proposed
approach is that it is straightforward to stretch the elements
in the normal direction of the fronts. To this end, we use a
blending function [50] that modifies the combined distance
field u introduced in Equation (4):


ũ =

d2
d1
u 0 ≤ u ≤ d1

ũ = d2 + (1− d2)
2α(u−d1)/(1−d1) − 1

2α − 1
d1 ≤ u ≤ 1

(8)

where 0 ≤ d1 ≤ 1, 0 ≤ d2 ≤ 1 and α is a real parameter. In
order to illustrate the behavior of the blending function pre-
sented in (8), Figure 24 shows the new level sets distribution
using d1 = 0.5, d2 = 0.7 and α = 5.

The objective of the fourth example is to generate a stretched
mesh for the exterior domain of a space capsule. To this end,
we generate a boundary layer by using the blending function
(8). The final mesh, presented in Figure 24, contains 28 lev-
els. Figure 24(a) shows a general view of the outer boundary
of the final mesh. Figure 24(b) presents a cut of the mesh
and Figure 24(c) shows a detail of the boundary layer that
follows the modified distance field.

Aircraft. This example presents an unstructured hexa-
hedral mesh for the exterior domain of an aircraft. This mesh
is automatically generated using the receding front method.
The final mesh is composed by twenty levels. Figures 25(a)
and 25(b) show a cross section of the final mesh. Note that
the final mesh correctly adapts to the shape of the inner body
and is composed by high-quality elements.

6 Summary and Future Work

In this work we have proposed the receding front method, a
new approach for generating unstructured hexahedral meshes
of exterior domains. Specifically, the two main contributions
of this work are to pre-compute the meshing fronts by com-
bining two solutions of the Eikonal equation, and to advance
unstructured hexahedral elements from inside to outside (re-
cede) guided by the pre-computed fronts. The former allows
us to obtain meshes that reproduce the shape of the domain
close to the outer boundary. The latter allows us to avoid the
collision of constrained meshing fronts. The preliminary re-
sults presented in this work show the possibilities of the re-
ceding front method applied to the unstructured hexahedral

0

0

1

1

linear exponential

(a)

(b)

Fig. 23 Blending function composed by a linear part (dark gray) and
an exponential part (light gray).

mesh generation for exterior domains where corner, rever-
sal and end feature edges and semi-edges are present. More-
over, we show that it is straightforward to obtain stretched
meshes along the normal direction of the domain bound-
aries. We have implemented the proposed method in the
ez4u meshing environment [6,51,52].

Our long-term goal is to obtain a general-purpose un-
structured hexahedral mesh generator based on the receding
front method. In this sense, the first implementation of the
method presents several issues that should be investigated
and solved in the near future. First, we are currently includ-
ing additional advancing and refinement templates. These
templates allow us to improve the quality of the meshes ob-
tained by advancing the elements from one layer to the fol-
lowing one. Second, we are developing a local coarsening
process to preserve the prescribed element size when the
elements of the mesh are too small. Third, we want to ex-
tend the presented approach to mesh the exterior domain of
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(a)

(b)

(c)

Fig. 24 Hexahedral mesh for the exterior domain of the space capsule:
(a) general view of the outer boundary mesh; (b) longitudinal cut; and
(c) detail of the inner levels.

(a)

(b)

(c)

Fig. 25 Hexahedral mesh for the exterior domain of an aircraft: (a)
view of the interior of the mesh; (b) alternative view of the interior of
the mesh; and (c) detail of an unstructured area near the aircraft.
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several objects and objects with holes, for instance a torus
inside a sphere. Fourth, we want to apply the exterior do-
main meshing tool to outer boundaries with feature curves
and vertices. To this end, we need to develop an imprint-
ing technique that allows propagating through the fronts the
features of the outer boundary towards the inner boundary.
These imprints would determine a decomposition of the do-
main in sub-volumes that connect the outer boundary with
the inner boundary. Then, we can restrict the receding front
method to each one of the sub-volumes to advance layer-
by-layer unstructured hexahedra from the inner mesh to the
outer boundary. The resulting hex-meshing primitive would
respect the boundary features and would be equivalent to
a fully unstructured sweeping (regular sweeping is semi-
structured). Fifth, we will analyze how to deal with nar-
row regions where the thickness of the part is significantly
smaller than the surrounding volume. Since our approach
generates the same number of levels in the whole domain,
the distance between two consecutive level sets is variable.
Therefore, it could be interesting to generate different num-
ber of hexahedral layers in different regions bounded by
two consecutive level sets. To this end, we will investigate
how to discontinue a layer and connect it to the boundary
in one part of the model, but continue advancing the fronts
in other parts. Sixth, we have to investigate how to auto-
matically generate an inner hexahedral mesh that approxi-
mately reproduces the skeleton of the domain. To this end,
we have considered to use a similar technique to the one
proposed in [25,26]. Then, we can obtain an automatic un-
structured hexahedral mesh generator by means of advanc-
ing the fronts from inside-to-outside with the receding front
method. Finally, we have to analyze how the accuracy of the
Eikonal equation solution influences in the resulting hexa-
hedral mesh.

References

1. S.J. Owen. A survey for unstructured mesh generation technology.
In 7th International Meshing Roundtable, pages 239–267, 1998.

2. T.D. Blacker. Automated conformal hexahedral meshing con-
straints, challenges and opportunities. Engineering with Comput-
ers, 17(3):201–210, 2001.

3. T.J. Tautges. The generation of hexahedral meshes for assembly
geometry: survey and progress. International Journal for Numer-
ical Methods in Engineering, 50(12):2617–2642, 2001.

4. T.J. Baker. Mesh generation: Art or science? Progress in
Aerospace Sciences, 41(1):29–63, 2005.

5. J.F. Shepherd. Topologic and geometric constraint-based hexahe-
dral mesh generation. PhD thesis, The University of Utah, 2007.

6. X. Roca. Paving the path towards automatic hexahedral mesh gen-
eration. PhD thesis, Universitat Politècnica de Catalunya, 2009.
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